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Possible Origin for Parity Conservation in Meson-Nucleon Scattering
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We consider parity-nonconserving meson-nucleon scattering and show that self-consistency conditions
imposed by a bootstrap-type calculation require that parity be conserved when the meson is pseudoscalar.
For a scalar meson, parity is not conserved.

I. INTRODUCTION

II. FORMALISM

Consider the parity-nonconserving scattering of a
nucleon (p,p') and a meson (q,g'). Four amplitudes are

needed to describe the scattering:

T= U(p') $A+yeC+y -'(g+g')B
+»~. :(V+V'»jU(p) (1—)

or

(2)T=U(p') Lfi+a V'a (f2+a Cfs+. a V.'f43U(p-),

'R. Dashen, Y. Dothan, S. Frautschi, and D. Sharp, Phys.
Rev. 143, 1185 (1966).' F. Zachariasen and C. Zemach, Phys. Rev. 138, 3441 (1965).

' V. Singh, Phys. Rev. 129, 1889 (1963).

S ELF—CONSISTENCY is one of the most funda-
mental of physical principles. It has been suggested

that the necessity for a self-maintaining system to achieve
self-consistency is responsible for a large number of
physical facts, for example, the transformation prop-
erties of the SU(3)-breaking interaction. ' Certainly,
its role in the bootstrap philosophy is well known.
Several years ago, Zachariasen and Zemach' suggested
that parity conservation in strong interactions also be
regarded as a result of a bootstrap-type self-consist-

ency rather than an imposed initial condition. They
considered sr' scattering in an E/D formalism with

only nucleon exchange and achieved encouraging

results.
We reconsider this problem, using finite-energy sum

rules (FESR) at fixed I, and include the X*(1236) in

the exchange. We find that, with just nucleon exchange,

parity is nonconserved for a scalar-meson interaction,

and conserved for a pseudoscalar-meson interaction.

When the E* is included, the results do not change

significantly (10-15% in the worst case). We find

that the cutoG inherent in the FESR sects only the

percent accuracy of the result and not the result

itself.
In Sec. II we review the formalism for parity-non-

conserving meson-nucleon scattering'' and we discuss

the sum rule that will be used. The calculation is de-

scribed in Sec. III, and in Sec. IV our results are dis-

cussed and compared with those of Ref. 2.

with

fi P(Ej——M)/2W j[A+(W M)B—],
f2 p(E———M)/2WjL —A+ (W+M)Bj,
fs= (q/2W) (C+DW),

f4 (q/2——W) ( C+DW—).

(3)

fi+fs =
a (T+++T )--

fi f2= s (T+ T+)—-
fs+f4= a(T++ T ), ——
fs f4=2(Tp +T—). -

Using (3), one obtains

a(T++—T—) =VD,
—i2 (T+. +T p) =gC/W,

a (Tp++T ) =AM/W+ (B/W) (EW—M'),

,'(T —T ) =(E-/W)A+(B/W)(MW ME). —

(5)

(6)

For W=M and ts/M(1, the last two equations become

;(T„+-T )=A M—B, —
;(T, —T,)=MB. —

These equations will be used in discussing the ampli-
tudes derived from a specifi. c Lagrangian.

Ke wish to consider both nucleon and X* exchange.
For the nucleon, assume an interaction of the form4

4 y~ is taken to be anti-lermitian.

If we decompose the scattering into helicity amplitudes,
we 6Ild

T++ = (1+cos(t)"'(fi+fs+js+f4),

sin8
T+—= — — — (fi j2—fs+—f4)—,

(1+cose)"'
T = (1+cose)"'(fi+f2 —fs —f4),

sine
T + — ——( ji+—f2 —f&+f&)—

(1+cos0)"'
If one ignores the exterior kinematic factors (which
disappear when the kinematic singularities are re-
moved), one finds
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with a pseudoscalar meson. s In the direct channel, one & *(s&u)

obtains the isospin--,'amplitudes,

0 2aHfg'
O'I'(s, u) = —,D"'(s,u) =0.

