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Using techniques developed in an earlier paper, a new one-parameter eikonal representation is derived and
its high-energy behavior is studied. It is shown that by also taking t large, a Regge-like behavior is obtained
in the crossed channel. The procedure of 6rst making s large and then t large is investigated more closely by
comparing the exact fourth-order amplitudes with those obtained in the relativistic eikonal approximation.
It is found that the latter predicts the correct behavior in the region of large s, for all values of t. When a
similar procedure is applied to the full M„l,(s,t), one obtains in an appropriate domain an asymptotic ampli-
tude having a dual character: The bound states appear as poles in the s channel and lie on the Regge trajec-
tory in the t channel. In particular, for electron-positron scattering the corresponding energy levels coincide
with those obtained recently by Brezin et al. The asymptotic behavior of the eikonal function itself is also
studied.

I. INTRODUCTION AND SUMMARY
' 'N an earlier paper' it was shown how a covariant
& ~ generalization of the eikonal approximation, long
familiar in potential scattering, ' could be derived from
quantum held theory. A number of other authors have
obtained similar results, using different methods.
More recently, some progress has been made in in-
cluding radiative corrections to relativistic eikonal-type
approximations, ' and in applying such approximations
to the calculation of bound states. ~

In the present paper we consider an alternative form
of relativistic eikonal approximation (REA) which has
the virtue of involving an auxiliary integration over a
single parameter (in contrast to the four-dimensional
integration over a space-time point g, encountered in I)
and which facilitates study of questions regarding
asymptotic behavior. In addition, we study some
aspects of the high-energy behavior of the amplitudes
obtained with the REA in perturbation theory, where
the results can be compared with the exact asymptotic
behavior. ' Such a study also sheds some light on the
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possibility of obtaining Regge-like behavior in the
crossed channel by starting with an eikonal form in the
direct channel.

We first review briefly the results of I which are of
interest here. Consider the amplitude for scattering of
spinless particles a and b, both of which can emit
scalar mesons of mass p, with coupling constant g. Let
M„denote the sum of all those Feynman diagrams in
which exactly rt mesons are exchanged, i.e., M„(s,t) is

the sum of all diagrams of order 2e which involve no
radiative corrections. It can be written as an integral
over virtual meson rnomenta k; (i= 1, 2, . . . , n) whose

integrand, apart from a factor 5(tt —Pk, ), is a sum of

products of meson propagators (k s—rrts+ie) ' and
particle propagators L(p&K)' —rn'+se] '. Here p is

an external four-momentum and K=+'k, , where the
prime denotes a partial sum. If the integrand is written
in a suitably symmetrized form, and if in the resulting
expression we drop terms in the propagators L(p&E)'
—m'+ie) '= (&2P K+E'+is) ' which are quadratic
in the internal momenta, i.e., make the replacement

(&Zp E+E'+is) '~ (&2p E+se) ', . (1.1)

then the corresponding value of the integral, designated

by M„"~, may be written in a compact form and the
sum on e may be carried out to yield

approximation. These authors show that the REA gives, for each
graph, the correct leading high-s behavior. In the sum of the nth-
order graphs, the leading logarithmic contributions cancel;
although for each individual graph the REA gives the remaining
s (" ') term with the wrong coefficient, it predicts correctly the
coefficient of s &" n in the sum. [See also B. M. Barbashov
and V. V. Nesterenko, Dubna Report No. PZ-4900, 1970
(unpublished). g
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Here A~ is the meson propagator and

g2
x= d4k

(2zr)' k ti +ze

~ ~

1 1
x — +

2—p, k+ie +2p, ' k+iep

1 1
xl . +-, (13)

k+2Pb k+. ze 2P—b' k+ze

with P„Pb the initial momenta, P.', P,' the final
momenta, q=P, P,', t—=q', and s= (P,+Pb)'.

