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the right-hand side of (41') is given by pv ", Eq. (55).
Since Ii* appears in the discontinuity of all three terms
of (41'), we have the result that M "(t), Mrg"(t),
and F(t) are linearly related in the region (2nz )s(t( (4nz ) . Since this is a relation among analytic func-
tions of t, it holds throughout their common domain of
analyticity. This result cannot be obtained in any way
from conventional dispersion theory alone. Given the
usual hypotheses of current algebra, it is an exact
result, obtained from three-point function Ward
identities and unitarity. A similar relation can also be
deduced in a current algebraic analysis of four-point
functions. '0 In this case the relation is among
M '='(s, t), M z ='(s, t), where s = —(q+ps)', and
F(t), and the soft-pion limit, p or q

—&0, is taken to
eliminate M ~. The Veneziano representation, " used

"P. Nath, R. Arnowitt, and M. Friedman, Phys. Rev. D 1,
1813 (1970)."G. Veneziano, Nuovo Cimento 57A, 190 (1968).

oB the pion mass shell, for M then in principle pro-
vides a determination of F(t). Our relation gives F(t)
in terms of partial-wave amplitudes. If we wished to
invoke At dominance in p' and q' for M ~", we would
have a prescription for obtaining F(t) from on-shell
zrzr p-wave elastic scattering and from the 7=7=1
amplitude for ~x on shell ~A 12~ off shell. We regard
this result as an interesting example of what can be
learned from the simultaneous application of the
constraints of current algebra and of unitarity. Further
consequences that it may have towards improving our
knowledge of the t-dependent form factors and phase
shifts for the A&p7i- system are actively being examined.
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We propose an unambiguous way of constructing amplitudes which satisfy both unitarity and the current-
algebra constraints. This consists in working out higher-order corrections on a Lagrangian which produces
the correct soft-pion limit in the tree approximation. We consider ~~ scattering in the 0 model, and we
compute the perturbation series up to second order. The renormalization procedure preserves the partially
conserved axial-vector current condition and the current-algebra constraints at each order. In order to
sum the strong-coupling perturbation series, we use the Pade-approximation technique. Thereby, our
partial-wave amplitudes satisfy unitarity. The o and fe resonances are generated, although they were not
present in the Lagrangian. Our unitary amplitudes satisfy crossing symmetry to a very good accuracy,
showing the consistency of the results. Our results are in agreement with the "up-down" solution of the
I=0, s-wave ~m phase shift, with a very broad 0. resonance; the I=2 s-wave phase shift is repulsive, and
agrees very well with experiment.

I. INTRODUCTION

A LTHOUGH current algebra has been successful in
in describing low-energy pion processes, the pre-

dictive power of the theory in the form used so far be-
comes weakened as soon as the energy increases beyond
the threshold, since the unitarity is not taken into
account in the usual treatments. With the help of
chiral Lagrangians, one can realize the results of current
algebra within the framework of Lagrangian 6eld

*Laboratoire associe au CNRS.
t Supported in part by U. S. Atomic Energy Commission under

Contract No. AT (30-1)36688.

theory; based on this observation, we have proposed'
an unambiguous way of unitarizing the current-algebra
amplitude. This consists in taking a Lagrangian which
is renormalizable and which produces the correct soft-
pion limit, and in computing higher-order corrections
and summing the presumably divergent perturbation
series by the Pade algorithm.

The 0. model of Gell-Mann and Levy' is ideally
suited for implementing this program. The Lagrangian

~ B.W. Lee, Nucl. Phys. 89, 649 (1969); see also J. L. Gervais
and B. W. Lee, ibid. 812, 627 (1969).

2 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
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of the 0. model is known to satisfy all the hypotheses of
current algebra: The vector and axial-vector currents
of the Inodel satisfy the chiral commutation relations
and the hypothesis of the partially conserved axial-
vector currents (PCAC) holds in the model. Further-
more, the chiral partner of the m meson, the 0- meson,
may in fact exist in nature in the form of a broad reson-
ance about 700 Mev. These facts give some credence to
the supposition that the o- model may be a reasonable
model for low-energy zw scattering. In Ref. i we have
shown that the 0- model can be renormalized in such a
way as to preserve the current-algebra condition and
PCAC, owing to the fact that the divergent parts of
higher-order terms are strictly chiral symmetric.

Once renormalization is performed, one has still to
cope with the problem of nonconvergence of the pertur-
bation series. In recent years much progress has been
made in the use of the Pade approximations to sur-
Inount this difhculty. ' ' While there exists no proof that
the Pade approximants converge to the true solu-
tion in Geld theory, this method is a particularly simple
one among all techniques of summing divergent series,
with the additional virtue that the method yields
amplitudes which are exactly unitary when applied to
partial waves. Meson dynamics has been studied in the
4' theory, ' 4 using the Pade technique. The results
indicate that (1) the approximants appear to converge
rather rapidly in practice, and (2) higher partial-wave
resonances like p and fs are generated even in lower-
order approximations, but that (3) the s-wave ~n phase
shifts so computed are in disagreement with experiment.
Since various tests of consistency of the Pade ampli-
tudes (such as the stability of the amplitudes as the
order of approximation is increased, and the extent to
which the amplitudes are crossing symmetric) indicate
the reliability of the approximation scheme, the failure
of the C4 theory to give the correct s-wave mz phase
shifts seems to imply the inadequacy of the dynamical
input of this particular model. The approximate chiral
symmetry and the particular role the pions play in the
symmetry scheme may well be the missing dynamical
input in the previous study of the meson dynamics
based on the Pade technique.

In this paper we present the results of a calculation
on low-energy s-~ scattering (&1 BeU) carried out
along the lines indicated above. The x~ scattering
amplitude is computed from the truncated 0- model
(i.e., with the neglect of the nucleon contribution) up
to the second order in a perturbation expansion which
maintains PCAC (and therefore the correct soft-pion
hmit) in each order APade ap. proxirnant is con-

' D. Bessis and M. Pusterla, Nuovo Cimento 54A, 243 {1968).
4 J.L. Basdevant, D. Bessis, and J.Zinn-Justin, Nuovo Cimento

60A, 185 (1969).
'D. Bessis, S. GraK, V. Grecchi, and G. Turchetti, Phys.

Letters 288, 567 (1969);A. A. Copley and D. Masson, Phys. Rev.
164, 2059 (1967);J. L. Gammel and F. A. MacDonald, ibid. 142,
1145 (1966);J.A. Mignaco, M. Pusterla, and E Renuddi, Nuo. vo
Cimento 64A, 733 (1969); J. L. Gammel, M. T. Mentzel, and
J. J. Kubis, UCLA report (unpublished).

structed from the perturbation series. As we indicated
before, the Pade amplitude so constructed is auto-
matically unitary. A preliminary account of this cal-
culation has been given elsewhere. ' The present article
gives a detailed exposition of the rational and method of
the calculation, and a fuller description of the results
obtained. In addition, the present discussion contains
various tests of consistency of the amplitudes so
constructed.

One of these tests consists in checking crossing sym-
metry of the resulting amplitudes. There are several
reasons for this. One is that since our amplitudes are
exactly unitary, we must be certain that crossing rela-
tions are not too badly violated in the course of enforc-

ing unitarity. Another reason is that in discussing
crossing properties we can clearly see the difference
between our amplitudes and previous attempts at
unitarizing current-algebra amplitudes. ' Previous at-
tempts have suffered some ambiguities stemming from
the facts that (1) only the s and p waves were treated
(these are the only waves present in the steinberg
amplitudes' that are linear in s, f, and I) and (2) they
involve some arbitrary meromorphic functions of energy
(this is essentially the Castillejo-Dalitz-Dyson am-

biguity). One may believe that a way of removing these

ambiguities is to impose crossing symmetry on the re-

sulting unitary amplitudes. Recently, Roskies' has
shown that, in the simple parametrization of Brown
and Goble, ~ for instance, the present of both the cr

resonance in the s wave and the p resonance in the p
wave leads to a sizable violation of crossing symmetry.
On the contrary, we shall demonstrate that in the
present calculation crossing is well satisfied by the
unitary amplitudes.

From the structure of Feynman graphs, one can

regard the r model as the sum of C4 and C' theories,
the various couplings and subtraction constants being
related by PCAC and the current algebra constraints.
From this point of view, the 0- model supplements the 44

theory by adding a new short-range force (o exchange)
as well as an s-wave isospin-zero resonance in order to
implement chiral symmetry. In this respect, one expects
that the r model will maintain most of the desirable

features of the previous 44 calculations and correct the
bad ones, in particular, the behavior of s-wave phase
shifts, and this is in fact what happens. A remarkable
fact is that the value of the arbitrary coupling constant

g, which in the present calculation is obtained by 6tting
the physical mass of the s-wave 0. resonance, is very

6 J. L. Basdevant and B. VJ. Lee, Nucl. Phys. B13, 182 (1969),
L. Brown and R. Goble, Phys. Rev. Letters 20' 346

(1968); University of Washington report, 1969 (unpublished);
R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor, Phys. Rev.
Letters 20, 475 {1968);A. M. S. Amatya, A. Pagnamenta, and
B.Renner, Phys. Rev. 1'72, 1755 (1968);A. Neveu and J. Scherk,
Nuovo Cimento Letters 1, 414 (1969); D. F. Greenberg, Phys.
Rev. 184, 1934 (1969).

S. Weinberg, Phys. Rev. Letters 1V', 616 {1966).
~R. Roskies, Phys. Letters 30B, 42 (1969); Nuovo Cimento

OSA, 467 (1970).
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close to the value of the same parameter in pure C 4

calculations which generates higher partial-wave reson-
ances like the p and fo so well. In the present calculation,
we obtain reasonable s-wave phase shifts, with a very
broad o resonance around 700 MeV, and the p and fo
resonances are generated, although they have not been
inserted in the Lagrangian. However, in this second-
order calculation, the only Pade approximant we can
construct is the l-1,1), and it turns out that for higher
partial waves, this approximant is insufficient if one
desires accurate numerical results. The reason for this
is fully analyzed and stems from the fact that the Born
term of the series contains only 0- exchange in the
crossed channels, which is relatively short range, while
the two-pion-exchange contributions of longer range
are contained in higher-order terms. As a consequence,
in this approximation, the p and fo tend to be too
strongly bound in general. However, since we have the
results of the C4 calculations at our disposal, we may
may speculate about the outcome of higher-order cal-
culations in the 0. model. Most probably, the numerical
results will be considerably improved in a third-order
calculation, since the gross features of mm scattering are
already present here.

In summary, the results we obtain are 7f-z scattering
amplitudes which satisfy the current-algebra soft-pion
limit, and which are unitary and approximately crossing
symmetric to a surprising degree. The I=O wave shift
exhibits a broad resonance around the p-meson mass in
the manner of the so-called "up-down" solution. The
I=1 p wave and the I=0 d wave contain resonances
approximately at the masses of the p and fo mesons.

