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Improvement of the Blankenbecler-Sugar Approximation*
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We present an approximate solution to the Bethe-Salpeter equation. It retains the attractive features of
the Blankenbecler-Sugar approximation, while improving upon their results. For one-particle-exchange
interactions, there is no increase in calculational difhculty with this technique.

S EVERAL years ago, Zemach and Schwartz' (ZS)
presented an exact solution to the Bethe-Salpeter'

(BS) equation for two scalar particles interacting via
the exchange of a third scalar particle. These exact.
solutions, as a comparable standard, gave impetus to
several investigators to And approximation techniques
for solving the BS equation. The hope was to obtain
a useful method of solution to physical problems.
Several of these techniques have been referenced and
compared by Cohen and Pagnamenta. '

One such approximation was presented by Blanken-
becler and Sugar4 (BBS).With the BBSapproximation,
the integral equation for the scattering of two particles
is reduced from a four-dimensional to a three-dimen-
sional integral equation. Projection of the angular
momentum amplitudes further reduces this to an
integral equation over a single variable, the magnitude
of the 3-momentum carried by the internal particles
(see Fig. 1).

In this paper, we present an approximation which is
an improvement over the BBS method but is no more
difficult to use. It is essentially a logical extension to an
approximate technique we had presented earlier, '
hereafter called CPT.

For simplicity, we consider the BS equation for the
scattering of two scalar particles, both of mass p, ,
interacting via the exchange of a third particle of mass
m. The partial-wave BS amplitude for this process
satisfies

Zg

Mzho lql) =2~z(e, lql)+
(2~)'

r, (0„)M,(k„ll I)

L(v —k)' —~'3L(p+k)' —t '3l:(p —k)' —t '3

which is diagrammed in Fig. 1. The phase shifts are
related to the on-shell amplitude by

Mz(s) = —4zrI s(s —4tz')g" t'e" sinzz.

The mass-shell values of qo and
I q I

are found by setting
(P+q)'=tz' to obtain je=0, j'=se(s —4tz'). We have set
Mz(s) = Mz(jo, I jI).

The BBS approximation replaces the Green's

function
G=I (p+k) -"j-L(p-k) -"j-

I'-2= 2~ ~l:(p'+k)' —t '3t (p-k)'-t 'j (2)
~~$ —$

where 4p"=s'. Then G=iE2+R, where R contains no
two-particle structure. R is ignored and 6 is replaced by

F2——tzrb (k p)/2zo (k' —P),
where oz'=k'+tz'. The 8(ko) allows us to do trivially the
dke integral in Eq. (1), leaving a one-dimensional

integral equation to solve.
The CPT approximation involves removing

Mz(ko, lg ) from the d'k integral, assuming that
Mz(kp lt ) does not vary much from its mass-shell

value. An algebraic approximation results; i.e., we take

'bg

Mt(vo, lql)=~zko lql)+-
(2zr)'

+z(tt, zz)

X (3)
I:(v-k)' —~'hl:(P+k)'-t 'jL(p —k)' —t 'j

Neither the BBS nor the CPT approximations gives
absurd results although the BBS method is markedly
better.

In the approximation presented here, we use the
spirit of the CPT approximation, keeping the BBS
technique in mind. We allow Mz(ko, Ik I) to be approxi-
mated by Mz(je, lkl); that is, we assume that the off-

shell amplitude is well approximated by putting ko on
shell {as in the BBS approximation) but we retain the

by a function which retains the two particle cut of 6,
i.e.,

ds
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FIG. 1. Diagramatic representation of the
partial-wave BS equation,
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FIG. 2 (a) . Singularities
of Gl+. (b) Singularities
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~i(q)=&i(q)+
(2~)4

kodk cV,(k)
kp —pp +Zp

+ln =L~+l. . —
kp —My+SoP)(8)G(p+k, p —k)

dkp dQ (4)
[(q—k)' —m'1

The singularities of GL+ and GL in the complex kp

plane are shown in Figs. 2(a) and 2(b), respectively. We
see that if we close the contour in the lower half plane
for GL+ and in the upper half plane for GL, we avoid

the cuts arising from the exchange terms. We can thus
evaluate the integrals as sums of residues:

but unlike BBS, we retain the full Green's function,
rather than an approximate form.

For s waves, the integral in the kernel of Eq. (4)
becomes (setting qp ——0)

full off-shell behavior of the known functions (as in the logarithm term into two parts:
CPT method). As with the BBS approximation, we are
left with a one-dimensional integral equation

ln[(kp' —pp '+ip)i(kp' —cop'+ip) j
dkp (5) or

[(p+k)' —~'j[(p —k)' —~'3
gk

dkp(GI+ —GI. )

where op+' ——(q&k)'+no'.
We point out that we are able to evaluate this

integral explicitly. Since the singular nature of one-
particle-exchange kernels is the same as will be de-
scribed below, explicit evaluation of the approximate
BS kernel will be possible for a wide class of physically
interesting problems. If a more complicated potential is
considered, the kp integral may have to be done numer-

ically, but this added inconvenience may well be
worthwhile.

