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It is shown that the ordinary Born approximation for pn and pp charge-exchange scattering correctly
accounts for (1) the shape of the forward peak for 0< (—#)<u?/2 at P,.=8 GeV/c, and (2) the energy
dependence of the cross sections at =0 in the energy range Pr=2-8 GeV/c. This result is analogous to
the well-known success of the electric Born approximation in 7+ photoproduction. It is then shown that
the simplest interpretation of this surprising result within the framework of Regge-pole theory is in terms
of the fixed poles which are allowed by unitarity in hadronic amplitudes at certain nonsense points of right
signature. Finally, it is shown how such a fixed pole at a nonsense point of one helicity amplitude affects
another amplitude for which the corresponding point is sense.

I. INTRODUCTION

O date, no simple and esthetically pleasing explana-
tion has been found for the sharp forward
(—¢=0) peaks at high energy (s—) in charged-
pion photoproduction' and nucleon-nucleon charge-
exchange scattering.? It is common belief that the
effect is due in some way to the pole in the scattering
amplitude at ¢=p2, which is associated with charged-
pion exchange. The difficulty with this explanation is
that the amplitude for pion exchange has the form
t/(t—u?). The factor ¢, which makes the pion contribu-
tion vanish in the forward direction, is ultimately due
to the pseudoscalar nature of the pion—i.e., to the fact
that the pion has unnatural parity.

Attempts to remove or alter the disastrous factor ¢
have utilized absorption corrections? or pion conspiracy.*
Absorptionlike effects can be introduced into Regge
theory by invoking Regge cuts.® We will not comment
further on these techniques except to note that, in
practice, they necessitate the introduction of a number
of additional parameters beyond those which are
normally present in a particle-exchange or Regge-pole
model.

It is amusing to note that when Boyarski ef al.! first
presented their photoproduction data, they observed
that it was in excellent agreement with the predictions
of the electric Born approximation (Fig. 1), at least
for 0< —¢Su?. The underlying significance behind this
success of the Born approximation has been obscured
by two features peculiar to photoproduction and other
photon processes: the requirements of gauge invariance
and the possibility of weak fixed poles.

It was originally thought that Reggeization of the
pion contribution might be complicated by gauge in-
variance, which requires that the two diagrams of
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20, 518 (1968); R. J. N. Phillips, Nucl. Phys. B2, 394 (1967).
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Fig. 2 must be considered together. It has since been
shown, however, that the Reggeized version of Fig. 2(a)
is separately consistent with gauge invariance.®

The other obfuscation arises because photoproduction
is a “weak” process, i.e., it is usually treated to first
order in the charge (or magnetic moments). This has
led to a folklore of “weak fixed poles.”” The argument
given for these weak fixed poles is that, to lowest order
in the charge e, the weak amplitude never appears
bilinearly in the unitarity condition. Hence, such fixed
poles will not conflict with unitarity. This argument is
always qualified by the statement that these poles
would be ordinary moving poles if electromagnetic
effects were treated to all orders in ¢ but in lowest order
the trajectories condense onto nonsense points. The
amplitude for Fig. 2(b) gives rise to a fixed pole at the
right-signature nonsense point J=0, and it is this
amplitude which is responsible for the success of the
Born approximation at {=0.

It has been shown, however, that the arguments for
weak fixed poles, if carried one step further, would lead
to weak poles which contribute strongly to strong
processes.® This peculiar and unacceptable result can
be obtained by considering the implications of factoriz-
ing the residue of the weak pole before going to lowest
order in e.

The main purpose of this paper is to point out that
the Born approximation for nucleon-nucleon charge-
exchange scattering also is in excellent agreement with
experiment in the region of the sharp spike near ¢=0.
In this case, there is neither gauge invariance nor weak
poles to cloud the issue. Whatever is responsible for
this surprising success of the Born approximation must
be a property of hadronic amplitudes.

Our second purpose is to show that the Born con-
tribution to NN charge exchange can be interpreted
simply and consistently in terms of right-signature
nonsense fixed poles. Such fixed poles are allowed by
unitarity under certain conditions and these conditions
are satisfied in the present example.? We will examine

¢ J. S. Ball and M. Jacob, Nuovo Cimento 54, 620 (1968).

