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The mass extrapolation procedure of Fubini and Furlan and of de Alfaro and Rossetti, together with.
current algebra and partial conservation of axial-vector current, is used to derive asymptotic relations
between the vector and axial-vector form factors of the nucleon. These relations are compared with the ones
obtained recently by Gordon and Peccei. We are led to the nonrenormalization of the axial-vector coupling
constant, provided that the time derivative of the divergence of axial-vector current is assumed to transform
like the time component of the axial-vector current.

I. INTRODUCTION
' 'N the last few years, current algebra supplemented
i - with the hypothesis of a partia11y conserved axial-
vector current (PCAC) ha, s been extensively used to
derive a large variety of relations for pions of zero mass
(soft pions). ' In order to make these relations valid for
physical pions (nonzero-mass pions) one must do an
extrapolation in the pion mass. A natural and simple
procedure to carry out the mass extrapolation has been
suggested by Fubini and Furlan, and de Alfaro and
Rossetti (FFAR).' The, essential point of the FFAR
formalism is to write dispersion relations in a suitable
variable which is related to the pion mass. The dis-
persion relations are then evaluated at the pion mass
and one obtains relations valid for physical pions. The
FFAR mass-dispersion relations have already been
studied in a number of problems with useful results. '

In a recent publication, Gordon and Peccei4 have
pointed out a rather interesting application of the FFAR
mass-dispersion relations; these dispersion relations can
be used to derive asymptotic relations between various
form factors. In particular, these authors derive the
relation

Gg(t) = G~(0)Gsr(t),

where Gt, (t) and Gss(t) are, respectively, the axial-vector
and the Sachs magnetic, isovector form factors of the
nucleon. To start with, they obtain relations for the
nucleon vector and axial-vector form factors in the
limit of invariant momentum transfer t —+—~, in terms
of single-pion electroproduction amplitudes. The un-
known electroproduction amplitudes are then elimi-
nated by means of a link to double-pion electroproduc-
tion and Eq. (1.1) follows. It becomes pertinent to
inquire what relations obtain if one considers the single

' S. L. Adler and R. F. Dashen, CNrrent Algebra and Applica-
tions to Particle Physics (Benjamin, New York, 1968).

~ S. Fubini and G. Furlan, Ann. Phys, (N. Y.) 48, 322 (1968);
V. De Alfaro and C. Rossetti, Nuovo Cimento Suppl. 6, 575
(1968).

3M. Ademollo, G. Denardo, and G. Furlan, Nuovo Cimento
57A, 1 {1968);H. G. Dosch and D. Gordon, Ann. Phys. (N. Y.)
50, 472 {1969);G. Denardo and G. J. Komen, Nucl. Phys. B14,
593 (1969);N. Paver, C. Verzegnassi, and E. E. Radescu, Nuovo
Cimento 66A, 261 {1970};G. Furlan and N. Paver, ICTP,
Trieste, report, 1970 (unpublished).

4 D. Gordon and R. D. Peccei, Phys. Rev. 187, 1940 (1969).

2

and double weak pion production resulting from only
the axial-vector part of the hadronic current. Of course,
one expects to get some kind of consistency relations
that go with Eq. (1.1). We carry out this program in
the present paper and obtain the two asymptotic
relations

Ger(t) = Gg(0)G&(t),

gg(t) = (2stt/t)Gg(t),

(1.2)

(1.3)

in the limit t +~.On—combining (1.1) and (1.2), we

get
Gg'(0) = 1. (1 4)

Equation (1.4) will be recognized as the result of exact
SU(2) IISU(2). Equations (1.2)—(1.4) may be regarded
as the main results of this paper.

The plan of the paper is as follows: In Sec. II, we
study the weak single-pion production (due to the
axial-vector part of the weak hadronic current) with a
view to writing once-subtracted dispersion relations for
suitable amplitudes. The I.ow representation for the
weak production amplitude is examined in some detail,
and the asymptotic behavior in the dispersion variable
is ascertained. The dispersion relations obtained are
evaluated in the limit of large nucleon energies and one
obtains relations expressing various nucleon form factors
in terms of the amplitudes of weak pion production. In
Sec. III, we carry out a similar analysis for the weak
double-pion production. The one interesting phenom-
enon here is that the nucleon pole contribution to this
Cive-point function (which, apart from the nucleon
propagator, is the product of the axial-vector form
factors of the nucleon with the weak single-pion pro-
duction amplitude) becomes, in the limit of nucleon
energy going to infinity, identical with a diagram which
is the product of axial-vector nucleon form factors with
the pion-nucleon scattering amplitude. Thus the asymp-
totic relations of Sec. III are expressions giving the
nucleon form factors in terms of the pion-nucleon and
weak single-pion production amplitudes. One can now
eliminate the unwanted weak single-pion production
amplitudes from the asympotic relations of Secs. II and
III, and one obtains relations purely between the form
factors. A discussion of these relations is presented in
Sec. IV.
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Cluster decompositions of the four- and five-point
functions are given in Appendices A and 3, respectively.