As already mentioned in I, the computation goes
through without any essential change if the diagonal
terms in kzC'=P'k, "k,=P,~,'k,"k,+P,' k,' are kept,
i.e., if we make the replacement

Combining (1.4) with (1.1'), one obtains of course an
analogous approximation

M.;b'(s, t) =g'
expzx —1

da e' ('-~')

where x' is obtained from x by replacing the quantities
&2p k by &2p k+k' in (1.6). In Sec. II 8 we obtain
the high-s behavior of g [Eq. (2.16)) and exhibit the
Regge-like behavior of M, ;i, in the domain s))t))masses
[Eq. (2.21)).

In Sec. III we compare the asymptotic behavior of
the exact fourth-order amplitude Mkzi=M +Mb,
where M and M' denote the contribution of the ladder
diagram and crossed-ladder diagram, respectively, with
M„b"'=M.;g +M„gb obtained in the REA. As is well
known, with f 6xed and s ~ ~,

(&2p.E+Ez+ie)—i + (a2p. K++ k z+ie. )
= [Q'(a2p k,+k,')+ie) '. (1.1')

The resulting approximation M„b,'(s, t) has a form
analogous to (1.2):

where
M (const)ek(t; zk') lns/s,

g' ' ds
~(t;I ')=

16zrz o Zkz —ts(1 —&)

(1.7)

expzx —1
M„g'(s, t) =g' dex e "*6z(oe; zz) x'

where

(1 2')

g2
x'=

(2zr)'
d4k

kz tkz+ze

where

M„g(s,t) =g'
expiX —3.

du e'~&' ~ )- (1.5)

g2
x=

(2zr) 4

sgz($2 2q /c) 1 1
d4k—

k' —k'+k —zp. k+i zp. ''k+k )

1 1
xl -+

Ik —2p k+kz+ze 2p
' k+kz+zel

1
xl- +, .-I (13')

Ik2pb k+k'+ie 2pb' k+k—z+ie)

In Sec. II A we show that a considerably simpler
looking result is obtained if in the meson propagator
[(q—pk, )z—tkz+ie) ' entering the expression for
M (s,t), the off-diagonal terms k;.k, are also dropped,
i.e., the replacement

[(q—Qk, )'—Zk'+ie) '

~ [q'+P( 2q k, +k—z) t+ki )e—' (1.4)

is made. If the approximation (1.4) is combined with
(1.1), the sum on zz—call it M„i,—can be performed
without further approximation and we obtain

lnt lns
iV„k

S
(1.10)

valid for s))
l
tl))all masses, to the region t)) lsl))all

masses, yields the correct behavior for large t in the
crossed (annihilation) channel. However, it should be
noted that a corresponding result does not hold for
either M or M„i, .

In Sec. IV we discuss the relation of our work with
that of other authors. In particular, we show that the
REA (1.2) coincides with that of Ref. 3 in the forward
direction and describe how the formulas are related for
$~0. We also discuss the asymptotic behavior of x and
3f„i, and write down the analog of the one-parameter
representation for potential scattering.

To conclude this section, we remark that although
the eikonal approximation is designed to be useful for

It is readily shown that M„i, has precisely the same
asymptotic behavior as M, with the same coefFicient
zk. (t) which appears in (1.7). Furthermore, since the
crossing relation M'(s, t)=M (u, t) with u= (P,—Pb')'
is not destroyed by (1.1), we have M„zb(s, t)
=M„q'(u, t), so that the familiar cancellation of
logarithms in the direct channel continues to hold in
fourth order in the REA: M„q"&(s,t) u(t)/s, just as
for Miz'(s, t) Also inter. esting is the fact which emerges
from (1.7) and the observation that, ignoring constant
factors, for t~ ~,

zk. (t) lnt/t,

namely, that the analytic continuation of the right-
hand side of the equation

1
X

2pb k+ie

1
(1 6)—2pb' k+ie

o See, e.g. , R. J. Eden, Flzglz Energy Collzszons of Etenzentary
Particles (Cambridge U. P., Cambridge, England, 1967), and
references quoted therein.
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s to be large. A rather striking example of this fact is

