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Angular distributions and polarization measurements (obtained from bubble-chamber data) are presented
at seven incident 7+ momenta in the reaction #*p — Z+K*. Results of a partial-wave analysis as well as an
s-, t-, and u-channel analysis are presented. The branching fraction of the A(1950) — Z*K* was found to

be (2.0=£0.4)%,.

I. INTRODUCTION

HE aim of the experiment was to determine the
branching fraction of the A(1950) — Z*K*. To
achieve this, we report on data taken at seven incident
7+ momenta between 1.34 and 1.84 GeV/c, using the
72- and 25-in. hydrogen bubble chambers at Lawrence
Radiation Laboratory, Berkeley. The data have been
analyzed by use of two approaches: (i) an s-channel
partial-wave analysis, and (ii) an analysis using reso-
nances in the s channel and exchanges in the ¢ and »
channels to account for the nonresonant “background”
amplitudes. This second method is similar to that used
by Evans and Knight! and by Holladay.?
Preliminary data on three of these energies were
presented at Vienna.?

II. EXPERIMENTAL DETAILS

A. Exposure

Table I summarizes the data taken. This doubles the
world’s data in this energy region; the largest previous
sample is from the experiment by Pan and Forman at
a single momentum (1.7 GeV/¢).4

TABLE 1. Summary of film used in this experiment.

Number of ub
«+ momentum pictures equivalent?
(GeV/e) (1000) (approx)

1.34 52b 0.4
1.43 41b 0.5
1.55 121¢ 0.
1.63 164¢ 0.5
1.68 47° 0.5
1.77 122¢ 0.7
1.84 119¢ 0.9

* Cross section for one event.
b 72-in. chamber.
© 25-in. chamber.

* Work done under the auspices of the U. S. Atomic Energy
Commission.
. TlPresent address: Istituto di Fisica dell’Universita, Torino,
taly.

{ Present address: Brookhaven National Laboratory, Upton,
N. Y. 11973.

1L. E. Evans and J. M. Knight, Phys. Rev. 137, B1232 (1965).
2 W. G. Holladay, Phys. Rev. 139, B1348 (1965).

? G. Borreani and G. E. Kalmus (unpublished).

4Y. L. Pan and F. L. Forman, Nucl. Phys. B16, 61 (1970).
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B. Scanning and Measuring

The entire film was scanned twice for two-prong
events in which one or both of the prongs had a kink,
but in which no recoil at the kink was visible. The
combined scanning efficiency was found to be 999 for
events that were eventually accepted as

atp— SHKF
N

wtn.

The events were measured by using the cOBWEB on-line
Franckenstein system® and put through the FoG-
CLOUDY-FAIR system for reconstruction, constraining,
and plotting. Events that either failed the geometry
program or did not satisfy (with a reasonable X?) any
of the hypotheses

mtp — YK+ with 2+ — prd or 7t
—> SHEK 0
KN 2+7T+K0

were remeasured, and then measured a third time if
they failed again. Events that still failed were then
examined by a physicist. It was found that most
of these events were two-prongs (rtp, wtpr®, or mtrtn),
where one of the prongs scattered slightly but left no
visible recoil. Others could have been Z+tK*(z®) or
2t (KP), but the decay angle of the 2+ — r+n was so
small as to be impossible to measure in all views. These
events were in any case rejected by our acceptance
criteria (see Sec. III). It was found that about another
49, of these events appeared to be genuine on the scan
table, were within the acceptance criteria, but had no
acceptable output. The reason for this was usually
obvious, such as one of the origins being obscured by
other tracks in one of the views. This loss was taken into
account in computing the cross sections.

The events were constrained in the following way.

(a) If Ap/p (measured) for the =+ was <0.5, then a
standard two-vertex fit was performed for both
2+ — pn® and =+ — 7tn hypotheses.

(b) If Ap/p for the Z*+ was >0.5, the measured
momentum of the 2+ was ignored and it was calculated
from the decay vertex. This in general gave two values

s H. C. Albrecht, E. P. Binnall, R. W. Birge, M. H. Myers, and
P. W. Weber, Lawrence Raditation Laboratory Report No.
UCRL-18528 Rev., 1968 (unpublished).
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Tasre II. Summary of data and cross sections for #+p — =+K+,

Number of events Cross section

Momentum
of 7 Energy, c.m. Zt— prd Zt ooty It — ity rtp — ZtK+
(GeV/c) (GeV/e) (unweighted)  (unweighted) (weighted) (ub)
1.34 1.851 249 290 367 40035
1.43 1.896 222 293 374 510440
1.55 1.955 142 219 279 530450
1.63 1.992 255 299 375 470+40
1.68 2.016 197 299 377 505440
1.77 2.057 129 209 265 4154350
1.84 2.089 102 158 201 405450

for each hypothesis (pn® =+n), since it is a zero-
constraint fit. These values were then used as starting
values in the two-vertex simultaneous fit.

Ionization was used to resolve the =t — pn® or
2+ — atp ambiguity.

In order to obtain cross sections, the beam tracks
were counted on about every hundredth frame in the
film, and from this the total =+ path length in the
experiment was computed.

III. DATA

Table IT shows the number of events found at each
energy that satisfies the following cuts.

(a) The beam track is within the acceptable angular
and momentum limits.

(b) =t is >0.3 cm long and lives less than three
lifetimes.

(c) The =t decay angle (lab) is >5° (>10° for
72-in. chamber film).

(d) The event is within the fiducial volume.

