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Minimal Factorized Veneziano Amylitudes for the Reactions
Aiee —+ Aiee& Aiar —+ eeoc& cree —+ cree*
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Explicit minimal amplitudes are constructed for the reactions A Im —+ AIx, A ~x —+ xm, and x~ —+ ~7r. All
amplitudes have correct Regge asymptotic behavior corresponding to the (degenerate) o ftr-a3ectory
dominant in all channels. Signature is systematically enforced to leading order so that the poles on the
leading trajectory have the correct spin and parity. The parity-conserving helicity amplitudes for A&w —+

A&~ factorize, and multichannel factorization for the three coupled amplitudes is enforced for the leading
trajectory. Multichannel factorization requires the extension of the A&~ —+ x~ amplitude, but the param-
eters in the new amplitude are all determined, except for two which can be identified with the (imdepeedent)
App7r couplings Gz and GD. Two acceptable A &m ~ A&~ amplitudes are found, each involving two arbitrary
constants in addition to f~=f~, Gq, GD, and the three AIA Ip couplings gI, gg, and g3. These couplings are
not constrained by the model except for one relation connecting GD and g3. These results are compared with
the hard-pion analysis by Schnitzer and Weinberg,

I. INTRODUCTION
' 'N the present paper we derive an coop/scit and
~ ~ complete "minimal" set of Veneziano amplitudes
for the related reactions Ale ~Agr, Ale —&we, and
~~ ~ ~m. %e assume these amplitudes to be dominated
by the (degenerate) (p, f) trajectory. The resulting
amplitudes have manifest crossing symmetry, signature,
correct pole structure, and asymptotic behavior corre-
sponding to the leading Regge trajectory. The factoriza-
tion relations are satisfied by the leading trajectory for
the parity-conserving helicity amplitudes in A &w ~A &w

and for the coupled-channel amplitudes Ale —& A~+,
A&~~ ~x, and ma ~ mx. The A~pm couplings Gq and
G~ and the A lA~p couplings g~„g., and g3 are aribtrary
except for one relation connecting ge and Gn. [These
constants are defined in Eq. (2.8).] Two additional
arbitrary constants appear in the A~m---+ Alw ampli-
tude, for which two acceptable solutions are found.

The complex relations required among the coeffi-
cients of the beta-function expansion of the amplitudes
fol A]7l ~ A gr given in a previous paper' have been
simplified and solved to eliminate a,ll dependent quanti-
ties. In addition, the overly stringent signature re-
quirements of I have been relaxed so that signa, ture is
now systematically enforced to leading order. In Sec. II
we derive two explicit families of amplitudes for
Agr —&Agr in terms of the couplings f,=f&, GB,
G&, g&, g&, g3, and two other arbitrary constants, and
note the constraint GD'=4f, gs. Next we ask whether
the minimal A~+ ~m.x amplitude of I is compatible
with multichannel factorization if we describe mx

scattering by the simple amplitude given by Lovelace'
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and by Shapiro. ' As suggested by Whippman,
multichannel factorization provides further strong
constraints on the problem. Although the minimal
A gr ~ xm amplitude of I satisfies factorization, it
requires the relation Gq ———,'m, 'G~, so it is reasonable to
make this amplitude more flexible by adding further
terms (Sec. III). Assuming' that the p trajectory
satisfied n{rit~') = ss, one finds that adding terms of the
form (a+bs+ct) Si,, etc. , does not lead to a new
amplitude once all conditions are taken into account.
However, adding terms like 822 times a, quadratic
polynomial leads to the basic amplitudes (3.8), which
contain five arbitrary constants in addition to the
(unconstrained) coupling constants f„Gs, and Gii.
In Sec. IV it is found that multichannel factorization
a,llows us to eliminate all five arbitrary constants from
the Alm~~m amplitude. Therefore, the full set of
amplitudes involves two arbitrary constants in addi-
tion to the relevant couplings among A~, p, and w,
which are constrained only by the aforementioned
relation connecting GD and g~.

Since the axial-vector and vector currents are inti-
mately related to the A~, x, and p mesons, it is of
interest to compa, re our results with those of "hard-
pion" calculations of Schnitzer and Weinberg (SW)'
and others. Our couplings have only one constraint
(which can no doubt be removed by adding more
terms) so there can be no contradiction. However,
since the "smoothness" assumption eliminates the
coupling gg, our amplitude would have to have GD ——0
(6= 0 in the notation of Ref. 6) which does not lead to
acceptable experimental results. This mild conQict can

~ J. Shapiro, Phys. Rev. 179, 1345 (1969).
4 M. Whippman, Phys. Rev. D 1, 701 (1970).
~ This is an assumption which cannot be derived from the Adler

condition unless ad lzoc assumptions are made concerning the
Veneziano amplitude. Similarly, the Lovelace-Shapiro amplitude
(Refs. 2 and 3) for mm scattering amounts to assuming that
n(gg ') = ~. See Ref. 1 for a critical discussion. In the present work
we analyze our equations using the relations»zz'=2mp, m =0.

6 H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 {1967},
hereafter referred to as SW.
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be equally well regarded as due to the ad hoc character
of the smoothness approximation or the ad hoc omission
of "higher" terms in our Veneziano amplitudes.

A number of papers ' have purported to show that
Veneziano amplitudes predict or give results identical
to various schemes such as p-meson universality, chiral
symmetry, hard-pion results, etc. These claims have
been based on amplitudes too simple to satisfy the
general criteria given in the first paragraph. (Similar
remarks' apply to the "mass quantization rules" of
Ref. 11.) Our considered opinion is that the Veneziano
amplitude erst of all has to satisfy these basic criteria
and that secondly it should be flexible enough to
accommodate such desirable features as universal p

couplings, etc. Indeed, the problem in developing
Veneziano amplitudes for spinning particles has mainly
been to reduce the number of arbitrary constants to a
tractable number. In the present work we have been
able to reduce the number of constants to six, having
begun with about 50 constants. In order to perform this
reduction, it has been essential to study in systematic
detail the far-reaching algebraic relations arising from
the basic constraints. We also emphasize that analysis
of only part of the problem almost inevitably leads to
overconstrained or inconsistent amplitudes.