" M. Halpern, Phys. Rev. 160, 1441 (1967); L. Jones and
C. Rebbi, Report No. CALT 68-168 1968 (unpublished).
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F1c. 1. Comparison of the electric Born approximation with
the 7% photoproduction data from 5 to 16 GeV (after Boyarski
et al., Ref. 1).

the amplitudes to illustrate another point; namely,
that a fixed pole at a nonsense point in one helicity
amplitude contributes as well to the asymptotic behavior
of another helicity amplitude in which the corresponding
point is sense.

II. BORN APPROXIMATION COMPARED
WITH EXPERIMENT

We will rely heavily on the NV scattering formalism
of Goldberger, Grisaru, MacDowell, and Wong.? The
differential cross section for unpolarized nucleons is
given in terms of ¢-channel helicity amplitudes ¢,
i=1, ..., 5 by!

d 4
= AL TG 441 141,

where 4[s(s—4M?2) = (MPr)~*=0.4423 mb/P;? and

\
TT'\ n
e
7 P

(a.)

Fre. 2. Feynman diagrams for the electric Born approximation
in 7 photoproduction.

9 M. L. Goldberger, U. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960), hereafter referred to
as GGMW. ) _ _

10 We are using the formalism of “channel II” (i.e., NN — NN)
in GGMW, but we have dropped the bars from their amplitudes
f: and G;. Furthermore, our ¢;* are related to the ¢; of GGMW
by ¢i#=2F¢; Since we wish s to be the energy variable for
NN — NN, we use Eq. (A2) of Ref. 9 with the replacements

s,E)aemw — (,5,1).
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Py, is the laboratory momentum of the incident nucleon.
The connection between the helicity amplitudes ¢
for NN — NN and the amplitudes G; which satisfy
the Mandelstam representation is
f1=3(1t—¢st) = E?G1—2p*Go+-M?G3,
fo=3(pat+02t) = (BGo+M*Go)z—p*Gs,
fs=3[¢s"/ (142) —¢s"/ (1—2) ]= — p*Gs, 1
fi=3[¢s"/ (1+2)+o4"/ (1 —2) ]= Mo+ E*Gy,
fo=$sM/[EQ=2)]= = M2 GrrkGo),
where p, E, and z are related to the Mandelstam vari-
ables by (=4F2=4(p*+M?), u=-—2p2(1—z), and
s=—=2p*(142).

For the processes we are considering, the s, #, and
% channels correspond to pn— np, pi— 7ip, and
pp — nii, respectively. The ¢ channel is thus pure I=1.
The Born terms are given in GGMW to be

t-channel 7+ exchange:

G1=4(g2/41r) ([.L2—t)_1 : Gz=Gs =G4=Ga=0 :
u-channel 7% exchange:

G1=Go=—G3=—Gy=Gs=5(g%/4r) (W2 —u)™!,

2

where p?=0.0195 is the pion mass squared and g?/4w
=14.840.3 is the rationalized and renormalized pion-
nucleon coupling constant.!

In addition to the pion poles, the Born approximation
includes a contribution from the deuteron pole in the
s channel. This contribution is expected to be small.
The Feynman amplitude for the deuteron’ quoted in
GGMW, however, has an s dependence which exceeds
the established bounds on scattering amplitudes.!®
This difficulty can be traced to the D-wave component
of the deuteron amplitude. The momentum factors in
the Feynman amplitude which guarantee correct thresh-
old behavior for this component are responsible for the
anomalous asymptotic behavior. At the position of the
deuteron pole, however, the D-wave component amounts
to only a few percent of the S-wave component. In
order to obtain a realistic estimate of the deuteron
contribution at high energy, we set the D-wave/S-wave
ratio equal to zero. In this approximation, the effect of
the deuteron is less than 39, of that of the pions above
Pr=3 GeV/c. Consequently, we omitted the deuteron
from further consideration.

V. K. Samaranayake and W. S. Woolcock, Phys. Rev. Letters
15, 936 (1965). These authors find f2=0.082240.0018, which
leads to the quoted value of g2/4x.