Since cuts (b) and (c) are Zt-momentum-dependent,
each event was weighted to take into account these two
cuts as well as the possibility that the Z* left the
chamber’ before decaying. The values of cuts (b) and
(c) were "determined experimentally. For (b) we used
the Bartlett s-function method to determine the =
lifetime. The lifetime was calculated as a function of
=+ cutoff length and was found to become stable at a
length of 0.3 cm. Cut (c) was determined using the
following iterative procedure. From the measured 2+
momentum spectrum, we generated by Monte Carlo
methods the expected =+ decay angular distribution in
the laboratory and compared it to the measured one.
From this we determined a first approximation to the
cut. We then corrected accordingly the 2+ momentum
spectrum and repeated the procedure. Convergence was
essentially obtained in a single step for the Z+— rtn
mode. It should be noted that these cuts are critical
only for the 2+ — z*n decay mode, since the angular
distributions and cross sections have been determined
by use of this mode only. For the polarization measure-
ment using the 2+ — p7® mode, unweighted events were
used, since the polarization measurement is not affected
by any bias in the decay angular distribution.

A. Cross Sections

Figure 1 and Table II show the cross sections for
mtp — TTK+.58 These were obtained by using the
weighted number of =+ — x*% events and multiplying
by 2.12 to take into account the 2+ — p# decay mode.?
The errorgbars shown contain both statistical and
systematicleffects. The other data points on the plot
have been obtained from the literature.

B. Angular Distributions

The angular distributions at the seven momenta for
both the weighted and unweighted #+p— ZtKt
2t — rtn events are shown in Fig. 2. The production
cosine, cosf, used is the cosine of the angle (c.m.)
between the incident =+ and outgoing K+, i.e., (#+-K+)
(c.m.). The average weight per event is about 1.25, and
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F1c. 1. Cross section for #tp — Z+K+,

¢ C. Baltay, H. Courant, W. J. Fickinger, E. C. Fowler, H. L.
Kraybill, J. Sandweiss, J. R. Sanford, D. V. Stonehill, and H. Taft,
Rev. Mod. Phys. 33, 374 (1961).

7H. W. J. Foelsche, A. Lopez-Cepero, C. Y. Chien, and H. L.
Kraybill (unpublished).

8 P. Daronian, A. Daudin, M. A. Jabiol, C. Lewin, C. Kochow-
ski, B. Ghidini, S. Mongelli, and V. Picciarelli, Nuovo Cimento 41,
771 (1966).

9 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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F16. 2. Angular distributions at the seven momenta for =*p —
2+K*, 2+ — ztn. The solid boxes are the Welghted events; the
dashed boxes are the unweighted events. The curve is from fit 1924
[see Table III and Fig. 7(b)]; cos@ is defined as (#+-K+) (c.m.).

it is not greater than 1.6 for any bin. We decided not to
use the =+ — pn® events, since the average weight for
these was about 2, and was greater for some of the bins.
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There is also evidence that the scanning efficiency for
these events was lower than for 2+ — 7tz events, with
the proton being in the plane containing the camera
optic axis and the direction of the Z*. The same bias
was not present in the 2+ — 7tz events.

C. Polarizations

Since the Z* decay is parity violating, the angular
distribution of the decay particles in the =+ rest frame
must be of the form

do/d(cosby) =1+aPs cosby ,

where ¢ is the asymmetry parameter, P is the average
polarlzatlon of the Z, and cosfy is defined as (4 N),
where 7 is the productlon normal [A= (#+*XK*+)/
|#+XK+|], and N is a unit vector parallel to the
nucleon direction from the =+ decay.
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FIG 3. Plot of aPs versus cosf, at the seven momenta for
— pr® events (e~ —1). The curve is from fit 1924 [see Table
III and Fig. 7(b)].
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Figures 3 and 4 show aPs as a function of the c.m.
production angle; the events at each energy were
divided into bins in cosf having ~30 events per bin.
For each bin the 2 polarization was calculated from
the observed Z-decay asymmetry relative to the pro-
duction normal %, according to the formula

_ 3 nNg
aP=— 3 cosfy;
NE =1
and _
) 3—(aP)>2
A(aP)=|:———:|
E
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F1G. 4. Plot of aPy versus cos, at the seven momenta, for
2+ — 7t events (a=0).
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Fic. 5. Plots of A;/A—~A+/A, at each of the seven momenta.
The A’s were calculated by fitting the weighted angular distribu-
tions (Fig. 2) with the Legendre series (see Sec. IV) up to the
seventh order. The sixth order was the maximum necessary to
obtain a good fit at all momenta.

(when |aP| was >1, |aP|=1 was used in the error
formula). Nz is the number of events in each bin.

The maximum-likelihood method was also used to
obtain oP, and the two methods were found to be in
excellent agreement.

D. Legendre Expansions

Figure 5 shows the values of 4,,/4, of the Legendre
polynomials fitted to the distributions shown in Fig. 2,
where the expression

Y S A acost)
— =X mP m(Cosl
dQ m=0

has been used. Figure 6 shows the values of the expan-
sion coefficients B,/A, of the first associated Legendre
series when fitted to the polarization distributions
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Fic. 6. Plots of B,,/A, at each of the seven momenta. These
were calculated by fitting the aPs plots (2+ — pn0) (Fig. 3) with
the first associated Legendre series (see Sec. IV) up to the maxi-
mum order allowed by the number of boxes in the data (m=num-
ber of boxes—1). It should be noted that in most cases this order
was not sufficient to give a good fit.

shown in Fig. 3, where the expression

do n max
—P=#AX2 ¥ B,P,!(cosf)
dQ n=1

was used.