The end result is a set of model amplitudes param-
etrized in terms of several important couplings, the
trajectory slope, and two extra constants. We do not
have a "theory" of these reactions, nor do we satisfy
unitarity. The Pomeranchuk trajectory has no place
in this model. In view of the large number of intricate
physical conditions met by our "minimal" amplitudes,
the latter may be regarded as fairly economical in the
number of required constants.

In addition to the papers already mentioned, or
referred to in I, we call attention to the study of

px ~ px by Abers and Teplitz" and the reaction
+m —+ ~+ analyzed by the authors. "Other works con-
cerned with the scattering of vector and scalar par-
ticles are given in Refs. 14—17. References 18—20 are
concerned with possible relations between chiral

' D. W. McKay and W. W. %ada, Phys. Rev. Letters 23, 619
(1969);23, 1008(E) (1969).

8 V. S. Mathur, P. Olesen, and M. A. Rashid, Nuovo Cimento
64A, 285 (1969).

9S. P. DeAlwis, D. A. Nutbrown, P. Brooker, and J. M.
Kosterlitz, Phys. Letters 298, 362 (1969).' Fayyazuddin, Riazuddin, and Masud Ahmad, Phys. Rev.
Letters 23, 103 (1969).

"M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.
Letters 22, 83 (1969).

'2 E. Abers and V. Teplitz, Phys. Rev. D 1, 624 (1970).
"P. Carruthers and E. Lasley, Phys. Rev. D 1, 1204 (1970).
'4 A. Zee, Phys. Rev. 184, 1922 (1969).
"G. Costa, Nuovo Cirnento Letters 1, 665 (1969); G. Costa,

C. A. Savoy, and A. Villani, ibid. 2, 137 (1969).
"A. Capella, B. Diu, J. M. Kaplan, and D. Schi8, Nuovo

Cimento 64A, 361 (1969).
'7 J. Kosterlitz, Nucl. Phys. 813, 129 (1969).
"H. J. Schnitzer, Phys. Rev. Letters 22, 1154 (1969).
' R. Arnowitt, P. Nath, Y. Srivastava, and M. H. Friedman,

Phys. Rev. Letters 22, 1158 (1969)."J.L. Rosner and H. Suura, Phys. Rev. 187, 1905 (1969).

symmetry, partial conservation of axial-vector current
(PCAC), and the Veneziano model.

T s(s, t,u) = -', L3«;f,'(t,s)+3f,'(s,u) —f (t,u)],
T (s,t)u)= elf'(t)s) f'(s,u), —
T,s(s, t,u) =—f,'(t,u) .

(2.1)

The t-channel isospin amplitudes are

T (t,s,u) = ,'$3f,'(t u)+—3«,f,'(t s) f,'(s u)$, —
T,'(t,s,u) = «,f,'(t, s) f,'(t,u), —
T,s(t,s,u) —=f,'(s,u) .

(2 2)

«, =+1 (i= 1, 2, 4), «;= —1 (i=3). The only conse-
quence of crossing symmetry not explicit in (2.1)
and (2.2) is the Bose symmetry requirement

f,'(s,u) = «;f,'(u, s).
Examination of the parity-conserving helicity ampli-

tudes" reveals restrictions on the asymptotic behavior
of certain linear combinations of the invariant ampli-
tudes necessary if they are to be dominated by the
positive normality p ftrajectories. T-hese restrictions
simultaneously ensure that the leading trajectory has
the correct spin-parity content and eliminate its wrong-

parity partner. The expected asymptotic behavior of
the invariant amplitudes is

s channel: T~, T2—Tg, T3—T4~t (') ',
2T3—T2—T4 (2.3)

t channel: T, T s

(2.4)

These restrictions do not fully determine the allowed
behavior of the individual T; which must, however,

~' M. Gell-Mann, M. L. Goldberger, I". E. Low, E. Marx, and
P. Zachariasen, Phys. Rev. 133, B145 (1964).

II. VENEZIANO AMPLITUDE FOR Agm~ Aym

In a previous paper' we constructed a Veneziano
amplitude for A&x scattering satisfying a large set of
physical requirements. Here, we complete the analysis
of that amplitude, simplifying and revising the previous
results. (For details of the notation and conventions
employed, see I.)

We review the construction of the amplitude. Crossing
symmetry enables us to write s- and t-channel isospin
amplitudes for A~~ scattering on the mass shell in
terms of eight independent functions. We take these to
be the s- and t-channel I= 2 amplitudes (four for each
channel). This choice is convenient. since the I=2
Veneziano amplitudes have no direct-channel poles in
the (assumed) absence of exotic resonances. invariant
amplitudes having definite isospin in the s channel may
then be written
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obey the Regge bounds

T ~]a(a)—1 Sa(t)

~]a (8)
7

T ~]a(a)

T4~ ]a(8)
)

sa(t)—2

sa(t)—1

Sa(t)

(2 5)

T2, T3, T4

T1 T2—T3, T3—T4-t (')—'

2T3—T2—T4-t (')—'
(2 6)

Although we have not investigated this question in
general, proper signature for the present t-channel

amplitudes is guaranteed by Bose symmetry in con-
junction with the asymptotic conditions (2.3) and (2.4).
In I, we further required T, (2=2, 3, 4) to have odd
signature to order 3 (') '. This was(done to simplify the
algebra. Subsequent analysis has shown that this
assumption, combined with the factorization conditions
given in I, leads to a vanishing d-wave Ape coupling
constant G~ when we normalize our amplitudes to the
p pole. For the sake of greater generality, we drop this
(unnecessary) restriction.

Working out the asymptotic expansions of our ampli-
tudes (in the mild approximation a=bsts, s= 2) and

imposing the conspiracy and signature conditions
(2.3), (2.4), and (2.6) yields 15 independent relations

22 g „(s,t) =z'(2N —n(s))z'(23 —n(t))/r(424+23 —n(s) —n(t)).
"Our initial amplitudes may be obtained from those in Kqs.