The paper is organized as follows. In Sec. II we recall
the 0- model, its renormalization, and the PCAC condi-
tion. In Sec. III we give the explicit renormalization at
second order and we compute the amplitudes at that
order. V"e also show how the parameters in the theory
are fixed. In Sec. IV we give a general discussion of the
Pade approximation and its application in the present
calculation. Section V contains the numerical results.
The discussion of crossing symmetry is given in Sec. VI.
Finally, our concluding remarks are contained in Sec.
VII, where we examine the possible extensions of the
theory. In Appendix A, we discuss the Goldstone limit
of the 0- model. Computational details are relegated to
Appendix S.

II. e MODEL

In this section we shall summarize the results of
Ref. 1 on the renormalization of the 0 model. The
Lagrangian of the a- model, first studied by Schwinger"
and Gell-Mann and Levy, ' is, neglecting the nucleon
fields,

2 =2L(B,~O)'+(8,~0')j—2p'(~0'+"o') qgo(&ro'+~—o')'

+cooo ——,'8p'(o. p'+mp'), (2.1)

"J.Schwinger, Ann. Phys. (N. Y.) 2p 407 (1957).

where op and mp are the isoscalar —scalar an(I r'sovector-
pseudoscalar meson fields, respectively.

Except for the term cooo, the Lagrangian (2.1) is in-
variant under SU(2)XSU(2) transformations, whose
infinitesimal forms are given by

~0 ~ mp+n)&~o+ go.p,

op ~ Op — 'Zp ~

The axial-vector currents, which are the responses of
the Lagrangian density to the variation in B„g(x), are
given by

A„(x) = /~0&„&ro &ro—';op(x):
they satisfy the PCAC condition,

a„""(x)=co~0(~).

(2.2)

(2.3)

Because of the Lagrangian possesses the chiral-trans-
formation properties assumed in current algebra, the
tree diagrams of the Lagrangian (2.1) give precisely the
results of current algebra in the soft-pion limit. " In
Refs. 1 and 12 it was shown to be possible to renormalize
the theory in such a way as to preserve the cur. rent-
algebra constraints and the PCAC condition in each
order of the perturbation expansion.

For p.') 0, if we renormalize the 6elds and coupling
constants according to

(oo,~o) =Z'"(0,'),
go

——gZ, /Z',
wZ ]/g

(2.4a)

(2.4b)

(2.4c)

and if we choose bp, ', Z, and Z, to be the ones that make
the symmetric theory (i.e. , co ——0, p, '&0) finite, then all
the Green's functions of the 0- model become finite
functions of finite parameters p, ', g, and y, and external
momenta. After this intermediate renormalization, all
physical quantities may be expressed in terms of the
physical pion mass m ', the renormalized coupling
constant g, and the vacuum expectation value 8 of
the a. held:

e= (ol ~(0)lo), (2.5)

where i is related to p, as we shall see presently. Once
the renormalized theory is expressed in terms of these
parameters, the theory contains no reference to the un-
physical parameter p, 2, and may be extended to the
domain which corresponds to p'&0, in particular, to
the Goldstone case p'&0, co=0 (see Appendix A for a.

discussion of this case). The intermediate renormaliza-
tion renders the theory finite, but the intermediate re-
normalized field ~ is not asymptotically normalized
to the unit amplitude:

(0I -"( )I (P,j'))
=L'-' */(2-)"'(2p.)"'j'-~~ '" (2 6)

"W. Bardeen and B. W. Lee, Phys. Rev. 17V, 2389 (1969)."K. Symanzik, Nuovo Cimento Letters 11, 1 (1969);Commun.
Math. Phys. 16, 48 (1970).



P ION —PION D YNAM I CS IN THE 0 MODEL 1683

where C Q1 and the final renormalization of the m

is necessary:

oo(x) =C "'oo(x), (2.7a)

with C now finite. Since the 0- particle will be unstable
and therefore unobservable asymptotically, there is no
need for a final renormalization of the 0- field. It is
sometimes convenient, however, to further renormalize
f and y according to

i (k -)9)-

+g —I/2 (2.7b)
2 igv5~P

The Feynman rulesfor the r model can be derived
most succinctly if we translate the 0- field by its vacuum
expectation value in Eq. (2.1): 6igv

p'o =so+'vp, sp =Z D,

(so)o=0

The resulting I.agrangian is

&=&o+& ~r. ,

(2.8a)

(2.8b)

(2 9)

2ig(5~(35' 5 ~5P~ 5
f, &P~ )

Z p
———,'[(i7„sp) '-' —p.'sp'g+-,'[(ci„pop) ' —p 'ppo'j, (2.10a) 2ig 5&P

p~ =8 +3go~'o

v '=v'+g &'
'-

and

(2.10b)

(2.10c)

&p=&pg~ ~
2 (2.12)

In higher orders the value of vp is determined by the
requirement that the sum of the so-called s tadpole
diagrams must be zero:

&'ni= 4gp(so +pop ) (go&o)so(so +opo )
—oBp (sp +pop )+[co vp(p +By') jsp. (2.11)

The (unrenormalized) perturbation series is defined as
the expansion of Green's functions in gp with gp'Dp'

fixed. It was shown in Ref. 1 that the eth term in the
expansion corresponds to diagrams with e—1 loops. The
explicit Feynman rules have been written down in
Ref. 1;we shall summarize them in Fig. 1.

The value of vo cannot be given a priori; it must be
determined by the condition (2.8b). In lowest order it is

Fio. 1. Feynman rules for the renormalized Lagrangian. Straight
lines represent pions, dashed lines represent o. particles.

by
6 =/A', Z —1/2~

where Z =ZC, and 6 ' is the renormalized full-pion
propagator, we obtain the renormalized form of
Eq. (2.13c):

(2.14)

which is a nonlinear equation for z in terms of y, g, and
the physical mass of the pion, m '. Note also that Kq.
(2.14) is the formal statement of the Goldstone theorem.

The renormalized parameter p has a direct physical
meaning. From Eq. (2.3) we see that

c,=ip[ii.'+by'+r(gp, vp) 1, (2.13a)

where vp&(gp, wp) is the sum of s tadpole diagrams with
one or more internal loops. The precise form of Eq.
(2.13a) is determined from the relation

so that
7=f-m-' (2.16)

a„A~(x) =co~o(x)
= (coZ.'")[Z. '"op(x) (=pop(x), (2.15)

wp= —cph (0), (2.13c)

where 6 (k') is the unrenormalized full-pion propagator.
Therefore, renormalizing the pion propagator cp and ep

8~(0( T(A„ (x),~oii(0))~ 0)
=i8 ~(p.o)pb'(x)+cp(T(pro (x)pro~(0))), (2.13b)

which gives

being the physical pion decay constant. EVe may
therefore write Eq. (2.14) in the form

f.=p[ —6 ' '(0)/m. '7. (2.17)

For the ensuing discussion, the following point should
be kept in mind: The Lagrangian (2.1) contains three
parametels pp gp and cp. The perturbation series Tz
of the Green's function G renormalized according to the
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V
a

A(b)

FIG. 2. First-order Feynman
graphs; one has to take the
contribution of each graph in
all channels (s,t,N).

where, to this order, we may take

(3.5')

The final renormalization constant C may be computed
from Eq. (3.4):

prescription just discussed is a power series in g with
gi' and m ' considered as fixed parameters:

C =1+4(g8)'B. '(m. '),
where B. '(s) =PdB. (s)jds).

The 0- propagator is, to second order,

(3.6)

Tg(g; g8', m ') =Q g"(Tg)„(g82,m ') . (2.18)

The parameter 8 is determined from Eq. (2.17), which
is of the form

f.=8F(g; g82,m.2)

A.(k2) =
k m 2g8 +13

+(g8)'—
k' —m '—2gii'+i )

=8 P g"F„(g8',m '), (2.19)

where

&&[18B..(k2) —4B..(m. ')+6B,.(k')], (3.7)

once f is given. Thus, in principle, there is only one un-
known parameter in the theory, which may be taken to
be g, since m ' and f are known.

B,„(s)=B.„(s) B,. — (3.7')

The connection between 8=C 't2v and f, is given by
Zq. (2.17), which, in this order, reads as

III. RENORMALIZATION TO SECOND ORDER f =C ' '8(1+4g(g8'/m ')PB, (0) —B „(m '))}. (3.8)
As discussed in Ref. I, in order to perform the re-

normalization of the cr model up to second order (i.e. ,
in the one-loop approximation), we need to know the
counter terms 8p', Z, and Z, in the one-loop approxima-
tion in the symmetric theory. Since there is no one-loop
self-energy insertion in the symmetric theory, we take

This equation, together with the expression for the
real part 3E ' of the pole of the 0. propagator,

3E.2 =m '+2g8'+g(g8')
XL18B..(M,2) —4B..(m. ')+6 ReB. (3f.2)), (3.9)

connects the values of g and 8 in terms of f and the
physical O.-resonance mass 3E (~700 MeV).

The proper vr4 vertex, given by Eqs. (39) and (40)
of Ref. 1, is then

(3.1a)

(3.1b)

6p'=0,

Z=O.

The renormalization constant Z, is, to this order,

Zg ———1 —12gBo,

where the infinite part of Bp must be of the form

(3.2)
V~sv3(P4P2~P3~P3)

»gc-'L~-s~v3v(p~ —P2 P3 P3)+0 v8s3v(p~ P3 P2 P4)

+~-~s V(p.» p»))
A

B~~——ln — z
4x' p

d4k

(22r)' (k')'

A being a cutoG parameter. By convention we choose
Bp to be

Bp=i
de

(22r)' k' —m. '
(3.3)

Let us consider the pion self-energy. As shown in
Eq. (28') of Ref. 1, the inverse pion propagator is

LA~(k')) '=k' —m~'+4(g8)'LB~, (m~') —B~~(k2)] (3.4)

after eliminating p, in favor of m '. The quantity
B „(k') isdefinedby

The function V is given by

V(P &,P2, P3,P3)

=1+gL7B (s)+2B (t)+2B..(33)+B.,(s))
+4g(g ')i~-(p, p )+~-(p,p)+~.(p,p)
+F-.(p3,P4)+F-.(P2,P4)+F-.(pl, P3)+F-.(P2,p3)
+L'.(P~ P3))+8g(g8')'LD(P3 P2 P3 P4)

+D(P3,P2 , P3,P3)), (3.11).
where, as usual, s= (p3+P2) 2, t = (p +p3) 32and

B,„(k') =i
d'p 1

(3.5)
(2~)' P' 3*' (k P)' I

'— — —FIG. 3. Second-order diagrams with no poles and
and a single spectral function,
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I= (2pt+p4) 2. The contribution of triangle graphs, for
instance E,(p, q), is given by

d4k I
E,(p, q) =i

(22r)' (p+k) '—m. '

I
X — —,(3.12)

(q —k)' —m 2 k2 —m '

and E„(p,q) is obtained from E, by interchanging m
and m, in the integrand. The box-diagram contribu-
tions D are given by

&(P2P2 P3 P4)

d'k

(22r)4 (k+p, )2—m 2 (p, —k)2 —m 2

X (3.13)
k2 m 2 (p1+p3 k)2 m 2

The o2r2 vertex is given by Eqs. (41) and (42) of
Ref. 1 as

P S(p3,p„k) = 2ig8C. F(p—r,p2, k)8 S, (3.14)

I

I

I

I

I

(b)

/
)/

/
/
(c)

FrG. S. Second-order box diagrams.