For the A4,/A, distributions, the coefficients from
the seventh-order fit were plotted. At all momenta the
sixth-order fit was found to be satisfactory. For the
B,/A, distributions the maximum order allowed by
the number of experimental bins was plotted (where
we define the maximum order to be the number of bins
minus one)—this did not give a satisfactory fit at most
momenta. It should be noted that the fits of the models
to the data do not depend on a knowledge of the 4 and
B coefficients (see Sec. V).

IV. THEORY

When one examines the cross sections and angular
distributions (Figs. 1 and 2) of #+p — =+K™, it is clear
that in this energy region s-channel effects are large
and, in particular, the bump in the cross section at a
mass of =~ 1950 MeV is very suggestive of an s-channel
resonance. We have therefore used two approaches to
the analysis of the data: (a) an s-channel energy-
dependent partial-wave analysis, in which both reso-
nant and nonresonant amplitudes are present, and
(b) an s-, t-, and #-channel analysis in which we have
resonances in the s channel and K* and A exchange in
the ¢ and # channels to account for the background
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amplitudes. We are aware of the dangers of double
counting in this latter approach, but believe the results
show that this is not serious in this case.

A. Partial-Wave Analysis

A comprehensive discussion of the theory of partial-
wave analysis in formation experiments can be found
in Tripp,” so only a brief discussion is given here.

In a reaction of spin 0+4-spin 4 — spin 0+ spin % the
transition operator M is given by

M=a(0)+5(60)c 7. (1)

In this formula, ¢ and b are the non-spin-flip and the
spin-flip amplitudes, respectively. The production angle
6 and production normal # have been defined earlier
(Secs. ITI B and III C) and o is the Pauli spin operator.
The relationships between a(6) and 5(¢) and the com-
plex partial-wave amplitudes 7;% (I is the final orbital
angular momentum) are

a(0) =R 3> [(+1)T+ITi 1P i(cosh),

. _ 2
b(0)=iR Y (Tit—Ti)Pit(cosh),

where X is the 7+ wavelength in the c.m. system divided
by 2w, superscripts & refer to J=I+%, P, is the Ith-
order Legendre polynomial, and P;! is the Ilth-order
first associated Legendre polynomial.
The differential cross section 7/ and polarization P
are given by
I (=do/dQ)=|a|>+|b]|?
and 3)
IP=2 Re(a*b),

where the polarization is limited to being along the
production normal by parity conservation of the strong
interaction.

A more direct relationship between the measured
distributions I and /P and the partial-wave amplitudes
is obtained by making the expansions

I=32 3% A,Pn (cosb)

m=0

and
IP=#x%Y" B,P,(cosf).
n=1

The relationship between the A and B coefficients
and the partial-wave amplitudes 7 is well known, and
is given (for example) in Ref. 10.

The amplitudes 7'+ (and A, and B,) are, in general,
functions of the c.m. energy. The variation of T+ with
energy is in most cases unknown; the exception is for a
resonant amplitude when this energy dependence is
assumed to be given by the Breit-Wigner formula

=3(CL)*/[(Er—E)—il'/2],

1R, D. Tripp, in International School of Physics ‘““Enrico
Fermi” (Academic, New York, 1966), Course 33, p. 70.
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where E is the c.m. energy, Eg is the energy of the
resonance, I', is the partial width into the elastic
channel, T', is the width into the final (reaction) channel,
and T is the total width =)_;T;, where ¢ are all the
decay channels.

The partial widths I'; are also, in general, energy
dependent. This energy dependence has been approxi-
mated by Glashow and Rosenfeld" by

.2 i g,
(i) s
g*+x2) E

where ¢; and [; are the momentum and orbital angular
momentum of the decay products of the resonance into
the 7th channel, and X is a parameter related to the
radius of the interactions and has the dimensions of
mass. Blatt and Weisskopf have also derived non-
relativistically an expression for the energy dependence
of T';, which is identical to the above for /<1 and
differs only slightly for higher values of 1.12

The problem is to solve Egs. (2) and (3) for the T+
given the experimental distributions I and IP. This
requires nonlinear least-squares minimization, and we
use the computer program VWAVE to solve it.!?

In this program the inputs are the / and IP distri-
butions and the total channel cross section at each
energy. A set of starting values for each amplitude 7'+
is then chosen. These could be either of the resonant
form with an energy-dependent width, or background
amplitudes with an energy dependence of the form
(A4 Bk)e*¢+DP®)  where k is the incident c.m. mo-
mentum. There were, therefore, four parameters for
each partial wave (or eight if a resonant and a back-
ground amplitude were postulated for any partial
wave). For the background amplitudes these are
clearly 4, B, C, and D; for a resonance these are
magnitude |(T.I'»)V2|, mass Eg, half-width 3I', and
phase ¢ (at resonance).

The starting values were used to calculate the cross
sections, angular distributions, and polarizations. The
calculated quantities X, were compared with the
observed data X,° and their errors AX,° to find the X2:

=% [(Xs—X9/AXT,

where ¢ runs over all the experimental points.

The X2 function was then minimized with respect to
all the parameters by the variable metric method by
using the Lawrence Radiation Laboratory program
VARMIT.M After a satisfactory minimum is obtained,
the values of the parameters are randomly displaced
from their minimum values and the minimization is

1S, L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10,
192 (1963).

