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Using (A2) and (A4) gives Eq. (23).
For low angular momentum where m' —m= &3, &5 is not physically accessible, the equations above have to

be modified as follows. For j= s, the equal-mass angular condition LEq. (17)$ is identically satisaed. Therefore,
it gives no restrictions. For j=~, m' —m=&5 is not accessible. For j=~, m' —m=3, i.e., m'=~ and m= —

&,

Eq. (17) is satisfied identically. For j= ss, m' —m= 1 and m= zt or m= —zs, we obtain Eq. (23).
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A representation is constructed for the elastic scattering of neutral scalar bosons with crossing symmetry,
direct-channel poles, polynomial residues, and Regge behavior based on an arbitrary Regge trajectory. It
is shown, within the context of a speci6c model, how the amplitude can approximately satisfy elastic uni-
tarity. A purely linear trajectory is inconsistent with the unitarity constraint unless the amplitude is zero,
while the addition of a complex threshold term of definite strength enables elastic unitarity to be numeri-
cally approximated.

I. INTRODUCTION

'UCH work' has been carried out, spurred on by
- ~ the introduction of the closed solutions2 to the

finite-energy sum rules, ' in attempts to construct
unitary, crossing-symmetric amplitudes, necessarily
accommodating nonlinear Regge trajectories. The
nonlinearity of the statement of unitarity and the
necessary inclusion of all inelastic channels are among
the features that make unitarity a particularly difFicult
constraint to impose on a scattering amplitude. In this
paper we propose a model representation for the elastic
scattering of neutral scalar bosons (o. oscattering) wi-th

crossing symmetry, Regge asymptotic behavior, direct-
channel poles, and satisfying an approximate form of
unitarity.

In a previous paper, 4 hereafter referred to as I, the
advantage of constructing a crossing-symmetric ampli-
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x = -', (s'+ t'+u')

y= —stu.

(1.2)

(1.3)

Such elementary symmetric functions were previously
used by %'anders, ' who investigated Mandelstam
analyticity in them and then derived some x-m sum
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tude with Regge asymptotic behavior and direct-
channel poles based initially on an arbitrarily speci6ed
trajectory was pointed out. It was shown how sequences
of such amplitudes could be constructed. The proposed
amplitudes were then analyzed in the complex angular
momentum plane, and it was found that any member of
the sequence contains a leading finite array of simple
poles spaced by two units followed by additional non-
leading arrays of higher-order singularities.

A central feature in I was the realization that crossing
symmetry could be built into an amplitude, without
introducing new kinematic singularities, by using the
three elementary symmetry functions' of the Mandel-
stam variables s, t, and N. The function of weight 1 is
the constant

C= S+1+Q,

while the other two functions are conveniently defined
by



rules from crossing symmetry, analyticity, and
unitarity.

Our application of the elementary symmetric func-
tions, both in I and in the present paper, is essentially
as follows. A non-crossing-symmetric phenomenological
Regge amplitude may be taken as a starting point.
Such a one-channel amplitude may then be symmetrized
into the full three-channel amplitude by approximating
it with functions built up from the symmetric functions
x and y. This symmetrization procedure has the
immediate advantage over the usual additive sym-
metrization procedure, i.e.,

f(s, t,u) ~ f(s, t,n)+ f(s,u, t)+

in that Regge behavior is automatically preserved. On
the other hand, the procedure is not unique and un-
desirable analytic properties may be introduced. The
nonuniqueness of the symmetriza, tion procedure can,
however, be put to some advantage in helping to
satisfy unitarity. Also the undesirable analytic proper-
ties can be controlled to a large extent by taking further
advantage of the nonuniqueness, as shown in Sec. III.

The non-crossing-symmetric phenomenological
amplitude used in I as a starting point and generalized
in this paper is the factorized form

r = (y ax+a—)'~', (2.2)

where b may be any function of a. However, if we choose

factor, and a superposition of terms carrying the high-
energy Regge power behavior.

As in I, the variable 0- is a member of an infinite set
of functions of x and y that approach s with arbitrary
accuracy in two limiting domains A and 8 of the com-
bined s,t complex planes. In s-channel language, where
s ls the cosine of the c.ID. Scattellng angle domain A
is centered about s,=0 and s=s~. The parameter sg
is ideally situated somewhere in the low-energy reso-
nance region. Domain & is defined by letting

j
t

~
go to

infinity in the complex t plane for a 6xed value of s in
the neighborhood of s=s~. Under some circumstances,
a,s shown in the example of Sec. III, domain 8 may
include any fixed value of s. These are the physically
important domains in any representation of the ampli-
tude derived from Regge trajectories. Domain A is the
physically important region for exhibiting the effects
of direct channel poles, while domain 8 exhibits the
characteristic Regge-power behavior.