2 R. Blankenbecler, M. L. Goldberger, and F. R. Halpern,
Nucl. Phys. 12, 629 (1959).

13 See, for example, the fixed angle bounds summarized by
R. J. Eden in High Energy Collisions of Elementary Particles,
(Cambridge U. P., Cambridge, England, 1967). Also, compare the
comments in the last paragraph of Sec. IV of GGMW with
their Eq. (A3).
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The contribution of the pions to the helicity ampli-
tudes is given by

{-channel =+:

bit=—ut = — (/4 —1/ (2],
dsi=¢s'=¢s'=0

u-channel 70: 3)

St =¢st=¢5'=0, ¢ot=0st=—5(g/4m)[—u/(u2—u)]
=~ _%(gz/%) )

where, in the last expression, we used —u/(u2—u)=21
for small ¢ and large s(pn — np) or large u(pp — nn).
With this slight approximation, the differential cross
section can be expressed simply as

2

do g3\?
— =%7r(MPL)2<——) 1+Xx2-X)
dat 4

=(76.6 mb/PrA)(1+X?—X), (4)

where X = —2t/(u2—1t).

This result is compared in Fig. 3 with the differential
cross section for pn— np at Pr,=8 GeV/c observed by
Manning et al.2 The error bars on the data shown in
Fig. 3 reflect relative errors of 5-109, and do not include
an over-all systematic uncertainty of 309,.2 To aid the
reader’s eye we have indicated in the figure the effect
of raising the data by this amount. The agreement of
the Born approximation with the data near t=0 is
remarkably good. This agreement is even more re-
markable in that no free parameters have been used.
Furthermore, the energy dependence of the forward
cross section for pn— np and for pp— w7 predicted
by the Born approximation, do/dt(¢=0)="76.6 mb/P 2,

pn->np do/dt vs AT
.25
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Fi16. 3. Comparison of the Born approximation with the pn charge-
exchange data at Pr=8 GeV/c (Manning et al., Ref. 2).
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Fic. 4. Comparison of the Born approximation with the pn
and pp charge-exchange data at {=0. The error bars on the
pn— np data reflect the systematic uncertainties reported in
Ref. 2(Manning ef al.) and Ref. 15 (Friedes et al. and Palevsky
et al.). The pp — nn data are the extrapolations to ¢=0 reported
in Ref. 14 (Astbury et al.) which already reflect systematic
uncertainties.

is also in good agreement with experiment above 2
GeV/c 21415 as seen in Fig. 4.

The unexpected feature of our result is that, at {=0,
the sole contribution to the charge-exchange cross
section comes from the wu-channel (neutral) pion-
exchange amplitude.

The predictions of Eq. (4) disagree violently with
the data in Fig. 3 for (—£)>3}u?, primarily because of
the growth of the #-channel pion Born term. In Fig. 1
we see that an analogous disagreement occurs in the
photoproduction case for (—#)>u2. The resolution of
this difficulty can be found readily in a Regge theory
with evasive trajectories. In such a theory the f-channel
pion contribution, which we have treated in particle-
exchange fashion, will be replaced by its Regge form.
The pion trajectory lies slightly below o =0 in the region
of interest and its Regge residue function can be

4 pp— nn data: P. Astbury, G. Brautti, G. Finocchiaro,
A. Michelini, D. Websdale, C. H. West, E. Polgar, W. Beusch,
w. E) Tischer, B. Gobbi, and M. Pepin, Phys. Letters 23, 160
(1966).

15 pn — np data: J. L. Friedes, H. Palevsky, R. L. Stearns, and
R. J. Sutter, Phys. Rev. Letters 15, 38 (1965); H. Palevsky,

J. A. Moore, R. L. Stearns, H. R. Menther, R. J. Sutter, R. E.

Chrien, A. P. Jain, and K. Otnes, bid. 9, 509 (1962).
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expected to differ somewhat from that given by Eq. (3),
apart from the factor ¢. Other trajectories known to be
important here are those of p and 4, which lie above
that of the pion. These trajectories give contributions
to the amplitude (¢1¢-+¢2f) which are finite at =0, but
small in this energy region,'¢ as well as contributions
to other amplitudes which vanish at /=0. Thus, nearly
all of the contributions of evasive trajectories vanish
at t=0,17 exposing the #-channel pion Born contribu-
tion. The observed decrease in the cross section away
from =0 is the result of destructive interference be-
tween the #-channel pion term and the growing = and
4, Regge terms. The p Regge term is responsible for
the difference in the cross sections for pn— np and
pp — ni.

We have made no attempt to fit the data for
(—£)>%u? by utilizing these trajectories. Introducing
the necessary parameters would only detract from the
simplicity of our result—namely, the success of the
Born approximation for (—#)~0.