II. WEAK PION PRODUCTION FROM NUCLEONS—FOUR-POINT FUNCTION

Notice that only the nucleon intermediate state con-
tributes to BR,l' since it is the only intermediate state
degenerate in mass with the external states. More
precisely,

We begin by considering the matrix element of the ~„a = p (gy(p') Ip„g al»r(p')&
time-ordered product of two axial-vector currents E ar i~

between nucleons:
x&»'(p') l~. I»'(p)& —&»'(p') l~ I» (p)&

M„„l' = —i de X(-&'(p) IP,&.'I» (p)&), (2 10)

From (2.1) follows the Ward identity

q„M„,a = U, a +C,a,
where

where the summation is over the intermediate nucleon
spin. The explicit evaluation of U„a (0) is easily ob-
tained on using the matrix elements

(2.2) &~v(p')
I
A„ I tv(p))

= ( /E) (p')LG. (t)~.+ g. (t)&.1

&'s a'"&»'(p')
I
2'(D'(a)~. (0)) I»'(p)&, (2 3)

&tv(p')
I
I'..I» (p)&

Xy5—r u(P), (2.11)

'"&( )&»'(p')
I
L~o'( ) 4 (0)hl»'(p))

=i p.,&»r(p')
I v"(0) I»'(p)& (2.4)

= ( /E) (p')LP (t)v. —Ll'-(t)/2 j "~.l
X-,'r.u(P)

Here V„& is the weak vector current and a~= 8„A„I'.
Following FFAR, we aim at constructing a once-

subtracted dispersion relation in the pion mass variable.
The subtraction point is chosen to correspond to the
zero mass of the pion. The subtraction constant is then

simply the result obtained from current algebra plus
massless pions. As emphasized by Fubini and Furlan, a
convenient frame in which to consider mass-dispersion
relations is the Breit. frame, i.e., p'+p= 0. Furthermore,
we wish to work with collinear dispersion relations; that
is to say, we set

m)
— i G~(t) —Gz(t)

=i —Iu(p') GJa(t)y, +-
Ei m 1—t/4m'

X-,'r.u(p), (2.12)

Gg(t) =Fi(t)+ (t/4m') F2(t),

GM(t) = Pr(t)+F2(t).
(2.13)

where G~ u(t) are the Sachs isovector electric and
magnetic form factors of the nucleon and in terms of
Fj and F2 are given by

Thus,

q= xP = ,'x(p+ p') . -

q=0) go +~0

(2 ~) Also,

(2.6)
6=p' —p,

where we have noted that, po' po E in the Breit-— ——
frame. x is our dispersion variable. The V ard identity,
(2.2), becomes

xP„M„J' = U.s +C.a .

Now we isolate the single-pion pole contribution in
U„P . From Appendix A we immediately find that

To proceed further, we carry out the cluster decom-
position of &„„l' and U,~" in the usual fashion. The
results of this decomposition are given in Appendix A.
In the limit x —+ 0 (which, of course, is the usual current-
algebra point), we obtain from (2.7)

U„a (0)=M/' —C„a,
where

x&» (p') I&..l (p.=0, E.=t ),»"(p)&

X&~,(p„=0,E„=t) IDal0), (2.14)

where xp=u/E. The residue of the pole at x= xo is thus

proportional to the weak pion production amplitude.
The residue is explicitly evaluated on using the
definitions

mr„a-=hm (xP„M„„a-7. (2.9)
(p-) ID'l0&=(2 )-"' 'f-, (2.15)
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(»'(p') I ~. I ~e(p-),»'(p))

m—u(p') I:iTi'y
(2&)"' E

where
2xp

p

ImF;(x)
dx

x(x' —xpp)
(2.25d)

+Tp eP„+Tp e6„7u(P), (2.16)

T e=T ~+&& e+T & &Xipt ~, rt&7, i=1,2$. (2 17)

The amplitudes T;&~&(x) have the following crossing
properties under x —+—x:

Ti~ &(x), T, i—&(x), Tp&+&(x) even,
(2.18)

Ti'+'(x), Tp&+&(x), Tp&
—

&(x) odd.

