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The decay modes Ki® — utu~

and K? — utu~ are discussed within the framework of first-order weak

combined with fourth-order electromagnetic interactions. The possibility of obtaining lower bounds to the
corresponding decay rates is examined, and estimates of the lower bounds are given in a perturbation-theory
model. Possible enhancement effects due to strong interactions have been estimated through a simple
model of final-state interactions. The assumption of CP invariance is made throughout.

I. INTRODUCTION

XPERIMENTAL search for the decay modes

K — utu~ and Kg— ptu~ has been undertaken,

primarily, to test the possible existence of neutral lep-

tonic currents coupled to the strangeness-changing

charge-conserving hadronic current. At present, the

upper limits for the total branching ratios of these modes
are! (at 909, confidence level)

I(Kp— phu)
(K — all)
T(Ky— ete)
D(Ky—all)
I'(Ks— ptu)
T'(Kg— all)

<2.1X1077,

(1.1)
<1.5X1077,
and?

<7.3X10-5. (1.2)

Even in the absence of neutral leptonic currents,
K — ptu~ and Kg— ptu~ are allowed decay modes
through electromagnetic induction,? at first order in the
Fermi coupling constant G (G=1.02X107%/m,?) and
fourth order in the electric charge e. They are also al-
lowed as “higher order” weak processes, thus providing
an interesting possibility of probing weak interactions
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at alevel beyond the effective first-order current-current
Hamiltonian.* Possible tests of CP and CPT invariances
involving these decay modes have also been discussed.5¢
In view of future improvement of the experimental
upper limits quoted above, it becomes of considerable
interest to know the “expected” decay rates of these
rare modes. In fact, various estimates of the decay rate
of Ki,— utu~ can already be found in the literature’;
however, to our knowledge, nothing much is known
about the decay rate of Kg— utu~.

This paper is primarily devoted to a study of the
decay mode Kg— utu~ viewed as a first-order weak
times fourth-order electromagnetic process. The possi-
bility of obtaining a lower bound to the decay rate of
this process from unitarity is examined, and estimates
are given within the framework of a perturbation-theory
model. Possible enhancement effects due to strong in-
teractions have been taken into account only through
a simple model of final-state interactions. The assump-
tion of CP invariance is made throughout.

In Sec. IT we examine the decay modes Kz — utu~
and K g— ptu~ from a phenomenological point of view.
The implications of the experimental limits quoted
above upon the possible existence of neutral leptonic
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[Soviet J. Nucl. Phys. 6, 603 (1968)], Zh. Eksperlm i Teor.
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6 648 (1967) [Sov1et Phys. JETP Letters 6, 140 (1968)7]; R. N.
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currents is briefly discussed, and order-of-magnitude
estimates for the decay rates K7, — ptu~and Kg— utu~
are given. The use of the unitarity condition as a method
to obtain lower bounds for the decay rates of these
processes is discussed and the possibility of obtaining
empirical bounds is considered.

In the light of the phenomenological discussion given
in Sec. I1, we review previous calculations of the decay
rate K7, — ptu~ in Sec. III.

Section IV is devoted to a calculation of alower bound
to the decay rate K g— utu~ within the framework of a
perturbation-theory model. The model consists in as-
suming a pointlike K-m-r weak coupling vertex and
minimal electromagnetic interaction of pions and lep-
tons. The contribution to the absorptive part of the
Kg— utu~ amplitude from the intermediate states
2y, 2w, and 27y is calculated within this model. The
details of this calculation are given in Secs. IV A, IV C,
and IV D, respectively. Possible enhancement effects
due to the = strong interactions have been incorpo-
rated into the perturbation-theory model in an approxi-
mate way;i.e., only the m-m interaction in the state J=0,
I=0 is taken into account. As a byproduct of this cal-
culation, we obtain an estimate of the Kg— 2y decay
rate (always within the limitations of the model de-
scribed above). Our estimate, however, disagrees with
previous calculations which were made within a similar
perturbation-theory framework. This is discussed in
Sec. IV B.

The results obtained and conclusions are summarized
in Sec. V. This is done in sufficient detail so that the
reader who is not interested in the details of the calcu-
lation can omit Secs. IV A, IV C, and IV D.

Some technical details of the spin calculations have
been relegated to Appendix A and the evaluation of
certain integrals to Appendix B.

II. PHENOMENOLOGY

In K7 — utu~ and Kg— utu~ decays, the u pair has
total angular momentum J=0. There are two possible
states for this system: 3Py and 1S, which are eigenstates
of CP, with

CPI (“"+l"_—) ’Po> =+ l (/"+#—) aP0> ’
CP|(wtu)se) = —| (whu)s,).-

This means that, af the limit of CP conservation [i.e.,
K;=K,"=(K'4+K"/V2 and K s=K°=(K°—K" /V2],
K3®— (wtu)rs, and  Ki®— (wtu)sp,
are allowed transitions, whereas
Ky — (wtu)p, and K — (uu)1s,

are forbidden by CP invariance. If, furthermore, by
analogy to the universal current-current interaction,
we postulate a coupiing of neutral lepton pairs to

pE RAFAEL, AND SMITH 2

hadrons to the type®
(U (%)s)py.(1—ys)¥+H.c., (2.1)

then, because of the V—A structure of the leptonic
current, only transitions to the (u*u™):g, state are
allowed. If the coupling constant g is real, we have that
Ky — yty~ is allowed and K,°— utu— is forbidden.
From the experimental limits quoted above, and using
the effective Hamiltonian defined in Eq. (2.1), one can
set upper limits to the coupling constant g°:

2. <1.3X 10~ sinf G/VZ,
2.<7.2X 1072 sinf G/V2.

Here 6 is the Cabibbo angle for the axial-vector current,
and G is the Fermi coupling constant. The figures in
these upper limits give the suppression of the couplings
of neutral leptonic currents to hadrons as compared to
the corresponding couplings of charged currents.
Regardless of the possible existence of neutral lep-
tonic currents, the most general expression for the decay
amplitude of the process K°— utu~is as follows:

ALK = pt(p" ) (p) 1= ia(p) [Frt-ysFoTo(p') . (2.3a)
The scalar term (#;) leads to transitions to the 3P,
state; the pseudoscalar (F3) to the 1S, state. Assuming
CP invariance, the amplitude for the process K°—
wru~ is then
ALK — wt () (p) 1= —ia(p) [Fr—sF2Jo(p') , (2.3b)

and we have, with M the neutral kaon mass,

(2.2)

M A, 2\ 312
r<K1°w+u—>=—(1— ) P12, (2.40)
4 M2

M 4,2\ 12
P(I{20—>/.£+/J.~)= *(1— > lelQ. (24b)
4 M?

Next, we assume that these decays proceed via first-
order weak times fourth-order electromagnetic inter-
actions. The corresponding mechanisms are then de-
scribed by the Feynman graphs shown in Fig. 1. Let us
first write down the couplings corresponding to K, —
vy and K% — vy decays. With

4 A L, 7
Fuo=¢ly—eky, Fu/=¢/k)—¢&'ky,

(k and &’ are the energy-momenta of the y’s; e and € are
their polarizations), the decay amplitude for K® — vy
is given by the scalar coupling

A(KL* — yy) = (Hy/M)F ,F' (2.5a)
and for K, — vy by the pseudoscalar coupling
A(K — yy) = (Hy/M)eupp o F*F'vo . (2.5b)

The decay amplitudes for K1 — ptu— and K, — utu™,
as described in Fig. 1, are then given by the following

8 See, e.g., Good, Michel, and de Rafael, Ref. 6.
¢ E. de Rafael, Phys. Rev. 157, 1486 (1967).
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c (p) Since |F;| > |AbsF;|, i=1, 2, it is clear from Egs.
(K s (2.4a) and (2.4b) that knowledge of the absorptive
K° parts of the form factors Fy and F, will give us lower
KR bounds to the K1®— utu~ and Ko° — utu~ decay rates.
y By use of the unitarity condition, the quantities AbsF;
(k) w(p) can be expressed as follows'!:
—1
AbSF1= ’27r)4 Z /dp)\
4o) 2[2(M2—4m,,2)]”2\ N
(k)
" T XO(p-p/ —E PN T ()l
- q XA(KO—)), (2.10a)
L —1
7K w(p) AbsFy= @mtL / dpy
202(M2—4m, )42 1y
Fic. 1. Feynman diagrams describing K;® — utu~
and K9 — i decays XD (ptp' ~ oM T ()l
expressions: XA(K®—2\), (2.10b)
ALKy, = w+(p"u(p)]

= 1 d4q H M2 2 / 2
= | ot -+

—1 —1

X
(p—q)*+ie (p'—g)*+ie

(—ie)*T1, "0 (p) v

_—2—2—“71:’1)(?/) , (2.6)
g2 —m*+ie
with
o =2(p=0)- (' +dg"—(p—0*(p'+or]  (2.7a)
and
Tz"" =46“"”"(p —Q)p(P,+ Q)v . (27b)

By comparison of these equations with the general ex-
pressions given in Egs. (2.3a), and (2.3b), it can be seen
that the form factors Fy and F, are proportional to the
lepton mass.*® Thus, as an order-of-magnitude estimate,
we expect
GM* a® my
sin ——,
kg

Fi~Fo~ (2.8)

which corresponds to the following branching ratios:

T(K1"— ptur)

~3X10~1,
(K — all)
2.9)
F(K20-——) ,["p,“)
— ~2X1078,
(K2*— all)

1 This can be readily seen from Eq. (2.6) by inspection of the
possible terms which are left after the dg integration and applica-
tion of the Dirac equation. Another way is by use of the project-
ors on the triplet and singlet states of the u*u~ system given in
Egs. (A15) and (A16) of Appendix A. The amplitudes
A (K — ptu) and A (Ko — ut y‘g) are proportional to respec-
tively, trPous™ (p,")yui (q+1,) 7y and trPoy©® (5,274t (@ 1) 75
Clearly, only terms proportional to m, survive after the trace
operation.

where the summations are extended over all possible
intermediate states |\), allowed by phase space, which
are in the same invariant subspace of the strong and
electromagnetic interactions .S matrix as | (utu™)sp,) in
the case of AbsF; and as |(utu™)1s,) in the case of
AbsF2; dpy denotes the phase-space volume element
corresponding to |\). By inspection it can be seen that,
to order Ge?, the possible intermediate states in Eq.
(2.10a) are: 2y in a CP=+1 state, 2r; 27y, where the y
can be a bremsstrahlung y ray; and 3=y, where the y has
to be emitted directly at the K-3= interaction box. Cor-
respondingly in Eq. (2.10b), the possible intermediate
states to order Ge! are: 2y in a CP=—1 state; 2wy,
where the v is emitted directly at the K-27 vertex; and
3r. Clearly, there is not much hope of getting a rigorous
estimate of all these contributions since their calculation
involves a detailed knowledge of weak and electro-
magnetic interactions of hadrons. One can, however,
try to separate those terms which can be calculated and
combine the rest into observables which in principle can
be obtained from experiment. More specifically, we
suggest the following procedure.