The question remains as to how the #-channel pion
Born term itself fits into Regge theory. The contribu-
tions of this term to the various helicity amplitudes
have integer power behavior in s (s° for the leading term
in the present case). This is just the behavior associated
with fixed Regge poles. If fixed poles were forbidden,
then, necessarily, there would be other contributions
(e.g., resonances) to the amplitudes which would
combine with the #-channel pion Born term, in the
sense of Dolen-Horn-Schmid duality,'® to form one or
more ordinary trajectories. If fixed poles were allowed,
however, then the Born term could contribute to these
poles and the integer power behavior associated with
the Born term could persist asymptotically. As we will
see in Sec. III, the possibility of interpreting the
u-channel pion Born term as right-signature, nonsense
fixed poles in the f-channel partial-wave amplitudes
follows in a natural way from the Froissart-Gribov
projection of that term. Furthermore, this possibility
is perfectly consistent with the idea of DHS duality,
provided that the fixed poles are allowed.

That #- or s-channel effects can reflect themselves as

t-channel fixed poles is an appealing prospect for Regge
theory. Since these effects need not be associated with
definite /-channel quantum numbers,they automatically
“‘conspire.” With the conspiracy thus accounted for by
fixed poles, one can now treat all ordinary trajectories,
including the pion, on the same evasive footing.

16 Tt should be noted that at asymptotic energies, it is this
contribution of the p and 4, which will dominate the cross section
at ¢=0.

17In the photoproduction case, all contributions of evasive
trajectories vanish at {=0. At asymptotic energies the photo-
production cross section should exhibit a forward dip to the Born-
approximation value.

18 R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968), hereafter referred to as DHS.
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III. FIXED POLES AND BORN APPROXIMATION

It was shown recently that nonsense fixed poles of
right signature are often allowed by unitarity.® Indeed,
it happens that such fixed poles are forbidden by
unitarity only when the initial or final state of a reaction
is a two-body state having the lowest threshold asso-
ciated with a given set of quantum numbers and when
the spins of the particles in that state are sufficiently
small. These fixed poles have nothing to do with moving
cuts in the J plane. Instead, they owe their existence
to the fixed cuts which appear explicitly in the definition
of the continued partial-wave amplitudes. The con-
ditions, from which one can determine whether or not a
fixed pole is allowed at a particular nonsense point in a
particular amplitude, are given in Ref. 8.

The conditions which allow fixed poles are always
satisfied at nonsense points of the NN scattering ampli-
tudes. The reason that fixed poles are allowed here is
that there are many-body states below the NN thresh-
old. As we will see, the #-channel pion pole contribution
is perfectly compatible with an interpretation in terms
of fixed poles. There is a feature of the NN amplitudes,
however, which makes it worth our while to examine
in detail just how this compatibility comes about.

The feature in question is a rather general property
of amplitudes for the scattering of spinning particles
and relates to the nature of the subtractions in the
fixed-¢ dispersion relations satisfied by helicity ampli-
tudes. This matter has already been examined by
Mandelstam in the context of pion-nucleon scattering,'®
but it acquires new relevance now that fixed poles are
known to be allowed.

The partial-wave expansion of the definite parity
amplitudes f; of Eq. (1) is given by®

St =2 QT+ D (OP @),
Fit2)= £ QT+’ OP (@),

fs(t2)= JZ=1(2J FO?(OEPS)Y —he’ OP Y/
[27U+1)], ()

fulte)= JZzil QIO O @PS) —h?(OP Y/
[27(J+1)],

fslt2) = JZ=1(21 +D[—2he’ (OPS I/ [27(T+1) ]2

These equations can be inverted so as to express the
partial-wave amplitudes directly as projections of the

19 S, Mandelstam, Nuovo Cimento 30, 1113 (1963).
2 1. J. Muzinich, Phys. Rev. 130, 1571 (1963).
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invariant amplitudes G; 2:

ho"(t) =E2g1J—j)?l:fgz’_l—l-(f-l-l)gz”l]/
QT+1)+M2g,7
hay? (1) = B[ J go" "+ (J +1) g7 1]/ (2T +1)
+M2[]g4.l—l+ (]+1)g4J+1]/
(2J+1) _ngs.f ’
has? () = — p2gs” +MPL(T 1) g7+ T g7 4]/ (27 +1)
+ LA T/ (2T +H1),
bt () = —p*L(T+1)gs” "+ gs"H ]/ (2T +1)
+M2g2’+E2g4’,
s (1) = M2[T (J+1) 2227+ 1) ]