M„& considered in Sec. IV, appropriately modi e or
e —

' . In this case we have, onelectron-positron scattering. n
replacing no by Pp 1n (4.9),

1 I'( —P,+1) t I' —'

r(p) 4V

3f„.i, ("+')=
(++1)!

d'k . d'k

[q' —p'+Q(kP —2q k;)]

xII &(k,) (2 3)

H, in a, spirit similar to that used in arnvmg a,t 1.2

k "k with iW j in the propagator in (2.1), we obtain a
Inodified approximation

where X' is a small photon mass and

[(4 ' —)]"' (1.12)

I t d f the four-dimensional Fourier representation
I f the denominator in (2.1), for t e d

nator in . we ma u~ use the one-dimensional in egr
representation

The quantity po ss obtainedd from (4.13) for no, by
changing g' to e and mu ip y' g flti l in by the factor
4 q=2s —4m', corresponding to the exchange o

photons.
as poE uation (1.11) has poles in s at —Po+1= —n,

i,1.11, as a egge
d'n l set ~0—1=/, with /= 0, 1,trajectory and according y „0—=, ' l=0 1

we recover precisely the sam e levels wit e=
Thus (1.11) exhibits a dual character

7 . cter with the bound
th s channel lying on the Regge trajectorystates in e s

obtaine rom ed f the asymptotic behavior in the
has the feature that the partial-w ave

am litude obtained by projecting (1.11) with I, ,c
p 0&1&m—1 so that the bound states

'
h the correct physical angularare associated wit e c

momenta. A comparison of. no(s) and n~s; m, L q.
(1.8)] is made in Sec. IV.

' —'+Q(k,'—2q k;)

= —z da exp{iu[q' —p'+g(k, '—2g k,)]) . (2.4)

M„i,("+')=
(v+1)!

d~ ~~~(a2—v')(ig)n (2 5)

g= —z e'd'k "'" ""A(k). (2 6)

Summation on nin (2.5,) then gives

3f„k(s,t) =g'
expz+ —1

ae ia(t—p, 2)
) (2.7)

Substitution o . inf (2 4) into (2.3) yields a fa,ctorized
integrand and

2 QQ

II. MODIFIED EIKONAL APPROXIMATION

A. One-Parameter -Representation

To obtain the one-parameter eikonal representation
mentioned above, we reca

roximation (1.1)3f ("+') obtained in Iy using the approximation
[viz. , the Fourier transform of Eq. ,3.

~„k("+')= — de J
- 440„

g

(n+1)!
n n

x[( -2 k')' t'] 'll &(») -(2.1)

which coincides with Eq. (1.5).
ilarly, if we use (1.1') and accordingly replace

R(k, ) in (2.1) by R'(k, ), where

zg 1
R'(k) =

(2m)' k' —p'+is

1 1

—2 . k+4'+6 2p.'.k+A'+~ )

~ ~
~

~x — + —
, (2.2')

2 k+k'+i e 2pb' k+k'+«—

ig' 1 ( 1
E(k) =

( m2)' 'kp'& 2p,—k+i—e
1.

x — +
2p p k+ie.

„,.„)
(2.2)—2py' k+ie

where p, as an inh ' h an infinitesimal negative imaginary part
and

~ '("+'& makeand in the corresponding expression
the approximation . , w~1 4 we get on summation over e,
Eq. (1.5') with

(2 6')

It should be noted that this new approximation has the
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and we obtainbecomes triv

I/~is~(s)F (a&t) &

A

„t„,„the REA (1.2) o' (
derive d»d discusse in,

d that it reduces

it is clear from t e ~. anidentical in fpurt.
from the s»th prde

., prder wit 8 "
~

r pn.e dj ffer Pn y
those

tively, »d tha, t they
l the same lines as os

ic
e very close to ~elk

ttering angle is sma
e

the scat erinwords, if at ig ene
but is not zero.