Next, we examine the asymptotic behavior ofU„~ (x)
as x ~~. Following Bjorl.en's' arguments, we find that

(2.26a)f Ti' '(0) = ptG44(t) G~—(0)GJ,(t)7,

f T, &
—

&(0) = (m/2E') {G„(0)G„(t)
—LG. (t) —G (t)7} (2 26b)

f. T&+&(0)=(m/4E')G, (t)+ ,'g, (t).- (2.26c)

We note that t = —(P' —P) '= —4(EP—m') ~—pp when
g ~QC&

Let us now take E to infinity. Then xp t4/E———+0, so
that F,(xp) ~F,(0) and, consequently, t'&F; +0.—We
obtain (in the limit F.—+~)

and

C 1
U,e (x) —+ —+0—

~ ~oo x2
(2 19) III. WEAK PION PRODUCTION FROM NUCLEONS—FIVE-POINT FUNCTION

Here we work with the 6ve-point amplitude
z

C= — d4s e' '4t(&z )p

x(»'(p')I LD'(s), ~ (0)7I »'(p)) (2 20)

T„J' =i d4s e '"(»'(P')
I T(A„e(z)A„e(0))

xl»(p); .(&)), (3.1)

Finally, we introduce a function F„t&~(x) defined by where &r (k) denotes a ~ meson of isospin index n and
four. -momentum k. From (3.1) we get the Ward identity

F„& (x) = (1—x'/xt&') U„e (x) . (2.21)
T Pu —Pj" Pe (3.2)

We see that

F.'-(o) = U, -(0) (2.22)
where

x2
F„e (xp) = lim 1— U„e (x)

X~ÃP 2xp

d" e '"(»'(p')
I
-T(D'(s)&.'(0))

X I

»"(p); ~.(&)). (3.3)

Also,
C

F„e (x) —+ — x+const.
g ~oo x2p

(2.24)

= (m/E) f.u(P')LiTi e(x )y„+T e(xp)P„

+T,-e(x.)a„7u(p) . (2.23)

Notice that the equal-time commutator term is absent
from the right-hand side of (3.2) since the two axial-
vector currents in (3.1) carry the same isospin index.

As in Sec. II, we want to write a mass-dispersion re-
lation for suitably chosen amplitudes. A convenient
frame in which to work here is dehned by

Q = 0, where Q = —', (p+ p'+ k) .
In the following we want to write dispersion relations
for the even parts of F„~ (x). From (2.24), we see that
the even parts approach a constant for large values of x.
Hence, we can write once-subtracted dispersion relations
for the amplitudes Fi,pi '(x) and Fpi+&(x), where F;i+&
are the invariant amplitudes in the decomposition of
F„~ (x). At the point x= x,, we get

f-T ' '(xo) = ll:G (t) —G (o)G (t)7+~F ' ', (2 25a)

f T2' '(xp) = (m/2E') {G~(0)G~(t)
—

I G44(t) Gs(t)7}+t'&Fp& —&, (2.25b)

f.T, '+'(x.) = (1/4E )LmG (t)
+2(E'—m')gg(t)7+ t&F, i+&, (2.25c)

' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

We take the initial pion to be at rest, i.e., k=0, kp= p.
Then p= —p', pp= pp'=E, and Qp=E+ pI4=E'. Again
we use the collinear frame, i.e. , q=yQ, so that q=0,
qp=yE'. The Ward identity (3.2) becomes

yQP'.' =~' . (3.4)

W„e (0) =lim PyQ„T„„e 7.
y~p

(3.5)

From Eq. (B1) we see that only the nucleon inter-
mediate states contribute to tke right-hand side of (3.5).

At this stage we carry out the cluster decomposition
of the amplitudes T„„& and TV„l' . The results are given
in Appendix B. Taking the limit y —+0, we obtain
from (3.4)
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Actually, we get

w. '(0) = —,2 ((»'(p') I&.PI &'(p); .(t)&
spin

G.'(y) = (1—y'/yo') "".'b) (3.12)

The leading term in W„p 'v'" is seen from (3.9) to
behave like y ', the coeKcient being given by (3.11).