1 Equations (2.10) depend critically on the assumption of CP
invariance in K — utu~ decays. In general, with

A[K® — pt(p" = (p) 1=ta(p) [F1+vsF 2 Jo (p")

and ALK — ut ()~ (p)1=(p)[Gr+v:G:Jo (p') and under the
assumption of CPT invariance alone, we have

1 ’
Gl*+F1=m(2ﬂ‘)4 %fdp)\ 8@ (P+P '—Z P)\)
X T| (5 )ama)*d (KO — ),

and correspondingly for the combination —Gy*+F,. Under the
assumption of CP invariance, Gi=—F1, Go.=F, and Egs. (2.10).
follow. For a general discussion of CPT invariance and unitarity
in the K°-KO system, see J. S. Bell and J. Steinberger, in Proceed-
ings of the Oxford International Conference on Elementary Particles,
1965 "(Rutherford High-Energy Laboratory, Chilton, Berkshire,
England, 1966), pp. 195-222. See also N. Beyers, S. W. MacDowell,
and C. N. Yang in Proceedings of the Seminar on High Energy
Pshgzszcsso and Elementary Particles (IAEA, Vienna, 1965), pp.
955-980.
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p-k

~* & pte! A(p)

Kk’ k
p-k
Hp! 4" (p)

Fic. 2. Feynman diagrams describing p*u~— 2y transitions
contributing to the amplitude ((2v)1|T| (u*u")3py).

Let us call Q2 the contributions to the right-hand
side in Egs. (2.10) from all possible intermediate states
other than the 2y states. The contribution from the 2y
state can be explicitly calculated and is proportional to
ReH,(M?). Notice that the terms (2y|T| (utu):p,)
and (2y|T| (utu")1s,) in Egs. (2.10) are only needed in
the Born approximation (see Fig. 2). Thus, with

Bu= (1—4m,*/M*)'7?, (2.11)
we get
1 my 1 148,
AbSF1,2=ReH1,2(M2)-—a——————ln +91,2. (212)
V2 M B, 1-B.

The quantities Q1,2 can be bounded in terms of cross
sections and decay rates by use of the Schwartz in-
equality:

1 1\
lﬂlﬂlgZ_mEBMM‘ZUl,Z(MZ)]”Z(&Flﬂ) Eﬂl,z. (2.13)

Here, 01(M?) and 02(M?) denote the total cross sections
for (utw)ip, and (utu~)1s,, respectively, to all final
states other than 2y at a c.m. energy equal to the K°
mass; and T; and T'; are the K;° and K,° decay rates
into all final states except 2vy. Then, provided that

1 my 11 (1+Bu
V2 M Bu l_ﬁn

we have a lower bound for the decay rates K1®— utu~
and K0 — utu~, since then

1 m, 1 /148,
fAbSFl,zl 2 ——a——-ln( )
V2 M Bu 1""6#
X |ReHyo(M?)| —Oy. (2.15)

) ] ReHLz(M2) | y (214)

The quantities ReHy,s(M?) in Eq. (2.15) are related to
the K;°— 2y and K,’— 2y decay rates as follows:

T(K1®— 2v)=(M/16m){[ReH (M?)]?

+[ImH (M}, (2.16a)
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I(K2* — 2v)= (M /4x){[ReH ,(M?2)]?
+[ImH(M?)7]%} .

Again, we can obtain information on ImH; (M?)
from their corresponding unitarity conditions. To order
Ge?, ImH(M?) can be estimated by saturation of the
corresponding unitarity sum with the contribution from
the 27 intermediate state (see Figs. 3 and 4). The result
of this calculation, which is reported in detail in Sec.
IV A, is

(2.16b)

1 1
ImH(M?2) =a—— —[VInod o+ Red
1( /6 M[ 04o 2]

148+
X(1=4:*) In——, (2.17)

T

where Ay and 4, are the transition amplitudes between
K?° and two pions in an isospin state /=0, and 2, re-
spectively; 7o is an enhancement factor due to the
strong interactions of the 27 system in the isospin state
I=0; and B, is the pion velocity in the c.m. system, i.e.,

Br=(1—4my*/M*)'/2. (2.18)

It is harder to make a similiar estimate of ImH »(3?).
This quantity, however, can be bounded applying again
the Schwartz inequality to the corresponding unitarity
sum, Thus we have

| ImH o(M?) | 2< 3[T(K,* — all) /M ]

XM 50, pe1=H,, (2.19)

where os—0,p—_17"(M?) denotes the total vy cross
section to states with total angular momentum J=0
and negative parity. In K,° — 2y decays, we expect the
dominant contribution to the decay rate to come from
ReHy(M?) (in particular, from the #° and 7 pole dia-
grams). Then, provided that
Hy< (4n/M)T(K* — 2y), (2.20)
we have
| ReHo(M?)| 2> 4rT (K0 — 2v)/M —H,. (2.21)

To summarize, let us state the conditions for the
existence of semiempirical lower bounds to the K;,2° —

whu— decay rates.

(i) For K1°— utu=, provided that

1 1/2
X<167r-—-I'(K1° — 2v) —[ImHl(MZ):P) , (2.22)
M

where (; is defined in Eq. (2.13) and ImH,(M?) in Eq.
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v 7
)

'

Fic. 3. Unitarity diagram corresponding to the 2z contribution
to ImH, (¢) in Eq. (4.8).

(2.17), then
M
MK — ptpm) 2> —B,°
4r

1 m, 1
X{-—a——In

V2 M By

148,
1—Bu

1
l:161r—I‘ (K.°— 2v)
M

o 1 [VZnod o+ RedsJo(1 51 2(1-}_‘3”)]1/2
72 g ProArt ReAs FA=B5 A ¢

T

1 1 1/24 2
. “M20'1 114'2 2 — 1 . 223
B0 (Mr) ] 2.23)

(i) For K, — utu~, provided that

P(Kzo hd 2’)/)
M2G'J=._o,p=_1(77>(M2) <32 , (224)
(K — all)
and
U me 1 148,
Q< —o— —1In
V2 M Bu 1—Bu

1 1/2
x(41;1?1‘(1<2°—>27)—ﬁ2) , (2.25)

where {0 is defined in Eq. (2.13) and H; in Eq. (2.19),
then

M
(K — phu)> Zﬁu

T
1 m, 1 148 1
5 [_a__“ - ln__“(4,,_r (K2"— 2v)
V2 M By 1-8, M
1 (Ko — all) v
—_ _—M2UJ=0,P=—1(W)(M2)>
8 M

1 1 1/2—2
— —[BuM3c2(M? 1/2( —T . (2.26
S B0 (M ) ] (2.26)

Equations (2.23) and (2.26) are inequalities between
observable quantities. Their usefulness is obviously
limited by the fact that they involve quantities like
0’1(M2), 0'2(M2), and 0‘J=0'P=_1W7)(M2), which are far
from being measurable at present. However, they pro-
vide consistency conditions which might become in-
teresting in the future.

In order to obtain a “numerical” estimate of the
right-hand sides of Egs. (2.23) and (2.26), one is clearly
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_— _— *q’) T(q)
_ k'-q'
: K k
e T

T*(q’)

+

kl

F1c. 4. Feynman diagrams describing 2y — w7~ transitions
contributing to the amplitude {(zm)z|T| (27)1).

forced to make approximations and then find their
justification within some model. In Sec. ITI we discuss
such a possibility for the K,°— utu~ case, and in Secs.
IV and V for the K — utu~ case.

III. K,"— uyty~ DECAY

Neglecting the last two terms in the right-hand side
of Eq. (2.26), one gets the following prediction:

[(Ky* — ptu) m\? 1 148,
e
I(K2"— vy) M7 28, \1-B,

=1.2X10-5. (3.1)

This result has been previously obtained by Quigg and
Jackson,'2:3 who refer to it as the unitarity bound.

There are two recent measurements!* of the total
branching ratio for the mode K — 2v:

T(KL— 2y)

T (4.68-£0.65)X 10~
I‘(I{L i all)

(Banner ¢t al.) (3.2a)
=(5.3%£1.5)x10~*
(Arnold et al.). (3.2b)

2 See Quigg and Jackson, Ref. 7. A similar prediction for %
decay was first obtained by Geffen and Young (D. A. Geffen and
B. L. Young, Phys. Rev. Letters 15, 316 (1965)] and rediscovered
by Callan and Treiman [C. G. Callen, Jr., and S. B. Treiman,
ibid. 18, 1083 (1967); 19, S7(E) (1967)]. We should like to
emphasize that the approximations involved in the case of n decay
are far more rigorous than in Ky® decay. Equation (3.1) is also
implicitly contained in a paper by Sehgal (see L. M. Sehgal,
Ref. 7), and is explicitly contained in another paper by Sehgal
(see L. M. Sehgal, Ref. 13).

18 T,, M. Sehgal, Phys. Rev. 183, 1511 (1969).

14 M, Banner, J. W. Cronin, J. K. Liu, and J. E. Pilcher, Phys.
Rev. Letters 21, 1103 (1968); R. Arnold, I. A. Budakov, D. C.
Cundy, G. Myatt, F. Nezrick, G. H. Trilling, W. Venus, H.
Yoshiki, B. Aubert, P. Heusse, E. Nagy, and C. Pascaud, Phys.
Letters 28B, 56 (1968).
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. A iy A
K K?®
abs (-0 )= SCOC
I
e 7
TT:Tl' /‘-
K i
+ '
™
1 Yl
] /‘-
r
+ ]
T ,
/(‘

F16. 5. Unitarity diagrams corresponding to the 2v, 2r, and 2my
contributions to Abs Fy in Eq. (2.10a).

Taking a weighted average of these numbers, we obtain
from Eq. (3.1) the following lower limit:

(K" — ptu)
SN

(K —all) (33)

to be compared with the order-of-magnitude estimate
given in Eq. (2.9).

Equation (3.1) has been obtained assuming that to
order Get, only the 2y intermediate state gives a signifi-
cant contribution to the unitarity sum in Eq. (2.10b),
Also, it assumes that ImH,(M?) is negligible, i.e.,

T(K20 — 2y)~(M/16m)[ReH o(M?)].
Here, we would like to present some qualitative argu-
ments which add credibility to these assumptions. We
shall discuss separately the contributions to AbsFs in

Eq. (2.10b) from the 2wy, and the 3r intermediate
states; and comment on the K,°— 2y decay rate.