(2.13)
where, a,s in I

dk g' lns

P-2 $6w2 s
(2.14)n(s) =

16+2

-""'I. (2.1S)exp —zup, '——F(a,t) =

2.8) and . om lete(2 13) that the completeIt follows from (
modified eikonal x(a) is given, o
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where
zg

&i(a' P.,P~) =

4

x= i Q U'—
i=1

k' —ti'+i&

(lt:2—2' a)

(2 g)

and

(2.9)
(—2, k+ie)(2pi, k+ie)

U3= Ui(a' P' Pb)—

B. High-Energy Behavior

as ss the high-energyas to discussIt is relatively easy
f . Using notation simi arbehavior o

(I), we rewrite g as

a ~—'L cl s—
~ --'I -()+-( )7F(,t), (2.16)

expzX —1
dq e'~

x

zg
(2.17)dP dit exp(iit+sPg,

and I into a(j—1) in F .

, s~—N))ItI, the usual
Ofl dependence.cancellation of the ns

for large s.eik ~ Born

oui dis-
~oass~ ,x~

instructive e

b havior of M
2.7) as follows, y c

'gh
we rewrite Eq. . as

We can then write F(rt, t)

00

-'(I"nfl t)-~(el b)e
—2 jI (2.18)

2 i

Vi ——

Qo Qo

2.10)ds dQ (& 8d d4k expiA(k), ( .

—zx&Q

I k' —ti') —2vk P„wi
th 1 dis lacement of

n be done by makinghe k integration can ethek variable, t e i
use of the relation

F(.,t)=
tmax d$'

i

QO

e
—iljt g$/t

e therefore fin dFor large, w

such thatilia r parameter
f h high- bhn«6--« I

t
I /t"n, we

of Ii,

e iak2d4$ (2.11)

where

F q t =ln(t/p')+y(q)+0(1/t), (2.19)

and we obtain 5~x d]
e
—i'll $4(q)= firn (

—s

zg
Ui=

16m
dQ dv —C—-'z~, 2.20a—lnqg .—C—,zm.

a+I
s or = = on&s fol slm=Ãzg= ~$, on y

t for large s af e are importan
of t on the~

h m
2 12) Th t i

ared to a in
ration then.' ht-hand side of Eq.

2 20b)—e—'&& —1)—lnq —C—,in-.

a u = p, we can write, using 2.16),On putting a(s)+a(u) = p, we can

(a+I)0 0 0

wit = ' nstant or, alternatively,with C=Euler's constan or,~v'F '+a(v+ a) t iuti')—Xexp ——v
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(2.17), and (2.19), parameters, we may rewrite M' in the form

where

Me'~—-i(g'/t ') dt's(t/t ')' '&(P~) (2 21)

where

~(1-2-;)M'= (const) g dn;—
i=l (nsn4s+d+ze)

(3.2)

&(P~) = d& e'n+P~4 &n) (2.22) d(t ' ni ns ns n4) =nlnst+ (nl+ns)
X (nssr~ +n47ns —ti )—ns1s~ —n4'irrb . (33)

In the high-t limit, the scattering amplitude in the new
approximation therefore exhibits the Regge-like be-
havior encountered in I in connection with part of
the relativistic eikonal which had a lnx' singularity;
the form (2.21) corresponds to a cut in the complex-
angular-momentum / plane.

However, one should note that if instead of averaging
over the (m+1), alternative forms of M"+' (as discussed
in l), we had summed over them —a procedure which,
for large t, is advocated by Schiff' and by Sugar and
Blankenbecler, " at least in the case of potential scat-
tering —we would have obtained a one-parameter
eikonal representation of the form

where

Since

~(1—En )
M„i,' ——(const) g dn,

(n,n,s+d„.j ) '

deil= d (ns+n4)/nst (ni+ns)p j

(3.4)

(3 5)

As is well known, ' the asymptotic behavior of M" for
s —& ao can be found by replacing d by d(t; ni, ns,' 0,0)
and 8(1—Pn;) by 8(1—ni —ns) since only small values
of n~ and n4 are important for large s.