(4.6) of I by putting u»' ——b»' ——c»'=b»'=c»'=b2&'=c&z'=b&&'
=Qsl = baal c31 ~3& tb4& =b4& =c4& =b4&

The additional restrictions on linear combinations of
the T; conta. ined in (2.3) relative to (2.5) are what we
termed "conspiracies" in I and bear no relation to the
usual conspiracies between Regge trajectories. Since
(2.3)—(2.5) must be satisfied for all isospins, 3;f,*(t,s)
and f (s,l) must separately have the listed asymptotic
behavior.

We construct a Veneziano-model amplitude for 31m
scattering which is free of ancestors and double poles
by writing f and f,' as sums of (polynomials)X (beta
functions). Our initial amplitudes are the most general
Bose symmetric amplitudes having the asymptotic
behavior of (2.5) and constructed from 811, 812, and
8»,22 multiplied by polynomials linear in s, t, and u.
Such a set of amplitudes was given in I, but 16 of the
46 constants occurring in the previous amplitudes may
be eliminated, "with mo loss of generality, by exploiting
the identity 8» ——8»+8». We defer writing the
explicit form of these amplitudes until a later stage of
the analysis.

Requiring the leading trajectory to have proper
signature, we find that the following linear combinations
of invariant amplitudes must have odd signature to the
indicated orders:

aCp~~ = fpeabgP p sr 8"sr

ZAp~= Gsegbcsr A p p +GDe b 2r 4ct414A p 8 p

eCg~p=s~b (gi4Ap cl A p "+g A 8 A p"
+gscl"A '8 A '8 "pb')

(2.8)

These can be used to calculate Born terms for
Assr —+Assr and A1A1 —+srsr (given in I). Matching
these Born terms with the spin-1 portions of the
Veneziano amplitudes at the p pole, we can relate the
conventional coupling constants to the Veneziano
parameters with the results

Gs'= —Lais'+ (1/2b)b12']/b, GD'= 2bsi'/b,

2GSGD Lass +ass' —(1/2b)(bss +bss +2C22 )j/b i

fungi cis'/2b ) kg——s b, i'/2b, ——

f,g 2 = —L2 (as i +ass'+ ass') —2a42'
—(1/b) (b33 +b23 +sb42 +C22 )]/4b.

(2.9)

Here the relations (2.7) have been used to cast these
results in terms of independent Veneziano parameters.
Note that we have the new relation

GD'= 4fsg3 ~ (2.10)

In I it was shown that the Adler consistency condition"
leads to the constraint

a12 als + (C13 b12 )/b (2.11)

provided that we drop terms of order 2N 2/223, 2 and make
the approximation 233~2= 2223,2 (in addition to the usual
ones a=bsrt, 2=2). The same result continues to hold
here. In I, we (inadvertently) imposed odd signature on

~ S. L. Adler, Phys. Rev. 13'I, 81022 (1965).

among the remaining 30 parameters:

all g12 + (1/4b) (b13 b12 ) p

bis'= —
2 (bis'+bis') )

~21 ~43 ~32 ~22 C32 ~42

C22 = —C42 )

C32 = —2C22 —633

8 4$ 8'

(2.7)
C43 4C22 642

a43'= —2a32' —g21'+ (1/b) (bss'+ —', bss'+2b42'),

g32 —a21 +a2] +g32' —(1/2b)(bss'+b23 +C22 +b33 ) p

a41'= as i'+ 2a, i'+ 2a3, '—(1/b) (bss'+ c22'+ b s3'),

a33 = 2(g21 +a21 +a32 ) 2a42
—(1/b) (2bss'+ b23'+ sb 42'+ C22')

12 +13 ~21 ~21 +32 ~42 b21 b12 ~18 ~23

b32', b33', b42', c13', and c22' are to be regarded as the
independent variables.

Define 2 1'-, 2 1A 1p, and pew couplings by means of
the effective Lagrangian densities:
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the amplitude T& to order t ~'& '. This, seemingly minor,
specialization gives two more relations between the
parameters entering Ti Lin addition to (2.11) and the
first two of Eqs. (2.7)), and leads to the relation
Gs'= p4m, 'f,gi. This result is discussed (and rejected)
in Sec. V.

Next we investigate the consequences of requiring
that the helicity amplitudes for A&x ~Azx factorize
for the leading trajectory. The factorization conditions
here take the simple form

C'= A p'(SbA i'+J),
2CD =A p'(SbBis+H —J)

O'= —A~'II

(2.12)

(see I for the more general form and a description of
the notation) since E,= Ii = G= 0 follows from Eqs. (2.7).
Adding these three equations yields (C+D)'
= SbA &'(A i'+Bi'), which simply enforces the con-
sistency of the first three of Eqs. (2.9).Using H = 4b»'/b,
the third of Eqs. (2.12) becomes (b2i')'= (c»')' or
b»'= &c» . This sign ambiguity results in two families
of Veneziano amplitudes, each satisfying all our re-
quirements, and each reducing the solution of I when
more stringent signature requirements are imposed.

case 2:

pip'= —bi i' ~ api'= 2 (bii'+bis') .

(2.13)

The eight relations contained in (2.9), (2.11), and
(2.13) may now be used to eliminate further of the
original 30 parameters. Making extensive use of identi-
ties such as (m, '—$)Bi.($,t) = (m, '—u)8»($, t), we find
that the resulting amplitudes depend on two indepen-
dent combinations of parameters rather than the antici-
pated seven (30—15—S=7). This is not surprising
since the expansion (polynomials)X (beta functions),
although useful for calculational purposes, tends to
mask the true number of independent parameters due
to the presence of such identities. (Siinilar remarks

apply to the usual Veneziano expansion in terms of
generalized beta functions. ) The resulting amplitudes
may be written