Dt'. PADE METHOD

A. Principle of Method

The Pade approximation has been used extensively in
recent years in order to compute scattering amplitudes
of strongly interacting systems. ' ' For a general
review of the properties of the approximation, we refer
the reader to Ref. 14.

The method consists in approximating a function (in
our case, the scattering amplitude considered as a func-
tion of the coupling constant g) by a, rational function
of. g instead of a polynomial (like the truncated perturba-
tion series). Rational functions are almost as easy to
deal with as polynomials, but they are better suited
to simulate singularities of the original function and,
therefore, give meaningful approximations in much
larger regions. Given the formal power-series expansion
in g of the 5 matrix,

where I' is given by &(g) =1+gSt+g'&2+ g"&.+. (41)
P(p, ,p„k)=1+g{2B,(pt2)+2B. (p22)+38,.(k2)

+5B .(k') —4(F2)pE.(pr, p2)+3E.(pr, p2)]). (3.15)

It is now straightforward to write the 7'. scattering
amplitude up to second order. The Grst- and second-
order Feynman diagrams are represented in Figs. 2—S.
It is also easy to check, from the preceding equations,
that Adler's self-consistency condition" and Weinberg's
relation are true in the second-order mz amplitude.
In Appendix 8 we give the analytic expressions for the
partial-wave projections of the first- and second-order
amplitudes, together with their analytic continuation
in the complex angular momentum plane.

l l

'Y
I

I

where the dependence of the coeS.cients S„on dynami-
cal variables is implicit, the L2V,Mj Pade approximant
to S(g) is defined as the ratio of two polynomials in g,
P~(g), and Q3r(g) of degrees A and cV, respectively,
which has the same Taylor-series expansion around

g =0 as S(g) of Eq. (4.1) up to order E+cV:

'(g) =&~(g)I—Q~(g) = s( g) +o( g"+'"'' ) (4 2)

In potential scattering, it has been proved that the
diagonal Pade approximants (A =ALII) converge to the
true solution as E~~,"and therefore this method is
capable of handling the usual problem of nonconverg-
ence of the perturbation series associated with strong
coupling. In quantum field theory no such proof exists
at the moment. Ke accept on faith that the Pade
approximants in Geld theory converge to the exact
solution, or failing that, is a better asymptotic expansion
of the exact solution than a truncated perturbation
series." It is of some interest to note that experience

A() A
A(, )

Pro. 4. Second-order diagrams, pole terms.

"S. L. Adler, Phys. Rev. 13'7, 81022 (1965).

' G. A. Baker, J. Advan. Theoret. Phys. 1, 1 (1965); J. L.
Basdevant, in M ethods of Snbllclear Physics, edited by M. Nikolic
(Gordon and Breach, London, 1969), Vol. IV; see also the mathe-
matical appendices of Ref. 4 and further references therein.

"R.Chisholm, J. Math. Phys. 4, 12 (1963).
"A proof of convergence of Pade approximants in Geld theory

must come from the derivation of some analytic properties of
Green's functions in the coupling constant. In this respect, the
recent result of J. J. Loeftel, A. Martin, B. Simon, and A. S.
Wightman /Phys. Letters 30B, 656 (1969)j, which shows that the
Pade approximants converge for the energy levels of the anhar-
monic oscillator because of the analytic properties they possess in
the coupling constant, is encouraging,
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with some models of field theory (such as the XC4 theory)
has shown a quite remarkable stability of the approxi-
mations as the order is increased, and this may be taken
a,s an indication of the reliability of the scheme.

Independently of its original motivation, which is to
sum divergent series, the method has the important
feature of yielding an amplitude which is exactly unitary
in the elastic region. More precisely, if we consider the
perturbation series for a partial-wave amplitude

t'(s) =gt, '(s)+g't, '(s)+ (4.3)

for which the elastic unitary is an algebraic relation,
for example,

Imt'(s) = Lt'(s) ]*p(s)~'(s), (4 4)

)the relation (4.4) may be a matrix equation for a
coupled-channel problem; the important criterion is
that Eq. (4.4) is an algebraic, and not an integral
equation], then the Pade approximants t"~' ~'(s) with
E(cV are unitary, i.e., satisfy Eq. (4.4) exa, ctly":

Imd~~ ii'~(s) =PI'~~ ~t(s)]t (s)t'~v 'irt(s). (4.a)

This fact is in particular true for the diagonal Pade
approximants cV =31.'8

Thus the application of the Pade method to the
partial-wave amplitude will yield a unitary amplitude.
On the other hand, the crossing symmetry present in the
perturbation series is thereby lost. That is to say, the
amplitude T(s,t), defined by

T(s,~) = P(21+1)t' ~iv™~(s)Pi(Z, ), Z, =1+//2s (4.6)

does not enjoy the crossing symmetry (or relations)
that Eq. (4.3) does. Of course, T(s, t) —T(s,t), where

T(s, t) =P (23+1)t'(s)E'i(Z, ),

is of order g-' +-'I+', so that for weak coupling the viola-
tion of crossing is only of this order. The construction of
the amplitude (4.6) would not be practical since it
involves an infinite summation. " A practical way of
testing the crossing relation in terms only of partial-
wave amplitudes is aRorded by the works of Balachan-
dran and Nuyts, "and Roskies, ' who derive a complete

"S.Caser, C. Piquet, and J. L. Vermeulen, Nucl. Phys. 314,
119 (1969); D. Masson, J. Math. Phys. 8, 512 (1967).' As pointed out in Ref. 4, this is due to the fact that there exist
groups of transformations on the function and its Fade approxi-
mants, and that homographic functional relations such as
S(s)S*(s)=1 are preserved under the mapping from the function
to its Pade approximant.' Since Pade approximants can be defined throughout the com-
plex angular momentum plane (Ref. 3) for Rel)l; (l; =0 or 1
according to the renormalizable Lagrangian considered), one can
convert the in6nite summation into an integral by the Sommerfeld-
Watson transformation. However, there are technical problems in
calculating the residues of the Regge poles and this method has
not been used up to now.

20A, P. Balachandran and J. Nuyts, Phys. Rev. 1'72, 1821
(1968); A. P. Balachandran, W. J. Meggs, J. Nuyts, and P.
Ramond, Phys. Rev. 18'7, 2080 (1969), and further references
therein.

set of relations among partial-wave amplitudes which
follow from the crossing symmetry of the full ampli-
tude Lcomplete in the sense that if the partial-wave
amplitudes satisfy these relations, then the full ampli-
tude constructed by the device of Eq. (4.6) is necessarily
crossing symmetric]. In particular, Roskies relations
for mw scattering are an infinite set, each one of which
however includes only a finite number of partial waves.
Another test of crossing is the Martin inequalities, "
which follow from the crossing symmetry and the
positivity of the absorptive part of m'm amplitude.
These tests have been applied to the Pade amplitudes
for 7f-z scattering in the ~C4 theory, " and have shown
that the violation of crossing is very small for the Pade
amplitudes in the range of the coupling constant of
interest.

Alternatively, one may apply the Fade method to the
full amplitude:

thereby obtaining a Pade approximant T ~-~ 'iii (z,t). The
&ade approximant T~~ ~'(s, t) is manifestly crossing-
symmetric, but no longer satisfies the elastic unitarity
relation, since it is an integral relation for the full
amplitude. A consequence of this is that the pole of
T'™(s,t) corresponding to a dynamical bound state
depends, in general, on both variables s and t, and the
trajectory of the pole is a curve in the (s,t,u) plane (the
so-called poloid; the trajectory of a bound-state pole
of the T matrix must be a straight line parallel to the s,
t, or u axis, depending on the channel in which it ap-
pears). Obvious tests of convergence of the method
when applied to the full amplitude consist in checking
the degree to which T&~ ~'(s, t) violates elastic unitarity,
and checking the fatness of the poloids. Again these tests
have been performed for mm scattering in the 44 theory
with satisfactory results. 4 "

B. Ayylication to e Model

Ke now turn to the application of the method to the
construction of a unitary zw scattering amplitude from
the fT model. The Feynman diagrams which contribute
to the T matrix for ~m scattering up to second order in g
are shown in Figs. 2—5 and the corresponding amplitudes
are evaluated in Appendix H. It is important to recall
that for the use in the Pade method we need a genuine
expansion of the T matrix in the coupling constant g
with gC' and m ' treated as fixed parameters. This

"A. Martin, Nuovo Cimento, 4VA, 265 (1967);Nuovo Cimento
Letters SSA, 303k(1968); Nuovo Cimento 63A, 167 (1969}.The
method has been extended to the general ~m case with isospin by
G. Auberson, O. Brander, G. Mahoux, and A. Martin, ibid. 6SA,
743 (1970)."J.L. Basdevant, G. Cohen-Tannoudji, and A. Morel, Nuovo
Cimento 64, 585 (1969)."J.L. Basdevant and J. Zinn-Justin (unpublished).
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means that no partial summation of the self-energy
parts, for example, is allowed.

In order to obtain a unitary ww amplitude, we shall

apply the Pade method to the partial-wave amplitude
t(s; I,j) for definite isospin I and angular momentum J.
For brevity, we shall often suppress the indices I and J.
Let

t(s) = gt i(s) +g'ts(s) +
The L1,1j Pade approximant is built up of ti and ts

and is
(4.8)

Ic)

I"IG. 6. Some third-order graphs which are dominant in higher
partial waves; (a) contributes to all isospin channels, (b) con-
tributes only to I=O and 5=2, (c) only to I=o.

to higher waves (t) 0) is Fig. 2(b), which corresponds
to 0- exchange between two pions. In the limit of large
m. ', this Born term behaves as

This approximant is exactly unitary in the elastic
region 4' '(s&4m ', ting(m, ) '~(1/2f) ) (m ) '+' (4.12)

m =m +2gv (4.9)

in the /=0 states, and for all values of s in the I=I
and 2 states.