The quantity 3f„q' is obtained by dropping the k'
terms in the particle propagators in (3.1). On intro-
ducing Feynman parameters in the same way as before,
one obtains instead of (3.2) the result

M ig' e"" i'' expix(a)dry, (2.23)
deik(t j nlns i 0&0) =d (t & nil nls j 0q0) q (3 6)

the asymptotic behavior of which is

M-i(g'/t ')(t/t ')" '&(~). (2.24)

III. REA IN FOURTH ORDER

The amplitude M, corresponding to the fourth-order
ladder diagram, is given by

(2m) 4
d4k- ——

k' —ti'+se k"—p, '+se

1
X — — —=, (31)

(p. ts)s m, '+i—e (p~—+is)' m&s+ie—

with q= p —p, ' =k+4'. On introducing Feynrnan

"See I. I. Schig, Ref. 2."R.Sugar and R. Blankenbecler, Phys. Rev. 183, 1387 (1969}."%e have been informed that a similar result has been obtained
by R. BIankenbecIer, in The Three Bod'y ProbLem in ENclear and
Particle Physics, edited by J. S. C. McKee and P. M. Rolph
(North-Holland, Amsterdam, 1970},p. 448.

This is then a pure Regge behavior, corresponding to a
pole in the l plane"

It should be realized that we have obtained the results
(2.21) and (2.24) only by making s large first, and then
t, so that we are only able to describe the asymptotic
behavior of the amplitude defined by (2.7) in the sector
s&)t&&all masses.

lns lnt
M„i,'(s,t)- ——

S
(3 7)

for s))Q&masses. This is the same behavior as that of
3f, valid for large s and large t with either variable
6xed and hence, in particular, for f&)s))masses.

With regard to M„i,', the crossing relation M"(s,t)
=M (u, t) implies that for t large and s fixed Ms«M',
and so is M„.j,'(&3f„~ in this domain.

it follows that the asymptotic behavior of M„&' for
s —+ ~, t Axed, is exactly the same as that of M given
by (1.7).'

The amplitude M~, corresponding to the fourth-order
cross-ladder diagraln, can be obtained from 3f~ by the
transformation s —+ u, t ~ t and similarly for M„&,
i.e., as already mentioned, M„i,s(s, t) =M„i,'(u, t). Thus,
3f„&~ has the same asymptotic behavior as 3E'.

On the other hand, it can be inferred from Eqs. (3.3)
and (3.5) that the asymptotic behavior of M„i,' for
t-+ ~, s Axed, is not the same as that of M because
the REA destroys the essential s,t symmetry which
M (s,t) has for large s and t. The reason is that the
coeKcient of t in the denominator of (3.4) is
ns(nr —ns —n4) instead of nsni as it is in the exact d.
Consequently, for large t, the dominant contribution no
longer comes from the neighborhood o, ~ ——n3 ——0 and the
(Int)/t behavior of M is not reproduced by M„i, . Of
course, this result is not surprising since the REA is
not expected to be valid for t))s. Nevertheless, it is
worth noting that once the high-s behavior has been
obtained, one may let t become large and still get the
behavior
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IV. CONCLUDING DISCUSSION

In the preceding sections we have seen how a modi-
6ed REA, M„k or 3f„q', may be obtained, which
involves an integration over a single parameter; in
fourth order, 3f„&and 3f„&' coincide, respectively, with
M„.~ and M„.k'. Although, no doubt, M„j, will differ
from M„~ in sixth order, we expect this difference to be
small if t is not too small —it would seem worthwhile to
investigate this point. Another, perhaps more important,
reason for studying the sixth-order graphs is in con-
nection with the appropriate form of an eikonal ex-
pression to be used for large s and fixed 0~0, in par-
ticular, the question of whether one should use in this
case the factor e'x rather than (e'x —1)/sX in the REA.