A. 2x+y Intermediate State

Let us call Q2(27y) the corresponding contribution to
AbsF;. We have [see Eq. (2.13)]

1
|Qa(2my) | < é;{ﬁuM Lo(uhu)rsy— mry }1/*

“ 1 1/2
X (—-—F (K*— 1r7r'y)> . (34
\M
Experimentally, s
(K5 — 7my)
I'(Ky*— all)
15 R. C. Thatcher, A. Abashian, R. J. Adams, D. W. Carpenter,

R. E. Mischke, B. M. K. Nefkens, J. H. Smith, L. J. Verhey, and
A. Wattenburg, Phys. Rev. 174, 1674 (1968).

<4X1074, (3.5)

pE RAFAEL, AND SMITH 2

which is a smaller branching ratio than the 2y mode.
A very crude order-of-magnitude estimate of

o ()15, — wmy] gives
ol (whu) sy — wmy I~ (a/m)ol (wu)1s, — 2v1; (3.6)

in fact, this might very well be an overestimate, since
the phase space for 7my is smaller than for yy. The
cross section for (utu~)1g,— 2y can be calculated from
quantum electrodynamics:

1 My 2 1+BM
(—) ln2<———>. (3.7)
M\ M 1=By

o[ (W) 50— 2y ]=16ma?

Then, our estimate of Qy(rry) is

|Qa(mmy) | S9X 10714, (3.8)

B. 3= Intermediate State

We call 25(37) the 37 contribution to AbsF; in Eq.
(2.10b). Again, we have

1
Q(3m) < 'ZE{BuMZUE<~+u—>xs° — 3r])1e

* 1 1/2
X(——I‘(K 0— 31r)) . (3.9)
M 2
Experimentally, ¢
r (I( > 37!‘)

T 349 3.10)
(K1, — all) ¢ (

Unless there are particular enhancements in the process
(utu™)1g,— 3m, we expect from an order-of-magnitude
estimate

o[ (Wt )15, — 3m]~(a/7)?
X0.100[ (wtu)rs,— 2v],
where the factor 0.10 is the 37/2y dimensionless phase-

space ratio.” Thus, we have as a crude estimate of
92(311')

(3.11)

| 2u(3r) | SAX 10714, (3.12)

C. Comment on K, — 2~ Rate

With the coupling defined in Eq. (2.5b) we have that
[see Eq. (2.16b)]
D(Ky* — 2v) = (M /4x) | Ho(M?) |2
16 See. e.g., A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-
Galtieri, L. R. Price, P. Séding, C. G. Wohl, M. Roos, and W. W.

Willis, Rev. Mod. Phys. 41, 109 (1969).
17 That is, the ratio

3 [ TLap:0G)s(p2—mD5® 0= £
i=1
over

[ 1P 0(p)3 (D0 (p2)5 (P28 (p—pi— o).
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Here we want to bound the imaginary part of Ha(M?).
The expression for this bound has already been given in
Eq. (2.19). It involves the unknown factor o7, p——1(*"
(M?). We expect that the major contribution to this
cross section comes from the yy — 3 transition. Also, it
seems reasonable to assume that

070" (M) Soyo? " (M?); (3.13)

we estimate the latter cross section assuming minimal
electromagnetic coupling for pions. Within this model,

1 /me\* 1+8-
(——) 1n2<— > (3.14)

M 26# M 1 _Bw
and the condition stated in Eq. (2.24) is largely satis-
fied. Also the condition stated in Eq. (2.25) is satisfied,
i.e., from Eqgs. (3.8) and (3.12) we have the {:~1.3
X 10713 while the right-hand side of Eq. (2.25) amounts
to 1.4X 10712

We can now reconsider Eq. (2.26). Using the order-
of-magnitude estimate which we have made above, we
find

0 7=0""2"(M?) =32ma?

0 = 2
(K" — pt )>a2('mn) 1

(KL —2y) — \u/ 28,

"

148,
Xln2<1+6 )(1-0.2); (3.15)

i.e., we estimate that the corrections to the lower bound
given in Eq. (3.1) could be as large as 20%.

IV. K" — uytu~ DECAY CALCULATIONS

In this case, the lower bound analogous to the one
derived in Eq. (3.1) for K*— ptu~ would be obtained
neglecting the last two terms of Eq. (2.23). Thus,

(K1 — phu~ 2 1
PO — wh) Zaz(_’t’_"> 2, ln2< +ﬂ"), 1)
T(K.*— 2v) M 1-8,

This “bound” has been obtained assuming that to order
Ge* the unitarity sum in Eq. (2.10a) is dominated by
the 2y intermediate state.'® Then, one simply has'®

o Mmy 1 1 +.3u
AbSFl(M2) =— ReHl(M2)—— In: .
V2 M -

I3 »

In deriving Eq. (4.1) it is assumed, furthermore, that

M
T(K,°— 2y)~—7/[ReH(M?)]?,
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18 See Sehgal, Ref. 13. The result obtained by Sehgal does not
agree, however, with our Eq. (4.1). The error can be traced to a
mistake in Eq. (9), p. 1512, of his paper. One of the authors (JS)
would like to thank Dr. Sehgal for correspondence regarding his

aper.

19 See the derivation in Sec. IV A below.
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i.e., that ImH(M2) is negligible compared to ReH (M ?).
It is known, however, that the 27 intermediate state
gives contributions of order Ge? to ImH1(M?), so this
assumption is not really justified.?’ The same 27 inter-
mediate state also gives a contribution of order Ge!
to AbsF;(M?) which might be comparable to that from
the 2v state. It seems to us that Eq. (4.1) can be a very
misleading bound, and more work on the possible con-
tributions from other intermediate states than 2y is
needed in this case.

This section consists of the details of a perturbation-
theory calculation of AbsFi(M?) in Eq. (2.10a). We
shall assume a pointlike K-r-r weak interaction and
minimal electromagnetic interaction of pions and
leptons. The details of calculations corresponding to
contributions to AbsFy(M?) from the intermediate
states 2y, 2, and 27y (see Fig. 5) are reported in differ-
ent subsections. The connection with the phenomeno-
logical discussion given in Sec. II is made in Sec. V.

A. Contribution from Two-Photon Intermediate State

The |2v) intermediate state is in an eigenstate of CP
CP|2v)n=—+|(2)v),

where, in terms of helicity states,
)=V (+ +)+[——).

The T matrix {(2y)1]T'| (wtu™)sp,), which appears on
the right-hand side in Eq. (2.10a), can easily be ob-
tained from the Feynman diagrams corresponding to
Ty~ annihilation into 2¢’s (see Fig. 2). More precisely,

(@v) | T| (W) sp)*= (1/V2)
XLToO(+ )+ To M (— —)r=c* (4.2)

and
ToM (£ £)=(—1e)?

- i(p—ktm,)y-
XTI{P(U(P’P')%“"I:W e i(p—k+my)y- e
(p—k)*—m, +ie
v exi(p—R +mu)y e
]} “.3)
(' —k)2—m, i€

e+ and ey are the polarization vectors of the y’s with
momenta k and ', corresponding to helicities + and —.
In Eq. (4.2) the subscript J=0 denotes that only the
components T (4 =) with total angular momentum
J=0 contribute to the (utu~)— 2y transition.
PO(pp")einr in Eq. (4.3) is the projector on the
3P, state of the incoming utu~ system and is evaluated
in Appendix A. We find

—8 m B
Ty (£ %) = — i ——
V2 A/t 1—8,2 cos?

2V, Barger, Nuovo Cimento 32, 128 (1964); B. R. Minart
and E. de Rafael, Nucl. Phys. B8, 131 (1968).

(4.4)
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where /1 is the energy of the y in the c.m. system, 6 is
the c.m. scattering angle, and 8, is the velocity of the u
in this system, i.e.,

Bu=(1—4m,2/1)*2, (4.5)

Notice that in our case {=M?2, where M is the K° mass.
The projection upon the J=0 amplitude leads to the
result

1
LT (4 H)FTa®(= =) Troe?
V2 (
dm,  14-Bu
In .
Vit 1-8,

The contribution to AbsF; in Eq. (2.10a) from the 2y
intermediate states is therefore

2

(4.6)

=ie

a My 1 1+Bu
AbSI"1(27)(t) = — _Hl(lf)—' In——r.
] \/t ﬁu 1 '“:Bu

Only ReH(f) gives a net contribution to AbsF;@7) ().
The term ¢ ImH(¢), which in principle gives an imagi-
nary contribution to AbsF;®7)(f), cancels with a cor-
responding term coming from the 27 intermediate state,
as we shall see later. However, to estimate ReH:(f)
we shall need ImH(?); the latter is obtained by writing
the unitarity condition for the process K;°— vy and
saturating the sum over intermediate states with the 2r
system only. This is justified at the approximation
[O(Ge?)] that we want to know Hy(f). Thus we have,
assuming CP invariance,

(4.7)

1
2TmH ()= —3 (2m)* / dpr 8(g+q' —p—1")
Vi1

X{(@m):| T|27))*A(K*— (2m)1), (4.8)

where the summation is over the 27 system with isospin
I=0 and 2. The corresponding unitarity diagram is
shown in Fig. 3.

If only elastic unitarity is taken into account, the
amplitudes A[K°— (27)7] for I=0, 2 have the follow-
ing structure?!:

A[Kﬁ s (2#)1]=iA16i51, [=O, 2

where 87 is the s-wave m-r phase shift for scattering in
an isospin state =0, 2 at a total c.m. energy equal to
V1, i.e., the K° mass for on-shell kaons.

The T-matrix term in Eq. (4.8) can be written in the
following way:

(@m):| T| (2v)1)=AN2)[Br(+ +)+Bi(— =) =0
XT)]G“I. (410)

(4.9)

Here B;(2 ) are the amplitudes for the annihilation

21 See, e.g., Bell and Steinberger, Ref. 11.
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of ¢’s with helicities =1 and +1 into two pions in an
isospin state I. The subscript /=0 means that only
the s-wave projections of these amplitudes are taken;
and %7 is an enhancement factor due to the strong
interactions of the 27 system in the isospin state /.
When the two pions are in a relative s state, we have

no(t) =exploo(/)],

where
tore So(t)
oo(t)=-P / atl ————
™ dmr? t,(t’_t)
t e So(t)—00(t)  60(t) ft—4my?
=_/ d/______ln( )
T J tmn? ) T 4,2

For definiteness we use 8(f) corresponding to the “broad
¢” model and take the numerical values for the forward
dispersion relation solution of Morgan and Shaw.?? We
set 8o(f) =37 above 1 BeV. Thus we get

no(t=M?)=1.56. (4.11)

Since the s-wave I=2, 7w scattering has no known
structure, we shall set n2()=1.

