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Using techniques developed in an earlier paper, a new one-parameter eikonal representation is derived and
its high-energy behavior is studied. It is shown that by also taking ¢ large, a Regge-like behavior is obtained
in the crossed channel. The procedure of first making s large and then ¢ large is investigated more closely by
comparing the exact fourth-order amplitudes with those obtained in the relativistic eikonal approximation.
It is found that the latter predicts the correct behavior in the region of large s, for all values of £. When a
similar procedure is applied to the full Meix(s,t), one obtains in an appropriate domain an asymptotic ampli-
tude having a dual character: The bound states appear as poles in the s channel and lie on the Regge trajec-
tory in the ¢ channel. In particular, for electron-positron scattering the corresponding energy levels coincide
with those obtained recently by Brezin ef al. The asymptotic behavior of the eikonal function itself is also

studied.

I. INTRODUCTION AND SUMMARY

N an earlier paper! it was shown how a covariant
generalization of the eikonal approximation, long
familiar in potential scattering,? could be derived from
quantum field theory. A number of other authors have
obtained similar results, using different methods.3—*
More recently, some progress has been made in in-
cluding radiative corrections to relativistic eikonal-type
approximations,® and in applying such approximations
to the calculation of bound states.”

In the present paper we consider an alternative form
of relativistic eikonal approximation (REA) which has
the virtue of involving an auxiliary integration over a
single parameter (in contrast to the four-dimensional
integration over a space-time point x, encountered in I)
and which facilitates study of questions regarding
asymptotic behavior. In addition, we study some
aspects of the high-energy behavior of the amplitudes
obtained with the REA in perturbation theory, where
the results can be compared with the exact asymptotic
behavior.® Such a study also sheds some light on the
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possibility of obtaining Regge-like behavior in the
crossed channel by starting with an eikonal form in the
direct channel.

We first review briefly the results of I which are of
interest here. Consider the amplitude for scattering of
spinless particles ¢ and &, both of which can emit
scalar mesons of mass u with coupling constant g. Let
M, denote the sum of all those Feynman diagrams in
which exactly 7 mesons are exchanged, i.e., M,(s,t) is
the sum of all diagrams of order 2% which involve no
radiative corrections. It can be written as an integral
over virtual meson momenta k; (1=1, 2, ..., n) whose
integrand, apart from a factor 6(¢g—>_k:), is a sum of
products of meson propagators (k2—m?+ie)™* and
particle propagators [(p=K)?*—m?+ie]™\. Here p is
an external four-momentum and K=3)'k;, where the
prime denotes a partial sum. If the integrand is written
in a suitably symmetrized form, and if in the resulting
expression we drop terms in the propagators [ (p=K)?
—m?~+ie [ 1= (&2p- K+ K>+1e)~ which are quadratic
in the internal momenta, i.e., make the replacement

(£2p-K+K+iey ' — (£2p-K+ie, (L.1)

then the corresponding value of the integ}al, designated
by M,°k, may be written in a compact form and the
sum on # may be carried out to yield

eix—1

Mein(s,t) =g2/d4x et Ap(xy u)y——0-.  (1.2)
X

approximation. These authors show that the REA gives, for each
graph, the correct leading high-s behavior. In the sum of the nth-
order graphs, the leading logarithmic contributions cancel;
although for each individual graph the REA gives the remaining
s~ 1) term with the wrong coefficient, it predicts correctly the
coefficient of s~ in the sum. [See also B. M. Barbashov
and V. V. Nesterenko, Dubna Report No. PZ-4900, 1970
(unpublished).]
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Here Ap is the meson propagator and
2
X= 8 / d*k
(2m)*

1 1
X( + )
—2pa-ktie  +2ps ke

eik-:n

k2—p?tie

, (13)

1
x( + _ )
+2py-ktie  —2py -k+ie

with p., p» the initial momenta, p./, 5 the final
momenta, g= p.— po’, 1=¢% and s= (pa+ps)*

As already mentioned in I, the computation goes
through without any essential change if the diagonal
terms in K2=Zlki‘kj=zi;£jl klk]'-l-zzl kiZ are kept,
i.e., if we make the replacement
(£2p-K+K241e) 1 — (£2p- K+ 'k2+1e)™"

