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Neutral Kaon Decays into Lepton Pairs
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The decay modes Ei0 —+ p+p, and E20 —+ p+p are discussed within the framework of Grst-order weak
combined with fourth-order electromagnetic interactions. The possibility of obtaining lower bounds to the
corresponding decay rates is examined, and estimates of the lower bounds are given in a perturbation-theory
model. Possible enhancement e6ects due to strong interactions have been estimated through a simple
model of final-state interactions. The assumption of CP invariance is made throughout.
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Even in the absence of neutral leptonic currents,
EI, —+ p+IJ, and EB—+ p+p are allowed decay modes
through electromagnetic induction, ' at 6rst order in the
Fermi coupling constant G (G=1.02X10 '/m„') a,nd
fourth order in the electric charge e. They are also al-
lowed as "higher order" weak processes, thus providing
an interesting possibility of probing weak interactions

*Work supported in part by the U. S. Atomic Energy Com-
mission, under Contract No. AT(30-1)-3668B.

~ H. Foeth, M. Holder, E. Radermacher, A. Staude, P.
Darriulat, J. Deutsch, K. Kleinknecht, C. Rubbia, K. Tittel,
M. I. Ferrero, and G. Grosso, Phys. Letters 30B, 282 (1969).The
previous upper limits were F (EI, —+ p,+Ijt, )/F (EL, -+ all)
&1.6)&10 ', F(EI, ~ e+e )/F(EI0-+ all) &1.8)&10 '; see M.
Bott-Bodenhausen, X. de Bouard, D. G. Cassel, D. Dekkers,
R. Feist, R. Mermod, I. Savin, P. Schar8, M. Vivargent, T. R.
Willits, and K. Winter, ibid. 24B, 194 (1967).

2B. D. Hyams, N. Koch, D. C. Potter, L, Von Lindern,
E. Lorenz, G. Lutjens, U. Stierlin, and P. Weilhammer, Phys.
Letters 29B, 521 (1969);R. D. Stutzke, A. Abashian, L. H. Jones,
P. M. Mantsch, J. R. Orr, and J. H. Smith, Phys. Rev. 177,
2009 (1969).

3 M. A. Baqi Beg, Phys. Rev. 132, 426 (1963).

2

I. INTRODUCTION

XPERIMENTAL search for the decay modes
~ EI.~ p+p and Es +Ii+p ha-s been undertaken,

primarily, to test the possible existence of neutral lep-
tonic currents coupled to the strangeness-changing
charge-conserving hadronic current. At present, the
upper limits for the total branching ratios of these modes
are' (at 90 jo confidence level)

at a level beyond the effective 6rst-order current-current
Hamiltonian. 4 Possible tests of CP and CPT invariances
involving these decay modes have also been discussed. '
In view of future improvement of the experimental
upper limits quoted above, it becomes of considerable
interest to know the "expected" decay rates of these
rare modes. In fact, various estimates of the decay rate
of EI.—+ p+p, can already be found in the literature7;
however, to our knowledge, nothing much is known
about the decay rate of J 8~ p+p, .

This paper is primarily devoted to a study of the
decay mode Ez~ p+p viewed as a 6rst-order weak
times fourth-order electromagnetic process. The possi-
bility of obtaining a lower bound to the decay rate of
this process from unitarity is examined, and estimates
are given within the framework of a perturbation-theory
model. Possible enhancement effects due to strong in-
teractions have been taken into account only through
a simple model of anal-state interactions. The assump-
tion of CI' invariance is made throughout.

In Sec. II we examine the decay modes EI.~ p+JM,

and Eq —+ p+p from a phenomenological point of view.
The implications of the experimental limits quoted
above upon the possible existence of neutral leptonic

4B. L. Ioffe and E. P. Shabalin, Yadern. Fiz. 6, 828 (1967)
(Soviet J. Nucl. Phys. 6, 603 (1968)j; Zh. Eksperim. i Teor.
Fiz. Pis'ma v Redaktsiyu 6, 978 (1967) )Soviet Phys. JETP
Letters 6, 390 (1968)j; E. P. Shabalin, Yadern. Fiz. 4, 1037
(1966); 6, 547 (1967) t Soviet J. Nucl. Phys. 4, 744 (1967);
6, 399 (1968); Zh. Eksperim i Teor. Fiz. Pis'ma v Redaktsiyu
6, 648 (1967) t Soviet Phys. JETP Letters 6, 140 (1968)g; R. N.
Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev. Letters
20, 1081 (1968); Phys. Rev. 171, 1502 (1968); F. E. Low, Com-
ments Nucl. Particle Phys. 2, 33 {1968);M. Gell-Mann, M. L.
Goldberger, N. M. Kroll, and F. E. Low, Phys. Rev. 179, 1518
(1969).' A. Pais and S. B.Treiman, Phys. Rev. 176, 1974 (1968).

6 For a model of violation of CP invariance in which the decay
E8 —+ p+p plays an important role, see M. L. Good, L. Michel,
and E. de Rafael, Phys. Rev. 151, 1194 (1966).

7 See Ref. 3; also L. M. Sehgal, Nuovo Cimento 45, 785 (1966);
C. Quigg and J. D. Jackson, UCRI Report No. 18487
{unpublished).
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currents is briefly discussed, and order-of-magnitude
estimates for the decay rates El, ~ p+p and E'q —+ p+p,

—

are given. The use of the unitarity condition as a method
to obtain lower bounds for the decay rates of these
processes is discussed and the possibility of obtaining
empirical bounds is considered.

In the light of the phenomenological discussion given
in Sec. II, we review previous calculations of the decay
rate Ez, —+ p,+p in Sec. III.

Section IV is devoted to a calculation of a lower bound
to the decay rate E8~ p+p within the framework of a
perturbation-theory model. The model consists in as-
suming a pointlike E-x-x weak coupling vertex and
minimal electromagnetic interaction of pions and lep-
tons. The contribution to the absorptive part of the
E'~ —+ p+p amplitude from the intermediate states
2y, 2m-, and 2m.y is calculated within this model. The
details of this calculation are given in Secs. IV A, IV C,
and IV D, respectively. Possible enhancement effects
due to the ~-~ strong interactions have been incorpo-
rated into the perturbation-theory model in an approxi-
mate way; i.e., only them-m interaction in the state J=O,
I=0 is taken into account. As a byproduct of this cal-
culation, we obtain an estimate of the Ez ~ 2p decay
rate (always within the limitations of the model de-
scribed above). Our estimate, however, disagrees with
previous calculations which were made within a similar
perturbation-theory framework. This is discussed in
Sec. IV B.

The results obtained and conclusions are summarized
in Sec. V. This is done in sufhcient detail so that the
reader who is not interested in the details of the calcu-
lation can omit Secs. IV A, IV C, and IV D.

Some technical details of the spin calculations have
been relegated to Appendix A and the evaluation of
certain integrals to Appendix B.

II. PHENOMENOLOGY

In EI,~ p+p and E8 —+ p+IJt, decays, the p, pair has
total angular momentum J=O. There are two possible
states for this system: 'Po and '$0, which are eigenstates
of CP, with

cPI (t+t )...&=+
I
(t+„-)-.~,),

CPI(t+t ) s,&= —
I
(t+t ) e,).

This means that, at the limit of CP conservation Li.e.,
Kr,=K~ (K +K')/v—2 and——Ee= ICi'= (EK)/K—27,

' —

hadrons to the type'

g(I( ) ')"07.(1—7)4+I c, (21)
then, because of the V—A structure of the leptonic
current, only transitions to the (p+p )~e, state are
allowed. If the coupling constant g is real, we have that
E2 ~ p+p is allowed and E~' —+ p+p is forbidden.
From the experimental limits quoted above, and using
the effective Hamiltonian defined in Eq. (2.1), one can
set upper limits to the coupling constant g'.

g, &1.3X10 ' sin8 G/V2,

g.('t.2&(10 ' sin8 G/V2.
(2.2)

~P v EIt~v tv~ y y ~pv 6Itt A'y 6p ~y

(k and k' are the energy-momenta of the y's; e and c' are
their polarizations), the decay amplitude for Kio ~ yy
is given by the scalar coupling

Here 8 is the Cabibbo angle for the axial-vector current,
and t" is the Fermi coupling constant. The figures in
these upper limits give the suppression of the couplings
of neutral leptonic currents to hadrons as compared to
the corresponding couplings of charged currents.

Regardless of the possible existence of neutral lep-
tonic currents, the most general expression for the decay
amplitude of the process E' —+ p+p, is as follows:

ALKo —+ ti+(p')ti —(p)7=in(p) LF+y, F7 v(p') (2 3a)

The scalar term (Fi) leads to transitions to the 'Po
state; the pseudoscalar (F2) to the 'So state. Assuming
CP invariance, the amplitude for the process E'~
p+y is then

AL&'~ t"(p')t (p)7= —i~(p)LFi —75F27v(p'), (2 3b)

and we have, with SI the neutral kaon mass,

4m„»»
1'(Ki'~t't )= —1— IFiI'~ (2«)

4x 3f'
4m„»~2

r(K,' t+t-) = —1— IF, I'. (2.4b)
4x iV'

Next, we assume that these decays proceed via 6rst-
order weak times fourth-order electromagnetic inter-
actions. The corresponding mechanisms are then de-
scribed by the Feynman graphs shown in Fig. 1.Let us
first write down the couplings corresponding to E~' ~
yy and E20~ yy decays. With

K2v ~ (ti+ti ) ~e, and Kio'~ (ti+p
—
) ms,

' A (Kio —+ yy) = (Hi/IV)F'„„F'I'", (2.5a)

are allowed transitions, whereas

K2' —+ (p+p ) ~p, and K'iv —& (tati
—

)~e,

are forbidden by CP invariance. If, furthermore, by
analogy to the unir-ersal current-current interaction,
we postulate a coup1";ng of neutral lepton pairs to

and for E&' —+ yy by the pseudoscalar coupling

A(E2'~ yy) = (H /ItI)e„„„F&"F'& . (2.5b)

The decay amplitudes for E~' —+ p+p, and E2' —+ p+p, ,
as described in Fig. 1, are then given by the following

' See, e.g. , Good, Michel, and de Rafael, Ref. 6.
9 E. de Rafael, Phys. Rev. 157, 1486 (1967).
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Since
l F,

l
&

l
AbsF,

l &
i = 1, 2, it is clear from Eqs.