The I=0 s-wave amplitude deserves a special com-
ment. This channel is unique in that it contains a pole
corresponding to the elementary 0. particle. To lowest
order in g, the o mass is given by Eq. (4.9). That. is,
the first-order term ti(s) has a pole at s=m, '. The
second-order tenn t~(s) has a double pole, as well as a
simple pole at s=m '. In the neighborhood of s=m ',
I~ and t2 behave as

ti a+6/(s m——.'), —
ts A(s —m, ') '+B——(s —m. ') '+C (4.10)

where A, 8, and C are functions of s with elastic cuts
along s)4m '. Hence the Pade approximant (4.8)
behaves as

gb'(b gB) '—
]/& &t~

s —m '—gA(b —gB) ' (4.11)

I et iV ' be the value of s at which the real part of the
Pade denominator vanishes. 3E ' so dined agrees with
the expression (3.9) up to (and including) the first
order in g. Owing to the cut structure of A(s) and B(s),
the pole of t&' "(s) lies in the second sheet of the com-
plex s plane if 3f,')4m„. Clearly, this feature pf the
Pade approximant will persist in high orders as long as
the approximant satisfies the elastic unitarity exactly,
i.e., for SCAN.

For higher partial waves, we encounter a diferent
problem associated with the validity of the L1,1j
Pade approximation itself. In many cases it has been
shown that the L1,1jwhich is the simplest approximant
one can build, can only yield qualitative results and
that higher orders must be computed in order to obtain
accurate quantitative results. ' '~"" What happens
here is that for l)1, the $1,1j approximation is not
defined in the limit m, '-+~. In fact, in erst order of
the perturbation series, the only term which contributes

'4 J, L. Basdevant and B. W Lee, Xucl. Phys. 813, 182 (1969).' H. M. Nieland and J. A. Tjon, Phys. Letters 27B, 5 (1968}.

gii ——Rept(ms')/ts(mir') j. (4.13)

But since t~ is too small, gg will be smaller than the
value obtained in higher calculations, the "true" value
of g. In turn, if we compute Eq. (4.8) with the "true" g,
the resonance mass will be too small and this effect will
increase with the angular momentum, as is clear from
Eq. (4.12). As will be seen in the next section, there is a
tendency for higher partial-wave resonances to occur
at low energies for the value of g which gives a good fit
to the s-wave phase shift.

However, in this calculation m ' and g are not in-
dependent parameters once 8 is fixed and the value of
(m, '/m ') is not too large; also, the effective expansion
parameter g/8~' is small in the cases discussed below,
so that we expect the $1,1j Pade approximant to be a
reasonable approximation to the true amplitude in the
low-energy region for s, p, and perhaps d waves, al-
though higher-order calculations are certainly necessary
to verify these assertions.

The Pade approximation is basically a low-energy
approximation. As the order of the approximation in-
creases, the domain in the energy plane in which the
approximation is valid becomes enlarged. This state-
ment is based on the observation that the successive
terms in the perturbation series include the effects of
higher and higher mass intermediate states. Thus, the
second-order terms in the o model in Eq. (4.3) contains
only 2m and 20- intermediate states. Since, in the range
of parameters of interest, the 0. meson is unstable, the
cut corresponding to the 20. intermediate state must be

and vanishes for m, '~~ for t) 1 Lsee, for instance,
Eqs. (34), (36), and (37) of Appendix Bj. On the
other hand, the second- and higher-order terms contain
two-pion-exchange diagrams t e.g. , Figs. 3(a), 3(c), and
6j which are finite in this limit. In our case, for a rela-
tively large (m '/m '), the knowledge of ti and ts may
be insufficient to generate a reliable approximant for
l&I, since t~ is abnormally small compared to other
terms in the series. For instance, if we try to fix the
coupling constant g by requiring that a given resonance
occurs at its physical mass mz' in Eq. (4.8), we have
clearly
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TanLx I. Some values of the computed s.s phase shifts and resonance masses for several values of f, We first give the value of g,
then the difference so s—, at the X mass (495 MeV) )experimentally, (so —S2) (m&) =58'&17'; see, for instance, C. D. Buchanan and
K. Lande, Phys. Rev. Letters 21, 169 (1.968)j;next Bp and 82 at the p mass; then the computed p and fp masses, and &nally the mass and
width of the 0- resonance defined through the position of the second-sheet pole.

f (MeV)
(s,—s,) Bp

(495' MeV) {760MeV)
52

{760MeV) {MeV) (MeV)
311

(Mev) {MeV)

95
110
120
125

6.96
6.20
5.72
5.63

81'
65'
56'
45'

89'
92'
95'
90'

—32
—22'
—17'
—13'

600
680
750
780

870
970

1080
1115

425
470
510
530

220
260
290
310

displaced into some unphysical sheet in the exact ampli-
tude. However, the lowest Pade approximant (4.8)
approximates this cut by a cut s&4m, ' on the physical
sheet. Presumably, higher-order Pade approximations
will remedy this deficiency, but the approximant (4.8)
is in any case unreliable for s&4m '.

To conclude this section, let us point out that there
are other tests of convergence besides increasing the
order and checking the crossing properties. In fact, one
can also think of computing two- and three-point func-
tions besides the scattering amplitude. For instance, one
can directly compute the o- propagator itself:

D,(s) = [k' —m. '—Z(k')] ' (4.14)

where the mass operator Z(k') is given as a, series in the
coupling constant

~(k') =Pi(k')+g'~2(k')+ (415)

Again, aH the coefficients of this series are finite after re-
normalization and one can sum the series with Pade
approximants. It is then possible to compare, at a given
6nite order, the position and width of the physical cr

resonance obtained in the two-point function and in the
four-point function. One can also compute the electro-
magnetic form factor of the pion,

I'(v') =1+g~ (rJ')+g'~ (0')+' ' ' (416)

In the exact solution we know that the phase of the
form factor in the region 16ns '& g'+ 4m ' is equal to the
7rir P-wave phase shift, and, at finite order, one can
compare the p resonance obtained in Pade approxima-
tions to the form factor and in the scattering ampli-
tude. However, for two- and three-point functions we
have no convergence theorems, and we do not know
which Pade approximants to use preferably, whereas
for the scattering amplitude the unitary properties
indicate that we should use E&3f approximants to the
T matrix. Further investigations are needed about these
points.

7. NUMERICAL RESULTS

In the ensuing discussion, the physical pion mass
m ' is chosen as unit mass scale of the theory. We are
then left with two parameters: the vacuum expectation
value of the cr field i, and the dimensionless coupling

constant g. The values of these parameters can be axed'
in terms of the pion decay constant f and the physical
o--resonance mass.

In Sec. III we saw that in second order the pion
decay constant f is related to ti and g by

where 8 (k') and C are defined by Eqs. (3.5) and (3.6).
In the lowest order we have, of course, f =t)

Similarly, in order to fix the value of the coupling
constant g, we could also use Eq. (3.9), knowing the
physical mass of the o resonance (M 700 MeV).
However, there is a large uncertainty on the exact value
of this mass; the o. resonance is very broad (F, 200-600
MeV) and its position is not well determined. In fact. ,
since the width is large, the exact position of the second-
sheet pole is dificult to determine accurately in terms
of physical-region data. Therefore, in the present cal-
culation we have preferred to determine g by imposing
directly on the physical s-wave amplitude that the
isospin zero phase shift 80 be close to 90' around 700
Mev, which seems a more reasonable assumption.
Once g is fixed by this procedure, and i determined in
terms of f by Eq. (5.1), we can compute all other
characteristics of low-energy xx scattering such as
scattering lengths, isospin-two s-wave phase shift b~,

higher partial-wave reson. ances such as p and fs, and
so on, with no additional assumption or parameter, and
all our partial-wave amplitudes satisfy unitarity.

As we shall see further on, the important features of
the results are (i) that the s-wave phase shifts agree
well with experimental data and (ii) that the theory
also predicts higher partial-wave resonances which can
be identified with the p and fs mesons. However, the
computed masses of the p and fs are generally smaller
than the experimental values. This is a consequence of
the poor convergence of the [1,1] Pade approximant. ,
as explained in Sec. IV. We shall explain later on how
this deficiency may be remedied in higher-order cal-
culations. It is quite clear that in the present second-
order calculation, we cannot reasonably expect the
numerical results to deviate less than 20%%uo from the
experimental figures. In order to obtain a good over-all
numerical representation of low-energy mw scattering,
we have considered the pion decay constant f as a.
parameter of the theory, and we have allowed its varia-
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tion from the experimental value f =95 MeV up to

f =125 MeV. As we explained in Sec. II, the T matrix
is expanded in powers of g while gP is kept constant
I see Eq. (2.7)j. The value of t) is to be determined in
principle from Eq. (2.18) in terms of f . Equations (5.1)
is an approximation of Eq. (2.18). Therefore, we regard
the variation of f as resulting from the approximate
nature of Eq. (5.1). In other words, we shall vary 8
within certain range, so that if Eq. (5.1) there exact
(which it is not), f would range from 95 to 125 MeV.

In Table I, we give for each value of f, the value
of g which is used in the calculation, and which is deter-
mined by the I=0 s wave, together with some values of
s-wave phase shifts, the p and f, masses, and the mass
and width of the output 0- resonance defined through
the computed position of the corresponding second-
sheet pole.

From the requirements that the f„computed from
the right-hand side of Eq. (5.1) does not deviate too
much from the experimental value, and that the 0--reson-

ance occurs near 700 MeV, we obtain the coupling
constant g around 6 (see Table I). An inspection of the
order of magnitude of various second-order terms shows
(see Appendix 3) that they are of order g/Ss' compared
to the 6rst-order terms. The effective expansion
parameter therefore appears to be g/Ss'~0. 1.A notable
exception to this "rule of thumb" is the 0- mass squared,
M, '~m, ', Eq. (3.4), where the second-order term has a
large (~20) numerical factor. In general, however, the
the L1,1j Pade approximant devia, tes noticeably from
the erst-order approximation only near the singularities
of the former (resonances and left-hand cut), and in
some sense, the Pade approximant is a unitarization of
the current-algebra amplitude which is "as smooth as
possible" consistent with unitarity.

A. Scattering Lengths

TAsxz II. Scattering lengths obtained in this model. VVe give
the value of the coupling constant g, the erst-order vacuum ex-
pectation value of the 0 field 8 which is very close to $, and for
ao and a2 our values together with those obtained through the
Weinberg relations for each value of f Th.e coupling constant g
is adjusted so that the resonance position of the e meson lies
between 700 and 760 MeV.