12 J. M. Blatt and V. F. Weisskopf, Tkeoretical Nuclear Physics
(Wiley, New York, 1966), p. 389.

13 W. M. Smart, thesis, Lawrence Radiation Laboratory Report
No. UCRL-17712, 1967 (unpublished).

“4E. R. Beals, Program varmitr Write-Up, Lawrence Radia-
tion Laboratory Computer Library Note (unpublished).
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repeated. This was repeated twice, and the lowest X2
solution was printed out. This method helps to ensure
that the program does not stop at a shallow local
minimum.

In our search for minima we have started at more
than 200 sets of initial conditions. We have also used
the program MINFUN' in its search mode, which explores
the valleys in the X? hypersurface, to try to establish the
uniqueness of the best solution found. It should be noted
that the confidence in the results of the fit depends to a
certain extent on whether the parametrization of the
background amplitudes is realistic.

B. s-, t-, and u-Channel Analysis

This analysis assumes s-channel resonances and ¢-
and #-channel exchanges comprising the nonresonant
“backgrounds.” As noted earlier, similar approaches
have been made,'? but to establish conventions we will
write the relevant equations in some detail.

In terms of the Dirac matrices v, and spinors #, and
us, the Feynman amplitude for the reaction »tp —
Z+K* may be written, in general,®

Fri=us(p )[A+5Byu(k+E)uJus(p),

where &, &/, p, and p’ are the four-momenta of the 7, K,
$, and Z, respectively, and 4 and B are functions of
the total c.m. energy E and the cosine of the c.m.
production angle 4 as defined earlier.

The production amplitude is related to Fy; by

(mm')!% 1 /| K'|\V?
ﬁ=—'—<—) Fys,
4r  E\|k]|

where m is the proton mass and ' is the £ mass. In
terms of Pauli spinors and matrices, T =X/ MX;,
where the transition operator is

M=g+h(o-p") (o D).
The amplitudes g and % are related to 4 and B by

g=Ci[A+3BQ2E—m—m')]
and
h=C_[—A+3BQ2E+m+m')],
where

|K'[\'* 1
Ci= (—) ——[(po=m) (po'£m') ]H2.
| k| 8rE

Here po is the c.m. energy of the proton, po’ of the =.
In terms of the more familiar non-spin-flip and spin-flip
amplitudes ¢ and b, the transition operator M may be
expressed as in Eq. (1), where ¢ and & are related to
g and % by a=g+hcosd and b= —iksinf. The dif-
ferential cross section and 2 polarization are now given
as before [Eq. (3)].

15W, E. Humphrey, Program MINFUN Write-Up, Lawrence
Radiation Laboratory Computer Library Note (unpublished).

16 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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1. Resonant Terms

The s-channel resonant contributions e, and b, to
the amplitudes ¢ and & have the same expansions as
Eq. (2), where the partial-wave amplitudes 7 are
approximated by the Breit-Wigner form and the partial
widths are also parametrized as before. For each reso-
nant partial wave, four variable parameters are possible,
as in the s-channel analysis: magnitude |(T.T,)|"2,
mass Eg, and width 3T, and a relative phase ¢.

2. Exchange Terms

We assume that the exchange contributions to ¢ and
b come from terms representing K* exchange in the ¢
channel and A exchange in the # channel.

t channel. For the exchange of a vector meson K*
with mass M and unit polarization vector e,, the in-
variant amplitude may be constructed!” from the meson
vertex factor

\/Z—gK'Kﬂ' (k+k/)#eu ,

the baryon vertex factor

g
mz@o(cwﬂricr—i)up@)e/,
m+m’

and the vector-meson propagator

(—&urtqug,/ M?) [ (*—M?).

The constant V2 is an isospin factor, gg*k~ is the cou-
pling constant at the meson vertex, and Gy is the vector
(and Gr the tensor) coupling constant at the baryon
vertex. The metric is g,.= (1, —1, —1, —1), and ¢, is
the four-momentum transferred between the initial
and final mesons. By comparing the amplitude thus
constructed and the general Feynman amplitude, one
finds the identities

2 W —m)
A,= gx*r-Gv
2K (z,—cosd)L me
2E2—m2—m'2—2koky +2kE' cost
+ gK*K':rGT:‘
m+m'
and
2
3Bi= —————(gx*x«Gv—gr*k+Gr) ,

B 2kk' (z:—cosf)

where 2 and %’ are now the magnitudes of the momenta
of the initial and final mesons, ko and & are their c.m.
energies, and u and u’ are their masses. The kinematical
factor is

zy= (M?+2kok —p*—u'*) /2kE' ,
and is approximately equal to 2 for the energies in this
experiment. Once 4, and B, are known, g, and h—

17 J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964).
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and therefore ¢, and b,—may be calculated from

ay=g+h, cosb
and
b= —’Lht sinf.

(These purely Born exchange terms are real.) Multi-
plying these by a phase factor et yields complex
amplitudes, in general, which express the relative
phase between the s and ¢ channels. The parameters
for the ¢-channel exchange that can be varied are the
coupling-constant products gx*k-Gv and gx*x-Gr, and
the arbitrary phase ¢,.

u channel. For the exchange of a A of mass M’, the
invariant amplitude has the form

1

F =ﬁ2(P/)<ngz'Y5'—‘——75gNAK>u ),
'YMQ#, —M? p(p

where g, is the four-momentum transferred between the
initial = and final 2. Reducing and comparing this
expression with the general Feynman amplitude as
before, one finds

grazgnag 1
Ay=—————=Q2M —m' —m)
2kE' (z4+cosb) 2
and
. 1 8rAZgNAK

T 2kk (34,+cosb) ’
with the kinematical factor
Zu= (M""42kopy —m'>—pu2) /2kk’

also approximately equal to 2. As in the i-channel
exchange, a, and b, may now be calculated. The param-
eters that may be varied are the coupling constant
product grazgnvax and an arbitrary phase ¢..