(2.4a) and (2.4b) that knowledge of the absorptive
parts of the form factors F» and F2 will give us lower
bounds to the E1 —+ p+p and X2' —+ p+p, decay rates.
By use of the unitarity condition, the quantities AbsF;
can be expressed as follows":

p.-(p)

AbsP1 ——— (2~)' Q dpi'
2l 2(~' —4~ '))"'

x&"'(p+p'-Zp. )(ZITI( ' -)".)*
XA (K' —+ X), (2.10a)

p.'(p')

Fxo. 1. Feynman diagrams describing EP —+ p+p,
and E20~ p, p, decays.

expressions:

~II:r,~'~u+(p')t (p)j
d4q

-IIt,2I:~',(P—q)', (P'+q)'j
M (2tr)4

—z

X — ( i e) 'Tt—2&"u(p) y„
(p q)'+te (p'—q)'+t'e—

with

t(q+rtt„)
. v'(p'), (2.6)

q' —m'+ ze

T ""=2i&p q). (p'+q)a"—" (p q) "(p'+—q)"j-
and

(2.7a)

P1~F2~
G3I' n' m„

sln0-
v2

(2.8)

which corresponds to the following branching ratios:

I'(K ttet+tt
—

) ~3Xio—11

(Et'~ all)

I'(E2' +tt+tt )-
2X&o '.

(E2e +all)—
(2.9)

"This can be readily seen from Eq. (2.6) by inspection of the
possible terms which are left after the d4g integration and applica-
tion of the Dirac equation. Another way is by use of the project-
ors on the triplet and singlet states of the p+p, system given in
Eqs. (A15) and (A16) of Appendix A. The amplitudes
A(EI' —+ p,+p, ) and A(E2' —+y+p, ) are proportional to respec-
tively, trP, „«') (p,p') p„i (q+rg„)p, and trP&~f, (') (p,p') y„i(q+qn„)p'
Clearly, only terIns proportional to rn„sgrv&vp pf$pr &be trace
operation. .

T~""=4e"""(P q).(P'+q)' — (2 7b)

By comparison of these equations with the general ex-
pressions given in Eqs. (2.3a), and (2.3b), it can be seen
that the form factors Ii1 and Ii 2 are proportional to the
lepton mass. '0 Thus, as an order-of-magnitude estimate,
we expect

Absj"2 ——— (2m)' P

dpi'

2L2(M' —4trt ')j"'
x~t ~(p+p -pp. )( ITI(~ &-) ..)*

X A(K' —+ X), (2 10b)

where the summations are extended over all possible
intermediate states

l X), allowed by phase space, which
are in the same invariant subspace of the strong and
electromagnetic interactions S matrix as l(tt+tt )St,) in
the case of AbsF~ and as

l
(tt+tt )~s,) in the case of

AbsF2, dp), denotes the phase-space volume element
corresponding to

l
X). By inspection it can be seen that,

to order Ge4, the possible intermediate states in Eq.
(2.10a) are: 2y in a CF'= + 1 state, 2vr; 2~y& where the y
can be a bremsstrahlung y ray; and 3zy, where the y has
to be emitted directly at the E-3x interaction box. Cor-
respondingly in Eq. (2.10b), the possible intermediate
states to order Ge' are: 2y in a CI'= —1 state; 2',
where the y is emitted directly at the E-27r vertex; and
3z. Clearly, there is not much hope of getting a rigorous
estimate of all these contributions since their calculation
involves a detailed knowledge of weak and electro-
magnetic interactions of hadrons. One can, however,
try to separate those terms which can be calculated and
combine the rest into observables which in principle can
be obtained from experiment. More specifically, we

suggest the following procedure.

"Equations (2.10) depend critically on the assumption of CP
invariance in E~ p+p decays. In general, with

~D~' u lP'lu iP)3=' iP)P'+v P 3 iP'l

and At E'~u+ip'lu (P)) t'ulplfGi+=q~sGe)e(p'l and under the
assumption of CPT invariance alone, we have

1

2I 2(M' —4n ')g'"
&& ix l

T [ iu+u ) sp, l*A (E' —r xl,

and correspondingly for the combination —G2*+Ii2. Under the
assumption of CP invariance, GI ———PI, G2 ——F&, and Eqs. (2.10),
follow. For a general discussion of CPT invariance and unitarity

in the E'-E system, see J. S. Bell and J. Steinberger, in Proceed-
ings of the Oxford International Conference on Elementary Particles,
D'65 (Rutherford High-Energy Laboratory, Chilton, Berkshire,
England, 1966),pp. 195—222. See also N. Beyers, S.W. MacDowell,
and C. N. Yang in Proceedings of the Seminar on High Energy
Physics and Elementary Particles (IAEA, Vienna, 1965), pp.
955-980.
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I'(E2e ~ 2y) = (3f/4v-) (LReH, (M') 7'

+DmH, (3I')7') . (2.16b)

p-k

(p)

Again, we can obtain information on ImHt, g(3f')
from their corresponding unitarity conditions. To order
Ge', ImHt(cV') can be estimated by saturation of the
corresponding unitarity sum with the contribution from
the 2v. intermediate state (see Figs. 3 and 4). The result
of this calculation, which is reported in detail in Sec.
IVA, is

FIG. 2. Feynman diagrams describing p+p, —+ 2y transitions
contributing to the amplitude ((2y)~

~

2'( (p+p )spo).

Let us call 01,2 the contributions to the right-hand
side in Eqs. (2.10) from all possible intermediate states
other than the 2y states. The contribution from the 2y
state can be explicitly calculated and is proportional to
ReHt ~(3I'). Notice that the terms (2y~ Tl (tr+p ) z,)
and (2y

~

2'~ (p+p )~e,) in Eqs. (2.10) are only needed in
the Born approximation (see Fig. 2). Thus, with

1
ImHt(M') =rr —Lv2rt o~ o+Re& e7

2+6 3I
1+P

X(1—P ') ln-, (2.17)
1—

p = (1—4m '/3I')'t'. (2.18)

where A0 and A~ are the transition amplitudes between
E' and two pions in an isospin state I=O, and 2, re-
spectively; q0 is an enhancement factor due to the
strong interactions of the 2x system in the isospin state
I=0; and P„ is the pion velocity in the c.m. system, i.e.,

we get
P„= (1—4m„'/cV') 't',

1 nt„1 1+P„
AbsFt 2=ReHt, e(cV')—n —ln

K2 3E P„ 1 —P„

(2.11)
It is harder to make a similiar estimate of ImHg(3f ').

This quantity, however, can be bounded applying again
+tlt, e. (2.12) the Schwartz inequality to the corresponding unitarity

sum. Thus we have

The quantities Dtecan ,be bounded in terms of cross ~ImH (3Ie)~e&~LI(E,a~ail)/3I7
sections and decay rates by use of the Schwartz in-

1 ~

equahty:

1/9

) Qt, a
~

& —[j9„3I'et 2(3E')7"' —I' t, g =—Qt, e. (2.13)2P„3f
Here, or(M') and o.g(3I') denote the total cross sections
for (p+p-)I~, and (y+p-)~s„respectively, to all tinal
states other than 2y at a c.m. energy equal to the E0
mass; and I"1 and F2 are the E'1' and E'2 decay rates
into all final states except 2y. Then, provided that we have

H2& (4v./3I) I'(Iso -+ 2y), (2.20)

where o j=p, p —t '(3f') denotes the total yv cross
section to states with total angular momentum J=O
and negative parity. In E2' —+ 2p decays, we expect the
dominant contribution to the decay rate to come from
ReHe(3I') (in particular, from the v' and rt pole dia-

grarns). Then, provided that

1 m„1 1+p„
Qt, e& —n —ln

i ReHt, e(3I') i, (2.14)
v2 3E P„1—P„

i ReH, (3f')
i
') 4v.l'(E2' -+ 2y)/3I IIe. (2.21)—

1 tsar 1 1+pPI
~AbsF, ,, ~

& a"—ln-
V2 cV P„1—P„l

X
~
«Ht, e(3I')

~

—Qt. (2.15)

1 ns„1 1+P„
01&.—n —ln

W2 3II P„1—P„

The quantities ReHt, ~(M') in Eq. (2.15) are related to
the E1'—+2p and E2' —+2p decay rates as follows:

I'(E'to —& 2y) = (M/16v-) ((ReH t(cV') 7'
+LImHt(M')7'), (2.16a) where Qt is defined in Eq. (2.13) and ImH&(3f') in Eq.

To summarize, let us state the conditions for the

we ave a ower boun or t e ecay rates 1 ~ p ph l b d f th d t E 0 + — existence of semiempirical lower bounds to the E1,20

p+p decay rates.

(i) For Et ~p+tr, provided that
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Abs
K'

k'- q'

7 7P I 7T
I

FIG. 3. Unitarity diagram corresponding to the 2' contribution
to ImII&(t) in Eq. (4.8).

(2.17), then

3f
I'(Ere —+ p+Iz ))—P„'

4m

1 m„1 1+p„1
X —n —ln 16m—F (Ere —+ 2y)

v2 M P„1—P„M
Q 1 1+P —z/2

[v&go&o+Red2]'(1 —p ')' ln'
24 SI2

1/2 2

LP„M'oi(M')]"' —I'i2P„M
(ii) For E2 ~lz+Iz, provided thzzt

(2.23)

and

I'(KP ~ 2y)
M oz=p, p=it'zri(M ) (32''

&
(2.24)

I'(KP —+ all)

where 02 is defined in Eq. (2.13) and H2 in Eq. (2.19),
then

3f
I'(K2e ~ g+p )) p„—

4x

1 zzz„1 1+P„1
X zr ——ln —4v.—r (KP —+ 2y)

K2 M P„1—P„M
1 r(E,e~ all) 1/2

M oz=e, p= i ~~ (M )
8 M

1/2- 2

LP„M'o (M')]"' —I' . (2.26)2P„M
Equations (2.23) and (2.26) are inequalities between
observable quantities. Their usefulness is obviously
limited by the fact that they involve quantities like
ol(M ), 0'2(M'), and o.J'=o, p= r'r~'(M'), which are far
from being measurable at present. However, they pro-
vide consistency conditions which might become in-
teresting in the future.

In order to obtain a "numerical" estimate of the
right-hand sides of Eqs. (2.23) and (2.26), one is clearly

1 m„1 1+p„
02( —n —in-—

%2 M P„1—P„

1 1/2

X 4.—r(K, -2,)-II, , (2.25)
M

FIG. 4. Feynman diagrams describing 2p —+ x+2i- transitions
contributing to the amplitude ii~zrlz~ T

~
i2ylrl.

forced to make approximations and then find their
justification within some model. In Sec. III we discuss
such a possibility for the E20 —+ p+p case, and in Secs.
IV and V for the E1 ~p+p case.

III. X2' ~ P+P—DECAY

Neglecting the last two terms in the right-hand side
of Eq. (2.26), one gets the following prediction:

I'(K2' ~ Iz+Iz )nz„i'—1 1+p„)n'
~

— ln'
MI 2P„1—P„

= 1.2 X10-'. (3.1)

This result has been previously obtained by Quigg and
Jackson, ""who refer to it as the unitarity bound.

There are two recent measurements" of the total
branching ratio for the mode EI,—& 2y.'