3 s—M'

(9)

0 2b'kg' 0 gs(a2+ b2)
A"'(s,u) = — —,8"'(s,u) =—

3 s —M' 3 s —M' 3q*'Z *(a'+b') —a'(E*+M) '—b'(E"—M) '
X—

(13)

The crossed amplitudes due to nucleon exchange are 1 2ab3f* —3q*'Z„*—8* 3I
easily obtained from these: C"*(s,u) = —q(M*)

u —M*'

2 2b'Mg'
A~(s, u) = —

~

k —1 u —M'

2)g2(as+ b 2)

B~(s,u) =+ —1~ u M'— (10)

2 2uHfg'
C~(s,u)=, D~(s,u) =0.

u —M'

~"0(a+bus)4-v .
3q*'(E"+M)

We use the propagator'

When the exchanged state is the X*, the invariant
amplitudes can be found from the interaction

1
C

&(M*)=M*I'/3q*'(E*+M),

Z~*= 1—(s+ M*s—2M' —21r')/2q*'

q82 [(M+MS)2 ~2][(M Ms)2 psj/4M82

Note that D=O for both E and E* intermediate states.
Returning to Eq. (6), we see that this implies that
T++ T. We kn——ow from Jacob and Wickr that
parity conservation requires T~+= T and T+ ——T +,
the latter also being required by time-reversal in-
variance. This would imply that some portion of the
total amplitude is still parity conserving without
imposing any exterior conditions.

%e assume the usual Regge form for the amplitudes

p(u)s
R(s u) = — —(1+e ~~')

sins n(Ms)

and near the pole we rewrite it as

~.(~ &)&.+&,h" @~ Z(s,u)
(12)3f*'

—p(u)s (1+e-' )

sins cr(M')+s n'(Ms) coss n(Ms) (u/M' 1)+—
This has the calculational advantage of commuting
with +5.

One obtains for the contribution due to Ã* exchange

so that

Residue E(s,u)
~

„sr'= —2P (Ms)/7ru'(M') .

AN*(s, u) Identifying this with the direct-channel nucleon arnpli-
tudes [Eq. (9)j, one obtains the residues

t0
M'P~(M') =

~

~b'Mg'a'(M')
E3

+ a'(M —M*)(E*+M)'+b'(M+M*) (E*—M'}/

1
= —~(M*) ~{

—3q*'Z *[a'(MgM*)+b (M M*))—
4)

(u —M*s)
0

M'pe(M') = ~s (-'g') (a'+b')n'(M')
3/

~ The scalar case may be obtained from the pseudoscalar one by
the substitution b —+—g.' E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).

0
M'Pc(M') = — sMg'abn'(M') .

3

' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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The sum rule is of the usual fixed-I type. One con-
siders an amplitude F~($,u) such that

ThaLz I. Tabulation of results of Zachariasen
and Zemach (Ref. 2).

lim
s ~large

00

ImLF "($,u) —R($,N)]d$ =0.
Isoscalar pion

b=0, Xo solution because of
a /0 repulsive PI fg force

Isovector pion

Solution for restricted values
of (input coupling)/(out-
put coupling)

Then one obtains
bQO,
a=0

Solution if
input coupling1(— —(Oo

output coupling

No solution because of
repulsive SI&2 force

p(M')Ã +'
ImF"($,u)d$= — — —:LY,P(M'), (16)

&+1 u ~&2
ab/0 No interaction since

b'ju'(0
Parity-violating solution for

restricted values of
coupling ratio

and in the erst moment
For the isovector meson we 6.nd

p{N).V .+' 2

$ ImF "($,N) d$ = — —:P(M') . (17)
e~M2 (3b'+u') f ~Ãg'(2b'

a'cV b'cV )

III. CALCULATION

%e wish to consider I physical. Therefore, in Kqs.
(10) and (12), replace $ by e. Using (15), (16), (10),
and (12), one obtains the following sum rules for the

isovector and isoscalar meson, respectively. '
(b' a')f big —(25'-+=''a'3l 6'iV+-

'3llg'b'+ 4 A*-=2b'f

1(~2/a) (a2+b2)g2+4 A/42/~)gw (a'2+b2)f

—
3 abMg'+ 3

4C*= 2abf, —
2Mg'b'+—A*=2b'f

(~2/a) (a2+ b2) g2+ ~82+4/a (a2+ b2)f
aha g'+ C*= 2ab f, —

f=-2Mg'cVRn'(M') .

(a b) f, Mg —( 2ub= — —a'3I b-'M
(20)

In the equations for the 8 amplitude, we have replaced
E„'by 23fo.Ã„, in order to have the same factor appear
on the right-hand side of all equations. %e want to
calculate the ratio b/a. To eliminate the cancellations
when only X exchange is considered in the above equa-

tions, we consider the linear combinations

a'3I b'iV
(u+b)'f lMg'( —2ub+ =+—

Np

I tmA ($~B) R~ ($)Q)]d$—

$ Im)8" ($,N) Rs($,u)]—d$ =0,

ImLC" ($,u) —Rc($,n)]d$

where the subscript on the f merely distinguishes which
linear combination of amplitudes it appears in. The
isoscalar case is derived from the above by removing
the 43 from the X* contribution and multiplying the
erst term by —3. For the X~ contribution zero, we
plot the four equations for f and ask for what b/a they
are equal. We then add the E~ contribution and repeat
the process. %e vary o. to check on the cutoff depen-
dence. The results are shown in Figs. 1—8.S

$1mt 8"($,u) —R~($,u)]d$ =0.
8 Figures 1—4 are valid for both isovectors and isoscalar mesons.