=[Z/(:|:2pkl+kl2)+1€]"1 (1.1/)
The resulting approximation M/ (s,t) has a form
analogous to (1.2):

. expiX’—1
Ml o) = [ 5 0 )
X

where
g2
X' = / da*k
(2m)*

1 1
X( 4 )
—2po-ktkiie  2pg - kkiie

(1.2)

eilc-z

k2—pi+ie

1
><< 4+ , ) . (13)
Zpb-k+k2+7,e —2pb'-k+k2+1e

In Sec. IT A we show that a considerably simpler
looking result is obtained if in the meson propagator
[(g—>_ks)?—u+1ie]™ entering the expression for
M ,(s,t), the off-diagonal terms k;-k; are also dropped,
i.e., the replacement

[(q— ki) —ui+ie]™
— [+ (—2¢-kitk2)—p+ie]™ (1.4)

is made. If the approximation (1.4) is combined with
(1.1), the sum on n—call it M —can be performed
without further approximation and we obtain

_ * ) expix—1
M oin(s,t) =g2/ da etett—sH—— (1.5)
0 X
where

2 eia(k2—2q-k) 1 1
x=— f d*k ( + )

T 2n) B2 — i ie\—2py-ktic  2pd-ktie

(1.6)

1
Gt i)
2py-k+ie  —2py-k4ie
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Combining (1.4) with (1.1’), one obtains of course an
analogous approximation
o0 expix’ —1
da eia(t—yz) p X___ ,
!

Mo (s,t) =g2/ (1.59)

0

where %’ is obtained from ¥ by replacing the quantities
£2p-k by £2p-k-+k%in (1.6). In Sec. IT B we obtain
the high-s behavior of x [Eq. (2.16)] and exhibit the
Regge-like behavior of M oy, in the domain s>>£>masses
[Eq. (2.21)7].

In Sec. ITI we compare the asymptotic behavior of
the exact fourth-order amplitude M® =M+ M?,
where M2 and M?® denote the contribution of the ladder
diagram and crossed-ladder diagram, respectively, with
M i@ = M i1.®+ M ;b obtained in the REA. As is well
known,? with ¢ fixed and s — o,

Me~ (const)a(t; u?) Ins/s,

g2 dz
16#2/; wui—iz(1—2)
It is readily shown that M * has precisely the same
asymptotic behavior as M¢, with the same coefficient
a(t) which appears in (1.7). Furthermore, since the
crossing relation M?®(s,t)=M¢(u,t) with u= (pa—ps’)?
is not destroyed by (1.1), we have Me%(s,f)
=Meir*(u,t), so that the familiar cancellation of
logarithms in the direct channel continues to hold in
fourth order in the REA: Mei® (s,t)~a(t)/s, just as
for M ® (s,f). Also interesting is the fact which emerges
from (1.7) and the observation that, ignoring constant
factors, for t— o,

a(t)~Int/t,

(1.7)

where

a(t; u*) = (1.8)

(1.9)

namely, that the analytic continuation of the right-
hand side of the equation
In¢ Ins
Moo ——,
t s

(1.10)

valid for s3>|¢|>>all masses, to the region £>|s|>>all
masses, yields the correct behavior for large ¢ in the
crossed (annihilation) channel. However, it should be
noted that a corresponding result does not hold for
either M or M°.

In Sec. IV we discuss the relation of our work with
that of other authors. In particular, we show that the
REA (1.2) coincides with that of Ref. 3 in the forward
direction and describe how the formulas are related for
1#0. We also discuss the asymptotic behavior of X and
M g and write down the analog of the one-parameter
representation for potential scattering.

To conclude this section, we remark that although
the eikonal approximation is designed to be useful for

? See, e.g., R. J. Eden, High Energy Collisions of Elementary

Particles (Cambridge U. P., Cambridge, England, 1967), and
references quoted therein.
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large s, part of the purpose of this paper is to demon-
strate that one can still get interesting results by looking
at the domain p2<& |#|<<|s—4m?| ; this does not require
s to be large. A rather striking example of this fact is
provided by examination of an approximate form of
M ey, considered in Sec. IV, appropriately modified for
electron-positron scattering. In this case we have, on
replacing ao by Bo in (4.9),

1 T(—Bo+1) s —1\P?
T AR
A T(Bo) 4N
where A is a small photon mass and
e?  2s—4m?

&1 [s(dm?—s)]'2 .