I'(K +z 2y) = (4.68&0.65) X 10 4

I'(Kz. ~ all)
(Banner et zzL) (3.2a)

= (5.3a1.5) X10-'

(Arnold et al. ) . (3.2b)

"See Quigg and Jackson, Ref. 7. A similar prediction for g
decay was first obtained by Geffen and Young (D. A. Geffen and
B.L. Young, Phys. Rev. Letters 15, 316 (1965))and rediscovered
by Callan and Treiman t C. G. Callen, Jr., and S. B. Treiman,
ibid. 18, 1083 (1967); 19, 57(E) (1967)j. We should like to
emphasize that the approximations involved in the case of g decay
are far more rigorous than in E20 decay. Equation (3.1) is also
implicitly contained in a paper by Sehgal (see L. M. Sehgal,
Ref. 7), and is explicitly contained in another paper by Sehgal
(see L. M. Sehgal, Ref. 13)."L.M. Sehgal, Phys. Rev. 183, 151.1 (1969).

'4 M. Banner, J. W. Cronin, J. K. Liu, and J. E. Pilcher, Phys.
Rev. Letters 21, 1103 {1968);R. Arnold, I. A. Budakov, D. C.
Cundy, G. Myatt, F. Nezrick, G. H. Trilling, W. Venus, H.
Yoshiki, B. Aubert, P. Heusse, E. Nagy, and C. Pascaud, Phys.
Letters 28B, 56 {1968).
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Abs

1T I

K

I
lT f

l

which is a smaller branching ratio than the 2y mode.
A very crude order-of-magnitude estimate of
irL(p p )'s ~ nn'Y7 gives

~L{~'~ )'s. ~~~v7-(~/~) L(s'~ )'s, ~2v7 (36)

in fact, this might very well be an overestimate, since
the phase space for xmy is smaller than for yy. The
cross section for (p+p )~8, ~ 2y can be calculated from
quantum electrodynamics:

1 m„' 1+p„
o[ (p+p

—
)~s, ~2y7=16n-n' ln' —. (3.7)

3Pp„311 1—p„

Then, our estimate of Q2(may) is

I
Q, (~~~) I

&9x10-". (3.8)

B. 3~ Intermediate State

FIG. 5, Unitarity diagrams corresponding to the 2y, 2~, and 2m'
contributions to Abs F1 in Eq. (2.10a).

We call %(3z') the 3m contribution to AbsF2 in Eq.
(2.10b). Again, we have

Taking a weighted average of these numbers, we obtain I
from Eq. (3.1) the following lower limit: Q2(3&) & (A~'~L(~+~ )'so ~ 3~7)"'

2P„
1'(A.'~ u+~ )

—&|X10-9,
I'{It2O -+ all)

(3.3)

Experimentally, "
1

x 1'(E2O—3m) . (3.9)

to be compared with the order-of-magnitude estimate
given in Eq. (2.9).

Equation (3.1) has been obtained assuming that to
order Ge4, only the 2y intermediate state gives a signi6-
cant contribution to the unitarity sum in Eq. (2.10b),
Also, it assumes that ImII2(3f ) is negligible, i.e.,

Z'(E ~0 ~ 2y) (cV/16') I ReII2(M') 7'.

Here, we would like to present some qualitative argu-
ments which add credibility to these assumptions. We
shall discuss separately the contributions to AbsF2 in
Eq. (2.10b) from the 2~y, and the 3n. intermediate
states; and comment on the E2 —+ 2y decay rate.

I'(K I.—+ 3~)
34 j~.

1'(Er, —+ all)
(3.10)

Unless there are particular enhancements in the process
(p+p )'s, ~ 3~, we expect from an order-of-magnitude
estimate

~L{~+~ )'s.~ 3~7-(~/~)'
x0 10~[6'~ ) s.~2v7, (3»)

where the factor 0.10 is the 3~/2y dimensionless phase-
space ratio. '7 Thus, we have as a crude estimate of
Q~(3~)

A. 2~y Intermediate State

Let us call Q2(2n.v) the corresponding contribution to
AbsF2. We have Lsee Eq. (2.13)7

IQ, (3~) I
&4xlo-i4.

C. Comment on J'2' —+ Zy Rate

(3.12)

I'(Ih' —+ me-y)
&4y10-4,

I'(E2' ~ all)
(3.5)

~t' R. C. Thatcher, A. Abashian, R. J. Adams, D. W. Carpenter,
R. E. Mischke, B.M. K. Nefkens, J. H. Smith, L. J. Verhey, and
A. Wattenburg, Phys. Rev. 1'N, 1674 (1968).

I Q2(2~v) I
& {P.~'L~(~'i — -)'s. ~~~v7)"'

2P~
I/2

x r(E2O ~ ~~~) —. (3.4)
JI

Experimentally, "

With the coupling defined in Eq. {2.5b) we have tha. t
I see Eq. (2.16b)7

r(IC2 -+ 2y) = (M/4m) III2(3II') [~.

"See. e.g., A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-
Galtieri, L R. Price, P. Soding, C. G. Wohl, M. Roos, and W. W.
Willis, Rev. Mod. Phys. 41, 109 (1969).

"That is, the ratio
3

II @'~(p')~(p"-» -')~(') (p-2 p')
i=1
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Here we want to bound the imaginary part of Ho(M').
The expression for this bound has already been given in
Eq. (2.19).Itinvolvestheunknownfactoroq o p i »
(M'). We expect that the major contribution to this
cross section comes from the yy —& 3m transition. Also, it
seems reasonable to assume that

(TJ o»"—'(M') & o J—o»-"(M'); (3.13)

we estimate the latter cross section assuming minimal
electromagnetic coupling for pions. Within this model,

1 m ' 1+p
o ~ o» o~(M ) =32wn — ln' — (3 14)

M'P M 1 —P

and the condition stated in Eq. (2.24) is largely satis-
fied. Also the condition stated in Eq. (2.25) is satisfied,
i.e., from Eqs. (3.8) and (3.12) we have the Qo 1.3
X 10 ",while the right-hand side of Kq. (2.25) amounts
to 1.4&(10 '2.

We can now reconsider Eq. (2.26). Using the order-
of-magnitude estimate which we have made above, we
find

r(a' &+~ ) m„)' &

&o.'
M 2p„

~1+P.&
xinol l(1 —0.2); (3.15)

&1—P„i

i.e., we estimate that the corrections to the lower bound
given in Kq. (3.1) could be as large as 20%.

IV. Xg —+ p+p DECAY CALCULATIONS

In this case, the lower bound analogous to the one
derived in Eq. (3.1) for Eoo -+p+y would be obtained
neglecting the last two terms of Eq. (2.23). Thus,

i.e., that ImHi(M') is negligible compared to ReHi(M').
It is known, however, that the 2m intermediate state
gives contributions of order Ge' to ImHi(M'), so this
assumption is not really justified. "The same 2m inter-
mediate state also gives a contribution of order Ge4

to AbsFi(M') which might be comparable to that from
the 2y state. It seems to us that Eq. (4.1) can be a very
misleading bound, and more work on the possible con-
tributions from other intermediate states than 2y is
needed in this case.

This section consists of the details of a perturbation-
theory calculation of AbsFi(M') in Eq. (2.10a). We
shall assume a pointlike E-z-x weak interaction and
minimal electromagnetic interaction of pions and
leptons. The details of calculations corresponding to
contributions to AbsFi(M') from the intermediate
states 2y, 2m, and 2m.y (see Fig. 5) are reported in differ-
ent subsections. The connection with the phenomeno-
logical discussion given in Sec. II is made in Sec. V.

A. Contribution from Two-Photon Intermediate State

The
I 2y& intermediate state is in an eigenstate of CP

CP
I (2v) )=+

I (2v) &,

where in terms of helicity states

I (2v) i&
= (I/~2) (I+ +)+ I

——
&) .

The T matrix ((2y)il 2'I (p+p, )~i,), which appears on
the right-hand side in Eq. (2.10a), can easily be ob-
tained from the Feynman diagrams corresponding to
p+p annihilation into 2y's (see Fig. 2). More precisely,

((» ) I ~I(."),&*=(V~&)
X[To'"(+ +)+2'o"'( ——)]z=o* (4.2)

ro&»(~ a) = ( ie)'-
I'(jCio —+ p+p ) m„)' 1+P„

—)n' —

I
2P„ ln' . (4.1)

I'(Bio —& 2y) M ) 1 —P„
x» P"'(p p')

i(oP 'k+—m„)y o~

(p —k)' —m '+io

This "bound" has been obtained assuming that to order
Ge the unitarity sum in Eq. (2.10a) is dominated by
the 2y intermediate state. "Then, one simply has"

y oui(P k'+m„)y —o~'-

(p' k) ' m—„'+io—
(4.3)

A 1Sp I+p~
AbsFi(M') = — ReHi(M') —ln

&2M p~ 1-p~

In deriving Eq. (4.1) it is assumed, furthermore, that

I'(Eio —& 2y)~ [ReHi(M')]'
16m

"See Sehgal, Ref. 13. The result obtained by Sehgal does not
agree, however, with our Eq. (4.1). The error can be traced to a
mistake in Eq. (9), p. 1512, of his paper. One of the authors (JS)
would like to thank Dr. Sehgal for correspondence regarding his
paper.

"See the derivation in Sec. IV A below.

—8 m„P„
To&'i(a a) =—ie'

K2 Q~ 1—p 'cos'8
(4.4)

"V. Barger, Nuovo Cimento 32, 128 (1964); B. R. Minart
and E. de Rafael, Nucl. Phys. 88, 131 (1968).

e~ and e~' are the polarization vectors of the y's with
momenta k and k', corresponding to helicities + and —.
In Eq. (4.2) the subscript J=O denotes that only the
components To~"(+&) with total angular momentum
J=0 contribute to the (ii+p, ) ~ 27 transition.
P"'(P,P');„ in Eq. (4.3) is the projector on the
'E'o state of the incoming p+p system and is evaluated
in Appendix A. We find
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where ,'Q—tis the energy of the t(in the c.m. system, 0 is
the c.m. scattering angle, and p„ is the velocity of the p
in this system, i.e.,

P„=(1—4m„&/t)»o. (4 5)

Notice that in our case / =M', where M is the E mass.
The projection upon the J=O amplitude leads to the
result

The contribution to AbsF& in Eq. (2.10a) from the 2p
intermediate states is therefore

I—L&o"'(+ +)+2'o"'(——)]z=o*
V2

4m„1+P„= ieo ln . (4.6)
v't 1—Po

8o(t')
~,(t) = Pd—t'

4„, t'(t' —t)

4m~

5,o') —5 (t) 5,(o i 4m. ')—dt'— ln
t'(t' —t) ~ 4m. '

of y's with helicities &1 and +1 into two pions in an
isospin state J. The subscript J=O means that only
the s-wave projections of these amplitudes are taken;
and gl is an enhancement factor due to the strong
interactions of the 2m system in the isospin state I.