The amplitudes Br(= =) are obtained from the Feyn-
man diagrams shown in Fig. 4. Assuming minimal
coupling for the pion field, we finally obtain

a 1
ImH;(t) = —— —{V2nedo+Red
1(t) 2\/6\/5[ n0do 2]
dm,?  14+B-

X —— In—— |

1—8x

(4.12)

where B is the 7 velocity in the c.m. system,
Br=(1—4m,2/t)!/2.

Numerically (using 4=>5.09X10%" sec™! and, because
[A2|<< 4, setting Red»=0), the value of Eq. (4.12)
at t=M?1is

ImH(M?)=1.65X107°. (4.13)
To estimate ReH:(f), we write an unsubtracted disper-
sion relation for the quantity H.(#)/+/t, which is the
coefficient of the factor F,,F'# in Eq. (2.5a), and we
assume that A,(f) and Red,(?) in Eq. (4.12) may be
approximated by their on-mass-shell values at {=M?*
throughout the integration range. However, the specific
¢ dependence for 7o given above is used. With these as-
sumptions, we find at ¢t=M?

ReH(M?)=—1.02X10-. (4.14)

Inserting this result into Eq. (4.7), we conclude that
the 2y intermediate state in Eq. (2.10a) leads to an over-

2 D, Morgan and G. Shaw, Nucl. Phys. B10, 261 (1969).
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all contribution

AbsF, eV (M2) = —3.71 X 1012

Max

1 My
+ia2-—(\/§170A o+ Red 2)_<‘~)
V3 MA\M

1 148, 14B.
X —In

B 1—B, 1—8s

As we have already mentioned, the imaginary part
in the right-hand side of Eq. (4.15) cancels with a cor-
responding contribution from the 27 intermediate
states.

It is of interest to compare the result obtained in Eq.
(4.15) with the purely perturbation-theoretical pre-
diction. The latter is obtained by setting no=1 in Eq.
(4.12) and then performing the dispersion integral, i.e.,

In:

(4.15)

® dt

a
ReHI(M2)=— (\/2A0—|-ReA2)P/
w 2M~/6 amg2 t—M?
M“lm,,"’1 1+(1—4m,2/0)1/?

n
{1 1—(1—4m,/0)V

x 2M /6

(V2A,+Reds)

X { —243(1 —5,2>[1r2—1n2<

)l oo

Be=(1—dm,2/M?)102,

where

Numerically,
ReH (M?)=—0.65X10"° (4.17)

From Egs. (4.7) and (4.16), we get the perturbation-
theory result

AbsF, @0 (1?)

(pert. th.).

a? my 1 148,
=——(W24¢+Redy)— — ln<——~—>
T V3 M*28, 1—8,

1_ﬁ1r
sl
1+B-
1 Myl ma\%1
+ia2—(V2A40+Red 2)—-<——> —
V3 MA\M/ B,

148, 148,
-I—ln(l ﬂ)ln(— > (4.18)

T

Numerically, we get for the real part of the right-hand
side of Eq. (4.18)

AbsF, @V (M?) = —2.18X107!2 (pert. th.). (4.19)
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B. K;°— yv Decay Rate

It is clear from Egs. (2.16a), (4.13), and (4.14) that
as a byproduct of the calculations discussed in the pre-
ceding subsections we also have a prediction of the
K,®— vy decay rate:

T(K1%— 2y)=5.7X10* sec™. (4.20)

If instead of Eq. (4.14) we use the perturbation-theory
result for ReH1(M?) [i.e., Eq. (4.17)], then

T(K®— 2y)=2.2X10*sec™? (pert. th.). (4.21)

In view of possible future experiments in the 2y decay
mode of the K°-K° system,? it is of interest to compare
these rates to the K,° — 2y rate. Using the experimental
values quoted in Egs. (3.2) we have

P(K10 — 27)
—— =0. (4.22)
F(Kzo g 27)
and
T(K— 2y)
=2.3 (pert. th.). (4.23)

T'(K*— 2v)

It must be emphasized that Eq. (4.22) is a model-
dependent prediction, and it should be taken more as an
indication of how the strong-interaction effects can
alter the simple perturbation-theory result given in
Eq. (4.23) than as a rigorous prediction.

Our result for I'(K1®— 2vy) disagrees with previous
estimates made within a similar perturbation-theory
framework.20:2¢ In Barger® and in Martin and de
Rafael?® the incorrect assumption that the helicity
amplitude [i.e., H1(f)X~/t] obeys an unsubtracted
dispersion relation was made.?® The correct dispersion
relation is written down in a recent book by Nishijima?*;
however, there appears to be an unfortunate error in the
explicit integration.2

C.” Contribution from Two-Pion Intermediate State

The 27 intermediate states in Eq. (2.10a) can be in
isospin states /=0 and 2. Their over-all contribution to
AbsF(2) is as follows:

—i Br
AbsFy@P(f) = —— "
[2(—4m,2) V2 16x

XE (@) T () ALK ()], (420

% For a discussion of possible measurements which have bearing

on the question of CP noninvariance in K%K°— 2y decays, see
L. M. Sehgal and L. Wolfenstein, Phys. Rev. 162, 1362 (1967);
and B. R. Martin and E. de Rafael, Ref. 20.

# K. Nishijima, Fields and Particles (Benjamin, New York,
1969), pp. 351-359.

% Furthermore, in Martin and de Rafael (Ref. 20) the rates for
K,° — 2+ should be divided by a factor of 2.

26 One of the authors (EdeR) wishes to thank Professor F.
Yndurain for an enlightening discussion on this point.



188

y7 T ,u,'(p) y(k) )’(k) 7r"(q )

w30

proom g KK )

F16. 6. Unitarity diagram corresponding to the 2y contribution to
Abs((2m)1| T | (w*w™)spy) in Eq. (4.25).

where ((2m)r|T| (wtu)sp,y is the transition amplitude
for utu~ annihilation in a 3P, state to 27 in an isospin
state 7. The absorptive part of this amplitude can
easily be obtained from unitarity by saturation with
the 2y intermediate state only (see Fig. 6), i.e.,

Abs((2m)1| T'| (wu)pe) = (1/16m){(2v)1| T'| (2m) 1)*

XV T | (whu)epy) . (4.25)
Both amplitudes on the right-hand side have been
estimated in Sec. IV A [see Egs. (4.2), (4.6), and (4.10)].
They were obtained from the Feynman diagrams shown
in Figs. 2 and 4. We shall recall that

4m, 148,
(@I T| () m) = =i 1‘“(—"‘) (426)

V't -

and g
(@] T|(2m)n)

18m.21 /148,

= —i— —— — ln(—~——) Crnre, (4.27)

V2 ¢t Br \M—B;

with
Co=\/% and C2='\/%

nr are the same enhancement factors as in Eq. (4.10).
Therefore,

8w
Abs((2m)1| T | (wtp)spo) =a>—Cryre=®
V2

mﬂz mu 4 1+ﬂ1r 1+6M
ot 1n< ) In(———-) , (4.28)
¢ '\/t Br 1 _.Br

and, inserting this result into Eq. (4.24), we have

u

—18, 1
AbsF1®™(f) = —— — Re(mta | T| (uwhu—)spo)———
' 167 B, VN

11
X [\/2_770/1 0+R8A 2] —_ ia2\—/t‘ %(\/7770/1 0+RCA 2)

Wy [ Wr 2 1 1+ﬂu 1+B1r
X —(——) — ln<-——) ln( ) (4.29)

\/t \/t 26# I_Bn 1—[3,
Here we get again an imaginary part which is precisely
the opposite of the one encountered in the calculation

of AbsF1¥7"(M?) in Eq. (4.15). Therefore, these terms
cancel when substituted in the general expression giving
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T16. 7. Seagull-type diagram contributing to
Re(atn|T| (W) spy)-

AbsFy(t) [see Eq. (2.10a)]. From Eq. (4.29), we see
that the problem now reduces to a calculation of
Re(mta=|T| (wFu)sp,). Altogether, there are three
Feynman diagrams, at fourth order, contributing to
this amplitude. We shall refer to that drawn in Fig. 7
as the “seagull-type diagram” and to those drawn in
Fig. 8 as the “box-type diagrams” and proceed to their
calculation separately.

1. Calculation of Seagull-Type Diagram

We write the corresponding 7" matrix in the following
way':
<7l'+1l'_l T l IJ«+MH>seagull = 77(;17,)1’1 (t)M(P) .
Then,

<7r+1r—[ Tl (/l+,llr_) ’Po>seagull
=TrP®(p,p')in A1), (4.30)
and, from the Feynman diagram of Fig. 7, we get

(2n?
ImA (1) = (—1e)*(—2ie*) g
2

)4

X | d*k 5(k?)6(k'*)— —
[ s

v“i(ﬁ—k+mu)v”]} . @31)

XT {Pm , [
AR RS

The calculation of the right-hand side yields

my 1
ImA (t) =4ra®—-Y>(1), (4.32)
Bu
with
1 21— 2
Vo(t)= i In ﬂ”—]——, t1>4m,?. (4.33)
Bu® 148 Bu

From this, ReA (#) can be obtained from the dispersion
integral
P oredil Yo() Yi())

r o /=t B wB,
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where,?” after analytic continuation of V,(t') to the
region 0<t'<4m,?,

1482 1= 7 148,
L12(— )_‘L12('_ )]
Bu® L 148, 1—By
2 4
——ln( ) (4.34)
6;& l—ﬁuz

8 m
Re<7r+1r_| T[ (l‘+ﬂ—) 3Po)seagull = ;‘Zaz"\‘/—zyl(t) ’ (435)

Y1(lf) =

Therefore, we have that

and the real contribution to AbsF;®™(f) from the sea-

gull term is
2

1
AbsF (2m) t) seagull= — —— —— '—(\/77)014 0+R€A 2)
17 e dr A/t V3

xm“ﬂ"y W, (436)
Vige

"

with no=1 in the case of perturbation theory.