Finally, we introduce the function G„P (y) defined by

x(»(p) I g.w„p I »(p) &
—(»'(p')

I g.w. 'I »T(p') &

x(»(p')
I
&,p

I »(p); .(&)&}. (3.6)

We have

G„P (0) =W„P (0), (3.13)

x~(p') PG~(t)v. +~g~(t)~.jv~( r-+ ~—p-r p)~(P) (3 14)

Notice that (3.6) involves the weak pion production
amplitude we have already made use of I cf. Eqs. (2.14) " (yo) 'm 1 W" b')

and (2.16)$. Using the ma, trix elements (2.11) and
(2.16), we can evaluate (3.6) explicitly. ' f. —Next, we isolate the double-pion pole contribution in T(—)

the amplitude 8'„~".By looking at the I.ow representa- (2t() i/2

tion of W.P (see Appendix B), we immediately obtain

W„P (double pion pole)

Zi) fv
, 2 ((-~'(P')

I
J-p

I
»'(P'); ~-(&)&

ho+a) (So—y)'E" "'.

and
C2

G Pa, even ~ y2+const
y-+Oo

y
4

(3.15)

where

Cg C2
W P (y) —+ —+—+0—

3' 3' 3'
(3.9)

ICi=-
~I

d" p-'"~(~,)(»(p ) ILDp(~), ~„p(o)j
x l&v(p); ~.(k)&, (3.1o)

x(»(p') I&.pl»'(p)&-(»(p') I&.pl»'(p))

x(»(p) I&.pl»'(p); ~.(&)&}, (3.7)

where y()=t(/E' and we have used DP=p'f v) P. Equa-
tion (3.7) involves the pion-nucleon scattering ampli-
tude T&,

(»(P')
I
~-p

I
»(P'); ~-(&)&

(
m—tt(p') T'(s o)&(P), (3 g)

(2t)"' E
Tpa —

gp T&+)+iLrp & ]T(—)

where s= —(p'+k)'= m'+2t(E' and the invariant
momentum transfer is zero. We may note here that
s —+a) as E'~~. On using (2.11) and (3.8), we obtain
an explicit evaluation of (3.7).

We now turn our attention to the asymptotic
behavior of W„P (y) as y —+~.Again following Bjorken's
method, we get

We shall assume now that the equal-time commutator
$&7DP(s)/Bs, ,A„P(0)ft)(s,) is either a c number or it
transforms like an isovector. In the latter case it is
identically zero, the two isospin indices being equal.
With the above assumption, G„t' ' '" goes like a con-
stant asymptotically. Thus we can write once-sub-
tracted dispersion relations for the amplitudes G;t

where G;& are the invariant amplitudes in the decom-
position of G„t' . That is,

G,pa, even(~ )
2y 2 ce fmGPa, even(y),

G pa, even(0)+
xb' 3'0 )

Gpeave (n)0+, gG paeven, (3.16)

2mf-
Gg(t) T&-)(s,o)

m2
=G (0)(I— 'rg' '+EG, (3.1)a)

jVjV~

2mf
g~(t) T & )(s,o) =——Gg(0) Ti& )+t)G2, (3.17b)

2ZZ'

2mf
gg(t) T&—)(s,o)

pE

When evaluation is made of the relation (3.16), one
obtains a set of sum rules,

C2=
~1g

DP (s),A,P(0)
Bzo

8
d" -'"&( o)(-~'(p')

I

= —Gg(0) Ti&—)+Tg&+) +(1G3, (3.17c)
2ZZ'

X»r(p); .(~)&. (3.»)
As in the case of the four-point function, we are in-
terested here in. only the even part FV„P ' '" of IV„P (y):

plus some other sum rules which are identical to
(3;17a)—(3.17c) in the limit E'-+~, or else do not yield
any useful information in the present context. When we
take the limit E'-+~, then the corrections 8G; ~ 0 (as
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explained in the last section), and we obtain

2mf-
G~(t) T(—)(s,O) =G~(0)T, &

—)(0),
p,F~

(3.18a,)

2mf
gg(t) T(—'(s,0) =

—m
Gg(0) T) (—)(0),

282
(3.18b)

The variables s and t in Eqs. (3.18) have assumed the
asymptotic values s ~~ and t —+—~.