The quantity 8o is obtained from (4.13) for aq, by
changing g2 to ¢ and multiplying by the factor
4p,- py=25—4m?, corresponding to the exchange of

photons.
Equation (1.11) has poles in s at —B¢+1=—n+1
or Bo=nwithn=1,2, ... ;on solving for s, one recovers

the energy-level formula of Brezin et al.” On the other
hand, if we regard the exponent of ¢in (1.11) as a Regge
trajectory and accordingly set Bo—1=1, with /=0, 1,
..., we recover precisely the same levels with n=17+1.
Thus (1.11) exhibits a dual character with the bound
states in the s channel lying on the Regge trajectory
obtained from the asymptotic behavior in the ¢ channel.
Moreover, it has the feature that the partial-wave
amplitude obtained by projecting (1.11) with P;(cosfs)
has poles only for 0<I<n—1, so that the bound states
are associated with the correct physical angular
momenta. A comparison of. ao(s) and &(s;m?) [Eq.
(1.8)] is made in Sec. IV.

II. MODIFIED EIKONAL APPROXIMATION

A. One-Parameter Representation

To obtain the one-parameter eikonal representation
mentioned above, we recall first the expression for
M i) obtained in I, using the approximation (1.1)
[viz., the Fourier transform of Eq. (3.17) of Ref. 1]:

—g
Meik<n+1) = — d4k1' * 'd4kn
(n+1)!
X[(g—=2 k)*—p* ' 11 R(%), (2.1)
=1 =1
where u? has an infinitesimal negative imaginary part
and
ig? 1 1 1
R(®)= ( + )
2m)* B2 —p2\—2pa-ktie | 2pd - ktie

(2.2)

1
()
2pp-k+ie  —2py -kie
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If, in a spirit similar to that used in arriving at (1.2),
we make the approximation (1.4) and drop the term
k;-k; with 75 7 in the propagator in (2.1), we obtain a
modified approximation

d*ky- - -d*k,
Lg*—p*+22 (k2 —2g ki) ]

—2
Mo (D) = Mgr

eik
(n41)!

XliI R(k;). (2.3)

Instead of the four-dimensional Fourier representation
used in I for the denominator in (2.1), for the denomi-
nator in (2.3) we may use the one-dimensional integral
representation

1
Q=+ 2o (kP —2q- ki)

=—i/ da exp{ialg®—p2+2_ (k2—2q-k:)]}. (2.4)

Substitution of (2.4) into (2.3) yields a factorized
integrand and

i 2 0
M gy 7 +D = —/ da et (ix)n . (2.5)
(n+1)!Jo
where
xX= -i/d“k ele (P20 DR (E) (2.6)
Summation on # in (2.5) then gives
_ 0 ) expix—1
Meix(s,1) =g2/ da eiet—sh— 2.7
0 X

which coincides with Eq. (1.5).
Similarly, if we use (1.1") and accordingly replace
R(k;) in (2.1) by R’ (k;), where

1g? 1
R = —2

2m)* k2 —u2+ie

1 1
a ’ )
—2pa-k+k*ie  2pd kR e

), (2.2

1
x( +
2py-kt-k*H-ie  —2py -k+-k e

and in the corresponding expression My’ (**9 make
the approximation (1.4), we get, on summation over 7,
Eq. (1.5) with

% = —i/d‘% gla=2- R/ (), (2.6)

It should be noted that this new approximation has the
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same symmetry properties as the REA (1.2) or (1.2)
derived and discussed in I, namely, time-reversal
invariance and crossing symmetry, and that it reduces
to the Born approximation in the small g2 limit. Also,
it is clear from the derivation that M e, and M.y’ are
identical in fourth order with M) and Mg/, respec-
tively, and that they differ only from the sixth order on.
Furthermore, reasoning along the same lines as those
which lead to the derivation of M, we expect M o
to be very close to M if ¢ is not foo small, in other
words, if at high energies the scattering angle is small
but is not zero.