Form factors. The coupling “constant” products in
the exchange channels are, in general, dependent on
the square of the momentum transfer, and we have
allowed for this possibility by applying multiplicative
factors of the simple form!®: For the ¢ channel,

a—M? (a—M?2)/2kE

)

a—i z¢ —cosf

and for the # channel,

g—u"

(B—M%)/2kE
B—u B 2, Fcosf

where o and B are additional parameters which can be
varied, and

2 = (a+ 2kokd — u>—u'?) / 2k’

and
Zu' = (ﬁ+ 2k OPO,'_ m'2— ,u"’)/Zkk’ .

18 G. Goldhaber, W. Chinowsky, S. Goldhaber, W. Lee, and T.
O’Halloran, Phys. Letters 6, 62 (1963).
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The effect of these form factors is to produce more
peaking in the forward and backward directions in the
angular distributions, and therefore to increase the
relative importance of the higher partial waves in the
exchange amplitudes.

Projection of exchange amplitudes. To compare in the
complex 7" plane the s-channel resonant partial waves
with the partial waves due to the exchange amplitudes,
the latter, Gexen and bexen, Where @exen=a;+a, and
bexeh=">0;+b,, are first expanded in Eq. (2). The ex-
change partial-wave amplitudes 7; are then projected
out into the s channel by means of relations such as

1 /1 Pycosh)
Qi(z)= - f —————d cosf
2 J_1 g—cosf
and
. 1 1 /1 sinf P i(costd cosd
7)=—— cosf)d cos
ite) 2 (22—1)12 J_y z—cosf H{cost) ’

where Q;(z) is the /th-degree Legendre polynomial of
the second kind and Q;!(z) is the first associated
Legendre function of the second kind.

Once a=a;+a;+a, and b=b,+b;+b, are known,
the differential cross sections and 2 polarizations may
be calculated. The mechanics of the s-, /-, and #-channel
analysis are identical to that described in Sec. IV A;
inputs are the angular and 2 polarization distributions
and total ZK cross sections at each energy, as well as a
set of starting values for the resonance parameters and
exchange parameters. A X2 was formed from the calcu-
lated and observed distributions and cross sections,
and minimized with respect to all the parameters
allowed to vary. The number of variable parameters
was usually four for each resonant amplitude plus up
to a total of seven for the exchange amplitudes.

The exchange amplitudes were then projected into
the s channel to be compared directly with the reso-
nant-amplitude partial waves. The dominant partial
waves from the exchange amplitudes were S1, P1, P3,
and D3. Higher partial waves were in all cases very
small.

V. AMBIGUITIES

A study of Egs. (2) and (3) shows that there are
several transformations that leave either 7 or /P or
both unchanged. These are as follows.

(1) T/*=e"T*, where T,/%= are the transformed
amplitudes; both 7 and /P are unchanged. This just
states that the absolute phase of the amplitudes is
arbitrary. It is usual to fix the phase of one amplitude,
e.g., the phase of a resonance at its resonant energy is
usually put to zero.

(il) T/*=T/*". This is the complex conjugation
ambiguity, and 7 remains unchanged but P changes
sign.

(iii) TY/*=T1 and T/~=T1t, i.e., changing the
parity of all amplitudes. This is the Minami ambiguity.

1831

I remains unchanged and P changes sign. The ambi-
guity, keeps J fixed but changes /, e.g., P3— D3.

(iv) Ti/*+== (2+1)(TH2T7),
T/== = QI+ D20+ )T+ —T].

This is the Yang transformation and leaves / unchanged
but changes the sign of P. This transformation does not
necessarily conserve unitarity, but for channels with
low branching fractions this is not likely to be a problem.
This transformation keeps / fixed and changes J; e.g.,
P3 becomes a mixture of P3 and P1.

It should be noted that the application of trans-
formations (ii) and (iii), (ii) and (iv), or (iii) and (iv)
would result in both I and IP remaining unchanged.
Thus, solutions related by either the generalized Minami
ambiguity or generalized Yang transformation are in-
distinguishable in a study of the angular distributions
and polarization. If, however, there is a known energy
dependence of one of the amplitudes present, such as
a resonance in which the Wigner condition specifies the
direction in which the amplitude traverses the Argand
diagram, both the generalized Minami and the Yang
transformations reverse this direction and would there-
fore violate the Wigner condition. Performing both the
Minami and the Yang transformations results in a set
of amplitudes that gives the same angular distribu-
tions and polarizations and does not violate the Wigner
condition. It does, however, have the effect of making
two resonant amplitudes (the same mass and width)
out of one.

VI. RESULTS
A. s-Channel Analysis

The data were split up into 100 bins in the angular
distributions and 32 bins in the polarization distri-
butions. This together with the seven cross sections
gives a total of 139 data points. To obtain the degrees
of freedom, one has to subtract from this total seven
(because the program normalizes to the number of
events in each angular distribution) and also the number
of parameters to be varied. Typically the number of
degrees of freedom was 105 to 110.