2. Calculation of Box-Type Diagrams

The relevant diagrams are shown in Fig. 8. By anal-
ogy with the previous calculation of the seagull-type
diagram, we write the corresponding T matrix

(Tt | T wtu Yoox =0(p )W (s,H)u(p)

from which

b | T ) srodpon =1 /

-1

-+1

d cos¢p

XTrP O (p,p")eoin W(syt), (4.37)
where ¢ is the c.m. scattering angle. We see from Eq.
(4.29) that only the real part of the above amplitude is
needed to calculate AbsF; (7).
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(a)

F16. 8. Box-type diagrams contributing to Re{m+a~| T'| (u*)sp,).

(b)

In terms of the usual variables
i=(p+p")*=P?,
s=(p—q») =m*+m,2—%5i+%1B,8, cose,
u=(p—q')*=m.>+m,>—4—}1B.B, cosp,

it is convenient to transform to the variable 6, where

s= (mat-my)2—m.m,(146)%/8, (4.38)
so that the partial-wave projection becomes
+1 mamy [ (1—62)
3 / d cosgp= / de,  (4.39)
-1 tﬂwﬁu 4 02
where
1—B,)(1+8:) 1—B,)(1—Bx
o (B U800

(48162 (-+8)(1+6,)

We consider first the contribution from Fig. 8(a).
The matrix element associated with this diagram has
an infrared divergence in the photon mass, and the
corresponding integrals must be treated with care.
Evaluation by the usual Feynman parametrization is
very tedious and we prefer to use the Mandelstam
representation for the square box.?® From Fig. 8(a) we
have (with minimal electromagnetic coupling)

(2q—1-P)[(p—D)+m,](29—1)

W@ (s,f) = —¢ / a ,
@0t ) E=NILP =D =N =) —m =D =]

(4.41)

where X denotes the small photon mass. Application of the Dirac equation reduces the numerator to

N@(s,t)=8p-qq—81-qq—8p- ql-+4m,21+21-pl,

(4.42)

where we have dropped terms proportional to the photon mass.

>’ We use the dilogarithmic function as defined by L. Lewin, Dilogarithms and Associated Functions (MacDonald, London,
Lis()=— [ 2000
0

*8S. Mandelstam, Phys. Rev. 115, 1742 (1959); R. E. Cutkosky, J. Math. Phys. 1, 429 (1960); A. C. T. Wu, Kgl. Danske
Videnskab Selskab, Mat.-Fys. Medd. 33, No. 3 (1961); W. B. Rolnick, Phys. Rev. Letters 16, 544 (1966).

1958), i.e.,
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We will consider first the following integral:
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1

L(s,t)= Re[h

which we will calculate by use of the Mandelstam repre-
sentation; i.e., we write

dl
] — I
()= /(s =] a0

where only the # integration is a principal-value
integration, and

9_2(3;0 = i(l"4>‘2)[(mr+m#)2_s][(mw_mn)2_s]
— 4\t

(4.43)

(4.44)

The region of integration is bounded by p(s’,t')>0.
When A — 0, we can obviously drop the term in A* and
the integrals separate. The ¢’ integration, in the limit
A — 0, gives t71(In\?/t+14m) and the 5" integration (see
Appendix B) gives (—6 In6)[m.m,(1—6%) ]!, where 6
is defined by Eq. (4.38); i.e.,

_ LOmatmn)?—s 12— (e —my)* —s ]2

. (445)
[Onetm)? =515+ L(me—my)—s ]
The final answer for L is
—01nd A2
L(s)))= ————— In—. (4.406)
imam,(1—62) ¢
We consider next the real part of the integral
—1
ai
27?
I
X
B=N)(P2=2P 11 —N)(P—2p-1)(I*—2¢-1)
=A(s,)Pu+B(s,)putCls,t)qu- (447)

Setting all the lines on the mass shell we can again find
double spectral functions corresponding to 4, B, and C.
These spectral functions are found by solving

[d"l 1,612 —AY)6(P2—2P-1)6(1- p)o(1-q)
=A"Py+B'pu+C'qu.

Contracting both sides with P, p, and ¢ gives three
equations whose solution is

Al(s:t) =p(s,t)[(m,,—}—m,4)2—s][(m,,—m#)2—s]A‘1 )
B'(s,t) =tp(s,t) (s+mz2—m,2) AT, (4.48)
C'(s,0) =tp(s,t) (s+mu*—ms>) A7,

/ &
2x? (2—\2)(P2—2P - I+12—

>\2)(12—2p-1)(z2—2q-1)]’

where
A=2{[(mat-my)2—s][(mr—my)2—s]+st}.

The coefficients 4, B, and C are now given by double
spectral integrals over the spectral functions 4’, B, and
C’, respectively. In fact, y-P is zero when taken be-
tween the spinors, so we only require B (C can be ob-
tained from B by a simple permutation of the masses).
Note that the term in /-q of Eq. (4.42) does not con-
tribute to W@(s,f), and the term in (- p)I gives rise
to integrals which vanish in the limit A2 — 0.
We have for B(s,t)

(4.49)

' U(s'+m2—m,?)

Bt = /s-s /z’—z s',)

and we integrate first over ¢ dropping the term in A%
Taking the limit A — 0 after integration yields a result
independent of the photon mass. [The integral in Eq.
(4.50) is not infrared-divergent.] We are left with

———————p(s,('), (4.50)

* ds’ s'+m 2—
A(s'2)

B(s,t)=

(mgtmy)? s'—s
In l [(mr+mﬂ)2_5’][('m1r —y)? —S’]/S/l l
[(Omat-my)2—5)((mr—m,)2—s)]2

We now use partial fractions and reduce the integration
over s’ to several basic integrals which we calculate in
Appendix B. The real part gives

1 —0 s+m.i—m,’
B(s,t) = X(6)
mum, L(1—0%)  A(s,2)
x/ —%l(ﬁﬂ’_ﬂu)2+m7r2_mn2

X(+)

+
(1=a"%) 208.B,Ls+1(B—B4)"]
x" l(ﬁr+ﬁ#)2+m"

T (=) 28.8.Ls+H(B+B0)]

where &’ and ¥ are given in Eq. (4.40) and X(6) is
defined in Appendix B, Eq. (B6). The function C(s,?)
only differs from B(s,t) by the interchange of m,? and
m,? in the numerator terms in Eq. (4.51).

The factors in the denominators of the above equa-
tion appear to give singularities when we try to inte-
grate over 8. We see, however, that they cancel with
similar terms in the numerator when we apply the pro-
jection operator P®. Consider the form of the

X(x") (4.51)
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numerator
N®=8¢- pg+(4m:>—8¢-p)l.

After the integration over /, the second term becomes
proportional to

B(s,)p+C(s,0)g-

Applying the projection operator PV, for the incoming
tu~ system, we find

TP O (p,p')in b= (20) 128,
amy(p'-q—p-9)
@8,

Thus the result of the application of the projection

(4.52)

TePO(p,p)iaq =

(4.53)

AbsF,®m) =
2w 28,3 02

" dp (1+6?)
X / —(;[m,,z MMy 0 :|X(0) +—

’

where

o 1462 1402 A2 2A(+ =) m,
db S———I——-)l:t—%ft,,m,,S )jl Inf In— + fx— _—

2w
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operator on the real part of W (®(s,?) is

THL PO (g, W]

, 1om
=a " m,—s) (s—u)L(s,0)
ﬁ(sz)”2
,8b—m) [ 26 Bu—B-) o y
—a ’)
m,Bu(Zt)‘“’Ll 6 o Br  (1—a"%) “
G ——X(x ")] (4.54)
8. (1—2")

Expressing the variables in terms of § and substituting
in the unitarity equation (2.10a) finally gives

A(+ —=)=(QQ/V3)(V2nodo+Redy).

After a considerable amount of algebra, we find

2, / a+eyr a4

2 . 1"~ 2y

] Ing d9=0(¢)

=—(ﬂu K=, In|-

roow 2 88
24
¢ —(—+——~2———— dcosqb (s—m,2)[X(")—X(x")], (4.55)
2 tZBZ 1
p 148,

for the first integral. The second integral can be integrated analytically in terms of trilogarithmic fsunc.tions, but
the algebra involved would be so long that we computed it numerically. In terms of cosg, the third integral is

trivial, so the final result is

A2

a? My
AbsF,¢@ma) ()= —A(+ —)—0() ln— ——A (+
4 B

Now we turn to Fig. 8(b). The matrix element can
be derived from Eq. (4.41) by the substitution ¢— ¢/,
which changes s into #. Hence this graph does not have
to be calculated independently and we can immediately
write down the answer for Tr(POW,,®(t,u)) if we
define a variable ¢ by

u=(mx+m,)—m.m[ (14+¢4)*/¢¥]. (4.58)

In terms of this variable, the partial-wave projection
becomes

+1 My ! 1 —l\2
%/ d cosp= m,,/‘ S ay,
-1 tﬁrﬁy z’ \V

and there is no difference between the answer for the
crossed and direct graphs. Multiplying by a factor of 2,

(4.59)

m

My (1+02))x ©

" do
e
0

MW

2 p[x(x'")—x(«)]. (4.57)

the total contribution can now be split up into two
separate terms, one of which is infrared divergent, viz.,

a? My A2
AbsFq@matt) = —A(4+ —)—Q(F) ln<——> , (4.60)
2 18,3 ¢
and a finite part, viz.,

2 m
AbsFy 56t = A (4 —)—(148,?)
4 18,2

»

XX —X(") ] - —A<+ - s

></z ii?—(mﬂ—mrm,‘( 0 ))X(G) (4.61)
2 0 6 -
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K® K° - K°
+( gwr - T, 7K
T ' 7K _—

F16. 9. Feynman diagram contributing to
A(K°— 27v) in Eq. (4.64).

We shall show in Sec. IV D that the term containing
the infrared divergence is exactly canceled by a similar
term coming from the rry intermediate state. The total
contribution from the nm intermediate state is thus the
sum of Eq. (4.61) and the term from the seagull graph,
Eq. (4.36). Evaluating the integrals numerically, we
find

AbsF1C™(M?)geagun= —4.65X 10712 (4.62)
and

AbsFy ,Cretd (M) =4.88X 1012, (4.63)

D. Contribution from Pion-Photon Intermediate State
The contribution to AbsF1(¢) in Eq. (2.10a) from the
2wy intermediate states is
—1 1
/ dqdq'dk’
202(t—4m,») ] (2m)°
X0(g)(g*—m=")0(g") 6(¢" > —mx*)6 (k') 6(k"> —\*)
XoW(ptp' —q—q =k )Q2ry | T| (whu)spo)*
XA(K®— 27my).
To estimate the decay amplitude A4(K°— 27y) we
shall limit ourselves to the consideration of brems-
strahlung photons only; i.e., possible direct transition

terms are neglected.?® The relevant Feynman diagrams
are shown in Fig. 9. From these we have

A(KO— 2my) =(—ie) A(+ —)2

AbsF, @) (1) =

(4.64)

q'é, ql. ’
x( — ), (4.65)
N4-2g-k N2 -F
w7 art 7k T7(q) *q’)
ay, Jfria (q)
= +
ut pi W) AN Lt )

F1c. 10. Feynman diagrams contributing to
Qry|T| (wtp)sp,) in Eq. (4.64).