B. High-Energy Behavior

It is relatively easy to discuss the high-energy
behavior of ¥. Using notation similar to that used in
(I), we rewrite x as

4
x=—1i3 Us, (2.8)
i=1
where
O - ig? / d*k
1\a; Pu,ﬁb (2 )4 _'u2+i€
eia(lc2-2q~k)
X - - (2.9)
(—2pakti€)(2ps- k+ie)
and

Us=U1(a; papy’), Us=Ui(a; —pd, ps),
Us=Ui(a; —pd, —pv).

We can then write

_g2 1 00 3
g )4/ (iz/ du/ dv v/d“k expid(k), (2.10)
m)*Jo 0 0

where A (k) =a(k2—2q-k)+u(k?—u?)—2vk-P,, with
P,=paz—ps(1—2). After the usual displacement of
the % variable, the % integration can be done by making
use of the relation

) —in%e(a)
fezuk2d4k =

[12

1=

(2.11)

and we obtain

/ dz / du / dv
1672 (a—l—u)2

Xexp{;l-[vQPﬁ—}—a(v—l—a)t—iup?]} . (2.12)
atu

1

Since P2~s [P2=m?—z(1—z)s for m,=mp=m], only
small values of v are important for large s and we may
neglect v compared to @ in the coefficient of ¢ on the
right-hand side of Eq. (2.12). The v integration then

IN.- 1719
becomes trivial, and we obtain
Ur~3a(s)F(a,l), (2.13)
where, as in T,
gt [ldz g2 Ins
a(s)= —_— — (2.14)
1672 Jo P2 16x% s
and
* du 1a%t
F(at)= / —_— exp<—iuu2—— ————) . (2.15)
0o atu a+u

It follows from (2.8) and (2.13) that the complete
modified eikonal % (a) is given, for large s, by

x(a)~—ila(s)+aw) JF(a),

which exhibits at high energy, ss~—>>|¢|, the usual
cancellation of the Ins dependence. Of course, since
x— 0 as s— ©, Mex—> Mpom for large s.

However, it is instructive in the spirit of our dis-
cussion of the fourth-order graphs in Sec. I to
consider the high-¢ behavior of Meix(s,t). To do this,
we rewrite Eq. (2.7) as follows, by changing a into 5/f:

exptx 1
MN*/ dn e

(2.16)

1 00
a8 f dn explintiBR), (217)
0 0
and % into a(¢—1) in F:

“dE ;
F(.,]’t)zf — et eBE [ )—i(n]E) | (2.18)
v

Introducing an auxiliary parameter &mex such that
N<KEmax<K | 1| /utn, we then write, for the high-t behavior
of F,

® d
__?:: —iuné/t
fmax £

e
TR

For large ¢, we therefore find

F(,t)=In(t/u?)+¢m)+0(1/1),

Emax
</ _E —in/§
Emax—>% 1 E

¢(n)=lim
—lnnEmaX—C—-%ir) , (2.20a)

(2.19)

where

with C=Euler’s constant or, alternatively,
vdg
¢(n)= / —(¢7t—1)—Inn—C—%imw. (2.20b)
o &

On putting &(s)+a&(u)=v, we can write, using (2.16),
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(2.17), and (2.19),

(g a) / BYuPNE),  (221)
where

N(By) = / dn girtBre (2.22)
0

In the high- limit, the scattering amplitude in the new
approximation therefore exhibits the Regge-like be-
havior encountered in I in connection with part of
the relativistic eikonal which had a Inx? singularity;
the form (2.21) corresponds to a cut in the complex-
angular-momentum / plane.

However, one should note that if instead of averaging
over the (rn+1), alternative forms of M (as discussed
in I), we had summed over them—a procedure which,
for large ¢, is advocated by Schiff'® and by Sugar and
Blankenbecler," at least in the case of potential scat-
tering—we would have obtained a one-parameter
eikonal representation of the form

Mzig{/ eiett=) expiz(a)du, (2.23)
0
the asymptotic behavior of which is

M~i(g2/u®) (t/u2) N (»). (2.24)

This is then a pure Regge behavior, corresponding to a
pole in the / plane.'2

It should be realized that we have obtained the results
(2.21) and (2.24) only by making s large first, and then
f, so that we are only able to describe the asymptotic
behavior of the amplitude defined by (2.7) in the sector
s>3>all masses.