It is easily seen that up to an over-all multiplicative
constant the most general form of the function r(a, x,y),
which ensures that the integrand of Eq. (2.1) is a
polynomial in z, of degree n whenever a is an even
integer, is

b =a' u'c+ ,'ac', ——(2.3)
where n(s) is a Regge trajectory function and r is linear
in t. In Sec. II a superposition of such forms is intro-
duced that display in a natural way branch points
which simulate the elastic and inelastic unitarity
thresholds. In Sec. IV these ideas are put into concrete
form with a simple 0--0- scattering model containing the
elastic and erst inelastic thresholds. Finally, of par-
ticular interest, the constraints imposed by elastic
unitarity on the model trajectory are investigated.

II. FORM OF AMPLITUDE

The crossing-symmetric amplitude considered here
is a superposition of the factorized forms introduced in

I. The amplitude here, as in I, is derived from a family
of Regge trajectories, of which the leading trajectory
is an arbitrarily specified function o, (s). The amplitude
exhibits the features already demonstrated in I, such
as Regge asymptotic behavior, direct-channel poles,
and arrays of daughter poles spaced by two units in the
complex angular momentum plane. Specifically, the
structure of the amplitude now under consideration is

&«(—~(o)) 2

comprised of a product of a signature factor, a pole

then
r = (a—s)~"(u—t) "(u—u)» (2 4)

which displays thresholdlike singularities in the
Mandelstam variables. The sum in Eq. (2.1) can
therefore simulate the occurrence of unitarity cuts with
branch points at the thresholds a; when appropriate
choices of the otherwise arbitrary functions P, (a) and
r, (a) are taken.

Resonance poles occur whenever u(o.)=rI,, a non-
negative even integer. In the s channel, this actually
happens in (2.1) at values of s which are very nearly
independent of t, rather than at strictly fixed values
of s, since O. =s. In fact, in the analytic neighborhood
of n(o.)= ri, we may write

n(o) =n+S„(s s)ye„(t ~)2—+ (2 5)

where ~„ is small in the sense that ~c„s„~(&b„The.
factor (a—&)~"(a—u) " in (2.4) is a polynomial in s,
ofdegree n whenever n{o)=e. However, the factor
(a—s) ", evaluated a,t the value of s for which u=g. ,
has a slight t dependence according to (2.5). Thus for
v=0, the residue of the resonance pole is correctly a
polynomial of degree 0 in s„while for e& 2, the residue
is a polynomial of degree m plus weak ancestor terms
proportional to the small parameter e„.This departure
from true polynomial residues for e& 2 is traced to the
error in the relation O-=s, and has nothing to do with
the analytic structure of e(s).
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III. FUNCTION e TAnLE I. Occurrence (X) of the values of k and t
in Zq. (3.15) up to k=13.

The function 0., whose properties are specified in Sec.
II, is generalized in this section from the form con-
structed in I primarily to introduce more control over
its singularity structure. In I it was shown to be con-
venient to define a pair of new symmetric functions

p = -', x—(2/9)c' (3.1)

+&(p ~)p2
—3 lm+n) (3.3)

where 1V'(p, q) is a polynomial in p and q constructed
so that o- „—+ s in domains 3 and B.

The generalization of form (3.3) considered here is
the rational function

~ = sc+&(P,C)/D(Pa), (3.4)

q = —4y+-3'cx —(10/27) c'. (3.2)

There 0- was defined to be a member of a sequence of
rational functions of p and lt of the form
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in terms of which

8=$—3c)1

z = (t—u)'/3u'

p= o2(1+s),

q= o3(1—32) .

(3.5)

(3.6)

(3 &)

Domain A is attained when s —+0 and ~ —+ ~~ ——s~ —-', c,
while domain 8 is attained when s~ ~ and v —+a~

1= sg —3c.
The rational function 1V/D may now be written in

the form

olr/D Q ll pol—oak—2l/Q p p3l octo-2l—
k, l.

tt3:Sm/Q fl uksm

(3.9)

(3.10)
k, m klm

(3.11)

Z4, (-3) ( .)=( (3.12)

where D is a33y polynomial in p and lt. The zeros of p
on the right-hand side of Eq. (3.3) produce rnultiple-
order poles in the combined s, t complex planes that
come objectionably close to the physical region. The
generalization to an arbitrary denominator polynomial
introduces a flexibility into 0- that can be used to relocate
such singularities away from the regions of interest.