On eliminating Tq( ) and Tp(+) from Eqs. (2.26) and
(3.18), we get

2mf ' G,)T(t)
T& &(s,p)=-,'G (0) —G (0)), (3.19)

G~(t)

g~(t)/G~(t) = —m/2E' (3.20)

It is well known that the antisymmetric pion-nucleon
amplitude T( )(s,0) has the asymptotic behavior

T( )(s,O) s 9(",

where n, (0) is the intercept of the )p trajectory at zero
momentum transfer. Remembering that s 2pE and
t~ —4E' in the limit E ~0(), we obtain from (3.19) and
(3.20) the relations

lirn
'—"G (t)

=G~(0) (3.21)

lim g~(t)—
pm —oo

2m
G~(t) ~=0. (3.22)

If one considers the time-ordered product of a vector
and an axial-vector current corresponding to (2.1) and
(3.1) one obtains, as shown by Gordon and Peccei, the
result

G~(t)
lim — =G~

—'(0)
'—"G (t)

(3.23)

When (3.21) is read in conjuction with (3.23), we have

G~'(0) = 1.

IV. DISCUSSION

(3.24)

Ke started out with the aim of supplementing the
asymptotic relations between form factors. derived by
Gordon and Peccei. The required relations are given in

Eqs. (3.22) and (3.24). Equation (3.24) is obviously the
result of exact SU(2))&SU(2) while Eq. (3.22) is the
statement of conservation of axial-vector current for
large values of the momentum transfer. For this latter

2m m
(S)T' '(s 0)= —G„(0) T&' '(0)+T, + (0))

pjV 282

(3.18c)

result, note that it is valid for all values of I provided
that the axial-vector current is exactly conserved.

It will be recalled that the derivation of our results
depends on the possibility of our being able to write
once-subtracted dispersion relation in the variables x
and y in Secs. II and III, respectively. This, of course,
means that we must determine the asymptotic behavior
of the four- and five-point amplitudes in these variables.
While no essential difficulty is encountered in the case
of four-point function, one is faced with the problem of
knowing the nature of the equal-time commutator

0,,=—t BDs(x)/Bxp, A„s(0)]()(xp)

in the case of the five-point function. In the work of
Gordon and Peccei the corresponding commutator is

"tt =—)BDs(x)/Bx p, V„a]()(xp)

and they make the assumption that it is either a
c number (in which case its matrix element between
two different states is zero) or it transforms like an
isovector so that the commutator itself is zero, the two
isospin indices being equal. We make the same assump-
tions with regard to our commutator. One can inquire
whether these assumptions are valid for 'll„ in the first
place; if so, are they also valid for 0,„? The answer to
this is model dependent. Specifically, we need informa-
tion on BD~(x)/Bxp= —i/H, D~(x)]. If this object trans-
forms like the time component of the axial-vector
current, the commutators Q,„and 'll, are both isovector.
This would, for instance, be the case in a simple quark.
model in which H is proportional to the scalar quark
current density and D to the pseudoscalar density. If,
on the other hand, PI,Ds(x)] is proportional to the
pseudoscalar current density, the two commutators 0',„
andi', have different isospin character, being symmetric
and antisymmetric in the isospin indices, respectively.
In such an eventuality (barring the possibility that 0,„
is a c number) we would not be able to write once-
subtracted dispersion relations in the case of the five.
point function and Eqs. (3.22) and (3.24) would not
follow. In Gordon and Peccei's case, however, their
asymptotic relations would still follow since 'LL„would
transform like an isovector irrespective of whether
BDS(x)/Bxp is proportional to a pseudoscalar current
density or to the time component of an axial-vector
current density.

To conclude, we are led to the nonrenormalization of
the axial-vector coupling constant when we simul-
taneously consider the asymptotic form-factor relations
following from single- and double-pion weak. and electro-
production. This result, however, hinges on the im-
portant assumption that BD~(x)/Bxp transforms like
the time component of an axial-vector current density.
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APPENDIX A

Here we give the Low representation for the amplitude M'„, s. The collinear Breit frame (i.e., u'= —u, p, = po
——E,

g=o, qo
——xE) is used.

&'(u' —u-)
(2 )-'M„„s-=p &» (p') IA„sic)(~Id„-l»T(p))+c.t.—xE+E—E

+p &»T(p')IA„elm, »'(p)&&mid. Io)+c.t.—$E—jv

&'(u'+u —u-)+—
&OI ~.'I ~&&~,»'(p')

I ~.
I »(p)&+c t—sz —E

&'(u' —u~)
&o I a»'I t,X(p))&l,»'(p')

I ~. I O)+c.t. . (A1)
gjv jv jv)

The crossed term (c.t.) is obtained from the direct term by the replacement u +-D in the 8 function and x —+—x
in the denominator, and the interchange. 4„~A„.As one can see from (A1), the three types of intermediate states
n, m, / have baryon numbers +1, 0, —1, respectively. Terms with these intermediate states correspond, respec-
tively, to fully connected, semidisconnected, and Z graphs.