III. REA IN FOURTH ORDER

The amplitude M, corresponding to the fourth-order
ladder diagram, is given by

G =

ig / 1
d*h —
(2m)* k2 —p2tie k2 —p24ie
1 1
X
(pa—k)*—ma?+ie (pr+k)2—mp>+ie

BCRY

with g¢=p,—p./=k+%. On introducing Feynman

10 See L. I. Schiff, Ref. 2.

" R. Sugar and R. Blankenbecler, Phys. Rev. 183, 1387 (1969).

12 We have been mformed that a similar result has been obtained
by R. Blankenbecler, in The Three Body Problem in Nuclear and
Particle Physics, edited by J. S. C. McKee and P. M. Rolph
(North-Holland, Amsterdam 1970), p. 44
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parameters, we may rewrite M in the form

4 (1 —2"a))
Mo=(const) | IT de (2
=1 (pass+d-ie)?
where
d(t; a1, an,00) = anast—+ (a1 tas)
X (eama®+agmy? —p?) —aamli—ami?.  (3.3)

As is well known,? the asymptotic behavior of M* for
s— o can be found by replacing d by d(¢; as,as;0,0)
and 6(1—>"a;) by 6(1—a1—a3) since only small values
of as and a4 are important for large s.

The quantity M. is obtained by dropping the k2
terms in the particle propagators in (3.1). On intro-
ducing Feynman parameters in the same way as before,
one obtains instead of (3.2) the result

1—2q;
Mei*=(const) f II doj——— o ~2.e) (3.4)
(o208 +de1k)
where
deiw=d— (ar+as)[asi— (c1tas)u?]. (3.5)
Since
deik<t; 103, 0,0) = d(t, Q1,035 0,0) , (36)

it follows that the asymptotic behavior of M.u® for
s— oo ¢ fixed, is exactly the same as that of M@ given
by (1.7).8

The amplitude M?, corresponding to the fourth-order
cross-ladder diagram, can be obtained from M@ by the
transformation s— u, t— ¢ and similarly for M.i?,
i.e., as already mentioned, Mei®(s,t) = M eix®(u,). Thus,
M ix® has the same asymptotic behavior as M,

On the other hand, it can be inferred from Egs. (3.3)
and (3.5) that the asymptotic behavior of M@ for
t— o, s fixed, is not the same as that of M* because
the REA destroys the essential s symmetry which
Me(s,t) has for large s and ¢ The reason is that the
coefficient of ¢ in the denominator of (3.4) is
as(e1—az2—as) instead of azey as it is in the exact d.
Consequently, for large ¢, the dominant contribution no
longer comes from the neighborhood ar=a3=0 and the
(In?)/t behavior of M@ is not reproduced by M Of
course, this result is not surprising since the REA is
not expected to be valid for £>s. Nevertheless, it is
worth noting that once the high-s behavior has been
obtained, one may let ¢ become large and still get the
behavior

Ins In¢
Men®(s,)~ — —
s ¢

(3.7)

for s>>£>masses, This is the same behavior as that of
Me, valid for large s and large ¢ with either variable
fixed and hence, in particular, for £>s>>masses.

With regard to M, the crossing relation M¥(s,f)
= M¢(u,t) implies that for ¢ large and s fixed M*<<Me,
and so0 i1s M <KM@ in this domain.
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IV. CONCLUDING DISCUSSION

In the preceding sections we have seen how a modi-
fied REA, My or M./, may be obtained, which
involves an integration over a single parameter; in
fourth order, M i, and M.q’ coincide, respectively, with
Mg and M.y, Although, no doubt, M will differ
from M e, in sixth order, we expect this difference to be
small if £ is not too small—it would seem worthwhile to
investigate this point. Another, perhapsmoreimportant,
reason for studying the sixth-order graphs is in con-
nection with the appropriate form of an eikonal ex-
pression to be used for large s and fixed 65%0, in par-
ticular, the question of whether one should use in this
case the factor e’ rather than (e’x—1)/7X in the REA.