Given the arbitrary polynomial D, we attempt to
find an E that is matched to D in some optimal way.
The approach here is to discover what terms p'g' may
be present in E for the given D and then to determine
a set of optimal coefficients multiplying these terms.
To facilitate taking the limits appropriate to the
domains 3 and 8, it is helpful to introduce new variables

ln order that negative powers of p and q not be present
in 2V and D, the coefficients ak~ and bkE must be zero
for those values of k and / not satisfying

0& -', A &1&—,'k. (3.13)

The problem now is to find akim for the given bk~ such
that

lV/D =u+ small error (3.14)

in domains 2 and 8. Setting the right-hand side of
Eq. (3.10) equal to tt requires that

Q g„ ltd -Q fl uk+I
k k

(3.15)

which of course cannot be an identity for all re because
v is not a symmetric function.

Both sides of Eq. (3.15) are polynomials in o which
are to be equated to each other in some approximation
in domains 3 and B. In domain 8 the highest power
nz of s is most important and it is sometimes possible to
satisfy Eq. (3.15) identically for the highest values of
m. As m decreases from these highest values, identical
matching eventually becomes impossible and the best
that can be done is to match the polynomials to some
degree of approximation in the neighborhood of e~.
However, such identical matching is to little avail when
v=0, unless we take app=0. This is immediately seen
from the right-hand side of Eq. (3.9) which reduces to
aoo/&oo when u ~ 0.

Table I indicates which values of k and 1 are present
in each set of equations corresponding to a given power
m of s for all k&13. For example, consider a denomi-
nator polynomial containing a set of given bk& with
p(12, 3&6. The corresponding unknowns ak~ are 20 in
number, after setting app=0, with k&13, 1&6. In
domain 8, the most important power of s is m=6. In
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justable parameters. Other parameters in the model
will be axed at physically reasonable values while the
adjustable parameters will be used to satisfy the cori-
straint of elastic unitarity. The 6rst inelastic threshold
is assumed to be that of 20.~ 4o.

The function o- in this model is derived from a de-
moninator polynomial D = (p+d')', containing the
fixed parameter d. From Table I it is apparent that the
numerator polynomial contains at most 15 coefficients
ranging from a» to a», 5. Six of these are immediately
determined by identical matching of the left- and right-
hand sides of Eq. (3.15) for the two highest powers of s.
Hence the domain 8 result is

/2

Fro. 1. (a) rrns of n and (h) percent error plotted against nu.
Units of a~ are such that no= j..The straight dashed line is o.(s)
when o,2 ——0.

the last column of Table I, the two entries correspond
to the unknowns a~2, 6 and a~3, 6, which can therefore be
determined by this set of equations. Moreover, the
resulting equation is an identity in n since just two
powers of w are present in Eq. (3.15) for m= 6. In the
column labeled. m=5, four additional unknowns occur
and since just four powers of e are involved, an identity
is again possible. The additional unknowns that can be
determined from this set of equations are a~3, 5, a~2 5,

aqua, 5, and a~0,5. In the column labeled m=4, six powers
of v but only five additional unknowns occur. Hence an
identity is not possible and just the 6ve lowest powers
of m —v~ can be matched in Eq. (3.15). Such a matching
could determine the unknowns a84, a94, @~0,4, a~~, 4, and
ar2 4, in which case we could write the behavior of Ã/D
in domain 8 as

Thus far 11 unknowns have been determined, and so it
seems reasonable to determine the remaining l0 by
turning to domain A. An equitable way to distribute the
errors between powers of s and v in domain A would be
to carry out a least-squares fit between the left- and
right-hand sides of Eq. (3.14) in domain A, thereby
determining the best set of remaining unknown co-
efhcients. This is a straightforward task since E is
linear in the unknown coefficients.

Table I is easily extended to handle polynomials of
higher degree but it probably contains enough low-

order cases of practical interest. The table is primarily
an aid in determining how best to distribute the errors
am.ong the powers of s and e in domains A and 8.

IV. THREE-PARAMETER MODEL

In this section we construct a simple hypothetical
model, describing a--0- scattering, as an application of
the general representation (2.1) based on three ad-

(S/D)~= v+O(s '). (4.1)

The remaining nine coeKcients together with the de-
nominator parameter d are determined by a least-
squares ht to the equation (E/D)~=t in the s,t plane
over the physical region 4m'&s&16m', where m is the
mass of the 0-. The significant numerical results of the
fit are that the rms of the difference 0-—s over the
physical region is 0.13m', while the best value of d
determined this way is 17.4m'. The denominator poly-
nomial is actually just a slight modification of the one
proposed in I and is perhaps the simplest such modifi-
cation giving some promise of pushing undesirable
singularities away from the physical region. The rela-
tively large size of d as compared to the extent of that
part of the physical region under consideration is there-
for a reassuring result.