&o Cp g2

f (MeV) g e (MeV) calc Weinberg calc

95 7 90 0.24
110 6.2 105 0.17
125 56 120 012

—0.043—0.033—0.025

0, 16
0.12
0.09

@2
Weinberg

—0.046—0.034—0.026

In this order, the x~ scattering amplitude is

As g-+eo (m s-+~, while m, '/g-+ 2f '), Eq. (5.2)
reduces to the Weinberg amplitude (linear current-
algebra amplitude)

T p „s~(s,t,N) =(1/f„')L(s —m ')b, pb, h+(f —m ')
&&8 ~8pp+(I —m ')8 s8prj. (5.3)

The scattering lengths that follow from Eq. (5.2)
are

s i/

lim 32m- — e'" sinful
s 4m. 2

S—4m

m ' 29m
7 — 1 —— I=O, l=o

f- — 7 m.

m. 2 m 2~—2 — 1 ——+ I=2 t=0
7

7r mg

s —m~ t—m 2

T p, ~g'(s, f,N) = —2g 6 p67)+ 8 «Spy
s —m. ' t —m. '-'

8—m, "9

(5.2)
Q —

mrna

Because the model satis6es the PCAC condition
(2.15), the first- and second-order amplitudes satisfy
Adler's self-consistency condition and steinberg's
relation

lim T p, rs(pt, p~,
'
ps, p4) =0, ps'= ps'= p4' ——m, ',

PI~0

hm T p, s(pt, ps, ps, p4)
pl, 'Ip~0

Since our matrix element for xx scattering is not linear
in s, t, and e, we expect that the scattering lengths will

differ somewhat from those of %einberg. Since the
effective expansion parameter g/Ss' is small, we may
estimate the scattering lengths from the renormalized
first-order amplitude. To lowest order in g, we have

I=f =1. (5.4)

As m, 2~~, these values of course reduce to the
Weinberg values. We expect from Eq (5.4) th.at in the
o. model the s-wave scattering length in the I=O (2)
state is somewhat larger (smaller) in magnitude than
those of Weinberg (for the same value of f„).This is
borne out in the Pade-approximant calculation (see
Table II). Note that in higher partial waves (1=2, 3),
we have

s
lim 32m. ——— e"&sin6)

4m~2 S 4m 2

nz ' s'"P(l+1) (m ' —m ')' 1~'

f.' F(l+-,') m, 'm ' m. '
t)=f rl1 =trl +2gf s 1=2 3 (5.5)
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FzG. 7. The s-~vave phase shifts obtained in the 0. model, as a
function of the total c.m. energy in MeV. This corresponds to
f =125 MeV, g=5.63. Upper curve: isospin zero; experimental
data from Ref. 2t. Lower curve: isospin two, experimental data
from Ref. 26,

where 0'=-, (s—4m '), valid for al/ isospins. In the»mit
m, —&~, the "scattering lengths" vanish, as do the
partial-wave projections of the Keinberg amplitude
(5.3) which contains only s and p waves Lnote that
from (5.5) we recover the results of the preceding sec-
tion, and in particular Eq. (4.12)j. Note that since
Eq. (5.5) is valid for all isospins, the Born term of the
o. mode1 tends to give a degeneracy between I=O and
I=2 states in higher partial waves. Actually it is only
higher-order corrections which will suppress this
degeneracy. '6 e will come back to this point later on.

B. s-Wave Phase Shifts

In the previous section we have explained the mech-
anism which makes the 0- meson unstable. For each
value of the pion decay constant f we can compute the
s-wave phase shifts. Ke have plotted them in Fig. /

for f = 125 MeV, together with the experimental
values of Baton, Laurens, and Reignier26 for isospin
two, and the up-down solution of Malamud and
Schlein" for isospin zero.

On these results the following features appear clearly.
1. The I=2, s-wave phase shift 62 is small and nega-

tive, quite compatible with experimental data. It agrees
much better with experiment than the b~ phase shift of
the Brown-noble modeI. ' Its major contribution comes
from the C' part of the interaction Lpigs. 2(a) and 3(a)],
and this agrees with previous C4 calculations. '4 As a
consequence, -we can presumably trust the result, since
4' calculations have shown to be very stable as the
order of approximation is increased.

"J.P. Baton, G. Laurens, and J. Reignier, Nucl. Phys. 83,
349 (1967)."E.Malamud and P. E. Schlein, in Proceedings of Argonne
National Laboratory Conference, 1969, p. 107 (unpublished).

C. Higher Partial Waves

We find resonances as poles of the corresponding
amplitudes (zeros of the Pade denominators). Higher

+{ b) 3Y 71 Ã~ K

15.

2 (~~a~)
9

0
0.3 0.4 0.5 0.6 0.7 0.8

S(GeV2)

E(veV)
600 700 800 900

FIG. 8. Cross section for the reaction ~+~ ~ 2r m'. Dashed
line: unitarity limit. Continuous curve: prediction of the 0. model
with f =125 MeV, g=5.63. Experimental data from Deinet
et gl. , Ref. 28.

'8W. Deinet, A. Menzione, H. Muller, H. M. Staudenmaier,
S. Buniatov, and D. Schmitt, Phys. Letters 308, 359 (1969);
see also P. Sonderegger and P. Sonamy, Contribution to the 1969
Lund Conference (unpublished}.

2. In the I=0 channel, when we constrain the phase
shift 80 to be 90' near 700 MeV, the 0- resonance comes
out very broad. In fact, it can be seen from Table I
that the renormalization effects Lsee Eq. (4.11)$ have
put the g pole far away in the complex plane. As a
consequence, 80 has a maximum and stays close to 90' in
a large region around the p mass. This is in good agree-
ment with the up-down solution of Malamud and
Schlein, " which this calculation therefore favors.
It is clear that such a behavior of the phase shift does
not lead to an observable clear-cut 0. resonance, al-
though the I=0 s-wave interaction is very strong. This
possible stability of 60 around 90' may be interesting
in explaining experimental histograms; in particular,
our results agree very well with the recent measurement
of the ~++ ~ x m. cross section in the region 600—900
MeV by Deinet e] al. ,

' as shown in Fig. 8.Q"e should not
trust this result blindly, however, since the L1,1$ ap-
proximation may be insufhcient in this region, higher-
order terms being increasingly singular at s=m; but
the agreement is striking and higher-order corrections
may leave this situation unchanged. Nevertheless, as
a countercheck we have also computed the renormalized
o. propagator itself up to first order in g /see Eqs.
(4.14) and (4.15)j.This procedure yields a rather sharp
resonance; with f =125 MeV and g=5.6, we get
3E =640 MeV, J.' =45 MeV. However, we prefer the
solution obtained in the four-point function rather than
in the two-point function since it contains more physical
information from the perturbation series (order g' in-
stead of g), and since it yields the physically observ-
able phase shift.
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partial-wave resonances lie on Regge trajectories. It
can be seen from Table I that p and f, are always
generated by the interaction, but that they are too
strongly bound, as was explained previously, owing
presumably to a defect of the L1,1j Pade approxima-
tion. In Sec. VI we will explain why the good crossing
properties of the approximation indicate that these
resonances can be considered as true dynamical effects
of the theory and not as artifacts due to the type of
approximation employed.

The best 6t compatible with reasonable s wave is ob-
tained with f =125 MeV and g=5.6 (this corresponds
to the s waves of Fig. 7), yielding

J 1 02p 780 Me& Fp 35 MeV,
J'=1, mr, =1115MeV, Pr, ——180 MeV, (5.6)

ml 2=1335 MeV.

where ml ~ is the mass of an isospin-two d-wave partner
of the fs. Of course we know of no such exotic I=2
object, and this is probably the only unpleasant product
of the theory. Notice, however, that the splitting of the
f, from its I=2 partner is by more than 200 MeV,
whereas in a pure 4' calculation when only pions are
considered, these two states are nearly degenerate. '

The exact or nearly exact degeneracies which occur
in 4' theories are due to the fact that the 44 Lagrangian
is purely s wave and as a consequence the dominant
forces are also purely s wave. "From the structure of
Feynman graphs, the o- model appears a,s a combination
of C4 and C' s-wave interactions. However, as a con-
sequence of the Adler self-consistency condition, these
two contributions have to cancel each other exactly
for s=f=u=m ', leaving us with important P-wave
forces (this is reflected by the Weinberg condition)
which are known to be attractive in I=O and repulsive
in I=2. We have noted in Eq. (5.5) tha, t the first-order
terms are the same for both isospin channels for l&2.
The degeneracy is removed here since the second-order

"The only renormalizable interaction involving only pseudo-
scalar mesons is the 44 interaction. Hence, in building an "SU(3)-
invariant" Lagrangian with an octet of pseudoscalar mesons, we
can only use (C C~)' if we require renormalizability. Clearly the
symmetry group is then larger than SU (3); it is O(8). The P +P
amplitude can be decomposed in the 1,Q+ 28 Q+35, representations
of O(8) Lwhere s (a) means that the representation is symmetric
(antisymmetric)g. Clearly, then, in this SU(3)-symmetric 44
interaction, the vector octet is degenerate with a vector 10+10
representation, in order to form the antisymmetric 28 representa-
tion of O(8), and the 2+ octet is degenerate with a 27 representa-
tion to form the symmetric 35. Hence, in such a model, the fo
is degenerate with an I=2 resonance, the E*y y(2 with a X*I 3/g

one, etc., i.e. the O(8) symmetry generates exotic resonances.
This was noticed by L. Copley, D. Elias, and D. Masson, Phys.
Rev. 173, 1552 (1968) and in Ref. 4. This kind of eGect remains
when one performs a C4 calculation with only pions, but then the
fo and its I=2 partner are no longer exactly degenerate. Notice,
however, that the most general 44 Lagrangian involving only pions
and kaons is invariant under O(4) transformations in kaon space,
so that (a} EX amplitudes are exactly degenerate with EX
amplitudes, and (b) I=-,' mE' amplitudes are degenerate withI= ~ ones. This is the basic reason for the degeneracies obtained
in Ref. 4; it had also been noticed in a diferent context by
S. W. Lee, Phys. Rev. 120, 325 (1960).

amplitudes are different in two isospin channels (for
example, the 2o- intermediate states are allowed in the
5=0 states, but not in the I=2 states). In second order,
there is more attraction in I=O than in l=2, actually
for the same reason that makes s-wave phase shifts be
positive in I=0 and negative in l=2, and one may
expect that this effect will propagate a,t higher orders.
Also, it has been shown in the C' theory" that as soon
as one introduces the EK channel, the 1=2 resonance
is pushed up in energy about 250 MH (in a lowest-
order calculation, independently of the sign of the
additional coupling constant that one needs to in-
troduce). Therefore we believe that higher-order terms
and the introduction of the EK cha, nnel )perhaps
through an 5U(3))&SU(3) schemej niay very well

raise the unwanted I=2 resonance to the 2-GeV region
(or even suppress it) thus giving rise to a perfectly
acceptable situation.