XI:g2J+l_g2J—l+g4J+l_g4J—1]’ (6)
In the last equation the quantities g;” are given by
1
O [ YPEGED, j=1,2.05. O
—1

The amplitudes G; satisfy a Mandelstam representa-
tion with no arbitrary subtractions. We assume that ¢
is so chosen that the G; satisfy fixed ¢ dispersion rela-
tions with no subtractions:

1 Gt )d 1 Gi(,s)ds
Gi(tz)=— / -_—t .
™ J g

uw —u Tt §—s$

®)

The lower limits of integration are chosen low enough
to include the #- and s-channel Born terms. As usual,
one now can define the analytically continuable partial-
wave amplitudes of definite signature z\*(J,f), which
bear the same relation to the quantities

0, 0) = Q2 p?)! f (6. () £ G ()]
. 0,80

74
XQJ(I-I————)du’ )
2p?
as the i’/ (f) do to the g;/(f). Hereafter we will not
specify the signature superscript.

From Eq. (5) one immediately can read off the energy
dependence of the contribution of a Regge pole to the f;.
A pole at J=a in ko(J) [h1u(J)] contributes a term
s® to f1 [fo], one at J=a in ks contributes s« to fs,
whereas a pole in %1(J) [h2(J)] contributes a term
se 1 to f3 [fa] and a term s*72 to f4 [ f3]. In addition,
the point J=0 is a sense-sense point for %, and %11, a
nonsense-nonsense point for z; and %ss, and a nonsense-
sense point for Z;s.

When one examines the leading contribution of the
u-channel pion Born term to the various f;, one finds
that is contributes a term s° to f; and f,, and a term

THE BORN APPROXIMATION 177
s7! to f3 and f, (there happens to be no contribution
to f5). The Born contributions to f; and fi can be
interpreted readily as right-signature nonsense fixed
poles in 21(J) and h9y(J). The feature which requires
clarification is the Born contribution to fi and fs at
J =0, which is a sense point for %¢(J) and k11 (J).

What we wish to emphasize is that these contribu-
tions have nothing to do with Kronecker deltas in
J. Rather, they are merely subsidiary contributions of
the perfectly analytic nonsense fixed poles in the other
amplitudes. In order to establish this point, let us
examine the analytically continued version of Eq. (6)
near J =0, which is a nonsense point for /s, %1, and /1s.
Keeping only the terms which are singular at J=0, we
have

hao(J,0)=M2go(J —1,0)+E2gs(J—1,0),
h1(],t)%"—P2g3(]—1,t) )
o (J )= —5M2T P [ga(J —1,0)+g:(T —1,) ]

The quantities g;(J —1,f), t=2, 3, 4 each have a pole at
J =0 which arises from the Legendre function of the
second kind in Eq. (9). The #-channel pion contribu-
tion to these poles is obtained by using Gs,3,4 (t,u)
= (4, —, —)3(g¥/4m)s(s' —u?) in Eq. (9), as dictated
by Eq. (2).

Clearly, the poles of gs,3,4(J/ —1,f) at J=0 are in one-
to-one correspondence with the nonsense fixed poles in
hoa(J 1), hi(J,8) and J~12h1,(J,¢) (although the u-chan-
nel pion contributes oppositely to g, and g4 and so does
not contribute to %;2). These same g; contribute to the
following differences between the continued and physi-
cal partial-wave amplitudes for which J=0 is a sense
point:

ho(0,0) —he’ (1) ={ —p*T [£2(J —1,)) —g2" () I} 7=
=—pVg:(T=1,0)]1] 1=,

(10)

F11(0,8) — A1y (£)
={E[g:(J—1,0) —g (D) ]
+M2 [T =1, =g () T} r=o
=[Eg(J—1,0+M*Tg(J —1,0)]] =0,

(11)

where we have used the fact that Jg,7~1(f) =0 at J =0.
Since these differences derive solely from the nonsense
poles associated with /s, %1, and ki, they can always
be obtained by analytically continuing these three
amplitudes to their nonsense points. Furthermore, when
the Sommerfeld-Watson transformation is carried out
on the partial-wave series for f; and fs, and the dif-
ferences specified in Eq. (11) are properly taken into
account, the leading contributions of the Born terms
to fi1and f, are reproduced, as expected.