The nonlinear form

n(s) =ns+nr(~ —4m') —ns(4m —s)"'+'~' (4.2)

possessing the correct threshold behavior, is assumed
for the trajectory function. The parameters o.o and n&,

de6ning the linear part of the trajectory, are to have
fixed values, while only the real coeKcient n& multi-
plying the nonlinear term is considered as an adjustable
parameter. In this way, we can isolate the effect of
varying the nonlinear part on the unitarity requirement.

For the sum in Eq. (2.1) we assume in this model the
occurrence of just two discrete terms, associated with
the elastic and first inelastic thresholds. Thus the
amplitude is

where the real coeKcients Pr and P, are the remaining
adjustable parameters, and the scaling parameters v.

&

and z2 are to have fixed positive values.
The trajectory parameters are set at the values

~()———0.1 and o.~ ——0.02nz '. These choices Gx the linear

r A. Q. Barut and D. E. Zwanziger, Phys. Rev. 127& 974 (1962).
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part of the trajectory to have a slope comparable to
the slopes observed in nature if m=nz and to give a
hypothetical spin-0 resonance at m„=3m, approxi-
mately in the middle of the elastic region. The scaling
parameters are arbitrarily set at rt ——(2m)' and
rs (4m——)'.

The statement of elastic unitarity is

s—4m»» -»
ImA (s, t.) =

16m' s

where
)&sin8 ReLA*(s,t„)A(s,t )j, (4.4)

t = ——,'( —4m')+-,'( —4m')'t'

&(L(—n)'" cos8+ (—t)"' sin8 cosP). (4.5)

.a
I

.0/

The unitarization procedure adopted here is to search
in the space of Pt, P, and ns for the nontrivial minima
of the rms of 6 in the s, t plane over the elastic region,
where 6 is the difference between the left- and right-
hand sides of Eq. (4.4). Only positive n2 is considered
since a negative value corresponds to a resonance pole
on the physical sheet. The results of the search are as
follows. For arbitrarily small values of o.&, the only rms
minimum in the real Pt, Ps subspace is the trivial
solution Pt=P2 ——0. In the approximate range 0.005(n2
&0.025 (in units where m=1), a nontrivial minimum
occurs in the Pt, P, subspace. Figure 1 shows this
becomes a minimum in the full P~, P2, ns space at
e~ ——0.013. For higher values of n~, other minima are
not ruled out, but such possibilities were not explored
in depth. The upper curve of Fig. 1 gives the ratio (in
percent) of the rms of A to the maximum value of ImA
in the physical region. This percent error curve goes
through a minimum of 4.4%%uq in very near coincidence
with the rms minimum. In qualitative terms, unitarity
is satis6ed to a few percent in the neighborhood of the
resonance when e~ ——0.013. The corresponding values
of the other parameters at this minimum are Pt ———0.32
and P2 ——1.11.

V. CONCLUSION

The intent of the above model is to present a concrete
example of the representation (2.1) based on an arbi-
trarily specified trajectory and then, more significantly,

Fxo. 2. ia) Renis) and ib) Ime. is) plotted against s when
a2=0.013 in units such that m=1.

to show that a purely linear trajectory is unsatisfactory
under the requirement of unitarity. In fact, the only
solution in such a case turns out to be the trivial solution
0=0. %e have shown, in the context of an admittedly
hypothetical model, that the constraint imposed. by
unitarity is certainly more consistent mith a nonlinear
cut in the trajectory, rather than without. The strength
of this cut, for the best set of parameters determined in
Sec. IV, is displayed in Fig. 2.

A number of immediately obvious improvements in
the 0--0. scattering model are possible. For example,
higher inelastic threshold terms with parameters P;
and r; could be included in the representation (4.3).
Also a search in the full parameter space could be
undertak. en, the expectation being that the entire
trajectory may be bootstrapped by the unitarity con-
dition. However, the hypothetical nature of the scat-
tering system suggests that such improvements are of
doubtful value. The simple model has served its purpose
and it is now of considerable interest to move on to a
realistic application. %ork has therefore started on an
application of representation (4.3) to the process
z~ —+ neo in which the p should play a dominant role.
A statexnent of elastic unitarity below the mes threshold
and based on the T= 1 mm amplitude could in principle
bootstrap the imaginary part of the p trajectory once a
suitable parametrization of the imaginary part is
adopted.