2 This is in agreement with the scope of the model which we.

have adopted [K-w-r pointlike vertex and minimal electro-
magnetic interactions for pions]. The pions are still in an S-wave
state so our enhancement factor 79 can be taken into account. If we
were to consider hard photons rather than bremstrahlung photons,
then the pions would be in states of higher angular momentum.
These would correspond to the so-called ‘“‘structure-dependent”
amplitudes for the decay K — wy, and lead to transitions with
CP=—1.
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y

F1c. 11. The c.m. frame of the ptu~ system. @ is the angle
between the momentum of the virtual photon k and the ut
momentum p’ [see Eq. (4.67) and Fig. 10].

where A(4+ —) denotes the amplitude 4(K°— 7t7™)
and ¢ is the polarization of the photon.

The transition amplitude (2ry|T|(utu™)2p,) is ob-
tained from the Feynman diagrams shown in Fig. 10.
Thus we have

Q@ay | T| () pe) = (—i€)* TrP O (p,p’) sin
f(?—-k’—f—mm,, ¢

{v-e’i(zb—k+m“) N
(p—kp=me " (=K y—m?
— g
XS a= ) (466)

In Egs. (4.65) and (4.66), X is a small mass given to the
photon in order to deal with the infrared divergences.

The rest of this section is essentially devoted to tech-
nical details concerning the integrations in Eq. (4.64).
They form the contents of the following subsections.
The final expression of AbsF;* as a function of ¢ only
is given in Sec. IV D 4.

1. Kinematics
We have, according to Fig. 10,
pHp'=k+gt+d, k=gt

and

k*=s. (4.67)

It is convenient to choose as integration variables in
Eq. (4.64) s, i.e., the invariant mass squared of the =+-r—
system, and the angles 6, ¢, and ¢’ defined as follows:
In the c.m. frame of the u*-u~ system (see Fig. 11), 6 is
the angle between the momentum of the virtual photon
k and the yt momentum p’; in the c.m. frame of the
at-r~ system (see Fig. 12), ¢ is the angle between the
7~ momentum ¢ and the direction of k as viewed in
that system; ¢’ is the corresponding azimuthal angle

= P’2='m;¢2, ¢*= Q’2= me?, Ri=N,

Fic. 12. The c.m. frame of the ntzr~ system. 8’ is the angle
between the y~ momentum q and the direction of k as viewed in
that system. ¢’ is the corresponding azimuthal angle [see Eq.
(4.67) and Fig. 117
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(see Fig. 12). In terms of these variables, the phase-space integral in Eq. (4.64) becomes

/ dgdq'dk’ 6(q)5(q*—ma*)0(q")8(q" > =m0k )5(k"*—\*)§® (p+p'—q—q —F')

(Vit—))2 /\1/2(5’)\2’3) )\1/2(s’m1r2’m1r2) 1 +1 1 +1 1 27
= / ds 2 2 - / d(cos())a / d(cos()’)z— / d¢’, (4.68)
4 m™Jo

mat 44 4s 2 -1 -1
where with
AL B2 2 Dk D e
Ma,b,c) = a>+ b2+ c*—2ab—2ac—2bc . \L2(1,502)
Notice that, e.g., \/2(s,m2m,2)/2+/s is the momentum y=——"—1, (4.72)

. . [—s—N\2 A0
[q] of one of the pions in the 77 c.m. system. In fact, $

we shall find it useful to write several expressions in .4
terms of the variables
1 2
N2 (s,mr2,me?) dm 2\ 12 = (4.73a)
B+ = _._~__.S_____= (1— : ) , (469) >\2+2g'kl {—s+A2 1+B1r,’Y, costd’
which is the velocity of one of the pions in the 7-r 1 2
c.m. system in units of the velocity of light; and = , (4.73b)

N2¢" k' t—s+N2 1B,y cost’

=

}\1/2(t’m Z’m 2) 4m 2\ 1/2
R (1— ") . (4.70) with
t
, )\1/2(1’3’)\2)

which is the velocity of one of the muons in the over-all y'=— —1. (4.74)
c.m. system. Thus we have for the muon propagators {—sHN2 A0
which appear in Eq. (4.66)
1 -2 1 2. Integration over Phase Space and Separation of
, (4.71a) Infrared Divergences

(p—k)2—m,2  (t—s—N\%) 1—LB,y cosb

1 ) 1 Substituting the expressions given in Sec. IV D 1

, (4.71b) into Egs. (4.65) and (4.66) and performing the sum
over the polarization of the outgoing photon, we get

(p—E)Y—my  (1—s—N\?) 1+B,y cost

21 2 -2 1
2 2oy | T (wtu)sp)* A (KO — 2my) = (—ie)*A(+ —)
pol S—AN2t—s+N2t—5s—N21—3,"22 cos?0’

XTrP©(p,p") i | [Q(D—E+m,) Q—B4"y" cost'k(p—k+m,) Q] ——
1—B,y cosé

1
+LQ(p—E-+m,) 0—By' cost! Q(p—k’-l-m,,)k]———«——] . (@75)
1-+4Buy cosd
where
Q=¢—¢.

After performing the trace operation and the trivial integration upon ¢’, we arrive at the following expression:

—1 1 m, Vt=M?  d¢ 4m,,2\ ‘Y/ﬁ'w, 1 pt+t 1 p+t
AbsF1®™)(f) = ——(—ie)*A(+ —)- — f (1 — - / d(cosf)— d(cost’)
(2m)? 22 Jime  s—N s Ji—s—22 ), 2/

1 1

1—8,%y2 cos?0 1 —B,"2y"? cos2f’

{ts+[vy's(t—s+N2) —ts] cos?0—ts cos?0’ +[ts+2 (t+s—N2)2—1yy/

XLEHN) (s —ND)+s(t—s+AD) +2 (45 —A2)2]] cos? cos20’'}.  (4.76)
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Notice that for A — 0, the expression inside the bracket { } becomes

{} = 1s(1 —cos?0 —cos*0’+cos®0 cos?)+1(t—s)(4s cos?0—3s cos) cos?d’ —¢ cos?d cos?’), (4.77)
and only the first term, i.e., fs(- - -) leads to an infrared divergence.
The angular integrations which appear in Eq. (4.76) are

1 [+ 1 1 148/
- / d(cost’) In (4.782)
2/ 1—B8."%y"2cos? 28,y 1-8.%
1 cos?0’ 1 1 1—|—,8,,"y’
- / d(cosh)” ( —1), (4.78b)
2 1B/ cos By N2BY 1.l

and similar integrals for the terms depending on cosé.
Thus, we are left with the problem of separating the
infrared divergences in integrals of the type

V=N s 4m,2 s
11,2=/ /1— )
tmg? s-—)@\ s /t——s—kz
XZ1:(v'B:"), (4.79)
where
148"y
Z(y/8) =} In——=
1—‘617
and
1+8."y' 1
Zy(v'B)= In - .
261rl2712 1_.3#,')’/ :Br/'yl

This can be done using the following change of variables:

z=(l—s—\2)/2m\/1.

Then, with
Br=(1—4m,2/1)1I2 (4.80)
we obtain
1 '—ﬂ _'6#
Il_ 26#2 ln—__' ln——' —7ﬂ1r2 11’1"
+Br Mg 146

Vit
Xln(—-—ﬁ,ﬁ)-{— Vi, (4.81a)

2mr

where V; is a convergent integral

[(Vt)[2mx]Bx? dz
V=1 — (1=
2
0 2z

11— L= 2me (V)
1 {1—4m.2/[t—2m,.(V)z]}/?
1+Bw]

4m > )
t—2m.(\t)z

B2 In~ (4.81b)

1-B-

and

12 = (1 ln‘— +ﬂ1r> (% lIl +B1r>
148+ M 148

Vi
Xln(—ﬁ,,2)+ Ve, (4.82a)

s

where V is also a convergent integral

[(VO) [2me] 852 ]y
Y
0

Z

1+{1—4m. /[t —2m.(\/t)z]} /2 148
Xl:ln —In

1—{1—4m. /[t —2m.(\/)z]} /2 1—8-

+2{1—4m,2/[z—2m,(\/¢)z]}1/2—25,,]. (4.82b)

From the results given in Egs. (4.81a) and (4.82a)
and using Eq. (4.77) it is easy now to get the over-all
contribution to AbsF1¥™ in Eq. (4.76) from the
infrared-divergent terms. We find

o? my 1
AbsF1Cm0(f) = —A (+ —)— —
T 12

“3

’_5u
+a]

Bu

1
x[u 89} In
14+
1—8,
+m]
+B=

Xl:(l —B:))3 lnl

A
XIn— —finite terms. (4.83)

Mo

Notice that this infrared-divergent term cancels with
the one obtained in the evaluation of the contribution
to AbsFy(f) from the 27 intermediate states [see Eq.
(4.60)]. We discuss the evaluation of the finite terms
contributing to AbsF;@™(t) in Sec. IV D 3.
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3. Evaluation of Finite Terms Contributing
fo AbsF{@m(%)

From the results of the preceding subsection, it can
be seen that there are three types of finite terms con-
tributing to AbsF;271(7):

(1) Terms which have already appeared in the
evaluation of the infrared contribution [see Egs.
(4.81a) and (4.82a)]. They lead to a net contribution

Cacr ™ 1[(1 841 l_ﬂ“w]
1r LB e, T
_ﬁT ﬁ 4

X[(l—ﬁﬁ)% In -HB,]% In (4.84)
1+187l' 1— T

(2) Contributions from the integrals V; and V, [see
Egs. (4.81b) and (4.82b)]. These lead to a net con-
tribution

a2A(+ )mu 1 [( oy 1—
——A(+ =) ——| 1-8,HL 1n
. t B3 T

B
]
B
X(V1i—Vs). (4.85)

(3) Terms from the convergent part of the integral
in Eq. (4.76). According to Eq. (4.77), these lead to a
net contribution

195

To evaluate the integral Vi—V, [see Egs. (4.81b)
and (4.82b)] it is convenient to make the following
change of variable:

1—4m.2/[t—2m.(\/{)z]=x2.
Thus, we have

dm,2 [P~ x 1
V1— Vz'—“— / dx
¢ 0 x2—122—p,2

1+/81r']