The reason that nonsense fixed poles can contribute,
albeit finitely, to other amplitudes at sense points can
be traced to the fact that the transformation matrix
defined in Eq. (1), which connects the kinematic
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singularity-free helicity amplitudes to the usual
invariant amplitudes which satisfy the Mandelstam
representation, is z-dependent.. Thus, if the ‘“Mandel-
stam” amplitudes G; satisfy fixed-¢ dispersion relations
with no subtractions, the fixed-f dispersion relations for
the helicity amplitudes f; will generally require sub-
tractions. These subtractions are not arbitrary, however,
for the G; have no such arbitrariness. As we have seen,
these pieces of the f; can be calculated explicitly from
the continued partial-wave amplitudes.

It follows from the above discussion that the current
procedure of Reggeizing helicity amplitudes which are
free of kinematic singularities must be amended slightly;
not only must provision be made for including the
allowed fixed poles at nonsense points, but also for
including the subsidiary contribution of these poles to
amplitudes for which the point is sense.

IV. DISCUSSION

We have seen that the Born approximation simply
and successfully accounts for the pn and pp charge-
exchange data near ¢=0, quite in analogy with the
success of the electric Born approximation in =+ photo-
production. At {=0 the dominant contribution to the
differential cross section is the #-channel pion Born
term.

We are not proposing, however, the unrestricted use
of the Born approximation in the high-energy domain.
There are, we believe, two features of the present
problem which allow the #-channel pion Born term to
survive more or less intact and dominate over other
contributions to the amplitudes. First, there is the
evasive nature of ordinary trajectories which requires
most of the contributions of leading trajectories to
vanish in the forward direction. We cannot prove that
ordinary boson trajectories never participate in (parity-
doubling) conspiracy, but the present analysis lends
support to such a hypothesis. In contrast, fixed poles
which reflect crossed-channel singularities automatically
conspire.

The second feature which is responsible for the success
of the Born approximation in the case considered is that
fixed poles are allowed at right-signature nonsense points
of the ¢-channel (VN — NN) continued partial-wave
amplitudes. The #-channel pion Born term, by itself,
is consistent with an interpretation in terms of these
fixed poles. We have seen that this is so provided that
proper account is taken of the subsidiary contributions
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of these nonsense poles to amplitudes for which the
corresponding point is sense.

There are cases where it appears that the Born terms
might have an important effect but where they cannot.
An illustrative example, because it is similar to the one
considered above, is the s-channel reaction pp— pp,
i.e., double charge-exchange scattering. In terms of the
t-channel (pp — pp) amplitudes, the Born contributions
are given by

—1(g2/4r)
s-channel 7% Gi1=Gy=—G3= —G4=G5=~2-—g
(u*—s)
—3(g*/4)
u-channel 7°: Gi=—G,= —G3=G4=G5=—2 .
(u2—u)

The cross section in the Born approximation is essen-
tially independent of #, for small ¢ and large s, and is
given by

(do/dt)Born=230 mb/P,2,

or three times that for pn charge-exchange scattering.
In this case, however, we do not expect the Born
approximation to have any meaning at high energy
because fixed poles are forbidden by unitarity in the
J plane of the {-channel (pp — pp).® The reason that
fixed poles are forbidden here is the old one: There is a
range of ¢ where elastic two-body unitarity holds and
the spins involved are too low for the fixed cuts to play
their role. The Born prediction given above is a factor
10® larger than the experimental cross section for
pp— pp at Pr.=3 GeV/c, do/dt(t=~0)<0.1 mb/P2.2

The examples we have considered suggest that it is
possible for a Born term to be meaningful at high
energies if and only if it is consistent with the contribu-
tion of allowed fixed poles. Clearly, this does not imply
that only Born terms contribute to fixed poles. For
example, it may be that the residues of the fixed poles
which are important in pn and pp charge-exchange
scattering are dominated by the #-channel pion Born
term only in the region near /=0. Whether or not this
is so will be determined by phenomenology or by means
of finite-energy sum rules. At any rate, even such a
limited Born-term dominance of the residues of some
allowed fixed poles provides a simple mechanism for
resolving some of the puzzles now facing Regge-pole
theory.

2 E. Escoubes e al., Phys. Letters 5, 132 (1963).