When the two pions are in a relative s state, we have

vo(t) = expl (ro(t)]
where

n m„1 1+p„
AbsF&(o~'(t) = — Hx(t) —ln—

~2 v't P. 1 P. —(4 7)

For definiteness we use bo(t) corresponding to the "broad
0"model and take the numerical values for the forward
dispersion relation solution of Morgan and Shaw. "We
set ho(t) = —,'m above 1 BeV. Thus we get

Only ReH, (t) gives a net contribution to AbsF&('&'(t).
The term f, ImH~(t), which in principle gives an imagi-
nary contribution to AbsF&('7'(t), cancels with a cor-
responding term coming from the 2~ intermediate state,
as we shall see later. However, to estimate ReHr(t)
we shall need ImH&(t); the latter is obtained by writing
the unitarity condition for the process E& —+pp and
saturating the sum over intermediate states with the 2x
system only. This is justified at the approximation
LO(Ge')] that we want to know Hr(t). Thus we have,
assuming CI' invariance,

2 ImH~(t) = P (2~)' dpz 8(q+q' P P)——
gt r

X((2~)z
l
&l (2y)i)*A(Ao ~ (2~)r), (4.8)

rto(t=M') = 1.56. (4 11)

ImH~(t) = Lv2goAo+ReAo]
2+6 gt

4m ' 1+P
ln- (4.12)

where P is the a velocity in the c.m. system,

p.= (1—4m. '/t) '('.

Since the s-wave I=2, m~ scattering has no known

structure, we shall set rto(t) = 1.
The amplitudes Br(+&) are obtained from the Feyn-

man diagrams shown in Fig. 4. Assuming minimal

coupling for the pion field, we Anally obtain

where the summation is over the 2~ system with isospin
I=O and 2. The corresponding unitarity diagram is
shown in Fig. 3.

If only elastic unitarity is taken into account, the
amplitudes ALEo —+ (2m)r] for I=0, 2 have the follow-

ing structure":

APJ'o (2 )r]=tAre o I=o 2 (4.9)

where b~ is the s-wave vr-m phase shift for scattering in
an isospin state I=O, 2 at a total c.m. energy equal to
Qt, i.e., the Eo mass for on-shell kaons.

The T-matrix term in Eq. (4.8) can be written in the
following way'.

((2 ) I
2'l(2 ) )= (1/~2)l:B (+ +)+B (——)] =o

Xpre" (4.10)

Here Br(&&) are the amplitudes for the annihilation

"See, e.g., Bell and Steinberger, Ref. 11.

Numerically (using Ao=5.09X10" sec ' and, because

lAol«Ao, setting ReAo=0), the value of Eq. (4.12)
at t=3f' is

ImHx(iV') = 1.65X10 '. (4.13)

ReH&(M') = —1.02X10 '. (4.14)

Inserting this result into Eq. (4.7), we conclude that
the 2y intermediate state in Eq. (2.10a) leads to an over-

"D. Morgan and G. Shaw, Nucl. Phys. B10, 261 (1969).

To estimate ReHr(t), we write an unsubtracted disper-
sion relation for the quantity H&(t)/+t, which is the
coefficient of the factor F„„F'I'" in Eq. (2.5a), and we

assume tha, t Ao(t) and ReA&(t) in Eq. (4.12) may be
approximated by their on-mass-shell values at t=M'
throughout the integration range. However, the specific
t dependence for qo given above is used. With these as-

sumptions, we 6nd at t=M'
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all contribution

AbsF "&'(M') = —3.71X10 "
7Ã p 5$7p

+iu' —(~2goA o+ReA2)
V3 M'

1+P, 1+P-
X —ln ln . (4.15)

P~ 1-P~ 1 P-
As we have already mentioned, the imaginary part

in the right-hand side of Eq. (4.15) cancels with a cor-
responding contribution from the 2m intermediate
states.

It is of interest to compare the result obtained in Eq.
(4.15) with the purely perturbation-theoretical pre-
diction. The latter is obtained by setting pa=1 in Eq.
(4.12) and then performing the dispersion integral, i.e.,

Q

ReHq(M') = — (%2A 0+ReA ~)P
7r 2M+6 4~.& ~

—~'
M2 4m. ' 1+(1—4m. '/t) "'

X — ln
1 (1 —4m.—' /)'~'

Q 1
(v2A o+ReA2)

~ 2M&6

1 p-——2+-,'(1—p ')»r' —ln', (4.16)
1+P. —

where

Numerically,
p. = (1 4m. '/—M')'~'

SPYp Sg' 7p

+in' —(&2A 0+ReA g)
43 3II' M P„

+ln — ln — . 4.18

Numerically, we get for the real part of the right-hand
side of Eq. (4.18)

AbsF &'&'(M') = —2.18X10 "(pert. th. ) . (4.19)

ReH&(M') = —0.65X10 ' (pert. th. ) . (4.1&)

From Eqs. (4.7) and (4.16), we get the perturbation-
theory result

AbsF g &'&'(M')

1 m„1 1+P„= ——(v2Ao+ReA~) - ln
m v3 M' 2P„1—P„

1 p—
X —1+»(1—P ') s' —ln'—

1

and

I'(Ei' ~ 2v)
—=6.0

I'(E20 —+ 2y)

I'(EP ~ 2y)
=2.3 (pert. th. ) .

I'(E2O ~ 2y)

(4.22)

(4.23)

It must be emphasized that Eq. (4.22) is a model-

dePendenl prediction, and it should be taken more as an
indication of how the strong-interaction effects can
alter the simple perturbation-theory result given in
Eq. (4.23) than as a rigorous prediction.

Our result for I'(Ero~ 2y) disagrees with previous
estimates made within a similar perturbation-theory
framework. ' " In Barger" and in Martin and de
Rafael'o the incorrect assumption that the helicity
amplitude [i.e., Hr(l)X+l] obeys an unsubtracted
dispersion relation was made. "The correct dispersion
relation is written down in a recent book by Nishijima'4;
however, there appears to be an unfortunate error in the
explicit integration. "

C.~Contribution from Two-Pion Intermediate State

The 2x intermediate states in Eq. (2.10a) can be in
isospin states I=0 and 2. Their over-all contribution to
AbsF~(t) is as follows:

AbsFg&' &(l) =—
[2(l—4m„')]'» 16~

XZ((2 )rl&l(»+p-), &*A[E' (2 ) ], (4.24)

2' I'or a discussion of possible measurements which have bearing
on the question of CP noninvariance in E'-E' —+ 2y decays, see
L. M. Sehgal and L. Wolfenstein, Phys. Rev. 162, 1362 (1967);
and B. R. Martin and E. de Rafael, Ref. 20.

2'K. Nishijima, Fields and Particles (Benjamin, New York,
1969), pp. 351—359.

~' I"urthermore, in Martin and de Rafael (Ref. 20) the rates for
E&'-+ 2y should be divided by a factor of 2.

260ne of the authors (EdeR) wishes to thank Professor F.
Yndurain for an enlightening discussion on this point.

B. X&' —+ yy Decay Rate

It is clear from Eqs. (2.16a), (4.13), and (4.14) that
as a byproduct of the calculations discussed in the pre-
ceding subsections we also have a prediction of the
Ej' —+ yy decay rate:

I'(EP —+ 2y) =5.7X10» sec ' (4.20)

If instead of Eq. (4.14) we use the perturbation-theory
result for ReH~(M') [i.e., Eq. (4.17)], then

I'(ICP —+ 2y) =2.2X10» sec ' (pert. th. ). (4.21)

In view of possible future experiments in the 2y decay
mode of the E'-K' system, "it is of interest to compare
these rates to the E2 ~ 2y rate. Using the experimental
values quoted in Eqs. (3.2) we have



MARTIN, DH RAFAEL, AND SM ITH

Abs

7r' p'. (p')

/ (p) y(k)'y(k)
I

I
I

I

I

y(k), y (k') 7r'(q')

+(qi)

FIG. 6. Unitarity diagram corresponding to the 2p contribution to
Ab o((2 o)g~ T~(p+p )o~o) in Eq. (4.25). p. (p)

where ((2&r)rl Tl (p+p )~go& is the transition amplitude
for p+p, annihilation in a 'Po state to 2x in an isospin
state I. The absorptive part of this amplitude can
easily be obtained from unitarity by saturation with
the 2y intermediate sta, te only (see Fig. 6), i.e.,

Abs&(2~)r
I Tl &~+y ) ~.)= (1& «&r) &(»)&I Tl &2&r)r&*

X&(2v)&ITI&u't )*~ & (4»)
Both amplitudes on the right-hand side have been
estimated in Sec. IV A L'see Eqs. (4.2), (4.6), and (4.10)].
They were obtained from the Feynman diagrams shown
in Figs. 2 and 4. We shall recall that

FIG. 7. Seagull-type diagram contributing to
Re(o.+o=( T& (p+p )u, ).

AbsF&(t) I
see Eq. (2.10a)j. From Eq. (4.29), we see

that the problem now reduces to a calculation of
Re(or+&r

I Tl (p+&a ) ~~o&. Altogether, there are three
Feynman diagrams, at fourth order, contributing to
this amplitude. We shall refer to that drawn in Fig. 7
as the "seagull-type diagram" and to those drawn in
Fig. 8 as the "box-type diagrams" and proceed to their
calculation separately.

and

4m„1+p„&&
((2v)&l Tl (u+t )'ro&= ie' »——-I (4.26)

1 —p„1

1. Calculation of Seagull Type Diagr-am

We write the corresponding T matrix in the following
way:

&(2y) ITI(2 ) &

&-"- = (p')~(t) (p).

with

1 Sm'1 1+P
ieo ln, C eisI (4 27) (ol '&I

I Tl (u &a ) pp)seagull

p. 1 —p. = TrP&'&(p p') « »A(t) (4 30)

Co ——Q—', and Co ——&-', .

rtz are the same enhancement factors as in Eq. (4.10).
Therefore,

Sm

Abs((2~)rlTI(t+t ) r,&=n' Crore "I— —

V2

and, from the Feynman diagram of Fig. 7, we get

(2n')
Im 4 (t) = (—ie) '(—2ie')go"

(2&r)'

d4k 8(k') 8(k")—
TrP "'(p p')

and, inserting this result into Eq. (4.24), we ha~e
XTr 1'&'&(p p') ' " yoi (p 0+m„)y"-—

— (p —k)' —m. '— (4.31)

—1P 1 1
AbsF&" &(t) =——Re(or+or

—
I Tl (&a+p ) p,)-

16or p„ Qt g6
1

XL&2»oAo+ReAo] —in' —(%2»oA o+Red o)
gt %3

The calculation of the right-hand side yields

with

(4.32)

1+P~' 1—P~
V, (t) = ln— +—, t) 4m„'. (4.33)

P~' 1+P~ Po

Here we get again an imaginary part which is precisely
the opposite of the one encountered in the calculation
of AbsF&&o»(3Eo) in Eq. (4.15). Therefore, these terms
cancel when substituted in the general expression giving

From this, ReA(t) can be obtained from the dispersion
integral

I' " dt' Vo&t') F'&(t)

o t' t p„'t' 7rtp„—



where, '" after analytic continuation of Fg(t) to the
region 0&f'&4m„',

&+P»' . & —P» . &+P»' '(- -')-"'(- ')
P»' — &+P» & —P»—

2 4——ln . (4.34)
P. & P»'-

8 m„
Re(s+m

I
T

I (p+p )3~,)„,~u = —n' Fg(t), (4.35)
V2

and the real contribution to Abspq&' &(t) from the sea-
gull term is

o.2 5 j.
AbsFx" '(t)...a„u ———- (%2geAe+ReA2)

4a Qt i&3

—I",(t), (4.36)
Qt P„

with go= 1 1n thc case of perturbation theory.