T

Xl:(x2—1) lnij——g—c —(Bz2—1) In
1—x i

dm,2 b 2% 1
— / dx .
¢ 0 x*—1 x40,

The second integral can be expressed in terms of
logarithmic functions; the first involves logarithmic and
dilogarithmic functions. We find

T

148
VI—V2=<1—BW2>%WZ+<1—B,)ln( )

1
+28x ln(

+61r 1_,37r N
-t
2 1+

1+.61r 1—6""
Xln( )—Lig( >} . @8
1-8, 14-6x

The integral appearing in Eq. (4.86) can also be
evaluated by using the change of variables

1—4m,2/s=x2,

and is expressible in terms of logarithmic and dilog-
arithmic functions as well. The result we find is

G|

0[2 My 1 1—6M 1
e e
T t B 148, 41
¢t d 1-8,
X / —{I:-—Zsﬂ,,'z In b +(3s+1)8,
4m,r2 § 1+ﬁ1r,
G I ] (4.86)
148,
1 t o d 1-86, 1—
/ -s[—Zs,B,r’ 2In i +(3s+4)3 In o
dmz? Jsmye s 148, 1+
Br w2 7 /1-38,
=—3m’+ - +- n(
2(1 _611'2) 12(1 _:37r2) 4

1+,

L oy i o)
— n _
2(1_.3#2) 1+ﬂ1r Z(I_Bw2)

1—-8,2
D
4

1+ﬂ1r I—Br 1+61r . 1+B7r
)—HH( ) ln( )+2L12< ):I . (4.88)
1—8- 2 2 2

4. Expression for AbsF1™)

The final result for AbsF;*™ consists of an infrared part, as given by Eq. (4.83), and a finite part, which is the
sum of the expressions given in Eqgs. (4.84)—(4.86). Using the results quoted in Eqgs. (4.87) and (4.88), the over-all
expression for AbsF;1@7") can be cast into the following form:

a? my | 1
AP0 () == A+ =1 gt (-4 n
™ ¢ o1B? 1+

+ —In

2B,

BH l_ﬂvr M
][ﬂw-l-(l ~6.9} In- ] I
8 118

148, irt 14
W (,)+ ._[“ In

1 _.BM 6#2

A

» T

”—1:|q><2><5,)], (4.89)
25# 1_BM
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where

DD (B,) =(1—B:)gm*+3Bx ln(1

4

2
T

1—
—11-8)In(1—B8,) 1
3(1—6,%) In(1—8-) n1+,5'

and

—ﬁr

2 1
2O(3) = —+38,~ (1—B, )y +§ In
1 146

™

1+ L 2 1—
—1% In[( B (1—6,,2)] In s
16 1+8

T

Some remarks are in order:

(1) We note that the infrared term in Eq. (4.89)
cancels with the corresponding infrared divergence en-
countered in the calculation of AbsF1@™(f) [see Eq.
(4.60)7]. From this cancellation one is left, however,
with a finite quantity

052 m 1 1'—6;1
= Zae s a-pim |
. E 148

o

(4.92)

1—B=« 1-6,*
Xl:ﬂw-*—(l _B7r2)% In- :'% In )
1+, 4
which certainly gives a net contribution to the total

AbSFl(t).
(2) For t=M?, i.e., for the on-shell K — uu~ decay,
we find numerically that

W (8,)=0.257 (4.93)

and

D (B,)=—0.088. (4.94)
Then, with

A(+ =)= (1/V3)(VZnods+Reds),
we find that
AbsF1@™) (M?) tinite
2 1 +8
——=A(+ —)—i‘{~ In——3(8,)
T M2128, 1—B.

1ir1 146,
+ __2[2_8_ 1n1_? _1]q><2>(/3,,)} =—1.10X10"12,
BuL-28 “ (4.95)

(3) For ¢t= M?, the numerical value of the expression
given in Eq. (4.92) is 1.53X 10712

(4) Adding the results obtained in Egs. (4.62), (4.63),
(4.95), and (4.92), we get the net real contribution to
AbsF1(M?) from the 27 and 27y intermediate states:

AbsF1 M (M %)+ AbsF, ™) (M?) =0.68 X 1072, (4.96)
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8 146,
)+2[37r ln(———> (181
2 146

1"‘6#
=3B In[758:*(1—B,*) ]+ (7/16)(1—B:*) In
| 146

" 11-6.Y) ln[

I—Bw
n

T

- "5«2)Li2< ‘
148

T

) (4.90)

m ke

T

1 —ﬂw} 1 1 _ﬁﬂ'
n
(14+B8+)* 1+8:1  1+8+

+%Li2[—<i:'—_zw):|+%(l—Bﬁ)Liz[(i;Z:)z:l- (491)

K

V. K9— yty~ DECAY: SUMMARY
AND CONCLUSIONS

1. We have estimated a lower bound for the decay
rate of the process K,°— utu~. This has been done in
the following way: We assume CP invariance to hold,
and write the decay rate as

My AmN\
I‘(K1°—>p.+p.‘)=—<1— ) [F1]2. (2.4a)
4 M?
Since |Fi|>|AbsFi|, it is clear that a calculation of
the absorptive part of the form factor F; gives us a
lower bound to the rate I'(K1 — utu™).
The quantity AbsF; has been estimated by saturating
the unitary condition

—1(2m)*
2L2(M2—dm,?)J1/*
XN T (utu)sp)*A(K*—N)  (2.10a)

to order Ge* (G is the Fermi constant, e the electric
charge).

2. We have calculated assuming a pointlike weak
coupling at the K-m-r vertex and minimal electromag-
netic interaction for pions and muons. This implies a
summation in Eq. (2.10a) over 2y, 2r, and 2y inter-
mediate states (see the diagrams of Fig. 2).

(i) From the 2y contribution to Eq. (2.10a), we get
the result

Absi— > f dor 5D (o5~ p2)

a1 1m, 1 148
AbsF, @0 = — —(V2 Ao+ Red y)— — — In——
V3 M M 28, 1—B,

(2] o

where B,= (1—4m,*/M*)'?, B,=(1—4m,*/M*)"?, and
Ag,A, are the amplitudes for the transition of K° to two
pions in isospin states =0 and =2, respectively.
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Numerically, with??
AbsF @M= —2.18%X10"12 (pert. th.). (4.19) v 1+B,‘2|:L.< 1——6“) L < 1+6M>'
)= - — -
(ii) From the 27 contribution to Eq. (2.10a), we find 20 B2 2 148, ! 1—8,/
for the seagull term (see Fig. 7)
2
o 1 S , (434
AbsF1(2”)(seagull) = — —;r— ;/g(\/ZA 0+RCA 2) B;t n<1 _'3“2> ? ( )
X iﬁ'f_ﬁ_"yl(t) (4.36) and, for the box diagrams contribution [see Fig. 8 and
M M 48, ’ Eqgs. (4.60) and (4.61)],

@m o 1 i le 11 2 "N —x(x"
AbsF, (box)=—\—/“3(\/7A0+ReA2)ﬁEJ—{E;Q(M ) nﬂ—l+£@( +B8HX () —X(x") ]

™ 3
1 [#do (1+06%
- “(rer—mem, )x(e)}, (5.0
B /s o

)
with 118 11g
oury=—{B—sa-s (") [o—sa-s (-2 | (456)
—B, -8,
1—B,)(1+8,)7"2 1—8,)(1—B,)M?
x,z[( BI(1+8 >] | x,,=[< BI(1—8 >] i
(14+8)(1—8x) (148, (148x)
and X(6) defined in Appendix B, Eq. (B6). Numerically,
AbsF{?m(seagull)= —2.98X 10712 (pert. th.) (5.2)
and
AbsF1?™ (box) o (V24 —{—RA)1 s 1 (M1 )\—|—314><10 12 (pert. th.) (5.3)
7 (2 —- —_ — 3. - ert. th.). .
sFy 0X - 0 eZMMﬂ,ﬁQ nM p

(iii) From the 27y contribution to Eq. (2.10a), we find [See Figs. 9 and 10, and Eq. (4.89)]
a? 1 1 148,

m, 1 A 1
AbsF1e™) = — —(VZA+Reds) — —{ — —Q(M?) In— — — In——B D (8,)
™ \/3_ M M "3 My 2 I “Pu
1ir1 148,
— —[—— In —-1]<I>(2)(B,,)] , (5.4)
ﬁu2 Zﬂu 1—'6;&
where the functions ®(8,) and ®®(8,) are given in Egs. (4.90) and (4.91), respectively. Numerically,
a? 1 m, 1 A
AbsF @7 = — — — (V3 A g+ Reds)— — —Q(M?) In— —0.70X10-22  (pert. th.). (5.5)
™ \/3_ M M “3 My

Notice that the infrared divergence in AbsF;®™(box) [Eq. (5.3)] cancels with the corresponding infrared
divergence in AbsF;@™ [Eq. (5.4)]. Thus we have

o?

1 m, 1 M
AbsF12™ (box)+AbsF;?™) = — —(V2A +Reds)— 2 —Q(M?) In— +2.44 X107 12
V3 M M B M

™
=3.42X10-12. (5.6)

It turns out that. the contribution from AbsF1@™ (seagull) [Eq. (5.2)] almost cancels the infrared diver-
gence-free combination AbsF;?™ (box)4-AbsF;1@™), Thus the quantity

AbsF;@m (seagull) 4 AbsF1 2™ (box)+ AbsF, 2™ =0.44X 10712, 5.7
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which is gauge invariant and infrared convergent, gives
a contribution to AbsF; which is smaller than the con-
tribution from the 2y intermediate state [Eq. (4.19)]
and opposite in sign. The over-all result is
AbsFy= AbsF;®"+ AbsF; ™ (seagull)
~+ AbsF; @™ (box)+ AbsF1 37
=—1.74X10"2 (pert. th.),
and from Eq. (1.5) we have, therefore, that
T(K:®— utu)>1.35X 10" sec™t  (pert. th.),
which corresponds to a branching ratio
(K, — whp)

(5.8)

(5.9)

>1.6X10~1 (pert. th.), (5.10)
(K" — all) P (
not much smaller than the “first-guess” estimate given
in Eq. (2.9).

3. We have also made a very simple model to esti-
mate the possible enhancement effects of the m-w
strong interactions in our calculations. This is described
in Sec. IV A. Practically, it amounts to the substitution

(1/\/3)(\/2A0+R8A2> —> (1/\/3)(\/2_770/10“}—712 Red 2)

(where 57 is an enhancement factor due to the strong
interactions of the 2 system in the isospin state /) in
all the perturbation-theory results except in the evalua-
tion of ReH1(M2). Here the explicit dependence of 7o on
the dispersion variable has been taken into account. As
Red K| 4o|, we have always set the term 73 Red =0,
which means that 7, is purely a multiplicative factor in
the 27 and 27y contributions.