It should be emphasized that one must distinguish
between the two situations: (i) () t)/s)(&1, but

) t) large
and Axed, for which our discussion of the fourth-order
amplitude already shows that the REA (1.2) gives the
correct asymptotic behavior —the replacement of
(e'x —1)/iX by e'x would give in fourth order a contri-
bution too large by a factor of 2; (ii) s and )i) large
but

)
3)/s fixed, i.e., s large and fixed, angle different

from zero, for which the asymptotic behavior has
apparently not been studied. "

In conclusion we wish to discuss a number of topics,
related to the above and to the work of other authors.

A. REA in Forward Direction

For scattering in the forward direction, we may put
p.'=p. , ps'=ps in Eq. (1.3). Then X~ Xp with

g2 ~i& x

Xs ———d4k —— 8(2P, k)8(2Ps k). (4.1)
4~2 k2 ~2+ je

g2
XQ=

16''pcs
d'k~

k, '+p'

Ss pcs

k,fp(k,x,)
dk~

ki +p

To evaluate M„~(s,0), it is convenient to work in the
c.m. system, with p, = (E„O,O,p), p&= (Eb, 0, 0, —p);
the 6 functions may then be used to eliminate kQ and
ks, so that

Writing d4x=d'x, dxsdxs in Eq. (1.2) and noting that

&xo&xs &z(x; p)

we see that
ki +p 2'

Es(px,'), (4.3)

M.;~(s,O) = —4ip(+s) d'x, (e'&0 —1), (4.4)

which coincides with the result of Ref. 3 for t=0.
So far we have made no approximation outside of the

RKA itself; the latter is, however, expected to be a good
approximation to M(s, i) at high s and fixed t, where it
actually gives the correct asymptotic behavior in each
order of perturbation theory, for the sum of generalized
ladder graphs. ' On the other hand, an expression
identic'/ with the forward REA can be derived'~ for
any s, for the most singular part of M(s,0; p'), corre-
sponding to the same graphs, in the limit p —+0. That
is, putting px, =y, in Eq. (4.4), we have

lim p'M(s, 0; p') =psM„q(s, 0; p, ')
~Q

(4.5a)

g2
4ip(g—s) d'yi exp Ep(yi) —1 . (4'.5b)

Ss-pcs

The validity of (4.5a) is easily seen by making the
substitution ki=pk for the virtual meson momenta
entering the Feynman integrals for the relevant graphs.
(This procedure does not work for integrals more
singular than 1/p', e.g. , for diagrams involving vertex-
type radiative corrections. )

In the case of quantum electrodynamics, the location
of the poles of p' M„; (k, sOp) (which is independent of
p.') corresponds rather accurately to the energy levels
of positronium. '' To understand this more fully, it
would be desirable to prove that any pole of the
function M(s, 0; p) —M„.j,(s,O; p') is also a pole of

Mq( , sOy, '). It is clear that more work must be done
on the bound-state problem in the limit p ~ 0.

Finally, we remark that if in Eq. (1.3) we replace
both p, and p

'
by the average I', =~s(p,+p, '), and

similarly p, and p, ' by P&= ,'(p&+p, '), the REA (1-.2)
can in the same way be put into a two-dimensional form,
and the amplitude becomes equal to

where k, = (kr, k2) and x,= (xr,x&), or
4iP(gs) d'x, e"—i'~(expixp 1), —(4.6)

g2
X.p Ep(px, ) .

S~pgs

"After this was written, we became aware of the work of
I. G. Halliday, Ann. Phys. (5. Y.) 28, 3'70 (1964), and that of
J. L. Cardy ) Canrbridge University report (unpublishedlg, who
have studied the axed-angle problem.

where Xs is obtained from (4.2) by replacing p by
p= ,') —(P —P&)'-]'"; Eq. (4.5) coincides with the
result of Ref. 3 for all I,.