Since we identify our J=I= j and J=2, I=O reson-
ances with the p and fs, we can make the following
comments on their masses and widths. V'e explained in
the previous section that since the long-range forces
(i.e., the two-pion-exchange contributions) are absent
from the Born term, and are present in all other terms
of the perturba, tion series, the L1,1$ Pade approximant
may approximate these forces inaccurately. Since long-
range contributions certainly dominate low-energy
scattering in 3~0, we expect that the values obtained
here for the p and fp masses will be somewhat modified

by higher-order terms. We regard a,s a, very positive
aspect of the present calculation tha, t the value of g,
which is determined here by adjusting s zeroes, is very
close to the value of the same parameter (g 6) which
in pure C'4 calculations generates higher partial wave-
resotrueces such as the p and fs so well. ' ' Since 4' cal-
culations have been performed up to fourth order
showing a remarkable stability, and since the long-range
forces which generate the p and fs are very similar in the
0. model and in the 44 model, we expect that higher-
order corrections will improve the agreement between
theoretical and experimental values of these masses. '0

From Kq. (5.6) one notices that the widths obtained
in this model a,re wrong. The p width is too small, the fs
width somewhat too large; the reason for this Tnay be
traced to the fact that these widths come from the
box diagrams with two 0-'s in the t channel for the
former LFig 5(b)j, an. d with two pions in. the f channel
for the latter LFig. 5(a)j. Clearly the former is much
smaller than the latter, and this is why the p width is
anormalously small and the fs width la, rge. Previous
experiences' ' show that although the masses of reson-
ances obtained from Pade approximants are relatively
stable, the widths obtained at lowest order are un-
reliable in higher partial waves. Actually one may have

' In the final analysis, however, the proof of the pudding is ili
the eating: There is no substitute for direct demonstration of
this conjectured improvement through the evaluation of higher-
order corrections.
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to go to much higher orders in order to obtain reason-
able widths, since the widths will come from diagrams
with double spectral functions (higher partial waves
have no single spectral functions); such diagrams appear
in only one term here (T2). It may very well be that by
studying functions other than scattering amplitudes
(for instance, form factors), one might obtain a better
approach to widths.

with the well-known relations from crossing

A(s, t,u) =A(s,u, t),

B(st, n) =A(t, s,u),

C(s,t,u) =A(u, t,s).

(6.28)

(6.2b)

(6.2c)

Ke now consider the perturbation expansion in g of
the function A ( st, s)t; it has the form

VI. CROSSING SYMMETRY AND DISCUSSION A (s,t)Q)~gA i(s)t)Q) +g A g(s)t)s), (6.3)

EVe now turn to the question of determining to what
extent crossing symmetry is violated by our unitary
amplitudes. In fact, the perturbation series truncated
at any order satisfies crossing exactly but violates
unitary by a large amount in regions where the phase
shifts are large, while the L1V,Mj Pade approximant to
the partial-wave amplitude satis6es crossing up to
order g~+~. The question is whether the violation of
crossing by unitary Pade approzimants is small in the
low-energy region (which must be the case if the method
actually converges) or large as is the violation of unitary
by the perturbation series (in this case, the method
would not be more reliable than the perturbation series).
Naturally, since our amplitudes are exactly unitary,
and since they have only a finite number of inelastic
channels, they cannot satisfy crossing exactly. " The
best we can hope is that they will satisfy crossing to the
maximum extent compatible with unitarity.

As mentioned in Sec. IV, two methods are actually
available for testing crossing. The 6rst one, which we
call the poloid method, consists in building crossing-
symmetric Pade approxirnants (nonunitary) and com-
p~~i~g them with the unitary ones. The second one
consists in testing crossing constraints (Roskies rela-
tions and Martin inequalities) directly on partial-wave
a,mphtudes. In the C' theory, these tests have been
quite positive. ' ""In the present calculation, although
we do not expect to have such good results since the
$1,1j approximant may be insuKcient (see preceding
sections), the crossing conditions are satisfied within a
few percent and therefore we can trust the gross features
of the numerical results. We shall also see that forward
dispersion relations, which provide a test of crossing in
terms of physical region am-plitudes, are well satisfied.

A. Poloid Method

For technical reasons, the poloid method4 has not
been used in the present calculation up to now. How-
ever, we shall point out some of its properties.

In order to build a crossing-symmetric Pade approxi-
mant to the 7rm amplitude, we start with the usual
de6nition

T e, ~q(s, t,I) =8 eb~qA(s, t,n)+h „.eeqB(s, t,N)

+b )be,C(s, t,n), (6.1)

"M, Froissart and A. Martin (private communication); D.
XV. Greenberg and A. L. Licht, J. Math. Phys. 4, 613 (1963).

where

A, ( st,e) =a+5/(s —m. '), (6.4)

We now build the Pade approximant to the function

A(s, t,l):
Ai (s,t,n)

A~' 'j( ts,u) =g
A i(s, t,g) gA, (—s, t,e)

(6 7)

If we tal~e into account Eqs. (6.2b) and (6.2c) and

insert the values of Q~ & PI:& j and C~& && into Fq.
(6.1), we obtain a a.x. amplitude which is exactly crossing

symmetric, but no longer unitary.
It is clear that the poles of AI."" in the various

chan. nels are no longer straight lines in the ( t,su) plane,
for instance, the poles in s generally depend on t and u

(hence the name poloid). If we project Eq. (6.7) onto

partial waves in a given channel, the partial-wa, ve

amplitudes will not have poles, but small cuts coming

from the spreading of the poloids in the transfer
variables.

However, this does not hold for the 0- resonance itself.
In fact, it is clear from Eqs. (6.4), (6.5), and (6.7) that
the 0 pole will appear as a straight tine in the (s,t,g)
plane (thus contributing to the s wave only). Further-

more, in the vicinity of this pole, the s-wave amplitude
will satisfy Nnitarity, as a consequence of Eq. (6.6). In
other words, elementary particles (i.e., those which

have been. inserted directly in the Lagrangian) will

appear as true pole of the crossing-symmetric ampli-

tudes (with accompanying unitarity properties in their

vicinity) and dynamical resonances will appear as

poloids. In the C' theory it has been found that the

poloids associated with the p and f, are quite flat, at
least in the physical region (s)4m ', t(0, u~O, for
instance) and that their average positions are quite
close to the masses found in unitary partial-wave
amplitudes.

A (2,st,u) =Xi(s)/(s —m ')'+Z, (s)/(s —m, '-)

+E(s,t,e), (6.5)

where the function R(s, t,N) is regular in the vicinity of
s m, 2 and has no polar singularities in t and e; Zi(s)
and Z~(s) have the elastic cut in s and the unitarity

property reflects itself in the relation

s—4m ' '~'

Immi(s) =——-- — h', s & 4' '. (6.6)
32% s
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B. Roskies Relations

s
5(p) =32~ sinbo' expi8p', etc.

s —4m2

Roskies relations which involve only the s and p waves
are

where

lP I2)

JP= J2=J~,

(6.8)

(6.9)

ds s —4';; ) (6.10)

4m)r2

dS S—4')„

t(o) (s)
&& (3s—4m,'), (6.11)

t!g)(s)

4m~ 2

(/s(s —4m ')'t(() (s) . (61-')

Note that Eq. (6.9) relates the s and p waves and it is
there that Roskies found a conQict with crossing in the
simple parametrization of Brown and Goble when both
the 0 and p resonances are imposed. On the other hand,
the Pade treatment of the C4 theory is known22 to lead
to a very good agreement with Eqs. (6.8) and (6.9).

In the present cajculation of the 0- model, we have
computed Eqs. (6.10)-(6.12) with the amplitudes tr(s)

A first approach for writing crossing-symmetry
constraints on partial-wave amplitudes has been
developed by Balachandran and Nuyts. "This consists
in performing a two-variable orthogonal-polynomial
expansion of the amplitude in the Euclidean region

.s&0, t&0, u&0 (note that all three scattering angles
are physical in that region, so the expansion converges).
If one then applies crossing symmetry on the expansion,
one obtains a complete set of relations each of which
involves a finite number of partial-wave amplitudes, ex-
pressing crossing symmetry. This approach has been
extensively studied by Roskies' in the ~ case, and
generalized and applied to the C' theory in Ref. 22.
Roskies has shown that in the simple parametrization
proposed by Brown and Goble, " in order to unitarize
the amplitude given by current algebra, the presence
of both the cr resonance in I=J=O and the p in/= J=1
leads to a contradiction with crossing symmetry. Since
in the present calculation we obtain both the 0- and the

,p, it is of interest to see how our amplitudes fare in the
Roskies relations.

We shall denote the I=0 and 2 s-wave amplitudes by
t(p) and t&2) and the I= 1 p-wave amplitude by t&».

TABLE III. Test of the Roskies crossing relations for three
solutions of Table I. The exact crossing relations are Ip ——I2,
Jp= J2=A.

f (Mev) g Ip Jp

95 6.96 —72.25 —69.54 —95.06 —98.20
110 6.20 —57.58 —56.05 —76.22 —78.78
125 5.63 —41.68 —40.15 —56.02 —57.70

—99.33
—79.04
—58.48

I2
I,=g

(1+e)ti gt2— (6.13)

Here, the phenomenological quantities e=e(I,J) must
be real between s=0 and the first inelastic threshold in
order to preserve elastic unitarity. In order to satisfy
the three lowest-order Roskies relations exactly, one
would have to adjust three numbers e(I,J) whose
orders of magnitude would be a few percent. (This
would therefore not change appreciably the physical
amplitudes. ) The quantities e(I,I) must be regarded
as describing phenomenologically the contributions of
inelastic channels in the true solution. In order to
satisfy the higher-order Roskies relations, one would
have to give them a dependence in energy; however, one
cannot go too far in this direction, since the actual
contributions of inelastic channels would appear con-
sistently in higher orders of perturbation theory.

"For comparison, we give here the corresponding values for
the Brown-Goble model. For f =0.67m, m, =5.5m, m =5m,
Ip= —68.3 Ig= —58.5) Jp= —112.6 J2= —94.75& Ji = 84.9.
Roskies suggested that we should test whether t&"&—t~, where
t~ is the projection of the Weinberg amplitude, satisfies Eqs.
(4) and (5), since the 6rst order term in t~"& is just t~ and t~
is manifestly crossing-symmetric. For the difI'erence amplitudes,
wehndIp= —8.76 I2= —7.23 Jp= —3.35 Jg= —5.03 J1=—5.81.
For the Brown-Goble model, the corresponding values are
I = —8.3, I2=+1.5, Jp= —14.5, J2=+3.25, JR=13.1.

33 G. Auberson, O. Piguet, and G. Wanders, Phys. Letters
28B, 41 (1968).

given by the L1,11 Pade approximant, in three cases
considered in Table I (f =95 MeV, g=6.96; f =110
MeV, g=6.20; f =125 MeV, g=5.63). The values we
obtain are given in Table III where one can see that the
Roskies relations are always satisfied to within a few
percent (less than 5%%uo in all eases). This holds actually
for a wide range of the parameters g and f; as is to be
expected, the smaller g is, the better the relations hold.
What is important is that the relation between s manes
and p a)ai(es, Eq. (6.9), is well satisfied although the 0.

and the p are both present. "
The fact that the equalities cannot be satisfied ex-

actly except for g=0 is a clear consequence of the in-
compatibility between exact crossing and exact uni-
tarity at finite order. It is nevertheless possible to add
extra parameters in the amplitudes in order to satisfy
some crossing relation exactly, as is done in some
theoretical models. " Instead of Eq. (4.8), one ma, y
parametrize the partial-wave amplitude in the channel
I Jas
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and

fo(4)) fo(0)) fs(3 190)

6.5&5.44 &5.05.
(6.15)

t (s),' The inequalities on the derivatives are also well satisfied.
They are

d
fs—(s) &0 for 0&s&1.05

ds

)0 for 1.696&s&4, (6.16)
/

/

/

r

2 ~~ 3 4

t2( )

Fin. 9. Plot of the s-+ave a.a- amplitudes obtained in the t 1,1]
Pade approximation in the unphysical region 0&s&4m . t(p)
and t(2~ are the I=O and 2 amplitudes; fp is the wm —+~'w'
amplitude (=t(p)+2t(2)), which in the Weinberg limit is a constant.