The corresponding value for AbsFi, where enhance-
ment factors are taken into account, is given by the
sum of Egs. (4.15) and (4.96):

AbsFy= —3.03X10~12, (5.11)

to be compared with the perturbation-theory prediction
of Eq. (5.8). From Eq. (5.11), we obtain that

T(K®— utu)>4.37X 10 sec™,  (5.12)
and, therefore,
T(K1®— ptp)
>5.1x10-1, (5.13)

(K0 —> all)

which is our final prediction.

4. Our results so far have been entirely for the decay
of K1° into a muon pair. However, we can easily obtain
the result for K decay into an electron pair by chang-
ing m, into m,. in our equations. We quote without
further comment the electron equivalents of Egs. (5.12)
and (5.13), i.e.,

T(K®— ete™)>1.26X103 sec™?,  (5.14)
and, therefore,
(K — ete)
——— 2>1.5X10"1, (5.15)

T(K1°—> all)
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5. We should like to close this section with two com-
ments on the reliability of the bound given above.

(i) In principle, first-order weak times fourth-order
electromagnetic interactions might be competitive with
second-order weak interactions [GMg*a/7)?=1.5
X 10~ and (GM?)2=0.8X10~1*]. However, second-
order weak interactions only contribute to the real part
of F1; hence, they can only increase the lower bound
given in Eq. (5.12).

(i) One source of uncertainty in our calculation comes
from the estimate of the real part of the K;'— 2y
amplitude, i.e., the quantity we call ReH1(M?), which
has been estimated in Sec. IV A. It is clear that other
channels than the 27 are open in the dispersion integral
from 4m? to =, viz., 3w, NN, etc., which are not taken
into account in our estimate [see Eq. (4.16)]. There
exists, however, the empirical possibility of improving
this; clearly, one expects to observe K;°— 2y decays
before K1 — utu~ decays will be detected. In that case
| ReH1(M?)| can be taken from experiment, using the
estimated value for ImH((M?) [see Eq. (4.13)]. If
| ReH(M?)| <1.02X107°, then the 27 and 2v and per-
haps 37y channels might become competitive with the
2vy. In this case it is clear that a more elaborate esti-
mate than our perturbation model is needed. If
|ReH:(M?)|>1.02X107°, then one can treat other
channels than the 2y as a small correction. In this case
there is room for improvement of the I'(K;® — utu™)
bound.
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APPENDIX A

Throughout the calculation described in the text,
we have used a covariant expression for the projector on
the triplet state of the u*tu~ system. In this appendix,
we give the details of how to construct this projector, as
well as the projector on the singlet state.

With our normalization of Dirac spinors, the pro-
jector on a particle state with energy momentum p
and polarization s is

u(p,s) @u(p,s)=3(p+m)(1+7ss), (A1)
where
and s-p=0.

P2=m2> st=—1,

This is a well-known expression due to Michel and
Wightman.?
Next, let us denote by s® (:=1, 2, 3) three four-

vectors such that
posP=0, s9.sO=—5;, i,j=1,2,3
and
euvpapusp(l)sp@)sv(” =m.

% T, Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955).
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We choose the third component s5,® as the quantiza-
tion axis, and call A the magnetic quantum number, or
helicity, along this axis. It was shown by Bouchiat and
Michel® that the projector given in Eq. (A1) can then
be written as follows:

u(pN)@(p,N) =3(p+m)(an+7s8- o), (A2)

where -7\ is a shorthand notation for (s®Wr+s®r,
+5®75); 71, T2, and 73 are the usual Pauli matrices.
Equation (A2) can be viewed as a 2)X2 matrix acting
on the helicity indices X and .

The generalization to the case where two energy-
momenta are involved, i.e., expressions of the type
u(p’ N)@4u(p,\), was made by Nuyts.?? It reads

(' N)®u(p,\) =
u(p “(p [2(mm'+1>-?')]”2

X5 (' +m") (p+m) (S +ys8-mn),

where p2=m? and p’?=m'2. We note that in this case,
N is the helicity along an axis s” such that

(A3)

§'=Ap/mopr S s

where Apmp/m 1s the pure Lorentz transformation
(or boost) which takes p/m to p’/m’ and leaves in-
variant the two-plane orthogonal to the one defined by
p and p’.

A general method to construct all the possible pro-
jectors for spin-3 particles has been given by Michel.
In our case, we are interested in expressions for #(p’,\")
®u(p,\) and v(p’,\)QR4u(p,\). These can easily be
obtained from Eq. (A3) in the following way: We choose
s to be the helicity axis corresponding to p, i.e.,

Ip E p
so=-—, §=——, E'—|p|?=m.
m m |p|

Then we simply have v(p, —\)=7su(p,\), and 5(p,\)
= —a(p, —\)ys. All we have to notice then is that

¥5(On,—v 758 2n,—n) = Ys(T)aw S (xT)aw
— (a5 ta)vs — —[vs(r)a —s(Tm)n-].

Thus we have .

'N)®B(p,N) = L' +m') (p+m)
u(p' N )®5(p,\) [2(mm'+p- /) T2 @' +m")(p+m
XLys(r)w —s-(re)w], (Ad)
I NY®i(p\) =
OO = s ot 4
XE(=p +m)(—p+m)[vs(r)w+s- (zr)am].  (AS)

3 C. Bouchiat and L. Michel, Nucl. Phys. 5, 416 (1958).

82 J, Nuyts, Bull. Acad. Roy. Belg. 47, 566 (1961).

# L. Michel, Institut des Hautes Etudes Scientifiques Report,
1963 (unpublished).
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It is useful to expand the right-hand side of Egs.
(A4) and (AS) in the basis of 16 y matrices:

+1
22(mm +p-p) ]2

(u(p’A’)M(p,x))
v(p' ) @(p,\)

XI:(iA,ﬂ"vs-l-T wot = Pys) (11w

TIT -
+<81ivuw:tAms+Tw""”)'( ) ] (46)
AN -

cT1
with

=—m(p'-s), (A7)
V= (0" 8)pu—(mm'+p- p')s,, (A8)
Apy=mp)'+m'p,, A,= Teunpa’p'?S7 (A9

T,= %euvpv(f’pp’”—?lpi’“) ’

. _ (A10

Tu= %Z[(mpul+m,pu)sv_su(mpvl'i“mpv)_] , ( )
P=mm'+p-p'. (A11)

The projector on the triplet state of the outgoing
wTu~ system has three components:

PO@ ) =AN)(',+)®@(p,~)

—'U(P’i_)®1'7’(p:+)] ’
P:I:I(l)(P',P) =7)(P’::*:)®72(P::‘:) .

The projector on the singlet state is given by

PO,p) =N, H)@a(p, —)+o(p',—)

) ®u(p,+)].
Using Eq. (A6), it can be seen that

PO=— [§®1_ ), @y
2(mm'+p-p')H2 ’
— A Oyrys+ T ®om], (Al2)
Puy®=— [§®]_J,FEyu
+1 Z(mm,+P'PI)1/2 13 Y
_AF(¥)7“75+TMV(:F)UW,:]7 (A13)

where, for example, S® means (S®4iS®)/V2. For
the singlet projector we have

PO = (_Au7"75+ Tuvg'”v+P75) . (A14)

2(mm+p- ')

The explicit form of PM(p’,p) needed in the text is the
following: With

— 2
pP=p"t=m’,

1
s =
m [1(t—4m*) 12

t=p+1)*,

and

Lpw—=2m*(p+1"),],
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. Sometimes we shall also need the projectors on the
R it , incoming utu~ system. If p is the energy momentum of
Ptow 2[2(5_47”2)]1/2[(! 4m*)14-2m(p = plur* the incoming u~ and p’ of the incoming ut, we have

. 1
Filpup) —pi'pr)o]. (A1S)  po e A 2m(p — p)
2[2(15—41%2)]”2[( m*) 142m(p" —p)uy

+ilpu po—pups)o*], (A17)
[zm(P"{‘?,)#'Y“'Yﬁ

we have

Correspondingly, we have for the singlet projector

Prigyy @ =— C=2m(p+p")uv*vs Py O = —
2(2)12 22012

Faewpo(p?p'°—p"p7)o* +ty5].  (A16) 3 ewpo (P07 —pPp" ) +tys]. (A18)

APPENDIX B
The integrals over 5" in Egs. (4.43) and (4.50) are best carried out by the following changes of variable:
§'= (M —m) 2 Hmam,(1+y)%/y,
s=(Mmr—my)2—m.m,(1—6)%/6.
Hence the integral over s" in Eq. (4.43) becomes
°° ds’ ) s Tt 1 ! dy —6
/(m —{[(matmp)*—s' L (mr—m,)? =" ]} = m,m“,/(] TRy m,mﬂ(1~0)21n

tmp)? S S

6 (B1)

and the integration of B'(s,¢) and C’(s',t) over s’ yields
LOnat-my)®—s" I (me—my,)*—s']

s't

A B A e A e

where a=m,/m.. The third integral in Eq. (B2) would be zero if the masses were equal. If we call these integrals
Ry, R,, and R, respectively, then, after some algebra we find

0 d /
/ {LOmetm) = T —m) =T In
(m

7r+m/.;) 2§ =S

—0 / Montiy
= Inf In ), (B3)
e, (1—69)\ ’
-0 T (140)*
= 243 In20+1nfbln +2Li2(—0):l R (B4)
mam(1—0%)L ]
-0 (1—8)? 1446 149 146
R;= Iné In +2Liz< - —-) —Li2< - ——) —Liz< — )
mam,(1—0%)L (a—0)(1/a—0) 1-46 a—40 1/a—6
6 —0 —0 1—6 1—ab 1—6/a
-—2Li2( — -—~—)+Li2< )+Li2( >+2Li2( )——Li2( )—'Lig( > —2Lix(1—6)
1—46 a—0 1/a—0 146 14-6 146
+Lis(1—a6) +Lis(1 —6/a) +1 2(1+0> 11 2(1+0) 11 2( 1+0>
— — — il ——)—1ln
e Vo) I Vo) b 1—6/a

—In2(1—6)+3 In?(1—abd)+% In2(1 ——B/a):, . (B5)

Note that R; has been written so that all the dilogarithms and logarithms are real for 6 in the range of integration
between & and «”. Finally, we define X(6) by
X(0) = —m.m [ (1—6%/0](R1+ Ro+Rs) . (B6)