We no longer have D= —,'A2' as in I, but the preceding
result implies D=~2A~', and the final factorization
condition becomes 4C = & (SbBi'+H —J). The im-

plications of factorization may then be summarized by
case 1:

c»' b»'——m 2( aip'+ap, ')+api' —(b p'p+bpp')/b

= 2(b i'i+hip')+b2i'/b;

fi'(t, $) = L
—2b-'Gs'$)Bi2 ($,t)+ (—(2bGs'+2 f g i)+PqGa'+ 2b'Gs'+bGsGD bf gp-

+,'(a4p'+m, 'b4p'-)]3+2bf, gi$}8»($,t),

f '(, )=(bG"+lC:G '~bG.G -bf g.+.'( —+,'b -")3X(,'—.)}8 (., )+(. ),
f,'(t,$) = ($2bGsGn (ap, '—m, 'bp—p') +-,'GD'j+-', bGiiit}Bip ($,t),
fp'($u) = (t 2bf gp 2b—GsGii+—4 (a4p'+m, 'b4p')+2bGii'u& ', bGD'$($ —m-, ')}Bi&($u)+($ ~ u), (2.14)

fp (t)$) E(app mp bpp ) 2bGD t+bGD $jBlp($qt) —4bfpgpBpl($, t),

fp'($u) = P—2bf gp+4i (a4, '+m, 'b4, ')+ ,'bGri'ujBi, ($u-) ($++ u), —

f4'(t)$) = (f 2bGsGr) (api' m—p2bpp')W pG——gP)+2bGD2t&2bGrP$}Bip($, t)+f(a4p'+mp'b4p')+2bGxP$78»($)t) )

f4'($&u) = ($2bGsGD 2bf,g&+4 (a4&'—+m, 'b4&') j+2bGD'u& ,'bG& (m-, '—$)}B-i,($,u)+ ($ ~ u) .

Upper and lower signs refer to cases 1 and 2 of (2.13),
respectively. The two arbitrary parameters are
(app' —m, 'bpp') and ( 4 a+p'bm4 ).pThe coupling con-
stants Gs, Gn, f„gi, and gp are unrestricted, while gp

is given by (2.10).

III. VENEZIANO AMPLITUDE FOR Ai~ —+ m~

A simple Veneziano amplitude for the reaction
A gr ~ xw was constructed in I. Here we present a more
general amplitude which allows factorization between
a simple mx —+ mr amplitude and the A gr ~A ~x

amplitude of Sec. lI, but does not require the special
relation G8—~~m, 6& found previously.

Crossing symmetry may be used to express the six
invariant amplitudes for A iir ~ n.m. (two for each
isospin) in terms of two independent functions g(t,u)

and g'(t, u). The $-channel isospin amplitudes are

Mp ($)tl u) =g(t)u),

3Ei($,t,u)=-,'(g(t, $)—g(t, )$+2 g( ,$u)],

Mp($, t,u) = -,'( ,'L (tg, )—$g'(t, ))$—-3g($,u) —g(t,u) },
Mp ($ t u) =g (t~u)

Mi'($, t,u) = 2$3g(t, $)+g'(—t,$)+2g'($,u) j,
tlf o'( t u) = —-'( 'L3g(t $)+g'(t $)j—-3g'($ u)+g'(t») }.

We found previously that a satisfactory solution,
satisfying crossing symmetry, proper asymptotic be-
havior, and the Adler self-consistency condition, could
be obtained by allowing only the single beta function

Bii(t,u) to occur in g(t,u) and g'(t, u). At that time, we

suggested that a more general amplitude constructed
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(3Mz+Mz') (s,t u) = (—1)z(3Mr+Mz') (s,u, t),
(Mr Mr') (s, t,u—)= (—1)'+'(Mr Mz') (—s,u, t) .

(3.3)

Inspection of (3.1) reveals that these equations are
equivalent to 3g (t,u)+ g'(t, u) =3g (n, t)+g'(u, t) and
g(t,u) —g'(t, u) = —g(u, t)+g'(u, t) or

8] = 282—ay)

by' ——2c2—bg)

ci' ——2b~ —ci )

b3' ——2c3—b3,

es' ——2fs —es,
/

83 = G3)

02 = 28'—Qg )

C2 =2by Cg)

bg' ——2cg—b2)

c3' ——2b3 —c3)

fp'= 2es —fp,

(3.4)

The required Regge asymptotic behavior, (3Mz+Mz')
(s,t,u) t &') and (Mz —Mz')(s, t,u) t &' ', is equiva-
lent to g(t,s) t &' ' and g(s,u)+g'(s, u) t i' '. The
former requires

e3 ——b&
——0, (3.5)

while the latter leads to fp+ fp'=cr+cr' ——0, which is
guaranteed by (3.4) and (3.5). Proper signature for the
leading trajectory is automatically imposed by the Bose
symmetry conditions together with (3.5).

As usual, we assume that our (on-shell) amplitude is
a satisfactory vehicle for analytic continuation to the
Adler point. More precisely, we work in the approxi-
mation m =0, in which ca,se the Adler point coincides
with the physical threshold. At the point (s,t,u)
= (ns~', 0,0), we have

(Ms —M s') = (3M r+ Mr') = (M p
—M p') —=0,

from B&~ and 8» could probably satisfy these same
restrictions without producing GB/Grr=pm, s. This
turns out not to be the case. Such an amplitude cer-
tainly contains the previous one as a special case and,
before the various restrictions are imposed, contains
twice as many parameters as the previous solution
(12 versus 6). However, the beta functions Brr(s,u)
a,nd B»(s,t) automatically vanish at the Adler point
(s,t,u) = (rig', 0,0) owing to the (approximate) relations

rr (m~') = s, n(0) = —,', with the consequence that requiring
the helicity amplitudes to vanish at this point gives
just one restriction on the model. For amplitudes con-
structed from Bi2 and A~i, the Adler condition instead
yields three relations [cf. with (3.6)7 which eventually
lead us to recover precisely the result of I with no gain
in generality.