(b)
Fro. g. Box-type diagrams contributing to Re(e.+»

( Ti(»+» )I»,).

t —(py p') 2 —y2

s=(p q') =—m '+m„' ~~t+~~—tP P» cops,

e= (p q')'—=m. '+m„' ,'t —,'tp.—p—c»os&,

1t 1s coDvcnlcDt to tI'a, Dsform to thc vRI'1able 8, where

s= (m.+m„)'—m. m(1+8)'/8,

so thRt thc partial-wave pro/ection bccoTQes
Z. Calculation of Box Type Diagrams-

The relevant diagrams are shown in Fig. 8. By anal-
ogy with thc pI'cv10Us CRlcUlRt1oD of thc scagull-type

wherediagram, we write the corresponding T matrix

m.m„"(l —e')
d cosQ= — — dg,

tP P»

(m+x —
I
T

I
tl+tl,-)b,„——E(p') W(s, t)tt(p),

from which

(~' ITI{t't ) ~)b.*=2-

XTrJ'&" (p p');, W(s t) (43/)

where g is the c.m. sca, ttering angle. %e see from Eq.
(4.29) that only the real part of the above amplitude is
needed to calculate AbsFg" &(t).

(&—
P)»(~ +P) „(&—P.)0—P-)x"=, x"'=— -. (4.40)

(&+P,){&-P-) (&+P.)(&+P.)

We consider erst the contribution from .Fig. 8(a).
The ma, trix element associated with this diagram has
RQ infrared d1vcrgcncc 1n thc photon IQRss„and the
corrcspoDd1ng 1DtcgI als must bc tx'ca tcd with CRI'c.
Evaluation by the Usua, l Feynman paraInctrization is
very tedious and we prefer to use the Mand. elstam
representation for the square box."From Fig. 8(a) we
have (with minimal electromagnetic coupling)

W &(s,t) = i - —d't
(2m)'

{2q—~—~)L(P—~)+m.j(2q —f)

(P—X')j {I-'—I)'—X'jL(P—/)' —mjj (»q
—t)' —m 'j (4 4&)

where X denotes the small photon mass. Application of the Dirac equation reduces the numerator to

E&'&(s t)=8p qrj —8/ qq —8p qua+4m '1+2/ pl

where we have dropped terms proportional to the photon ma, ss.

"We use the dilogarithrnic function as de6ned by L. Lemin, Dqvogerjthms and Assoriated Feertjoes (MacDonald, London,
1958), i,e.,

~ ln(1 —t)dt.
Lip(x) =——

28 S. Mandelstarn, Phys. Rev. 115, 1742 (1959); R. E. Cutkosky, J. Math. Phys. 1, 429 (1960); A. C. T. %u, Kgl. Danske
Videnskab Selskab, Mat. -pys. Medd. 33, No. 3 (1961); |A'. B. Rolnick, Phys. Rev. Letters 16, 544 (1966).
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We will consider first the following integral:

—zI (s,t) =Re —d'l
2x' (P—X')(P' —2P t+t2 —X')(t2 —2p t)(t2 —2q t)

which we will calculate by use of the Mandelstam repre- where
sentation; i.e., we write

6=2(f(m +m„)'—s]L(m —m„)'—s]+st) . (4.49)

I-(s,t) = ds
p(s', t'),

(s' —s) (t' —t)
(4.43)

I (m, +m„)' s5"' [—(m~ —m„)' s—]"'—
8=

L(m +.m )'—s]'t'+L(m —m )'—s]'t'

where only the t integration is a principal-value
integration, and

p 2(s,t)= t(t —4X')L(m +m )'—s]L(m~ —m )'—s]
4X4—st (4..44)

The region of integration is bounded by p(s', t')) 0.
When X —+ 0, we can obviously drop the term in X4 and
the integrals separate. The t integration, in the limit
X —+ 0, gives t '(in''/t+in. ) and the s' integration (see
Appendix 3) gives (—8ln8)Lm m„(1—8')] ', where 8
is defined by Eq. (4.38); i.e.,

ds
B(s,t) = — P

s —s

Ct' t'(s'+m ' —m„')
p(s', t'), (4 5o)

A(s', t')

and we integrate first over t' dropping the term in X4.

Taking the limit X —+ 0 after integration yields a result
independent of the photon mass. LThe integra, l in Eq.
(4.50) is not infrared-divergent. ]We are left with

The coefficients A, 8, and C are now given by double
spectral integrals over the spectral functions A', 8', and
C', respectively. In fact, 7 P is zero when taken be-
tween the spinors, so we only require B (C can be ob-
tai'ned from B by a simple permutation of the masses).
Note that the term in l q of Eq. (4.42) does not con-
tribute to W& &(s,t), and the term in (l p)l gives rise
to integrals which vanish in the limit X2 ~ 0.

We have for B(s,t)

The final answer for I. is

1(s,t) =
—0 lno

ln—.
tm. m„(1—8')

We consider next the real part of the integral

(4.46)

B(s,t) =
ds s +m~ —m

.+„„)2 s' —s A(s', t)

ln
[ L(m. +m„)' —s']P(m„—m, ) ' —s']/s't

]

X
L((m~+m„)' —s')((m. —m„)'—s')]"'

27r2
d4/

We now use partial fractions and reduce the integration
over s' to several basic integrals which we calculate in
Appendix B.The real part gives

X
(t' —&')(P' —2P l+&' —&')(t' —2P t)(t' —2q t)

B(s,t) =
m„m„(1—8')

—8 s+m' —m'
X(8)

A(s, t)

=A(s, t)P„+B(s,t)pl, +C(s,t)q„. (4.4&)

Setting all the lines on the mass shell we can again And

double spectral functions corresponding to A, 8, and C.
These spectral functions are found by solving

d'than(t'

—~')~(P' —2P t)8(t p)8(t q)

=A I"„+8'p„+C'q„.

Contracting both sides with P, p, and q gives three
equations whose solution is

A'( t) =sp( t)Ps( +mm„)' s]r (m —m„)' s]—6 ', —
B'(s,t) =tp(s, t)(s+m ' —m ')5 ' (4.48)

C'(s, t) =tp(s, t)(s+m ' —m. ')5—'

—-', t(p. —p„)'+m. ' —m„'

(1-"') 2tP.P.Ls+-:t(P.-P.)'5
', t(p +p„)'+m ' m„'—— —

x(g"), (4.51)
(1-x"') 2tP.P„(s+,'t(P.+P„)']-

where x' and x" are given in Eq. (4.40) and X(8) is
defined in Appendix 3, Eq. (86). The function C(s, t)
only differs from B(s,t) by the interchange of m ' and
m„' in the numerator terms in Eq. (4.51).

The factors in the denominators of the above equa-
tion appear to give singularities when we try to inte-
grate over 0. We see, however, that they cancel with
similar terms in the numerator when we apply the pro-
jection operator 5'&". Consider the form of the
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numerator
&"=Sq pq+(4m. ' Sq—p)l.

After the integration over /, the second term becomes
rtional topi opo

B(s,t)P+ C(s,t)q.

App ying e projel
'

th ction operator E'&') for the incoming)
p+p systcIIl, wc And

operator on the real part of W&'(s, ty is

»[&"'(p p')- -lf'"j

=n' (m '+m„' —s)(s—N)L(s, t)
P.(2t)"'

X(g)+—
8(s—m„') 2g (Pi-

m.P„(2t)'I' 1—g' P. (1—~"

Trr'"'(p, p')-" q=
4m. (p' q p q—).

(2t)"'p.

TrI""(pp')- ' P= (2t)"'pram. , (4.52)
(p.+p.) ~Y') (4 54)

p. (1—x"')

~ ~Thus the result of the application of the projection
Expressing the variables in terms of 8 Rnd substitutiilg
in the unitarity equation (2.10a) finally gives

Q. St7rfgfs
AbsFi" ' ———A (+ —)

2ir t'p„'
~tl do

5$~ SS~PSp,
2 d cosa (s —m„') [X(~")—x(*')j,

(1+g') — (1+g')- X' n'A(+ —) m„
dg — t —2mgmp +

(1+g') n' A(+ —) m„+'
x(g)+-

g 2m 2 t'P'

A (+ —)= (1/%)(V2itoAo+ReA2) .
After a considerable amount of algebra, we And

2m~my ( + )1 g') (1+g')

—(1-p. ) l. — p.--;(1-p.') l.p 2

n e inte rated analytically in terms of tri ogarithmic functions, but
11 I t s of cosP, the third integral is

OI' C r
we corn uted it numerical y. n erms othe algebra involved would be so long that we comp

trivial, so the final result is

"' dg m„,1+g')
Ab P "i(t)=—A(+ —) Q(t)1 —+—(+ —) —1—

4s tp„' t 2ir t2p„', m

(2m. 2 —t)[x(&")—X(g')]. (4.57)
4ir t'p„'

Now we turn to Fig. 8(b). The matrix element can
be derived from Eq. (4.41) by the substitution q ~ q',
which changes s into u. Hence this graph does not have
to be calculated independently and we can immediate y
write down the answer for Tr(P ' W2 (,tt„ i
define a variable tt by

u= (m +m„)'—m m„[(1+iP)'/iPj. (4.58)
~ ~In terms of this variable, the partial-wave projection

becomes

+' m m„*' (1—P)'
d cosP = diP, (4.59)

tp-p~

and there is no difference between the answer for the
crossed and direct graphs. Multiplying by a factor o

the total contribution can now be p
'

p
'0 ~

s lit u into two

separate terms, one oone of which is infrared divergent, viz. ,

m X2

AbsFi, i!' ~ +"= —A(+ —) Q(t) ln-s ii = — — n — 4.60)
2m tP„'

Rnd R 6nitc pRI't) viz. )

A fg p
AbsP &'~ '+"= —A(+ —)- -(1+P ')

4~ tp„'

A fÃ ft,

X[X(x')—X(x")1——A (+ —)

X —m. m.m; -X(g). (4«)
"dg (1+g')
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v'(q')

Tt. q

r&X

(k)

Fio. 9. Feynman diagram contributing to
A (E0 —+ 271-y) in Eq. (4.64).