On examining the 4 coefficients (Fig. 5) we note that
the highest order necessary to fit the data is 46. We
take the usual approach and assume that this means
that there are no significant amplitudes present higher
than G7. The dangers of this approach are commented
on later.

Since the main purpose of the experiment was to
measure the branching fraction of F7 [A*++(1950)]
resonance into the Z+*K* channel, we wanted to estab-
lish that the F7 amplitude was (a) present and (b)
resonant. To do this we started with many combinations
of S1, P1, P3, D3, D5, F5, and G7 amplitudes but with
no F7 present, and were unable to get a fit with a
confidence level of greater than 102 When an energy-
dependent F7 background amplitude was substituted
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TasLe III. Characteristics of various fits to the data. B denotes a background partial wave of the form (4 4 Bk)eX¢+PR, B* denotes
a background partial wave of the form (44 Bk)eiC, R denotes a resonant partial wave, Ampl. is defined as (T'./T)/?, and Width is full

width (T).
Fit number
2174 1924 1944 2114 2194 2184 2154 2094 2214 200C
S1 B B B B B B B B* B B
P1 B B B B B B B B B B
P3 B B B B B R B B B B
D3 B B B B R B B B B B
DS B B B R B B R B B B
F35 B B R B B B R B B B
F7 B R R R R R R R R R
Degrees of freedom 104 105 105 105 105 105 105 106 101 148
x? 138 129 129 120 125 130 118 133 125 180
Confidence level 0.012 0.051 0.050 0.15 0.089 0.050 0.18 0.038 0.052 0.037
Resonance parameters
Part. wave D5
Ampl. 0.06
Mass (MeV) 1917
Width (MeV) 32
Resonance parameters
Part. wave F5 DS D3 P3 F5
Ampl. 0.03 0.06 0.04 0.13 0.04
Mass (MeV) 2058 1917 1900 2386 2055
Width (MeV) 144 32 40 1354 110
Resonance parameters
Part. wave F7 F7 F7 F7 F7 F7 F7 F7 F7
Ampl. 0.092 0.083 0.088 0.092 0.087 0.086  0.094 0.090 0.099
Mass (MeV) 1931 1918 1973 1967 1931 1974 1965 1929 1904
Width (MeV) 294 314 266 244 356 264 250 292 284
Comments a b c d b e f g

s F'S amplitude small.

b Width of DS small compared with energy separation of data points.
o Width of D3 small compared with energy separation of data points.
d Mass of P3 outside energy range of data.

e Energy dependence of phase of S1 held at zero.

£ G7 amplitude small.

8 Includes Purdue data at 1110, 1206, and 1265 MeV/c (Ref. 14).

for the G7 amplitude, the confidence level increased to
0.014. When the F7 amplitude was made to be of the
Breit-Wigner form, the confidence level rose to =0.05.
Table III gives a brief summary of the more probable
fits (confidence level >0.01) from the more than 200
trials. Figure 7 shows the Argand diagrams for these.
By examining Fig. 7(a) it can be seen that the F7
amplitude is large and is looped in the right direction
for a resonance even when treated as a background.
By parametrizing this as a resonance [Fig. 7(b)], the
confidence level is increased. The fact that the F5, DS,
and D3 amplitudes are small makes it rather unlikely
that there should be a large “background” F7
amplitude.

We therefore have established the presence, and
probable resonant character, of the F7 amplitude. We
then set out to establish the parameters of this ampli-
tude and in particular to find its magnitude.

An examination of Table IIT shows that although
the mass and width of the A(1950) seem to vary some-
what, the amplitude is remarkably constant and seems
to depend very little on the exact nature of the higher-
order background amplitudes (D3, DS, F5, and G7).
This characteristic would appear to be general, and
applies to all solutions which have a reasonable con-

fidence level. The Wigner condition was not used as a
constraint on the energy-dependent behavior on the
background amplitudes. It can be seen, for example,
that in fits 1924 and 1944 the S1 amplitude is moving
quite rapidly in the clockwise direction; this would
appear to violate the Wigner condition. In fit 2094 the
energy-dependent part of the phase of S1 was held at
zero (parameter D), and a good fit was obtained which
clearly does not violate the Wigner condition. The
characteristics of the F7 resonance are little changed;
the general features of the other background amplitudes
are also little changed. In any fit that has a probability
of >1072, we have observed the following general
characteristics: a large F7 amplitude moving from the
first to the second quadrants, consistent in behavior
with a resonance; a large S1 amplitude in the first
quadrant, decreasing somewhat with energy; a slowly
varying rather small P1 amplitude also in the first
quadrant; and a large P3 amplitude in the third
quadrant. The presence of D3, D5, and F'5 amplitudes
increases the probability of the fit from about 1%, to
189, but all these amplitudes are small and do little
to change the general features of the larger amplitudes.
When the G7 background amplitude was added, the
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best fits make it very small, consistent with zero [see, [The values from Ref. 9 of the mass and width for the
for example, fit 2214, Fig. 7()]. A(1950) are 1940 MeV and 210 MeV, respectively.]

We obtain the following parameters from this The errors quoted are estimated from the variation of
analysis [assuming I',=0.40 and T'y=210 MeV, Ref. values of these parameters in the various fits.