C. Martin Inequalities

Another approach for putting together crossing and
unitarity has been initiated in recent years by Martin. "
This method is based on the positivity condition of the
absorptive part which comes from unitarity and crossing
symmetry. In the m'm' case it leads to various inequali-
ties involving the values of partial-wave amplitudes in
the unphysical region 0&s&4ns . These inequalities
are necessary conditions for crossing to be satis6ed.
Again, in the C theory, the Martin inequalities have
been shown to be well satisfied by unitary Pade
approximants. "

We have tested these inequalities for the w'7t-' ~ 7r'x'
s wave. Denoting this amplitude by fs(s) =kp(s)+2)s(s),
and expressing s in units of m„', we have the following
inequalities together with our numerical results (with
g=5.63, f =125 MeV, andm, =780 MeV):

fp(3.205))fp(0.2134))fp(2. 9863),

5.072& 4.945 &4.808,
(6.14)

TABLE IV. The Martin inequalities for various values of the
coupling constant g. Here the solution f = 125 MeV, g =5.63, has
been chosen for definiteness. We represent only inequality (6.14)
since the other one is always satisfied. For each value of g we give
the masses of p, fp, and 0. resonances. Clearly one inequality is
violated for g =7. m, and gyp are the p and fp masses for each value
of g, and m, is the real part of the position of the second-sheet 0
pole (all masses are in MeV).

—fIi(s)) 0 for 0(s(1.i .
(/S

(6.17)

The amplitude fs(s) is plotted on Fig. 9; the minimum
of fs(s) occurs between s=1.6 and s=1.68 in all our
calculations.

An interesting result appears when we ~ ary the cou-
pling constant g, keeping f fixed. As g increases, the
masses of the p and fs decrease (more binding), whereas
the o mass increases (see Eq. (3.9)]. In Table IV, we
show the situation in two rather extreme cases: (a) 3I,
small, m, and mi, large; (b) 3f, large, m, and m„small,
together with the intermediate case of our calculation.
The Martin inequalities are well satisfied in the first
case, but they are violated when the 0- mass becomes too
large. There are two ieasons for this: First, when g is
smaller, one expects a better convergence for the Pade
approximation; secondly, in the [1,1] approximant,
the contribution of 0- exchange iri crossed channels
appears to be taken into account more accurately than
that of two-pion exchange. Therefore, crossing is satis-
fied better when the nearby left-hand cut is dominated
by the 0- rather than by two-pion states. Hence, higher.

orders are needed in order to treat higher partial waves
accurately, since two-pion forces are dominant in those
waves.

The Martin inequalities are more subtle and perhaps
more indicative than other tests of crossing. Consider
for instance Weinberg's linear amplitudes, Eq. (5.3);
in that approximation, the m z' amplitude is a constant
and the Martin inequalities become eqz~alitz'es. Clearly,
if a certain procedure alters Weinberg's amplitudes by a
few percent, the Roskies relations will still. hold within
roughly the san1e relative amount, while the Martin in-
equalities can be violated no matter how small. the
variation is. Since these inequalities imply that the w'w~

amplitude is not monotonic in the interval 0&s&4m
it is not at all a trivial matter to preserve them in a
unitarization procedure. ' "

7
5.63

1Np

600
780

1000

11'p

850
1115
1400

670
530
390

4.39
5.07
6.72

4.66 4.17
4.95 4.81
6.37 6.07

w f(3.205) &f(0.2134) &f(2.9863)
'4 For comparison, we note that the Brown-Goble model gives

fp(3, 205) =9.34 fp(0, 2134) =6.57 f(2.9863) =8.85 fp(0) =6.56
fp(3.190)=9.31.

~5 We shall come back to the question of the violation of
crossing symmetry in various unitarizations of current algebra
in a further paper.
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D. Dispersion Relations

Since the previous tests of crossing were made on
the values of amplitudes in the unphysical region
Ops&4m 2, it is of interest to try and check crossing
properties directly on physical region values. Such a test
is provided by dispersion relations which are not satis-
fied exactly by our amplitudes.

Consider the usual antisymmetric combination of
s-wave scattering lengths

f (MeV) g Ap' A2' A, A f p A2

95 6.96 9.19 2.27 2.11 2.89
110 6.20 6.90 1.68 1.51 2.53
125 5.63 4.93 1.69 1.10 2.31

0.78 11.14 11.54
0.60 8.64 8.33
0.40 6.25 5.97

TABLE V. Test of the I. sum rule for various values of f and g.
Ap' and A2' are the s-wave contributions in I=p and 2 to the
right-hand side of Eg. (6. 20). A„Afo and A2' are the I=J=1,
I=0, J=2, and I=J=2 contributions. A =Ap' —A2'+Ap
+A f p A 2 and the sum rule is L' =A, where Il' = 100(2ap —5a2) /6.

I.=-,' (2a() —5(zs), (6.18)

where ao and a2 are the I=O and I=2, s-wave mx scatter-
ing lengths. We have the following sum rule, " here-
after called, the "I.sum rule":

N4 ds
L,= — — L(r+ (s) —o.++(s)7, (6.19)

8s' 4 ~Ls(s —4m ')7"'

where o.+ (s) and o++(s) are the s+s. and rr+s+ total
cross sections. Equation (6.19) is simply the unsub-
tracted forward dispersion relation for ~m scattering
written for s=4m '. In usual treatments, the I. sum
rule is used as follows. (a) One assumes that high-
energy contributions can be neglected. (b) The con-
tribution of low-energy resonances of spin /) 0 (essenti-
ally p and f()) to the right-hand side of Eq. (6.19) is
positive; it can readily be evaluated in terms of physical
masses and widths, for instance in the 8-function
approximation. (c) This leaves us with a sum rule relat-
ing the s-wave amplitudes and the scattering lengths
ao and a2, which is of course the on-shell version of
Adler's sum rule for 7/-x scattering. "

In our calculation, since higher partial-wave ampli-
tudes are computed, we can use the I. sum rule i' order
to check the internal consistency of the model. For
convenience, we give the numerical results for Eq.
(6.19) when both sides are multiplied by a factor of
100, and we express energies in units of m, , namely,

100
I.'=———(2(zp —5a,)

6

100
p(s —4)7 ' 'Lo+ (s) —o.++(s)7ds. (6.20)

The s-wave contributions Azo (I=O, 2) to the right-
hand side of Eq. (6.20) are

)
= — Ls(s —4)] '&'( )( )ds, (6.21)

where err' is the isospin-I s-wave total cross section.
Similarly, we define A, to be the I=J=1 contribution
to the right-hand side of Eq (6.21), Az, .the I=O, 7=2

~' M. G. Olsson, Phys. Rev. 162, 1338 (1967)."S.Adler, Phys. Rev. 140, 8736 (1965).

contribution, and A2' the I=J=2 contribution which

is non-negligible since we have an exotic resonance in

our model. Neglecting high-energy contributions, the
sum rule reads

l.'~A =A()' As'—+A, +—A z, As'—(6.22)

Ke give the corresponding numerical values for all

these quantities in Table V. The sum rule is satished

within 5'P~ for a wide range of the parameters. This
is in agreement with the check of crossing obtained by
other methods (i.e., the Roskies relations), and shows

the internal consistency of the model.
Since our s-wave amplitudes seem to agree with ex-

periment, but the p and f() we obtain here do not have

their experimental masses and widths, it is interesting

to see how our s-wave amplitudes fare in the I. sum rule

when the experimerzta/ values of A, and Az, are instead

of ours. With the physica/ masses and widths of these

resonances, mp 765&10 MeV I'p 125&20 MeV,
m fp 1264+10 MeV, and Ffp ——145&25 MeV, one

obtains

cled 3 8&0 8 c4fp 1 0&0 2 )

and the relevant combination is

(6.23)

A p+Az, =4.8&1. (6.24)

From the values of Table V, we see that the combina-

tion A„+Az, in our calculation is close to the experi-

mental value, and thus the sum rule will be reasonably

well satisfied. "The reason for this is that, at this order,

although the width of our p meson is too small, the fact
that the p and f() are too strongly bound enhances their

contributions to the right-hand side of Eq. (6.20). It
is also clear that in this sense our s-wave amplitudes

saturate Adler's sum rule; notice, however, that with

f = 125 MeV, g=5.6, and with the experimental value

on 6,+Az„we would have I.')A (outside error bars).
but this may simply mean that our scattering lengths

are too small in that case and that higher order would

increase them without changing the phase shifts ap-

preciably at higher energies.

"For comparison, we give the contributions of s waves to the
I. sum rule in the Brown-Goble model. With M
have Ap ——7.], A/=4. 61, I.'=11.0 (the scattering lengths are

p 22 and 2 p p45) so A App A /+A/rex++A f 0

=7.3&1 and the sum rule I.'=A is violated by more than 25%%u&.

The discrepancy can be seen to come from A&, which is too large

(&g is too large in magnitude); see Ref. 35 for further comments.



1696 J. L. BASDEVANT AN D B. AV. LEE

10
(o)

2

5
Born term

-. Pode

Pert-series

4

rn )
2

FIG. 10, Comparison of various amplitudes in the unphysical
region 0&s&4m '. We have plotted the Born term of the a-

model, the [1,1] Pade approximant, the perturbation series
gt1+g't2, and the linear Weinberg amplitude. (a) I=J=O; (b)
I=2 J=O (c) I=J=1.

E. Discussion

In concluding this section, we shall make the follow-

ing observations.
i. It is obvious that the Pade approximation to the

amplitude cannot be valid throughout the entire
complex-energy plane. For instance, it is certainly a bad
approximation at high energy; in particula, r, it does not
have Regge behavior at any finite order. The unitarity
properties indicate that we should really use this ap-
proximation in low-energy regions where only a small
number of inelastic channels contribute significantly to
the amplitudes.

2. The Rosk. ies relations express the physical con-
tent of crossing relations on the partial-wave amplitudes
that the left-hand cut of a partial-wave amplitude is
due to the physical processes in the crossed channels.
Owing to the presence of the factor (s—4m ') in Eqs.
(6.10)—(6.12), the contributions of the amplitudes to
the integrals a,re enhanced near s=O close to the left-

hand cut. That the relation between the s and p waves

is well satisfied is indicative of the p resonance we found

to be a true dynamical effect of the theory, rather than
an artifact of the approximation employed. Since cross-

ing determines the left-hand cuts, p and o- must appear
consistently as forces as well as direct-channel poles.
The p width we obtained is much too small (~35 MeV),
but we have presented arguments that higher-order
corrections would restore this to a value close to the
experimental one.