B. REA for ) f )))p'
We can get some information on the high-t behavior

of the eikonal amplitude, after taking the high-s limit,
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in the same spirit as in our discussion of the one- described in Sec. I. Since we have not assumed that s
parameter REA and the fourth-order scattering ampli- is large, the equation may be used in the bound-state
tudes. Since q~q, for high s, we can write, using (4.2) region where
and (4.3), the approximate equation

np(s) = (g'/8~) [(4m' —s)s]-'~'; (4.13)

M„1, 2i—s d'xr e'" "rr(exPi Xp 1—)

= —21$ dxr xrf p(q&xr) (expixp —1), (4.7)

where Xp is given by Eq. (4.2). The behavior for
~
t ~&)t1'

is now governed by the singularity of &p for small x&'.

This is given by

the corresponding poles are essentially those obtained
111 Ref. 7.

It should be noted that np(s) differs from rr(s; m'),
which is the Regge trajectory obtained from the ladder
approximation in the crossed channel. It turns out,
however, that the two functions have approximately
the same behavior for s&4m'. In fact it follows from
(1.8) tha, t, for 0&s&4m',

xp (—g'/8wpgs) ln~trx,
~ )

so that for high t —
qJ.',

(4.8)
i/a-

ci(s) =rrp(s) —tan '
-7r 4'' —s

I'( —«+1)
( t/4+ 2) 1+no18—1

t 'I'(«)
(4.9)

where we have put «(s) = ig'/16mp&s.
Equation (4.9) can also be obtained with the same

technique used in deriving (4.5), i.e., without assuming
that s is large, by examining the limit p —+0. For t&0,
the transformation k;=p'k leads to the result for
p,'~0

g2 gix(*; &)

M(s, t tr') — d4x Ap(x; 1)e"p "»-
p

(4.10)
x(x; 1)

where X(x; 1) is given by (1.3) with tr'= 1.The behavior
of the right-hand side of (4.10) in the domain

tr'« [tJ(([s —4m'
f

is readily found. Using the c.m. system as before with

P '= (E,O,p sin8, p cosg),

pp = (E, 0) —p sln8, —p cosg),
one has

2P' k= 2P. «(1+o[(«)/(s —4m')'"]}

and similarly for particle b. It follows that for
((~s—4m'~, the factors in parentheses in (1.3) can be
replaced by 8 functions and X(x; 1)~Xp(x„1). In a
similar way in (4.10), we may let q ~ (O,q,) so that

Since the factor in brackets is 1 for s=4m' and a very
slowly varying function of s near s=4ns-", one can see
why the two "trajectories" predict the same levels to
high accuracy. '4 Note, incidentally, that np(s)
= Imrr(s; m)' for s) 4m'.

C. Asymptotic Behavior of Eikonal Function

As is well known, in perturbation theory leading con-
tributions coming from individual graphs may cancel
(see, e.g. , Sec. II); in the eilconal approximation such
cancellations are reflected in similar cancellations occur-
ring among the terms contributing to X itself. This can be
seen in more detail by study of the behavior, for fixed x,
of the basic function [Eq. (3.15) of I]

z 2 d4k
U ('pp)= —"—

16~4 k' p'+i e—

X—,(4.14)
(—2k P+ie)(2p' kyrie)

with P and P' )0. If for simplicity we consider the
case of zero external masses (p'= p"=0), and choose,
without loss of generality, a, frame in which p = (rp, 0,0,pp)

and P'= (cp, 0, 0, —pp), the integration over kp and kp is
readily carried out, via contour integration. On changing
to polar coordinates for the k~, k~ integration, one then
Ands the result

8rripgs-
M(s, t; tr')~

q,x,)
dx, x,~, —

t )
&& [e'r pi'r'1 —1]. (4.12)

For p, —+ 0, the major contribution to the last integral
comes from small x, so that (4.8) can be used (with
tr= 1), and the right-hand side of (4.12) reduces to the
right-hand side of (4.9). We therefore see that in the
domain (4.11) the exact M(s, t; p), corresponding to the
sum of generalized ladder graphs, has the dual character

kJp(kx, )
X dk Hp&" [(xr,'(k—'+.tr'))'"] (4.15)

p k'+p, '