To obtain the Low representation for U,i, make the replacement

(A2)

APPENDIX 8
Given below is the Low representation of the amplitude T„„s" in the collinear Breit frame (k=o, ko=p,

u'= —u, po' ——p, =Z, g=o, qo ——yE'):

&'(u' —u-)—(2~)'&"'=P &» (p')
I ~.'I ~)&~ I

~ 'I »'(p), ~-(k))+c t
yjV~+g —g„

&'(u' —u-)+, &»'(p')
I ~.'I ~,~-(k) &&~ I

~ 'I »'(p) &+c t.
yg +g—p —g„

-&'(u' —u —u-)+2, (»'(p')
I
~,'I ~,»'(p)&&~I ~,'I ~.(k)&+c.t.

y jv' jv

&'(u' —u —u-)+ —&»'(p') l~.'I~, ~(p)~-(k))&~l~ 'lo&+c.t.
p

&'(u'+u —u-)+ (0 I ~.'I ~)&~ »'(p')
I
~.'I»'(p), ~-(k)&+c.t

Y
jv' jv

&'(u'+u —u-)+ &Ol A. „elm,~.(k))&m, »'(p')
I
a,sl»'(p))+c. t.

yE' —p, —E

&'(u' —u~)
&o

I
~.'I i,» (p) &&',»"(p') I ~.'I ~.(k)&+

y jv~ g jv)

~'(u' —u~)+ &ol A„&IE» (p)p (k))&t » (p')
I
A„sl0&+c t. . (B1)

p
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The crossed term is obtained from the direct term by the replacement y'~p in the 8 «n«io
yE' ~—yE'+tt in the denominator, and the interchange A„~+-+ A„~. The right-hand side of (81) is the sum of
terms of three categories, namely with the intermediate states of baryon number +1, 0, and —1.

The Low representation for the amplitude 8'„~ is obtained on making the replacement

a„~~—iD~.
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We investigate the low-momentum-transfer predictions of the collinearized current algebra at p= ~.
The study is greatly facilitated by combining the Dashen —Gell-Mann angular conditions with current alge-
bra in order to obtain a difference equation for the dipole-moment operator. In the resonance approximation
arl elementary solution is obtained.

I. INTRODUCTION

HE problem of finding the representations of
relativistic current algebra at finite momentum

transfer has been of considerable interest to elementary-
particle physicists. ' However, a number of examples'
and general arguments' seem to preclude the existence
of physical solutions. ' Nevertheless, since the answer to
this problem is intimately liriked to the spectrum and
degeneracy of the space on which the solution is realized,
a definitive answer is not yet available.

In contrast to the difficulties encountered above, the
collinearized current algebra has been a useful scheme
for relating the low-energy parameters of diRerent
resonances. ' For instance, by saturating the isospin
algebra with iV and 1V*(1236), some of the SU(6)
predictions are obtained. ' A more elaborate saturation
scheme which includes 1V, Ar*(1236), and D&s(1525) as
well as the parametrization of transitions to other states
results in an excellent prediction of the yÃD13 coupling. '

The results above were obtained by first realizing the
dipole moment operator in the subspace of low-lying
spin states and then calculating form factors. The
requirement of Lorentz invariance was then imposed.
This last step severely restricts the solution; even then
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the resulting form factors obey the algebra and co-
variance requirements at low momentum transfer only.
However, this approach becomes increasingly involved
with the enlargement of the subspace.

The method outlined below converts the low-energy
requirement of current algebra and relativistic in-
variance into a nonlinear difference equation. It must be
kept in mind that a solution to this problem on a set of
resonances may not suffice to obtain form factors at
finite momentum transfer. Then this scheme would only
relate the static parameters of a large family of reso-
nances, by analogy with the results referred to
previously.

II. KINEMATICS

At p.= ~, the 5V(3) current algebra, written in the
Okubo notation, is

Lv~-(q) v, (q')3= ~,-v, (q+q') —~ v, -(q+q'). (1)

The formal solution of this algebra is

Vs (a) =-pL —~ V'.-(0)jV,-(0)
X«pL~ ~.-(0)), -~P (2)

where
~'-"(0)=«- (q)l~=v.

From Eq. (1),

[V'.. (0),V'„. (0)]=0,
where V', (0) and V'„(0) a,re the components of the
dipole moment operator, V' (0). Since the dipole
moment operator determines the form factor com-
pletely, its kinematic properties will be described first.

As a consequence of the reality properties of the
charge density, it follows that

vt (e)'= v-'( —a)