FIG. 11. The c.m. frame of the p+p system. 8 is the angle
between the momentum of the virtual photon k and the p+
momentum p' /see Eq. (4.67) and Fig. 10).

AbsFi 2&'~ '+~'(M') =4.88X10 " (4.63)

We shall show in Sec. IV D that the term containing
the infrared divergence is exactly canceled by a similar
term coming from the em-y intermediate state. The total
contribution from the m7t- intermediate state is thus the
sum of Eq. (4.61) and the term from the seagull graph,
Eq. (4.36). Evaluating the integrals numerically, we
find

AbsFi&' &(3/I ), ii= —465X10 ' (462)

where A(+ —) denotes the amplitude rf (E' —+ ir+ir )
and c' is the polarization of the photon.

The transition amplitude (2iryl Tl (ri+ri )~p,) is ob-
tained from the Feynman diagrams shown in Fig. 10.
Thus we have

(2~el&l(v+v ) .)=( ie)'T—rI'"'(P P')-'

ei(p —1'r+m„) i(P —k'+m„)y e'

X v.+v~
(p k)' m„—'— (p —k')' —m„'

D. Contribution from Pion-Photon Intermediate State

The contribution to AbsPi(t) in Eq. (2.10a) from the
2xy intermediate states is

z
AbsF, &' »(t) =-

2L2(t —4m ')]'" (2m)'

Xe(q) fi(q' m')—e(q') b(q" m')—t)(k') 8(k"—) ')

X~"'(P+P' q q' k') (—2~v—
I

2'—
I (v+v )*~.)*

XA (IP +2m y) . (4—.64)

To estimate the decay amplitude rf(X'-+ 2m.&) we
shall limit ourselves to the consideration of brems-
strahlung photons only; i.e., possible direct transition
terms are neglected. "The relevant Feynman diagrams
are shown in Fig. 9. From these we have

A(K' —+ 2m') =( ie)A(+——)2i

(
g'6 g

X — —,(4.65)
X'+2q O' X'+2q' k'

~(k') Tt' (q)

(p')

zg)t4V

-(q —q') „. (4.66)
k' —P'

In Eqs. (4.65) and (4.66), X is a, small mass given to the
photon in order to deal with the infrared divergences.

The rest of this section is essentially devoted to tech-
nical details concerning the integrations in Eq. (4.64).
They form the contents of the following subsections.
The final expression of AbsF~(' » as a function of t only
is given in Sec. IV D 4.

1. Einematics

We have, according to Fig. 10,

p+p'=k'+q+q', k=q+q'
and

p'=p"=m ' q'=q"=m ' k"=)~' k'=s. (4.67)

It is convenient to choose as integration variables in
Eq. (4.64) s, i.e., the invariant mass squared of the ir+-m

system, and the angles 8, 8', and @' defined as follows:
In the c.m. frame of the p+-p system (see Fig. 11), 0 is
the angle between the momentum of the virtual photon
k and the p+ momentum p'; in the c.m. frame of the
ir+-n. system (see Fig. 12), ()' is the angle between the

momentum g and the direction of k as viewed in
that system; @' is the corresponding azimuthal angle

Fre. 10. Feynman diagrams contributing to
(2+&~2'~ (p+p, )ep, ) iii Eq. (4.64).

"This is in agreement with the scope of the model which we
have adopted pX-m. -q1- pointlike vertex and minimal electro-
magnetic interactions for pions J. The pions are still in an S-wave
state so our enhancement factor g0 can be taken into account. H we
were to consider hard photons rather than bremstrahlung photons,
then the pions would be in states of higher angular momentum.
These would correspond to the so-called "structure-dependent"
amplitudes for the decay E~ m~y, and lead to transitions with
CI' = —1.

Fio. 12. The c.m. frame of the qi-+~ system. 9' is the angle
between the p, momentum q and the direction of k as viewed in
that system. @' is the corresponding azixnuthal angle I see Kq.
(4.67) and Fig. 11$.
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(see Fig. 12). In terms of these variables, the phase-space integral in Eq. (4.64) becomes

dqdq'dk' 8(q) 8(q m—')8(q') 8(q"—m o) 8(k') 8(k"—X') 8& (P+P' —q
—q' —k')

(&g—X)2

4m

'A' t'(t. X's) X"'(sm 'm ') 1 +'
ds 2x 2z

4t 4s 2

+1 1 2x'

d(cos8)— d(cos8') — dP', (4.68)
2 1 2r 0

where
X(a,b,c) =a'+b'+c' —2ab —2ac —2bc.

Notice that, e.g. , X't'(s, m ',m ')/2+s is the momentum

~q~ of one of the pions in the ~-v c.m. system. In fact,
we shall 6nd it useful to write several expressions in
terms of the variables

) "'(t,s,) ')

t —s —)2
(4.72)

X"'(s m ' m ') 4m ')"'
1 —

I ~ (4 69)
s s &

which is the velocity of one of the pions in the ~-m.

c.m. system in units of the velocity of light; and

(4.73a).
X'+2q k' t —s+X' 1+P 'y' cos8'

(4.73b)
X'+2q' k' t —s+X' 1 —p„'y' cos8'

X't'(t, m„',m„')
1—

4m 2 1/2

(4.7O) with~

~

which is the velocity of one of the muons in the over-all
c.m. system. Thus we have for the muon propagators
which appear in Eq. (4.66)

X'"(t,s,V)
7'—= -1.

t —s+X' " o
(4.74)

Z. Integration over Phase Space and Separation of
Infrared Divergences

1 —2 1
(4.71a)

(P —k)' —m„' (t —s —X') 1 —P„y cos8

—2

(P k')' —m„' —(t —s —X') 1+P„ycos8

Substituting the expressions given in Sec. IV D 1

(4 71b) into Eqs. (4.65) and (4.66) and performing the sum
over the polarization of the outgoing photon, we get

2i
P (2v.y ~

T
~

(t4+t4 )r,)"A (E." +—2vry) = (—ie)—'A(+ —)
ppl s —g' t —s+y' t —s —y' 1 —P "y"cos'8'

XTrP ~' (P,P');. [Q(P k+m„) Q P'y—' cos8'k(P —k+m„)—Q]
1 —Pp'y cos8

+[Q(p k+m, ) Q p.'q—' cos8' Q(p —k'+m„) k] — —,(4.75)
1+Po'y cos8

where

Q=q —q'

After performing the trace operation and the trivial integration upon p', we arrive at the following expression:

1 m„&~' ~" ds 4m ' y'P~' 1 +' 1 +'
AbsFg" &'(t) = -( ie)4A(+——)— 1—— — d (cos8)— d(cos8')

(2n.)' 2 t' 4 & s —P2 s 7 —s —X22 2 —1

X (ts+t yy's(t s+X') —ts] c—os'8 —ts cos'8'+[ts+-,'(t+s —X')' ——',yq
'

1—P„'p' cos'8 1 —P "y"cos'8'

XL(t+X')(t+s —V)+s(t —s+X')+—'(t+s —X')']J cos'8 cos'8'} (4.76)
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Notice that for )i ~ 0, the expression inside the bracket {}becomes

{ } '- ts(1 —cos'0 —cos'0'+cos'0 cos")+4(t s)(4—s cos'0 —3s cos'0 cos'0' t co—s'0 cos'0'), (4.77)
X-+0

and only the first term, i.e., ts(. .) leads to an infrared divergence.
The angular integrations which appear in Eq. (4.76) are

2 —1

1 1 1+p 'y'
d(cos0') = —ln—

1—P "y"cos'0' 2P 'y' 1—P 'y'
(4.78a)

2 —1

cos'0' 1 1 1+P 'y'
d(cos0) ' = — ln —1

1—P "y"cos'O' P "y" 2P 'y 1 —P 'y
(4.78b)

Ij., 2

ds 4m ' s
1——

4 2 S—A S t —S—I,

where

XZ, (~'p. '), (4.79)

1+P Y
Zi(v'P-') = s ln-

7

1 1+P 'y' 1
Zg(y'p ') = —ln—

2P "v" 1 P'v' P 'v—'

This can be done using the following change of variables:

and similar integrals for the terms depending on cose.
Thus, we are left with the problem of separating the
infrared divergences in integrals of the type I~ ——

~ ln- ln —
~ ln-

1+P m 1+P

t
X» p.' ~+ Vs, (4.82a)

2m.

where V2 is also a convergent integral

[(&&)/2~ ]0 2
d~

1P{1—4m '/[t —2m (gt)sj}at' 1+P
)& ln —ln--

1 —{1—4m '/Lt —2m„(+t)sj}"' 1—P

+2{1—4m '/Lt —2m (gt)s]}'t'—2p . (4.82b)

Then, with

we obtain

s= (t—s—X')/2m. gt.

P.= (1—4m. 2/t)'t' (4 8o)

From the results given in Eqs. (4.81a) and (4.82a)
and using Eq. (4.77) it is easy now to get the over-all
contribution to AbsFi&' » in Eq. (4.76) from the
infrared-divergent terms. Ke 6nd

1 —P X 1 —P
Ii ———,'p 'ln- ln ——',p 'ln-

1+P. m,
'

1+P.

Xln~ P.' +Vi y (4.81a)
(
(2m

where V~ is a convergent integral

[(~~)/2~~] P~2 d&— 4m. '

0 s t —2m. (+t)s

1P{1 4m. '/ft —2m. (&t)—sj}'t'
&(ln

1 —{1—4m '/Lt —2m (Qt)sj}'"

1+P—p 'ln-
1 —P

0,'

sled,

1
AbsFi&' »(t) = —A(+ —)

7r t p„'

1—P.
X (1—p„')-,' ln +p„

1+P.
1 —P

X (1—P ')i ln — +P
1

X
Xln +finite terms. (4.83)

Notice that this infrared-divergent term cancels with
the one obtained in the evaluation of the contribution
to AbsFi(t) from the 27r intermediate states Lsee Eq.
(4.60)). We discuss the evaluation of the finite terms
contributing to AbsFi" ~&(t) in Sec. IV D 3.
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3. Evaluation of Finite 2'errrts Contributing
to AbsFii2»(t)

~ ~

h results of the preceding subsection, it canFrom t e resu s o
f finite terms con-be seen that there are three types o fini e e

tributing to AbsFi" »(t):

(1) Terms which have already appeared in the
f the infrared contribution /see Eqs.evaluation o e

ntribution4.81a and (4.82a)$. They lead to a net contribu

G 222' 1 1 P~——~(+ —) (1—P')-'» +P.
P' - 1+P.

t4 84)X (1—P.') 2»— +P- 2»
1+P- — 1 P'-

(2) Contributions from the integra. s Vi1 V and V2 Lsee
Eqs. 4.81b and (4.82b)j. These lead to a net con-
tribution

n2 222„1 1—p„——2(+ —) (1—p„')-,' ln-- +p„
P~' - 1+P~

X(Vi—V2) (4.85)

(3) Terms from the convergen pt art of the integral
in Eq. (4.76). According to Eq. (4.77), these lead to a
net contribution

Q 222„1 1—P„1—a(+ —)
"

—,'ln —+p„—
P„' 1+P„4t

Ids 1—p——2sP."ln +(3s+t)P '
4m ' ~—

T evaluate the integral Vi-—V2 see Eqs. (4.81b)o ev
ake the followingnd (4.82b)] it is convenient to make the . 1 g

change of variable:

1—4~. /Lt —2m. (gt)s]= x'.