It should be emphasized that one must distinguish
between the two situations: (i) (|¢]|/s)<1, but |¢| large
and fixed, for which our discussion of the fourth-order
amplitude already shows that the REA (1.2) gives the
correct asymptotic behavior—the replacement of
(e'x—1)/iX by e** would give in fourth order a contri-
bution too large by a factor of 2; (ii) s and |¢| large
but |¢]/s fixed, i.e., s large and fixed, angle different
from zero, for which the asymptotic behavior has
apparently not been studied.?

In conclusion we wish to discuss a number of topics,
related to the above and to the work of other authors.

A. REA in Forward Direction
For scattering in the forward direction, we may put

P’ =pa, pv' =ps in Eq. (1.3). Then X — X, with

_g2 ik-z
Xo= —— [ d*%k ——
472 k2—u?+ie

6Q2pak)02pu- k). (41)

To evaluate M.i(s,0), it is convenient to work in the
cm. system, with po=(£4,0,0,p), po=(£s,0,0, —p);
the § functions may then be used to eliminate %o and
ks, so that

ewikl"""l

g2
XD = — /dzkl
167%p\/s JREBR

g2 * kiJ o(kle)
= / dk]_ )
81rp\/S 0 k12+u2
where k,= (k1,k2) and x,= (x1,%3), or
2
Xo= Ko(uxy). (4.2)
0 Srpn/s o(uxy

13 After this was written, we became aware of the work of
I. G. Halliday, Ann. Phys. (N. Y.) 28, 370 (1964), and that of
J. L. Cardy [Cambridge University report (unpublished)], who
have studied the fixed-angle problem.
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Writing d*r=d%v,dxedxs in Eq. (1.2) and noting that

/dxodx3 Ap(x;u)

—1 etk —1
=— [d?% = —Ko(ux.),
472 k24u? 27

(4.3)
we see that

Moir(s,0)= ——4ip(\/s)/d2xl(eix°—1) , (4.4)

which coincides with the result of Ref. 3 for t=0.

So far we have made no approximation outside of the
REA itself; the latter is, however, expected to be a good
approximation to M (s,t) at high s and fixed ¢, where it
actually gives the correct asymptotic behavior in each
order of perturbation theory, for the sum of generalized
ladder graphs.® On the other hand, an expression
identical with the forward REA can be deriveds:’ for
any s, for the most singular part of M (s,0; u?), corre-
sponding to the same graphs, in the limit x — 0. That
is, putting ux; =y, in Eq. (4.4), we have

lim p2M (5,0; u®) = p*Mene(5,0; u?) (4.52)
e

2

— —4ip(y/5) / d“’yl{exp[ SKo(yi)]—‘l}- (4.5b)

8mpv/

The validity of (4.5a) is easily seen by making the
substitution k;=uk; for the virtual meson momenta
entering the Feynman integrals for the relevant graphs.
(This procedure does not work for integrals more
singular than 1/u? e.g., for diagrams involving vertex-
type radiative corrections.)

In the case of quantum electrodynamics, the location
of the poles of u?M ix(s,0; ) (which is independent of
u?) corresponds rather accurately to the energy levels
of positronium.”' To understand this more fully, it
would be desirable to prove that any pole of the
function M(s,0; u)—Meic(s,0; 42 is also a pole of
M (5,05 u?). It is clear that more work must be done
on the bound-state problem in the limit x4 — 0.

Finally, we remark that if in Eq. (1.3) we replace
both p, and p.’ by the average P,=3%(p.+p.), and
similarly ps and py’ by Py=3%(ps+ps’), the REA (1.2)
can in the same way be put into a two-dimensional form,
and the amplitude becomes equal to

—4iﬁ(\/s)/d2xl etusi(expixo—1), (4.6)

where Xo is obtained from (4.2) by replacing p by
p=3%[— (Pa—P3)*]¥2; Eq. (4.5) coincides with the
result of Ref. 3 for all 4.