"It should be remarked that n(s)+n(u) =np(s) for t=0. It
follows that Eq. (4.9) is an accurate representation of 3f„.l, in the
region [s—4mp[» [t ~&&@2. This region ip particularly interesting
in quantum electrodynamics because of the zero mass of the
photon.
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~=~(P,P')= L(P+P')'/4j"',
xf' ——xo' —xg' ——(P x)(P' x)/&o'

xg'= xP+x2'= xr, ' —x';

E, J, and II are the usual Bessel functions, and when
xl„'(0, the argument of IIO&'& must be replaced by

i$—x—i,'(k'+ p')]'~' It. is easy to verify that the func-
tions U; of Eq. (3.16) in Ref. 1 can be expressed in terms
of U+ as follows:

Ui ——U~(x; p„pt,), U2= —U (x; P,P '),
(4.16)

U, = —U (—x;P,',P), U =U (—x;P ',Pi').

We also note that

and
~(pa)pb) =~(pa ~pb )= 2V&

~(P. P~') =~(P',P~) = '&( I)-, —

so that for fixed t and high s all the ~'s become equal.
Furthermore,

be the same as that of the X;, we may compare our
results with theirs.

They conclude that each of these eikonal functions
behaves like &s 'Pln(&s))K0(p~x&~) so that the
logarithm cancels in the sum, yielding the same result
as our Eq. (4.17) above. However, our Eq. (4.15) does
not have for fixed x and fixed j and 3 (or fixed P;) any
term proportional to lns. The only way to obtain such
terms appears to be by keeping (P x)(P' x) small com-
pared to s, which is not possible if x is fixed.

where

f.k=
2xi

expzppot, 1
dao(u)e* &'-

gpo&

(4.18)

D. One-Parameter Representation in
Potential Scattering

The analog of (1.5) in potential scattering is easily
derived, following the methods of Sec. II of I. For a
spherically symmetric potential V= V(r), we obtain for
the scattering amplitude f

(P x)/~ —(P' x)/~=(P~' x)/~ —(P~ x)/~=( x/~
with

xp.,———FLU(a; p)+ U(a; —p')],

tends to zero in this limit with x and j=q/g( —
&)

fixed. Therefore, using (4.15) and (4.16), the terms in the
U; which are integrals over two Bessel functions are
seen to be equal in magnitude but opposite in sign for
U& U4 and U2, U3, respectively, and cancel in the sum
x= i P;=i' U;.—On the other hand, the product of 8
functions in the first term of the U; add up to unity,
so that we get

2'
U(; p)

(2s.) '
V(k)

dk eia (k2—2q k)

2p @+i'

du 0-(a)e' "'

In (4.18), o.(a) is related to V(k), the Fourier transform
of V(r), by the equation

X ~ (ig'/47rs)KO(Iix, ), (4.17)

in agreement with the discussion of Sec. IV B.
The slightly modified REA, defined by Eqs. (1.2')

and (1.3'), has recently been derived by Barbashov
et al." using the methods of functional integration.
These authors have also investigated, using a dispersion-
relation technique, the separate high-energy behavior
of X&' and X2' defined by

Xi' ——i(Ui'+ U3'), &2'= i(U2'+ U4'),

where the U are obtained from the U, (defined in Sec.
III of I) by adding k' to &2P; k in the denominators.
Since for x~0 the asymptotic behavior of the X,' will

"B.M. Barbashov, S. P. Kuleshov, V. A. Matveev, and A. N.
Sissakian, Dubna Report No. E2-4692 I,'unpublished}. Ke thank
these authors for informative correspondence.

with k2 having an infinitesimal positive imaginary part.
V(r) can be expressed directly in terms of 0 (a) through
the formula

~(g)e ~r2/4a

V(r)= —e '~" du
o (4s a)"'

It would be interesting to study the accuracy of (4.18)
relative to the more familiar eikonal approximation in
potential scattering, with which (4.18) agrees to second
order in V.
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