By examining Table IIT it can be seen that the fit

Mass of F7 resonance (Eg) 1950430 MeV can sometimes be improved by making some of the
Width (Tor) 300460 MeV lower partial waves resonant rather than of the back-
. ground form. For the P3 resonant amplitude, the mass
Amplitude (I'.I';)"/* 0.090:0.007 is far from the experimental region, and clearly the
Branching ratio (I'/Tot) (20 x0.4)% energy dependence of the amplitude is being approxi-
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F1c. 7. Argand diagrams for the nine fits to our data summarized in Table III (s-channel approach). The phase of the resonant F7
amplitude in fits (b)—(i) has been taken to be zero at the resonant energy. (a) Argand diagram for fit 2174 to our data (Table III);
(b) for fit 1924; (c) for fit 1944 ; (d) for fit 2114 ; (e) for fit 2194 ; (f) for fit 2184; (g) for fit 2154 ; (h) for fit 2094 ; (i) for fit 2214.
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Tasre IV. Exchange-amplitude parameters.

Evans and This analysis

Knight Dagan Holladay*

(Ref. 1) (Ref. 20) (Ref. 2) Fit 114 Fit 144 Fit 164 Fit 184
gr*kxGy —0.722 —0.81 —0.79 —-2.7 —3.8 -3.0 —-9.8
gx*k+Gr 0 0 0 —6.4 —30.3 —74 —36.4
¢ (rad) 0 0 0.8 0.74 0.63 0.72 0.77
ZrASENAK 10.8 —9.73 —13.8 —23.4 —339.0 —24.8 —19.6
b (rad) 0.8 1.0 0.8 0.9

a 53.9 1.1 100 1.1
B 110 1.3 100 67.2

a The entries for gg*g,Gy and g,,58nax are found by multiplying Holladay’s G’ =0.063 and G =0.779 by —4r and —47/3, respectively.

mated by the tail of the resonance. In the D3 and D5
amplitudes, the fitted widths are narrower than the
spacing between experimental points, so that some of
the experimental points lie on the tail on the low side
and others on the high side. This somewhat erratic
behavior (of these rather small amplitudes) increases
the confidence level of the fits. The reason for this type
of behavior, if real, is not clear, but cannot be well
approximated by our usual background paramet-
rization. Only for the resonant F5 amplitude are the
mass and width reasonable.

Should the F5 amplitude be resonant in character, we
are able to put the following upper limit on its mag-
nitude:

(T.I',)42<0.04.

It should be emphasized that we do not believe that
the data require the presence of any but the F7
resonance.

Since our lowest energy (1850 MeV) is not very
close to threshold, we decided to check that our partial-
wave analysis solutions were consistent with published
lower-energy data and, in particular, we used the data
of the Purdue group® at 1730, 1783, and 1813 MeV.
They had performed a single-energy fit at each of their
energies. At 1730 MeV only a second-order fit in cosf
(or a second-order term in the Legendre polynomials)
was necessary, and they assumed only .S and P waves
were present. At the two higher energies a fourth-order
term in the Legendre expansion was needed, and they
therefore included .S, P, and D waves in their analysis.
When we compared their solutions with ours we found
that they were not qualitatively similar to an extrap-
olation of our amplitudes. We therefore incorporated
their data with ours and despite the very large energy
range covered, fitted it with our usual parametrization.
The fit we obtained, 200C, using as starting values the
partial-wave amplitudes of solution 1924, is shown in
Fig. 8 and in Table III. The solution has an over-all
confidence level of 3.79, and, as can be seen, is very
similar to our solution 1924. (The fit to the three
Purdue energies is extremely good.) The point to note
is that despite the lack of significant 4 coefficients (Sec.
IV A) higher than A, at any of the Purdue energies, the

19 N. L. Carayannopoulos, G. W. Tautfest, and R. B. Willmann,
Phys. Rev. 138, B433 (1965).

F7 amplitude is large, and in fact dominates at the two
higher energies. This large “unsuspected” F7 amplitude
naturally greatly modified the .S, P, and D amplitudes.
The contribution of this F7 amplitude to the sixth-order
term is small enough to be covered by the experimental
error.

B. s-, t-, and u-Channel Analysis

The data were handled in the way described in Sec.
VI A. In this analysis, typically 14-18 varying param-
eters were required to produce reasonable fits. The
exchange-amplitude parameters for the best solutions
are given in Table IV,® along with previous deter-
minations using similar, but not identical, approaches.
(It should be noted that the parameters gx*x«Gv,
gx*k+Gr, o, and B are insensitive to the data and are
therefore not well determined.) The resonant-amplitude
parameters for the best solutions are given in Table V.

ImT
0.10
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T

F16. 8. Argand diagram for a fit to the data at our seven mo-
menta and three lower momenta from the Purdue group (Ref.
19). The initial conditions for the fit were the same as fit 1924.
The fitted parameters are summarized in Table III, fit 200C.
The confidence level for the fit is 0.037.

20 S, Dagan, Z. Ming Ma, J. W. Chapman, L. R. Fortney, and
E. C. Fowler, Phys. Rev. 161, 1384 (1967).
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TABLE V. Resonance parameters obtained from s-, f-, and #-channel analysis.