Referring to Eq. (5), we note that the integral con-
tains the elastic threshold s=4p'. When s ~ 4', the poles
kp= pp+~ ip —and kp —pp pp+——io fr—om the Green's
function can coincide, pinching the kp contour. We also
point out that the contour can be pinched by a Green's-
function pole (e.g. , kp= po —~+ip) and a branch point
from the logarithm (e.g. , kp=&u+ —ip). This can occur
for s) (2ez+2p)P. So our approximation contains the
two-particle production threshold as well.

To evaluate the integral of Eq. (5), we divide the

= —(—2ori+E +27ri+R~),
gk

—ZX2 op+op —Pp)
(pp+pp) ln

2po(uqk M+pp+ —Ppi

and

fop+~ +Po-
+(po —ru) 1ni

i + ~+p )- (Po' —cv') (6a)

—27r2 op+ ppI—+- ——ln
q&

' - + — + + + +)-

as pp ~ 0. (6b)

where R+ and R are the residues of the Green's-

function poles in the upper and lower half planes,
respectively. We find
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Equation (4) now becomes

t BSFIG. 3. P-versus-s curves for the exac
esent and BBSkernels.
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approxima e emt kernels. Referring to Eq. ( ), wi
po' sP+ie=q—' 1e'+ie, w—e set

X " E(k) —
&u+o) —po

1V(q) =C(q)+ — dk (p + ) l

2po o

(po' ~'+ie), (&)

(qo /P+ie—) '= I'(qs 1e') ' —Arh(qs—lP) . —

was corn uted by dividingThe principal-value integra was
the integral into two parts:

where N(q)=qM((q), C(q)=qB)(q), and Z=g'/16~'.
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Both regions of integration were then mapped into the
region (0,1) by taking k=qx for O~k~q, and k=q/x
for j~k ~ ~.This is a slightly less complicated mapping
than that used by LTW' and is quite satisfactory. By
using Gaussian quadrature points for each piece of the
integral, we never encounter endpoint values. We were
able to reproduce the BBS phase shifts given in Fig. 8
of LTW. With this technique, we find that 10 integra-
tion points are suAicient for each piece of the integral.

The results of our new approximation seem to be
indistinguishable from the exact results of Fig. 1 of
LTW (or Fig. 3 of ZS). Comparing with the BBS
results, we point out, in particular, the significant
difference we obtain for the phase-shift structure for
5.=5 in the region slightly above threshold.

The two aforementioned sets of data are presented in
Figs. 3 and 4.

As a final note, we point out that Thompson' has
recently proposed an alternative to the BBS approxi-
rnation in the case of nucleon-nucleon scattering. He

suggests that the amplitude and the excharige potential
be approximated by their values at ho= jo——0, but the
Green's function be retained under the ko integral.

Applying this to our problem, we achieve the Thomp-
son approximation by removing the logarithm from the
integral in Eq. (5) with ko ——0. Thus, we obtain

dkp2' 07

(9)
qk ~+ —.L(P+k)' —~'jL(P —k)' —~'j

which is easily evaluated to give

—Ar' 1n((u+/co )I=
coqk((0 —pp )

Kith this approximation, the BS equation then
becomes

E(k) 1n((o~/cu )
cV(q) =C(q)+X dk—

0 M((0 —po —ZC)

7 J. Wright (private communication). Comparing this to the s-wave form of Eq. (3.1) of LTW,R. Thompson, Phys. Rev. D 1, 110 (1970), in particular,
"Method II" on p. 113. we see that this is exactly the BBS approximation.
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We treat single-pion production within the framework of the algebraic realization of chiral symmetry
introduced by Weinberg. Our objective is to test the consistency of Weinberg's hypotheses and procedure
and to see if further restrictions on the axial-vector helicity coupling and the mass matrices result. We con-
clude that the procedure is consistent, at least in the case of production of a single pion in pion-target colli-
sion processes.

I. INTRODUCTION

S TRONG interactions are known to obey an approxi-
mate dynamic symmetry, chiral SU(2) SU(2),

which is realized by inhomogeneous transformations on
the pion field, with the chiral-transformation properties
of other general fields being determined by their iso-
spin. ' In an elegant paper, %einberg' demonstrated how
the dynamic chirality group SU(2)SSU(2) can yield
algebraic consequences. The fundamental hypothesis of
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his procedure is that the scattering amplitude of a
zero-mass pion on a target (stable) calculated in the
tree approximation by means of a chiral-invariant

Lagrangian should not behave at asymptotic energies

worse than the true amplitude; i.e., since one knows that
the individual behavior of the trees is, in fact, bad at
high energies, the basic hypothesis demands that cancel-

lations occur among those terms that have a bad be-

havior at high energies. The cancellation should occur

among the terms coming from the various trees alone

and should not involve the continuum, which does not
contribute to the tree approximation. The high-energy

behavior of the actual scattering amplitude is taken to
be given by Regge-pole theory. Specifically, Weinberg