Consider instead the model arising from

g(tiu) (al+brt+Clu)812(ttu)+ (a2+bpt+cpu)B21(t)u)
+ (as+ bst+csu+dstu+ est'+ fsu')Bss(t, u) (3.2)

and a corresponding definition for g'(t, u) with
ar, . . . , fp

—p a&', . . . , fp'. The Bose symmetry require-
ments are most conveniently expressed in terms of the
isospin amplitudes 3Mz+Mz' and Mr+Mr' Thev.
take the form

since these combinations are antisymmetric under
t ~ u. Requiring (3Mp+ Mp'), (Mr —Mr' ), and
(3Mp+Mp ) to vanish at this point, we find

ap = —4(ar+ a,),
m~'fs= 2ar+6ap+-m~'(2c2 —cr—cp),

mg'bp= 6ar+2ap+2m~sbr,

(3.6)

respectively. Consideration of the Adler point (s,t,u)
= (O,no~', 0) yields no further relations.

Normalizing our Veneziano amplitude to the p pole,
we obtain

fpGs = —(ap+ c2mp')/b,

f,Gg) —2c r/——b.
(3.7)

Of course, s=m, ' is not a physically accessible point,
so this procedure also assumes an analytic continuation.
The product g, g~, of coupling constants"" of the
J"=0+p daughter e may be easily computed by going
to t=m, ' in the I,=2 amplitudes (see I). We no longer
have gg, ——0.

Equations (3.4)—(3.7) serve to eliminate 19 of the
original 24 parameters, allowing the amplitudes to be
written as

g (t u) = [ar+brt ——',b fpGg)s]Brp (t u)+ [as—(2b'fpGs

+2bap)u]Brp(t, u)+ {—4(ar+ as)

+ (6bar+ 2ba,+2br) t+cpu+ dstu

+[2b'(a +ar)+2b'f Gg) 4b'f,Gs-
—bcs]u jBps(t,u),

g'(t, u) = [(2ap —ar)+ ( 4b'fpGs 4—bap br)t- —
+ -', bfpGDu]Bre (t)u) +[(2ar—as) —bfpGn t

+ (2br+ 2b'f, Gs+ 2ba p)u]B pr (t,u)

+{—4 (ar+ a.)+ (2cp—6bar 2ba2 2br)—t-
+ (12bar+4bap+4br cs)u+d ptu-
+ [2b'(ar+ ap)+ b'fpGD —4b'fpGs

—bcp](2t' —u')) Bpp(t, u) .

(3.8)

IV. FACTORIZATION

"These coupling constants are de6ned by the e6ective I.a-
grangian densities 2, =g, em m and gg, =gg, A„O&mc.

"R. Z. Roskies /Phys. Rev. Letters 21, 1851 (1968)g shows
that Ot(s) must have an imaginary part which increases with s.

The Veneziano representation viola, tes unitarity since
it incorporates a narrow-resonance approximation in
the form of trajectory functions having vanishing
imaginary part. "We have seen that it is, nevertheless,
possible to impose factorization of the helicity ampli-
tudes in the reaction Aim. ~3~x for the leading trajec-
tory. Here we study the implications of factorization of
the p-trajectory contribution to the coupled reactions
xw ~ ~x, 2 ix —+ m~, and 2 ix —+ 2 i~. We use the simple
mx —+ mx model of i,ovelace)' Shapiro, ' and others. The
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(Mar+)' MrMoor+,

z, (Mii+)' 2MrMiir+,
(4.2)

as s, —& ~. Here, I can be either 0 or 1, but, in this
limit, the I=O amplitudes are just 2 times the corre-
sponding I=1 amplitudes (except, of course, for a,

change in the signature factor between I= 0 and I= 1)
for all three reactions, and we lose nothing by restricting
our attention to I= 1.

In order to write Eqs. (4.2) in a compact form, we
make a series of definitions. For I,= 1, we let

M ~k(bt). &y

(3M,+M,') -+ C, (bt) &p&+

(Mi —Mi') -+ Cg (bt) &'&—'+
Ti-+ ti(bt) &'&—'+
T2 ~ t~(bt) ~ &'&+

T, T,~.(bt)-—& &-i+ ~

2T3 T) T4 ~ u(bt) &'—'+—. . (A)r -+ A)r),

X7f ~ 7i 7l 7

(A ~ -+ )r)r),

(4.3)

as t~ ~. Here we have suppressed a common factor
(1—e ' &'&)I'(1—n(s)) which should be understood
to multiply each term on the right. Employing Eqs.
(2.16) and (9.16) of I, the factorization conditions
(4.1) are easily found to take the form

s-channel amplitude having I= 1 may be written

M'(s, t,u) = —2fp'(L1 —n(s) —n(t)7Bii(s, t)
—L1—n(s) —a(u) jBii(s,u)}. (4.1)

We may express the requirements of factorization
either in terms of the residues of our amplitudes at
n(s) =I for arbitrary integral I or, equivalently, in
terms of the asymptotic forms of these amplitudes at
large t (or s,). We adopt the latter method. Factoriza-
tion for the leading trajectory requires that the ampli-
tudes for the three reactions obey

&2
———,'6~'7

r,= 2bGsGi) R GB(1 —n(s) $,
u= L1—n(s)]i —Sbfpg2+ (a42'+mp'big')

+GD~)2n(s) —1j},

(4.6)

d3 ——0. (4.7)

Given d3 ——0, the first factorization condition then
reduces to a set of three equations in the two unknowns

y and (a4),'+mp'b42'). These equations are uniquely
solved if we put

(4.8)y=4bfpGs+ fpGr).

In treating (4.5), it is helpful to note that (in our
approximations) the kinematical factors may be
written p'(co+E)2= L2n(s) —3j'/16b' and E(cu+E)
=$2)&)(s)+lj/4b. Using (4.7) and (4.8)„C2= (+fpGn)
n(s) —(2bf,Gs&f,GD), so C&C2+kv is only quadratic in

n(s) Therefo. re, if (4.5) is to hold for all s, the coefficient
of n'(s) in Ci2 4kt& mus—t vanish, i.e.,

x=0. (4 9)

It is easy to verify that (4.7)—(4.9) guarantee that
CiC,+kv=CP —4kt) ——0, so that factorization contains
no further restrictions.