Thus, we have

4m '
dS

x2 1x2 p 2

1+x 1+p
X (x' —1) ln —(P, ' —1) ln

1—g —w-

4ns ' 2x 1

x' —1 x+p

The second integral can be pex ressed in terms of
the first involves logarithmic andlogarithmic functions; e rs

dilogarithmic functions. We And

1+
Vi —V2 ——(1—p 2)-,'2r2+(1 —p ) ln

1—p1+P.
+2P ln +(1—P ') —, n

2 -+ T

"'(,";)-"(,':) """
4.86 can also beThe integral appearing in Eq.

evaluated by using the change of variables

1—4222 %=x2,1+P.
j r&

and is expressi e in'bl terms of logarithmic and dilog-
e find is

'
h f ctions as well. The result we n is1+P ' aiit mlc uilc I

+(3s+t)-,' ln +(3s+t)P /

p 2r' 7 1—p,

2 1 — ') 1+P 2(1—P ')2(1—P ') 12(1—P ') 4 1jP 2 1—

1+p
n +2Li2, (4.88)

4 1—P k 2

4. Expression for AbsFi" &'

art as iven by Eq. (4.83), and a finite part, which is thef r Abs i" ' consists o an infrared part, as given y
sum

' ' . . 4)—(4 86). Using the results quoted in qs.sum of the expressions giv q . . 4 — . sing
'

en in E s. (4.84 — . . sing
AbsF &' » can be cast into the following orm.expression for Abs i, & can

1 —P '

22'n' 2I„1 1 P~-
ln—AbsF, &"~i(t) = ——A(+ —) P„y(1—P„-, n

2r

—1 C &2& (P ) (4 89)
2P. 1 P. Pu'-2~-
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where
1+P 1 —P

C& &(p ) =(1—p )-o'2r +-',p ln +2p ln — —(1—p ) ln
1 —p 2 2 1+P

1 —P 1 —p„——,'(1—P, ') ln(1 —P ) ln —(1—P,2)Li2 (4.90)
1+P. 1+P.

1—p
~"&(p.) = —+-:P--(1-P-')—:.'+-'1

-(1+p-)'—,', ln — (1—P.')
16

—l p. 1 [—'.P.'(1—P-') j+(7/16) (1—P-')»
1+

1 —p. — 16 1 —p.— 1—p.
ln- +2~(i —p ') ln-

1+p. -(1+P.)'1+P. 1—+P.
/1 —p. 1 P-

+-,'L» —
I

— +-,'(1—P.')1» — (4.»)
&1+p, — 1+P. —

p+p —DECAY: SUMMARY
AND CONCLUSIONS

Some remarks are in order:

(1) We note that the infrared term in Eq. (4.89)
cancels with the corresponding infrared divergence en-
countered in the calculation of AbsPl" &(t) [see Eq.
(4.60)]. From this cancellation one is left, however,
with a finite quantity

0! esp 1 1 Po-——A(+ —)— P.+(1—P') 2»
7r Pp' - 1+Po

1 P, 1—P.'—
X P.+(1—P.')-,' ln- -', ln, (4.92)

1+p 4

1. We have estimated a lower bound for the decay
rate of the process E, —& p+p . This has been done in
the following way: We assume CP invariance to hold,
and write the decay rate as

M 42&2 2~'/'
1'(&lo~/+t )=—1—

I I»l'. (24a)M'i

Since
I F~l &

I
AbsFl I, it is clear that a calculation of

the absorptive part of the form factor F~ gives us a
lower bound to the rate I'(Elo —+ /t2+/2 ).

The quantity Absj & has been estimated by saturating
the unitary condition

which certainly gives a net contribution to the total
AbsFl(t).

(2) For t=-M', i.e., for the on-shell E ~/2+/2 decay,
we find numerically that —i(22r)'

C "&(P.) = 0.257

C &2&(P )= —0.088. (4.94)

AbsFg=- ~p&, &'"(P+P' —ZP& )
(4.93) 2[2(M2 4/22 2)$1/2

X( I
Tl(t+/-) .)"A(It' 1) (2»a)

Then, with

A(+ —) = (1/~3)(~2»oAo+ReA2),

we find that

sP (2+p& (M2)

0! nz„1 1+P„= ——A (+ —) ln— C &'&(p.)
M' 2P„1—P„

1+P,
+ ln— —1 4&2&(P ) = —1.10X

Po' 2po 1 Po--

to order Ge' (G is the Fermi constant, e the electric
charge).

2. We have calculated assuming a pointlike weak
coupling at the E-z-~ vertex and minimal electromag-
netic interaction for pions and muons. This implies a
summation in Eq. (2.10a) over 2y, 22r, and 22' inter-
mediate states (see the diagrams of Fig. 2).

(i) From the 2y contribution to Eq. (2.10a), we get
the result

1 222„1 1+P„
AbsF /27& = ——(v2A o+ReA2) — ln

(4.95) M M 2P„1—P„
(3) For t= M', the numerical value of the expression

given in Eq. (4.92) is 1.53X10 ".
(4) Adding the results obtained in Eqs. (4.62), (4.63),

(4.95), and (4.92), we get the net real contribution to
Abs»(M2) from the 22r and 22ry intermediate states:

AbsF &'~&(M')+AbsF &'~»(M2)=0.68X10 " (496)

)( —1+ ~~ —ln2 — 4 18

where P = (1 41&2 '/3II'—)'/' P~= (1—42&2~'/M )' and
A p, A2 are the amplitudes for the transition of E' to two
pions in isospin states I=O and I=2, respectively.
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Numerically,

AbsFii'» = —2.18)(10 " (pert. th. ) . (4.19)

(ii) From the 2m. contribution to Eq. (2.10a), we find
for the seagull term (see Fig. 7)

Q
AbsFi" '(seagull) = ———(%22 o+ReA2)

x V3
1 m„P

I'i(),'), (4.36)
MM 4P„

1+P ' 1—P. . 1+Pu
i', (&) = Li,(

—
)

—Li,(
—

)P~' — 1+P~ 1 P~——

2 4——ln —
., (4.34)

P~ 1—P'
and, for the box diagrams contribution [see Fig. 8 and
Eqs. (4.60) and (4.61)],

tx 1 1 m„
AbsF, i' )(box) = ——(v2AO+ReA2) — Q(M') ln—+ (1+P ')[~(x') —X(x")]

s %3 MM P„' M 4P, '

1 *' d9 (1+8')—m. ' —m.m„&(0), (5.1)
0 8

with
P~ 1+P

Q(M') = —p„—i2(1 —p 2) ln p —2(1—p ~) ln
1 —P~ -- 1 P- ——

, -(1-P.)(1+P.)-'" „-(1-P.)(1-P.)-"'
-(1+P.)(1—P.)- -(1+P.)(1+P.)-

and X(8) defined in Appendix 8, Eq. (86). Numerically,

AbsFi "~&(seagull) = —2.98)& 10 " (pert. th. )
and

Q 1 1 mp 1 X

AbsFi "~'(box) =——(%2AO+Redm) — Q(M') ln—+3.14&&10 " (pert. th. ).
x v3 MMp„' M

(iii) From the 2s.y contribution to Eq. (2.10a), we find [See Figs. 9 and 10, and Eq. (4.89)]

0! 1 1 my X 1 1+P„
AbsFii'~&) = ——(%2AO+ReA~) — — Q(M') ln — ln— C "'(P~)

n. v3 M M P„' m 2P„1 P„—

(4.56)

(4.40)

(5.2)

(5.3)

1 1 1+p„
ln —1 C&2)(P ) (54)

P~'-2P~ 1 Pp-
where the functions C i')(P,) and C &')(P,) are given in Eqs. (4.90) and (4.91), respectively. Numerically,

1 mp 1
AbsF &' ) = ———(%2Ao+ReA2) — Q(M') ln

x K3 M M P„'
—0.70&&10 " (pert. th. ) . (5.5)

Notice that the infrared divergence in AbsFi&' '(box) [Eq. (5.3)] cancels with the corresponding infrared
divergence in AbsFi" » [Eq. (5.4)]. Thus we have

CE 1 1 mp, 1 m3.
AbsFi&'~)(box)+AbsFi "~» = ——(&2Ao+ReA, )— Q(M') ln +2.44)&10 "

~&3 M MP„' M

=3.42&(10 ". (5.6)

It turns out that. the contribution from AbsFi" ' (seagull) [Eq. (5.2)] almost cancels the infrared diver-
gence-free combination AbsF&&'~)(box)+AbsF&&'~». Thus the quantity

AbsFi&' '(seagull)+AbsFi&' )(box)+AbsFii' »=0.44)&10 ", (5 7)
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which corresponds to a branching ratio

p%~'~~+~ )
&1.6X10-" (pert. th.),

F{EP~ all)
(5.10)

not much smaller than the "erst-guess" estimate given
in Eq. {2.9).

3. We have also made a very simple model to esti-
mate the possible enhancement effects of the m--x

strong interactions in our calculations. This is described
in Sec. IV A. Practically, it amounts to the substitution.

(1/v3) (v2A p+ReA &) -+ (1/v3) (v2goA o+ g2 ReA p)

(where gr is an enhancement factor due to the strong
intera, ctions of the 27r system in the isospin state I) in
all the perturbation-theory results except in the evalua-
tion of ReIZr{iV'). Here the explicit dependence of go on

the dispersion variable has been taken into account. As
Re&2((I &o I, we have always set the term g2 Re&2——0,
which means that qo is purely a multiplicative factor in
the 2m- and 2~y contributions.