Resonances
Fit Degrees of Confidence D5 F5 F7
No. freedom level T.r)2  Eg r/2 r.r)2  Eg /2 (r.,r)Y2  Eg r/2
114 117 0.00036 0.050 1879 40 0.99 1932 147
144 117 1075 0.055 2128 53 0.102 1905 150
164 113 0.028 0.057 1886 45 0.029 2071 67 0.091 1917 130
184 113 0.035 0.056 1883 46 0.033 2099 98 0.093 1912 132

These require an IS or DS resonant partial wave (or
both) along with the resonant F7. The amplitudes of
these lower partial waves are smaller than the F7
amplitude and provide some necessary total angular
momentum J =% amplitudes which cannot be supplied
by the exchange terms. Figure 9 shows the Argand plot
for two of these fits, where the - and #-channel contri-
butions to the amplitude have been projected into the s
channel in the manner described in Sec. IV B, and the
other parameters of the A(1950) are quite consistent
with those given in Sec. V A. In comparing these param-
eters with those from the s-channel partial-wave analy-
sis, we see that the F'7 amplitudes are virtually identical.
This is further evidence that the precise nature of the
other partial waves in the reaction seems not to affect
the magnitude of the principal F7 partial wave.

The seriousness of double counting was studied by
not using any resonant amplitudes and trying to fit
the data with only exchange amplitudes. No satis-
factory fit was achieved, nor were there any significant
contributions to the />3 partial waves from the ex-
change terms. We therefore believe that double
counting is not likely to be serious in this case.
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F1c. 9. Argand diagram for a fit to our data using the s-, -, and
u-channel approach, where the ¢- and #-channel amplitudes have
been projected into the s channel. The parameters of the fit are
given in Tables IV and V.

It should be noted that although there are serious
theoretical objections to this model as it stands, for the
purpose of determining the branching fraction of the
A(1950) into the ZtK* channel these are not very
relevant. The #- and #-channel exchange formalism
provides a parametrization of the “background” ampli-
tudes that is different from that used in the s-channel
approach. Good fits have been obtained by using a
significantly smaller number of parameters than for the
s channel.

In comparing the two analyses for the “background”
contributions to the amplitude, several points should be
made.

(1) In principle, in the exchange model, all partial
waves are present and are parametrized by seven
variables. [In practice, only the first four partial waves
(81, P1, P3, and D3) can be present in appreciable
quantities. ] In the s-channel analysis, four parameters
per partial wave are required.

(ii) The s-channel approach does not have the
objection of double counting which the other analysis
does have in principle—although not in practice.

(ili) In the exchange model, the parametrization is
such that the P1 and higher partial-wave amplitudes
(when the exchange amplitude has been projected into
the s channel) increase monotonically with energy,
eventually violating unitarity. This consideration is
not important in our energy region. This problem is
not encountered in the s-channel analysis.

VII. DISCUSSION

Using both of our approaches, we have found sets of
partial waves which adequately fit all our data. These
fits, as can be seen from Tables IIT and V and Figs. 7
and 9, are very similar in general features and, in
particular, give consistent values for the parameters of
the A(1950). We do not believe that we can establish
the character of the D3, DS, and F5 amplitudes; they
could be either of a resonant or of a background nature.
However, they appear to be small and not important in
obtaining the parameters of the A(1950). It should be
noted that other solutions that give identical fits can
be manufactured by applying the Minami and Yang
transformation to our solutions. This will have the
effect of increasing the number of resonances. It should
also be pointed out that our not finding any other
solution that is radically different from the ones pre-



2 STUDY OF THE REACTION #rt+p—-Z+K*t...

sented must be interpreted within the framework of
the models and assumptions used. In particular, the
dangers of neglecting the presence of higher partial
waves than appear to be necessary is clearly illustrated
in the case of the Purdue low-energy data. This problem
is common not just to these results but to virtually all
partial-wave analysis results published.

Finally, we make a comparison of the branching
fraction, (2.040.4)9,, obtained for A(1950) — Z+K+
with the SU(3) prediction.

Assuming that the A(1950) is in a decuplet, one can
write the partial widths as?

Ti=c’g*Bi(p:) (Mn/Mz)p:,

where ¢ is the SU(3) Clebsch-Gordan coefficient for
each decay mode, g is the effective coupling constant
[and is the same for every decay mode if SU(3) is not
broken’], Bi(p) is the centrifugal-barrier factor for an
angular momentum /, p is the c.m. decay momentum,
M is the resonant mass, and My is the nucleon mass.

I'[A(1950) — 7p] is well established from phase-
shift analyses [we use I'zp/Ti0;=0.4],° so that

Tsk/Trp=Bi(psk) psx/[Bi(prp)Prn],

since gsx =grp and czx =Cxp; the form of B;(p) is given
in Blatt and Weisskopf.!? For /=3,

Bi(p) = (pr)®/[225445 (pr)*+6(pr)*+ (pr)°],

where 7 is the radius of interaction.

Figure 10 shows a plot of I'sx/T'wt as a function of
1/r (GeV). The value of 1/7 associated with our mea-
surement of I'sx/Tis is 475 MeV, with the errors
shown on the figure. This measurement of 1/7 is very
sensitive because of the large difference between psx
and prp. This may be compared with the value appro-
priate to the $t decuplet A(1236), which is =160
MeV.2 [This value is found by detailed fitting of the

2R, D. Tripp, in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968 (CERN, Geneva,
1968), p. 185.

22 1\3[ Gell-Mann and K. M. Watson, Ann. Rev. Nucl. Sci. 4, 231
(1954).

1837

T T T T ] T T

20 ¢

Branching fraction (%)

700

Characteristic mass (MeV)

1000

XBL703-2621

FiG. 10. Plot of I'sg/Tot as a function of 1/7 (MeV).

shape of the A(1236), and therefore has been obtained
by a method different from ours.] The SU(3) prediction
of branching ratio of the A(1950) — Z*K* deduced from
this value of 1/7 is 139, which is not in agreement with
our measured value.
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