It is perhaps surprising that our model allows a
solution to the factorization problem, since (4.6) con-
tains only three parameters which must satisfy a
rather complicated set of equations. )Counting powers
of n(s) in Eqs. (4.4) and (4.5) for the model polynomials
of (4.6), we would expect factorization to yield nine

independent constraints on our model amplitudes. )This
suggests that we may have, in some sense, a set of
minimal amplitudes for the three coupled reactions.
Equations (4.7)—(4.9) may be written

where x=2(a—i+a2) c&/—b 4bf—pGs+ fpGr) and y=12al
+6bi/b. Since kti and ku are at most quadratic in

n(s), Eq. (4.4) requires the quadratic terms in C, to
vanish:

CP+2kbti+ ,'ku= 0, - (4 4)

p'((u+E)'(Ci' —4kti)
—2LE((s+E)/b](C&C2+k))) =0. (4.5)

d3 ——0,
12ai+6bi/b = 4b fpGs+ fpGr) )

2 (ai+ a2) c3/b = 4bf—,Gs f,Gr) . —
(4.10)

These equations are quite general, and depend only on
the requirements of leading order signature and proper
asymptotic behavior. In a specific model, k, C&, C2, . . .
will be particular polynomials in n(s).

For the models of Eq. (4.1) and Secs. II and III, we
find

k=2fp',
Ci=4$ xn(s)+ (—x+-,'fpGn)7,

C2 = (2da/b')n'(s)+ (y —4b fpGs —3d8/b')n (s)
+ ( y+2bf pGs+d~/b—'),

ti = —bGs'+ (c)(s) —1)[Gz)'/Sb &GsGD fpg2-
+ (1/Sb) (a42'+mp'b4~') j,

We then use (4.10) to eliminate d3, bi, and c3 from (3.8).
These amplitudes then depend on two parameters
ai and a2. Using the identity (m, ' t)B»(t,u) = (—m,' u)—
B2i(t,u) and g'(t, u) depend only on the combination

B~i(t,u), we find that g(t, u) and g'(t, u) depend only
on the combination (ai+a&). Finally, employing

(m, ' u)B»(t, u) = (4m, '—t u)B»(t,u), ev—en —this com-

bination cancels out of both g(t,u) and g'(t, u), leaving
the amplitudes completely determined in terms of the
conventional coupling constants

g (t)u) = $(-', b'f Gs+6b fpGD)t ', bfpGDu/B»(t)u)——
2b'fpGsuB»(t)u)+ P—(3b'fpGB&'3b fpGD) t

+ ( 4b'fpGs+b fpGr))u jB—22(t,u),
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g'(t, u) = ([—(14/3) b'fpGs& sbfpGg)]t+ ', bf-pGDu)

XBis(t)u)+ ( bf—~Gat+$(10/3)b'fpGs
a sb fpGr)]u) Bsi(t)u)+ (L (2g/3)b'f~G&

+2b fpGg)% sb fpGr) jt+P(20/3)b'fpGs~ sb fpGD
—bf,Gi) ju) Bss (t,u) .

Here (as elsewhere) the upper and lower signs refer,
respectively, to cases 1 and 2 for the A~x —+ A~x ampli-
tude. Note that if Gs/GD= —',m, ' and we take the lower
sign in (4.1), the coefficients of B2s(t,u) vanish and we
recover the minimal solution of I

Li.e., g (t,u) = 2b'f„G—suB„(t,u)

g'(t, u) = —2b'f„GB(2t—u)Bii(t, u) j.
Thus the solution of I permits factorization with
A~w —+ A~w for case 2 of Sec. II but not case 1.

V. COUPLING-CONSTANT RELATIONS AND
MINIMAL VENEZIANO AMPLITUDES

The most attractive feature of the Veneziano model
is that it enables one, for the first time, to write analytic
expressions for strong-interaction scattering amplitudes
which simultaneously display crossing symmetry and
proper Regge asymptotic behavior in all channels, in
addition to the pole structure suggested by Feynman
diagrams. However, for reactions involving particles
with nonzero spin or isospin, the first two features are
not automatic and must be ensured by imposing string-
ent conditions on the model parameters. Because of the
strong interrelationships arising from these conditions,
one cannot properly construct a Veneziano model for
a scattering process without treating all possible
isospin states and all invariant (helicity) amplitudes.
Conversely, if one writes a Veneziano representation
for just a few isospin states or invariant amplitudes,
one risks violating restrictions due to crossing symmetry
and amplitude "conspiracies" which relate the ampli-
tudes being treated to those ignored. We find it more
reasonable, if not demonstrably more correct, to treat
each invariant amplitude and all isospin states on the
same footing —forming each out of the same beta func-
tions —and then to apply the various physical restric-
tions to the whole system of amplitudes.

Adopting the viewpoint of the preceding paragraph,
we believe that many papers employing the Veneziano
model are open to criticism. We consider one particular
example in detail. Reference 7 considers only the single
charge state m A+~ x A+, and writes Veneziano
representations for only two of the four invariant
amplitudes. In our notation'~ these amplitudes are

Ti ~+(s,t,u) = —2f,giL2 —n(s) —n(t))
XBsi(s,t) —bGs'Bii(~, t), (5.1)

T4 ~+(s,t,u) =—', GDs(1 —n(s) —n(t)7Bii(s, t) .
7 NcKay and ada use the Pauli metric; thejr invariant

In order to compare with our results, note that

t T I)) .s+=i Tr))=1+, i T I) .0=e fa .(t s) (5.2)

amplitudes are related to ours by A =T2, 8=2T3, C=T4, and
D= T), while their coupling constants are f, ,& w& = f»—
f ~~(Mwi —

g GsA(Mw) —Gs an(i God(Mw) — G

It is easy to show that (5.1) can correspond to a special
case of our amplitudes (2.14) only if G8= Gr) —f,g—i 0, ——
in which case Ti ~+ T4 ——~+=0 in—(5.1). This corre-
sponds to no A ~pm coupling and to a p which does not
couple to the isospin current of the A~. Of course, this
comparison does not prove that the amplitudes of
Ref. 7 are "wrong, " since it implicitly assumes that the
amplitudes T, and T4 (not treated in Ref. 7) contain
only S», 8», and 8» multiplied by polynomials linear
in s, t, and u (T. hese amplitudes affect Ti and Ts
via the conspiracy and factorization conditions. ) We
have not excluded the possibility that more complicated
models, in which further terms 8 „are admitted to
T2 and T4, might satisfy all our physical requirements
and yet reduce to the model of Ref. 7 for the amplitudes
T ~—a+ and Z