Figures 5—8 are valid for isovector mesons only. The isoscalar case
is almost identical, vrith the same results.
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FIG. 5. Nucleon and N*(1236) exchange,
isovector meson, X„=0.29 BeV'.

IV. DISCUSSION

From the graphs, we see that b/a=O is the only
solution consistent with all four equations for only
nucleon exchange. When X*exchange is included, there
is no b/a giving exact consistency, but the point of
closest approach of the four equations is b/a=O and
the separation of the equations at this point is at worst
15% of the total value of the equations. For the lower
cutoffs, the percent separation is less than 5%.

The results of Zachariasen and Zemach (ZZ) are
shown in Table I. A comparison of our result with this
collection of answers might seem misleading at erst
glance; however, one should note that when ZZ say a
solution does or does not exist, they are referring to the
existence of an acceptable mass value. %e can obtain
the same results as in the erst two cases above by simply
calculating the exchanges as they do and observing the
signs of the forces. ZZ do not seem to discuss the seH-

consistency of the coupling strengths in the parity-
conserving case, and, although they indicate that
acceptable mass values for b&0 and @=0 do exist, we
find that self-consistency conditions on the couplings
cause this solution to vanish. For the parity-non-
conserving interaction, we agree for the isoscalar meson,
but not for the isovector one, as there we find no parity-
nonconserving interactions at all.

There are at least two possible viewpoints about the
origin of parity in self-consistency. The erst is that if

40—

20-

0 I I I I I I I I I

0 .I .2 .3 .4 .5 .6 .7 .8 .9 l.p
(b/a)

Fro. 6. Nucleon and 2V~(1236) exchange,
isovectpr meson, lV, = 1 SeV .

one sets up a bootstrap problem in the ordinary way,
one would get as an output a self-consistent mass and
a self-consistent parity-conserving coupling. If the
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I zo. 7. Nucleon and E*(1236)exchange,
isovector meson, E,=1.8 SeV'.
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I60-

l20-

Our results would seem to indicate that the second
viewpoint is correct. Explicitly, if one considers the
isovector nucleon exchange part of Eq. (17), one gets

f(3b'+ u') =-,'Mg'(b' —a'),

f(b' —u') = sMg'(3b'+a'),

f(u —b)'= —-'sMg'(a+I)',

—f(a+b)' =-'s Mg'(a —b)',

I00- with o =M. Absorb -', Mg' into f:
80

60

bs gs 3b2+ ps

3bs+gs b2 g2

40
I I I [ [ I I I I I

0 .I .2.3 4 .5 .6.7 .8 .9 I.O

(bra}
FIG. 8. Nucleon and E*(1236) exchange,

isovector meson, S„=2.36 geV2.

bootstrap failed, there would be no mass and no
coupling strength, i.e., the existence of parity conserva-
tion is linked to the existence of an exchange force
strong enough to bind a particle.

A second possible idea is that there are two levels of
self-consistency in a bootstrap problem. The first level
is required because of the existence of the bootstrap
dynamics. It is a relation between the spatial structure
in which a body moves and the body itself. It is,
however, exterior to the body. Out of this would come
spatial conservation laws. The second level is imposed
upon the dynamics itself; it is interior to the body and
from it would come the self-consistent mass and coupling
constant. Here one would expect parity conservation
to emerge from a bootstrap calculation but to be inde-
pendent of the strength of the dynamics. '

ol

(—g2+b2) =~ (3bs+g2) ~ b2 —0 b2 gs

(a+b)'=~ (a—b)' —+ ab =0 b'= —&'
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Vfe thus obtain two solutions, one of which we can
discard as physically unrealizable. The graphs can be
regarded as another form of this same calculation, where
the value of f at which b/a=0 is not important. An
identical calculation can be performed, with the E*
included, with similar results.

In summary, we have found. that self-consistency
requires that parity be conserved for a pseudoscalar
(isoscalar and isovector) meson and violated for a
scalar meson. This conservation. (nonconservation)
appears to be independent of the existence of a self-

consistent mass.

This idea was originally suggested by R. F. Dashen and the existence of hadronic weak and electromagnetic properties,
S. Frautschi

I
Phys. Rev. 143, B1172 (1966lg in connection with independent of the existence of the elementary particle.