The corresponding value for AbsP~, where enhance-
ment factors are taken into account, is given by the
sum of Eqs. (4.15) and (4.96):

which is gauge invariant and infrared convergent, gives
a contribution to AbsFi which is smaller than the con-
tribution from the 2'y intermediate s ta'te

I Eq. (4-19)j
and opposite in sign. The over-all result is

AbsFg ——AbsF, ~'»+AbsFg&' ~(seagull)

+AbsF~&'&(box)+AbsFr &"»
= —1.74X10 " (pert. th.), (5.8)

and from Eq. (1.5) we have, therefore, that

F(EP —+ p+p )&1 35X10 ' sec ' (pert. th.), (5.9)

5. We should like to close this section with two com-
ments on the reliability of the bound given above.

(i) In principle, first-order weak times fourth-order
electromagnetic interactions might be competitive with
second-order weak. interactions fGiVx'(u/7r)'= 1.5
X10 " and (GMx')'=08X10-"] However, second-
order weak interactions only contribute to the real part
of Fi, hence, they can only increase the lower bound

given in Eq. (5.12).
(ii) One source of uncertainty in our calculation comes

from the estimate of the real part of the Ei' —+2y
amplitude, i.e., the quantity we call ReH~(M'), which

has been estimated in Sec. IV A. It is clear that other
channels than the 2x are open in the dispersion integral
from 4m' to ~, viz. , 3m., EX, etc., which are not taken
into account in our estimate I see Eq. (4.16)7. There
exists, however, the empirical possibility of improving
this; clearly, one expects to observe Ejo —+ 2y decays
before Ej' ~ p+p decays will be detected. In that case
IReEfr(3f')

I
c» be tal en f«m exp«iment using the

estimated value for ImHr(iV') Lsee Eq. (4.13)j. If
I
ReH~(M')

I
&1.02X10 ', then the 2x and 2y and per-

haps 3m.y channels might become competitive with the

2y. In this case it is clear that a more elaborate esti-
mate than our perturbation model is needed. If
IReB~(M') I

&1.02X10 ', then one can treat other
channels than the 2y as a small correction. In this case
there is room for improvement of the I'(KP —+ p+y —

)
bound.
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AbsPg= —3.03&(10 ", (5.11) APPENDIX A

to be compared with the perturbation-theory prediction
of Eq. (5.8). From Eq. {5.11), we obtain that

P(KP —+y+p )&4.37X10 ' sec ',
and, therefore,

P(&r'~~+~ )
&5.&X&0—"

F(Xr,' —+ all)

Throughout the calculation described in the text,
we have used a covariant expression for the projector on

(5 ]2) the triplet state of the p+p system. In this appendix,
we give the details of how to construct this projector, as
well as the projector on the singlet state.

With our normalization of Dirac spinors, the pro-
(5.13) jector on a particle state with energy momentum p

and polarization s ls

which is our final prediction.
4. Our results so far have been entirely for the decay

of X&0 into a muon pair. However, we can easily obtain
the result for E~' decay into an electron pair by chang-
ing m„ into m, in our equations. Ke quote without
further comment the electron equivalents of Eqs. (5.12)
and {5.13), i.e.,

I'(KP -+ e+e—
) & 1.26X10 ' sec ', (5.14)

n(p, s)Sa(p, s) = ', (p+m) (—1+y~s), {A1)

p'=m' s'= —1 and s p=0.

This is a well-known expression due to Michel and
9 ightman. '0

Next, let us denote by s&'& (i=1, 2, 3) three four-
vectors such that

and, therefore,

1'(KP~e+e )
& j..5X j.0-".

P(XP —+ all)
(5.15)

p. s(~) =0 z&'). z(~')= g,. ~ ~=1

~f~P~+ Z (I)& (2)& (3)—m,l P ~ P

"L. Michel and A. S. Wightman, Phys. Rev. gs, 1190 (1955).
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We choose the third component s„"& as the quantiza-
tion axis, and call X the magnetic quantum number, or
helicity, along this axis. It was shown by Bouchiat and
Michel" that the projector given in Eq. (A1) can then
be written as follows:

u(p, !(')(3u(p, &()= ,'(p—+m)(()„„.+y,s g.5.), (A2)

It is useful to expand the right-hand side of Eqs.
(A4) and (A5) in the basis of 16 y matrices:

u(p', X') (38(P,X) a1
()(p',X') Su(P, X) 2[2(mm'+p p')7"'

where s s&,1 is a shorthand notation for (s(')r1+s(5)r5
+s('&r5)5&, ,

' r1, r5, and r5 are the usual Pauli matrices.
Equation (A2) can be viewed as a 2)&2 matrix acting
on the helicity indices X and X'.

The generalization to the case where two energy-
momenta are involved, i.e., expressions of the type
u(p', &(')u(P, X), was made by Nuyts. "It reads

with

X (W&„y"y'+2;.(r'"+&y5)(rr)), 1

8= —m(p' s), (A/)

'ty'C

+(81aV„y~aA„~~~5+T„„~~), (A6)
'0S1 yX'-

u(p', &(') g u(P, X)-
[2(mm'+p p')7'"

V„=(p' s)p„—(mm'+p p')s„,

A„=mp J+m'p„, A„=i5„„p.p"p'~s,

(AS)

(A9)

Xl(p'+ m)(p+ m)(&-+v s' '), (A3)

where p'=m' and p"=m". We note that in this case,
X' is the helicity along an axis s' such that

s ~&y/m~y'~m's &

where A„~ „~ ~ is the pure Iorentz transformation
(or boost) which takes p/m to p'/m' and leaves in-
variant the two-plane orthogonal to the one defined by
p and p'.

A general method to construct all the possible pro-
jectors for spin-~~ particles has been given by Michel. "
In our case, we are interested in expressions for u(p', X')

8(P, X) and ()(p', &(')(mu(P, X). These can easily be
obtained from Eq. (A3) in the following way: We choose
s to be the helicity axis corresponding to p, i.e.,

lyl E y
s, = —,s=—,E' lyl'=m'. —

m mlyl

Then we simply have ()(p, —X) =y5u(P, X), and 8(P,X)

u(p, —X)y5. A—ll we have to notice then is that

Y5(85,—1'+75s ' Cx,—5') ~ 'r5(rl)xk'+s' (crl)11'
(~—xx'+75s'& —xv)y5 ~ [75(rl)xv s(rl&)xx'7 ~

Thus we have

u(p', ).') (S& H(p, ).) = ,' (p'+m') (p—+m)
[2( '+P P')7"'

2'"= 5"".(P'P" P"P ), —
(A10)

T„,—,5[(mp„+m p„)s,—s„(mp„+mp„) ],
mm+ p.p'. (A11)

~"'(P' P) = (1/v2) [~(p',+)(au(p, -)
—~(p', —)su(P, +)7,

f'+1("(P',P) =~(p', ~)u(p, ~)
The projector on the singlet state is given by

f'"'(P', P) =(1/v2) [~(p', +)u(p, —)+~(p', —)
su(p, +)7.

Using Eq. (A6), it can be seen that

1o(l) — [5'(5)1 P' (5) P

2(mm'+p p')"'

~ "'y"/5+2'„, (5'(r""7, (A12)

y~, (1)= [5(+)1 P (+)&~
2(mm'+p p')'('

~s(+)v"F5+2' (+)~&"7 (A13)

where, for example, 5(+) means (5(')~iS('))/l2. For
the singlet projector we have

The projector on the triplet state of the outgoing
p+p, system has three components:

&&5 ( ) —s ( )»7 (A4) &")= (—~.7"v+2'.. ""+~ ) (A14)
2(mm'+p p')"'

v(p', X') (E)u(P, X) =
[2(mm'+p p')7"'

x-,'(—p'+m')( —p+m)[y;(r()11 +s (~r))11 7. (A5)

"C. Bouchiat and L. Michel, Nucl. Phys. 5, 416 (1958)."J.Nuyts, Bull. Acad. Roy. Belg. 4'7, 566 (1961).
"L.Michel, Institut des Hautes Etudes Scienti6ques Report,

1963 t',unpublished).

The explicit form of P "&(p',p) needed in the text is the
following: With

P'=P"= ', i=(p+p')',

[ip. 2'(P+P').7;—
m [&(i—4m')7'»
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we have

P".„;(» = L(t —4m')1+2m(p' —p) „y~
2L2(t —4m')]"'

+~(p.p' P'—P )~'"] (A15)

Correspondingly, we have for the singlet projector

I'. . „(0)
L
—2m(p+p') y)'y);

2 (2t) '/'

+-'~ " (P'P" P'"P —)&""+t75] (A16)

Sometimes we shall also need the projectors on the
incoming ti+ti system. If p is the energy momentum of
the incoming ti and p' of the mcoming ti+, we have

pci. »(&)— P(t —4m')1+2m(p —p),y~
2[2(t—4m')]'/'

+'(O'P P.P'—)~""], (A»)—I
L2m(p+P') y'y~

2(2t)'"

+2& " (P"O' P'P"—) ""+ty57 (A18)

APPENDIX 3
The integrals over s' in Eqs. (4.43) and (4.50) are best carried out by the following changes of variable:

s'= (m m„)—'+m m„(1+y)'/y,
s = (m. —m„)' —m.m„(1—0) '/0.

Hence the integral over s' in Eq. (4.43) becomes

QO ds
($(m.+m„)' s']$(—m. m„)'—s'])—

I
m +m„)'$

and the integration of B'(s', t) and C'(s', t) over s' yields

ln0 (B1)
(y+0) (y+1/8) m.m„(1—8) '

d$ tÃ~ ting,
—$ SS~—

7Ãft,
—$

(L(m„+m„)'—s']L(m —m„)' —s']) "' In
(m +m„)'$ $3

1 ' dy m m„(1—y)' (1+y)
ln +ln +ln-

m.m, () (y+0) (y+1/0) (&+y)(1/~+y)—

where (t= m„/m . The third integral in Eq. (B2) would be zero if the masses were equal. If we call these integrals
R1, R2, and R3, respectively, then, after some algebra we find

—0
Rl — -- ln0ln

m„m„(1—0')

—0 (1+0)'
-'~'+-' ln'0+ln0ln — +2Li2( —0)

m.m„(l —0') 0

—0 (1—8)' 1+0 1+0 1+0
ln0 ln- +2Li2 —Llg —L12

aa aa (1—a') (a —9)(1/a —i) 1 —i a —i 1/a —9)

—2L&2 —— - L» Li~ — 2Li~ —Li2 —Li~ —2L» I —0

(B3)

1+0 1+0 1+0
+Li2(1—a0)+Li2(1 —0/a)+ln' ——,

' ln' — —-', ln'
1—0 1—a0 1—0/(t

—ln'(1 —0)+-,' ln'(1 —a0)+-,' ln'(1 —0/(t) . (B5)

Note that R3 has been written so that all the dilogarithms and logarithms are real for 0 in the range of integration
between x' and x".Finally, we define X(0) by

X(0)= —m.m„L(1—02)/0](Z, +Z,+ Z,). (B6)