~-a+

Nevertheless, we believe that the conclusions of
Ref. 7, in particular the statement that "the Veneziano
representation appears to require universal p coupling
in order to satisfy the Adler-Weisberger (AW) low-
energy theorem, "are unjustified. In this paper, we have
presented a Veneziano model for the reaction
A~x ~ A~~, treating all charge states and all invariant
amplitudes. Besides satisfying the requirements of the
first paragraph of this paper, our model also satisfies the
AW theorem in our approximations: Eq. (7.13) of I
shows that the AW theorem leads to a single condition
for A~a scattering. In the approximation nz =0, this
condition is simply that the amplitude T& vanish at
threshold for I,=1. In the same approximation, the
physical threshold is (s,t,u)= (m&s, 0,mz'). Assuming
that the p trajectory satisfies n(m ') = is and n(mz') = ss,

we find that Bis(m~ m~') =Bsi(m~, m~ )=0 and
Bis(m~', 0) = —Bsi(m~', 0). Therefore, for the model
of Eq. (2.14), fi'(m~', m~') =0 because of the vanishing
of the beta functions, while ft'(O, m~') =0 because the
coefFicients of B~~ and 82~ cancel. We therefore have a
model of wider scope than that of Ref. 7, which satisfies
the AW theorem, but does not require p universality
(the parameters f, and gi are unconstrained). Since we
believe it likely that satisfactory Veneziano amplitudes
(in the sense of paragraph one) can be constructed for
any meson scattering without requiring special con-
straints on the low-spin couplings, we are reluctant to
accept any coupling constant relation derived from
special minimal Veneziano amplitudes. Our reluctance
is only increased when the model in question fails to
discuss all the amplitudes relevant to a full, crossing-
symmetric, factorized Veneziano model which ensures
that the leading trajectory is not parity doubled.
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Other papers treating vector-scalar scattering, e.g.,
Ref. 15, treat only the single invariant amplitude (here
Tt) appropriate to the Adler condition.

In the same spirit, one should refuse to consider, for
example, Ax scattering by itself, but should instead
study a set of coupled reactions (such as we have here),
being careful to include the restrictions of factorization.
There is, of course, no end to this process of expanding
the scope of the treatment in order to achieve self-
consistency. This is just another indication that a theory
of the strong interactions must at once be a theory for
all strongly interacting particles. Increasing calcula-
tional complexities dictate that, at present, one must
stop somewhere, and we have restricted our attention
to the three reactions treated above which form a
relatively closed system.

A number of treatments of the reaction A~x~xx
in the Veneziano model" """present model ampli-
tudes for this process which may be written in the
form (polynomial linear in s, t, and u) && 8». The present
treatment shows that such amplitudes are not general
enough to allow factorization between the Lovelace
xw ~ x~ amplitude and the A~m. —+ A~m amplitude
given here (except, perhaps, if stringent restrictions are
imposed on the coupling constants —e.g. , G8/Gn ——-', m, '
as mentioned at the end of Sec. IV).

It is clear by now that the Veneziano model is suffi-

ciently flexible to treat processes involving nonzero
spins and isospins, and that the demands of crossing

symmetry, proper asymptotic behavior, no parity
doubling, etc., can be met by amplitudes constructed
from relatively few terms. In light of our present work,
it seems likely that, by adding a sufhcient number of
satellite terms, one could construct a Veneziano
representation to produce any arbitrary (small) set of
low-spin coupling constants while still meeting these
demands. On the other hand, it is possible to construct
"minimal" Veneziano amplitudes satisfying all other
physical requirements and yet "predicting" relations
between low-spin coupling constants which are in poor
agreement with experiment or other theoretical calcula-
tions. We shall give a few examples of this latter
statement.

In Secs. II—IV, we have found a set of Veneziano
amplitudes which describe the contributions of the pf-
trajectory to a set of three coupled reactions in terms
of two arbitrary parameters and the coupling con-
stants f„G8, Gn, gt, gs, and gs. These coupling con-
stants are unrestricted except for the relation Gn'= 4f,gs.
This restriction can undoubtedly be lif ted by append-
ing an appropriately chosen term to the A&x —&A&x

amplitude, and we emphasize that (in our opinion)
any failure of this particular relation ought to be at-
tributed to an overly restrictive Veneziano amplitude
and any success understood as an accident.

2 Fayyazuddin and Riazuddin, Phys. Letters 288, 561 (1969).
29 C. J. Goebel, M. L. Blackmon, and K. C. Wali, Phys. Rev.

182, 1487 (1969).

Nevertheless, we find it instructive to compare
various Veneziano models with the hard-pion calcula-
tions of Schnitzer and Weinberg. ' SW present a one-
parameter model for the pox, Ape, and AAp vertices.
We can use their results to express the coupling con-
stants of (2.8) in terms of their parameter 3:

fp (1/v——2)F 'mp(3 —3)/4,
gr= (1/V2)F. 'm„,

Gs= ——,'m, 'F. '(3+2),
g, = —(1/V2) F 'mp (3+2),

G =-'6F

g3 ——0.

(5.3)

The quantity Ii here is —,
' times the corresponding con-

stant in SW. The relation (2.10) then implies 3=0,
which corresponds to I'(2 i —+ toir) = 190M eV, P (p —+ s.ir)
= 79 MeV, and (gr/gr, )'= 16/9, in poor agreement with
present experimental values. " " LPerhaps it is worth
noting that SW's work yields g3 ——0 because g3 corre-
sponds to a term in the AA p vertex cubic in the momen-
tum and therefore excluded from SW's vertex by their
smoothness assumption. "Thus, even if we accept the
hard-pion analysis, it may be unfair to use it in its
present form to interpret (2.10).j In any event, we
get a Veneziano representation for arbitrary Gs, f„
g~, and g~, including of course those values arising from
(5.3) for some fixed 3, but also to others which do not
correspond to a single value of 6. Thus, our Veneziano
model neither predicts, nor contradicts Lexcepting
relation (2.10)$ the results of SW's current algegra,
or its extension by other authors" who weaken the
restrictions of Ref. 6.