B. REA for |{|>>u?

We can get some information on the high-¢ behavior
of the eikonal amplitude, after taking the high-s limit,
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in the same spirit as in our discussion of the one-
parameter REA and the fourth-order scattering ampli-
tudes. Since g=~g, for high s, we can write, using (4.2)
and (4.3), the approximate equation

Meikz—Zis/d2xl etii(expiXo—1)
= —Zis/ dxy x.Jo(quey) (expiXo—1), (4.7)
0

where X, is given by Eq. (4.2). The behavior for |¢[>>u?
is now governed by the singularity of X, for small «,2
This is given by

)(0::1(’—'g2//87rp1v/3) lrlf;le[ 5 (4.8)
so that for high t~—g,2,
T(—ao+1)
oil € —— (—t/4u2)teo®) (4.9)

w2 (o)

where we have put ay(s) =1g?/167p/s.

Equation (4.9) can also be obtained with the same
technique used in deriving (4.5), i.e., without assuming
that s is large, by examining the limit u? — 0. For {70,
the transformation k;=u%; leads to the result for
wr—0

g2 eix(@i1) 1
M(s,t; ut)~— /d‘*x Ap(x;1)et@s/We——  (4.10)
u? X(x;1)
where X(x; 1) is given by (1.3) with u2=1. The behavior
of the right-hand side of (4.10) in the domain

WL | <KL | s—4m?| (4.11)

is readily found. Using the c.m. system as before with

pd’ = (E,0,p sind,p cosb)
P’ =(E, 0, —p sinf, —p cosf) ,
one has

2pd - k=2pa- k{14+-0L(V1)/(s—4m*)'*]} ,

and similarly for particle . It follows that for |
&|s—4m?|, the factors in parentheses in (1.3) can be
replaced by & functions and X(x; 1)~X,(x:;1). In a
similar way in (4.10), we may let ¢ — (0,q.) so that

—8mip\/s [* qux
M (S,t;uz)ﬁ——z-—- / day xJo( - l)
0

I M

X[emib—1]. (412)

For p— 0, the major contribution to the last integral
comes from small x; so that (4.8) can be used (with
p=1), and the right-hand side of (4.12) reduces to the
right-hand side of (4.9). We therefore see that in the
domain (4.11) the exact M (s,t; u), corresponding to the
sum of generalized ladder graphs, has the dual character
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described in Sec. I. Since we have not assumed that s
is large, the equation may be used in the bound-state
region where

ao(s) = (g2/8m)[ (dm2—s)s 1'%,

the corresponding poles are essentially those obtained
in Ref. 7.

It should be noted that ao(s) differs from &(s; m?),
which is the Regge trajectory obtained from the ladder
approximation in the crossed channel. It turns out,
however, that the two functions have approximately
the same behavior for s<4m? In fact it follows from
(1.8) that, for 0<s<4m?,

worsiftur()']

Since the factor in brackets is 1 for s=4m? and a very
slowly varying function of s near s=4m? one can see
why the two “trajectories” predict the same levels to
high accuracy.* Note, incidentally, that ao(s)
=Ima(s; m)? for s>4m?.

(4.13)

C. Asymptotic Behavior of Eikonal Function

As is well known, in perturbation theory leading con-
tributions coming from individual graphs may cancel
(see, e.g., Sec. I1); in the eikonal approximation such
cancellations are reflected in similar cancellations occur-
ring among the terms contributing to X itself. This can be
seen in more detail by study of the behavior, for fixed x,
of the basic function [Eq. (3.15) of T]

ig? d*k
16wt J k2—u2+ie

6ik'm

Ui(x; P)Pl) =

(4.14)

X ,
(—2k-p+ie)(2p" - k1e)

with 0 and $’°>0. If for simplicity we consider the
case of zero external masses (p?=p'2=0), and choose,
without loss of generality, a frame in which p= (»,0,0,w)
and p'= (v, 0, 0, —w), the integration over ko and k3 is
readily carried out, via contour integration. On changing
to polar coordinates for the ki, ks integration, one then
finds the result

4ig? ) . 2
Ur= -~ ki 9(:‘: Q>9<U)Ko(#xl)+g kil

- 16mrw? 2w w 2mw?