As an example of a minimal model which makes
"bad" predictions, consider the A~z —+A~a model of
I. (In retrospect, this is just a special case of the present
model. ) There we found the relations Gs'= s4m, 'f,gt
and G& ——0. As noted previously, these arose from
imposing signature relations more restrictive than the
minimum ones needed to guarantee signature for the
leading trajectory, but there is nothing in the Veneziano
representation itself which prevents us from making this
specialization. Comparing these with (5.3), we see that
the former yields 3= —

s (1&i+26), which is certainly
incompatible with Ref. 6 since all our coupling con-
stants are real. (The latter, of course, yields 8=0.)
Perhaps more serious than this incompatibility with

30gp and gL, are the transverse and longitudinal couplings of
F. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).

3r J. Ballarn et al. (Phys. Rev. Letters 21, 934 (1968)g, as
amended by the private communication of Dr. A. Brody quoted
by P. Horwitz and P. Roy (Phys. Rev. 180, 1430 (1969)j, gives
(gr/gs)'=0. 64+0.23 and Pg=140&30 MeV."J.Augustin et cl., Phys. Letters 28B, 508 (1969) gives 1',
= 112&11.5 MeV.

"Later work, which replaces the smoothness assumption of
SW by use of the Bjorken limit, also leads to vertices correspond-
ing to g3

——0. See P. Horwitz and P. Roy, Phys. Rev. 180, 1430
(1969);S. G. Brown and G. B. West, i'. 180, 1613 (1969).
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hard-pion calculations is a violent conQict with p
universality. Inspection of the effective Lagrangian
densities (2.8) reveals that we must have gt —— f,—if the

p is to couple universally to the isospin current densities
e,s,~'(*)8„~'(*) and —e,s,Ar„'(x)B„At'"(x) of the m.

and Ar mesons. In that case, Gs'= —4sm, 'f,'. Since the
two sides of this equation are opposite in sign and

f,NO, we conclude that the minimal amplitude of I is
incompatible with universality.

The new amplitude, which treats signature systemati-
cally to leading order, does not lead to the aforemen-
tioned convicts with hard-pion results or with p uni-
versality. It is clear that to signature the amplitude to
the next order would require many further terms to
prevent overdetermination of the amplitude. But at
this level (the first-daughter level) other trajectories
probably enter in an important way, modifying the
entire analysis.

We have also investigated the positivity of residues
on the leading trajectory, and found no ghosts. Since
the computation is lengthy and detailed, we only
sketch the technique. First one uses the effective AEm.

couplings defined in I to compute the pole structure due
to a particle R. One notes that the amplitude T~
(coeKcient of g„„) involves the square of the coupling
(as)s and is independent of bs. Next one verifies that
the sign of this residue does not alternate with J by
using explicit forms for the high-spin propagators.
Next one compares with the Veneziano amplitude for
T& by isolating the residue of the highest power of s.
We thus verify that all residues have the same sign.
In a similar way, 5z' appears as the coefficient of the
leading asymptotic behavior of T» 4. The positivity
of daughter residues is very much in doubt. Our whole
attitude is to ignore pathological properties of daughter
singularities.
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The possibility is discussed of a "second-order" unitarity contribution which can be at least comparable
to the conventional "Grst-order" term for high-energy, large-momentum-transfer lepton-hadron elastic
scattering. A crucial ingredient is a recent diffraction model for virtual-current, hadron elastic scattering
in which the diffraction peak broadens with increasing virtual mass.

I. INTRODUCTION

'N this paper we discuss the calculation of a certain
~ - "second-order" weak or electromagnetic contribu-
tion to elastic lepton-hadron scattering which, in a
particular kinematic regime, can become comparable
or exceed in strength the usual "first-order" contribu-
tion. This possibility is a direct consequence of a diGrac-
tion model' for the nonforward, small-angle scattering
of a virtual current and spin-averaged hadron in which,
for fixed momentum transfer t, the diffraction peak
broadens with increasing (large, spacelike) virtual-
current mass ~q'~. In particular, we shall consider the
diffractive contribution of the two-virtual-current ex-
change, calculated from unitarity, to the absorptive
parts ImFi~(s, 1) of elastic eP and PP amplitudes (see
Fig. 1). It is this contribution, involving a sum over
all allowed hadron intermediate states, whose strength
will be compared with the corresponding single-current
exchange. The applicable kinematic region will be high
energy s and large momentum transfer ~1~, but for
small values of the ratio t/s.

' R. W. GriKth, Phys. Rev. 188, 2112 (1969).

Before relating the details, let us erst give a qualita-
tive description of the model comparison in, say, elastic
ep scattering of this dominant second-order process and
of the first-order one-photon exchange. Despite the
fact that the former process is a priori smaller by a
factor n, it turns out to be "poirrgike" in t so that the
latter process will be relatively damped for large
enough (t ~

(and energy s) by virtue of the proton form
factor. In our model, which describes the current, spin-
averaged proton component of the unitarity graph, the
relevant invariant amplitudes (structure functions) are
peaked functions of the ratio E.'(qs) (1~ (

t (/( q'), where
R(q') is the diKraction radius given for /arge, spacelike
q'. LFor small q'~O, E(q') is given by a c. haracteristic
vector-meson —proton diffractive radius. $ In deep-in-
elastic electropro duction' involving virtual photons
(with helicitiy h), this same radius enters into cross
sections in a way which is contrasted with the rapid
decrease of form factors for excited resonances:

o (ys(q') p —+ anything) rc R'(q') 1/ t
q'

j .
s E. Bloom et al. ; Phys. Rev. Letters 23, 930 (1969); 23, 935

(1969).