o R o(kay)
>< f = AL ) ], (419
0

+u

14Tt should be remarked that @&(s)+a(u) =ao(s) for ¢=0. It
follows that Eq. (4.9) is an accurate representation of Mejx in the
region |s—4m?|>>|t[>>u% This region is particularly interesting
in quantum electrodynamics because of the zero mass of the
photon.
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where
w=w(p,p")=L(p+p")/4]1",

wpt=xo?—a5= (p-x)(p-x)/w?,
and
x 2= x Pt a?=aL2—a%

K, J, and H are the usual Bessel functions, and when
x22<0, the argument of H®» must be replaced by
—i[ —xr2(k*+u2)]V2 It is easy to verify that the func-
tions U; of Eq. (3.16) in Ref. 1 can be expressed in terms
of Uy as follows:

U= U+(x; Pa,Pb) )
Us=— U—(_x7 Pal;Pb) )
We also note that

w(papr) =w(pa,ps) =3V's

Us=— U—(x; Paypa,) ’

4.16
U= Us(—a; pelp). 19

and
w(l’a;Pb’) = w(Pa/)pb) = %\/( _u) )

so that for fixed ¢ and high s all the w’s become equal.
Furthermore,

(pa-2)/w—(pa'-2) /0= (ps' %) [0 —(po-2) /0= q-x/w

tends to zero in this limit with x and ¢=¢//(—?)
fixed. Therefore, using (4.15) and (4.16), the terms in the
U; which are integrals over two Bessel functions are
seen to be equal in magnitude but opposite in sign for
U, Us and U,, Us, respectively, and cancel in the sum
X=—4Y ;=1* U;. On the other hand, the product of 8
functions in the first term of the U; add up to unity,
so that we get

X — (ig?/4ms) Ko(uxs) ,

in agreement with the discussion of Sec. IV B.

The slightly modified REA, defined by Egs. (1.2")
and (1.3’), has recently been derived by Barbashov
et al.’® using the methods of functional integration.
These authors have also investigated, using a dispersion-
relation technique, the separate high-energy behavior
of X;" and X,’ defined by

X/ =1(U/+US), X/=i(U/+U),

where the U,/ are obtained from the U; (defined in Sec.
IIT of I) by adding %% to &=2p;-% in the denominators.
Since for x50 the asymptotic behavior of the X, will

(4.17)

15 B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, and A. N.
Sissakian, Dubna Report No. E2-4692 (unpublished). We thank
these authors for informative correspondence.
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be the same as that of the X;, we may compare our
results with theirs.

They conclude that each of these eikonal functions
behaves like =£s[In(==s)]Ko(u|x:]) so that the
logarithm cancels in the sum, yielding the same result
as our Eq. (4.17) above. However, our Eq. (4.15) does
not have for fixed x and fixed ¢ and ¢ (or fixed p;) any
term proportional to Ins. The only way to obtain such
terms appears to be by keeping (p-x)(p’-x) small com-
pared to s, which is not possible if x is fixed.

D. One-Parameter Representation in
Potential Scattering

The analog of (1.5) in potential scattering is easily
derived, following the methods of Sec. I of I. For a
spherically symmetric potential V=V (r), we obtain for
the scattering amplitude f

i} —m [*  expiXpot—1
Jor=— / da gla)eio———"—~,  (4.18)
27!'1 0 )-(pob
where B _
Xpot= —i[U(d, PH‘ U(dl _pl)] ’
with

2m / V()
dk
(2m)? 2p-k-+ie

In (4.18), o(a) is related to V(k), the Fourier transform
of V(r), by the equation

7 ia (k2—9q-
(](a; n= Om(k 2q-k) .

V(k)= /“’ da a(a)e’**

with %% having an infinitesimal positive imaginary part.
V(r) can be expressed directly in terms of o(a) through
the formula
0 a.<a)e——ir2/4a
V(r)= —e‘i"/“/ da—
0 (4:71'61)3/2

It would be interesting to study the accuracy of (4.18)
relative to the more familiar eikonal approximation in
potential scattering, with which (4.18) agrees to second
order in V.
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