3. The structure of the left-hand cut plays a, crucial
role also in the Martin inequalities. Our amplitudes

satisfy these inequalities because the unitarization pro-
cedure is not arbitrary, it is based on a well-defined

perturba, tion series. If, on the other hand, we test
crossing directly on physical regiorr -amplitudes, with

dispersion relations, we see that we also have good
agreement provided we consider only /Ore-esverf, y sum

rules.
4. In our calculation, the effective expansion pa, ram-

eter g/8m' is small (~0.1). Therefore, the Pade ampli-

tudes are expected to converge well and are not too
different from the Born amplitudes except near singular-

ities of the former (such as near resonances and left-

hand cuts). The unphysical region Ops&4m ' is of
particular interest in connection with current algebra,

and zeros of amplitudes. In Fig. 10 we have plotted, in

this region, the s- and p-wave amplitudes obtained from

(a) the Wemberg amplitude [Eq. (5.3)], (b) the Born
term of the o. model LEq. (5.2)], (c) the perturbation
series gtt+g'ts, in the o. model, and (d) the [1,1] Pade
approximant. All these curves are qualitatively similar.
It is seen that the Pade amplitude is much closer to the
linear Weinberg amplitude than the first-order term of
the 0. model is. This occurs because the o- mass is con-

siderably raised in the Pade amplitude compared to the
first-order cr mass, i.e., m '(M '. Also, the perturbation
series is not a worse approximation than the Pade ampli-

tude in that region (it can actually be treated as an

asymptotic series). The exact location of zeros of ts(s)
at s= —,'m ' for I=0, and of ts(s) at s =2m ' for I= 2 in

the Weinberg amplitudes is a consequence of linearity;
nevertheless, the presence of these zeros is a consequence
of the Adler self-consistency condition, and we should

observe them unless the smoothness assumption is

wrong. In our ca,se, the zero of t, (s) is always very close

to s =2m ', but the zero of Re(ts(s)) is shifted and occurs
for s(O in the Pade amplitude, and in the Born terrri,

due to the presence of the I=O O. pole. Notice, however,
that in that channel, the zero of the perturbation series

occurs at s=0.4m ', close to steinberg's value. It is also

interesting to see that the I=J=i amplitude is close

to Weinberg's amplitude for O&s&4m ' despite the
presence of the p pole in the physical region.

5. The fact that the 0--model amplitude is close to the
Born amplitude except near singularities is a clear ad-

vantage of the model. Here is a model in which the
smoothness assumption made in current-algebra ana. l-
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yses is very well justified, while the theory has the po-
tentiality for accounting for the complex spectrum of
the low-energy xm. system.

6. Our results for the s waves can be favorably com-
pared with those of Auberson, Piguet, and %anders, "
who have exact unitarity and strict crossing relations,
and who add some information about zeros of ampli-
tudes, and also with those of Iliopoulos, "who extends
the Weinberg calculation by keeping exa,ct crossing and
adding some contributions of elastic cuts. They are
also in agreement with the solution of Morgan and
Shaw. 4'

VII. CONCLUDING REMARKS

Let us briefly summ. arize what we have achieved. We
began with a Lagrangian which possesses all the neces-

sary ingredients to yield the current-algebra constraints
in xm scattering. The approximate amplitude constructed

by the use of the Pade method is found to be in good
agreement with experiment with regards to the s waves

below, say 800 MeU. Aside from this numerical agree-

ment, we consider the following result signi6cant: Even
when the phase shift in the I=7=1 is large in the phys-
ical region, the continuation of the amplitude below

the threshold, in particular, in the range 0(s(4m ',
is "smooth, " confirming the assumption usually made
in conjunction with PCAC. We further 6nd an indica-
tion that a model of this kind will correctly produce all

the essential features of meson spectroscopy in the xm

system. The order of approximation is too low for us to
be positive, but in the lowest-order approximation the

p and f, resonances appear, albeit with "wrong" widths.
We a,re comforted to know tha, t the approximate
amplitudes we constructed are manifestly unitary and,
as the various tests have shown, satisfy various con-

straints imposed by crossing symmetry extremely well.

The construction of higher-order approximate ampli-
tudes is clearly desirable to test our conjectures, but has
not been carried out.

An advantage of our approach wa, s that we began
with a Lagrangian rich in content. The 0- model satis6es
the conditions of current algebra, and in addition, in the
version we considered (i.e. , the neglect of nucleon fields)

the effective expansion parameter of the perturbation
series turns out to be reasonably small. Thus the Pa,de
approximants are expected to converge well, and are
not too different from the Born amplitudes except near
singularities of the former, such as near resonances and
lef t-hand cuts.

Our past and present experiences show that the Pade
approximation is capable of eliciting the complex spec-
trum that a Hamiltonian possesses. Especially, the

poloid method yields an approximate amplitude which

is in many ways reminiscent of the Veneziano model.

"' J. Iliopoulos, Nuovo Cimento 52A, 192 (1967); 53A, 552
(1968).

4' D. Morgan and G. Shaw, Phys. Rev. D 2, 520 (1970).

Higher-order Pade approximants to the full amplitude
would presumably yield an amplitude which is very
nearly unita, ry, exactly crossing symmetric, and exhibits
a spectrum of resonances. Presumably, the poloids
would become Ratter with the increasing order of ap-
proximation. Whereas the Veneziano model is pheno-
menological, such an approximant to the full amplitude
is a deduction from Lagrangian field theory. At any
finite order, the Pade approximant will probably not
have an in6nite sequence of crossing-symmetric excita-
tions. It will not exhibit a genuine Reggeistic high-
energy behavior. Xonetheless it is possible that the
Veneziano-like formula is an abstraction of the limit
of the poloid amplitude as the order of approximation
tends to in6nity.

Also, it must be stressed that, even in relatively
lower-order calculations, one should include more
physical contents in the Lagrangian itself. We have
neglected the baryon part of the SU(2)&&SU(2) 0-

model. The inclusion of the nucleons in the scheme will

affect low isospin states considerably. But, more im-

portantly a, complete description of all pseudoscalar-
meson —pseudoscalar-nieson interactions should be con-
sidered within the chiral SU(3) &&SU(3) scheme. 4' The
present calculation is based on the belief that, in some
approximate sense, one can treat separately z& dy-
namics from the rest. However, previous calculations
indicate that the inclusion of the EK channel influences
ww scattering in a non-negligible way, and in fact im-
proves the agreement with experiment. An SU(3) ver-
sion of the 0. model exists ~ ' and shows many desirable
features. ' It is encouraging that the scalar mesons pre-
dicted by such a scheme do seem to appear experi-
mentally (such as the S*meson at 1080 MeV).
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APPENDIX A: GOLDSTONE PHASE FOR PION small g. It is only necessary to replace p ' and p by

2 —p2+gp2 (A2)

The coupling constant g is positive for the Hamiltonian
to be non-negative:

g&0.

Fquations (A1) and (A2) are invariant under y —+ —y,
v ~ —e, so that we need only consider the case p, ~+0.

As p —&0, either v=0 or p '=0, according to Eq.
(A1). Whether the first or second possibility obtains
depends on the sign of 442. (1) If p2) 0, then v =0, since
44 ') 0, according to (A2) and (A3). (2) If 442(0, then
p '=0 (and 442= —gv2), since if e were zero, then the
physical mass of the pion would be negative and such a
solution is not acceptable. (3) If 442=0, then 44 2=gv2=0.
We shall call ca,ses (1) and (3) normal, while we shall
call case (2) the Goldstone limit. For case (2), the stable
solution of the model corresponds to spontaneously
broken symmetry (Goldstone solution). The relation-
ships among ~, p ', p, and p' can be seen readily in Fig.
1I. In the p '—v plot, the lines of constant p are hyper-
bolas; the lines of constant p,

' are parabolas. Ke shall
call the region below the line characterized by p, '=0
the normal phase, the region above, the Goldstone phase.
If a solution in the normal phase (say at A) is continued
to y=0, while p,

' is held fixed, we will obtain the normal
solution (i.e., the symmetric solution: 44 2=44,2, v=0),
while a solution in the Goldstone phase (say at B)
will be reduced, under the same process, to the spon-
taneously broken symmetry solution (i.e., 44„2(44,2,

iix0).
The above discussion holds also for the full renormal-

ized theory, by virtue of Eq. (2.14), for sufficiently

)Iy

We shall discuss the stability of the 0- model for
various ranges of parameters g, e, and y. The discussion
will be based on the classical approximation (or the
tree approximation) to the o. model, but a similar con-
clusion also holds for the full theory at least asympto-
tically for small g with some modifications which we
will outline below.

We recall Zqs. (2.12) and (2.10c):

(A1)

B,(k') =z
d4p 1 1

(22r) 4 P' —m. ' (k+P) 2 —m. '

This expression is meaningful for all values of m '&0.
However, if we write B, (m ') —B, (k2) as a function
p. and gv and expand it in gn, the expansion coeffici-
ents are undefined for p'&0.

With g 6, v~f ~22m, the system appears to be in
the Goldstone phase.

APPENDIX B: FIRST- AND SECOND-ORDER
PARTIAL-WAVE e~ AMPLITUDES

We take the pion mass to be unity, m„'=1. The wz
amplitude is written

T a~4 ——C 2(Ab p8~4+BB 78p4+CB 48~p), (81)
so that the isospin amplitudes are

L
—~-'(0)7 ',

4'~ E-~.'(0)) ',
where 6 ' is dered in Sec. II and 6,' is the renormal-
ized full-pion propagator of the symmetric theory.
Equation (A2) is replaced by

E
—~.'(0))-'= L

—a,'(0))-'+g"+O(g2) .

Actually, each term in the perturbation series for the
Green's function of the 0- model constructed according
to the discussion of Sec. II is continuous across the line
p, '=0. The significance of the line p'=0 is that the ex-
pansion of Green's function in n (with 442 fixed) becomes
singular at p, '=0.

Since our renormalization is based on the comparison
with the symmetric theory (i.e., the case a=0), it can
be carried out only in the normal region. Each term in
the renormalized perturbation series in g, with gv' fixed
(i.e. , summed to all orders in gv2), is, however, contin-
uous across the line p'=0. Thus our prescription con-
sists in renormalizing the theory at A, expressing the
perturbative Green's function in terms of m ', gv, and
g, and continuing to the point B.

An example may clarify the point. Consider the
inverse pion progapator (3.4),

fD (k')) '=k' —m '+4g(g8)'EB (m ') B(k'))—
where

=0
To C 2(3A+B+C)
T'=C '(B—C),
T'=C '(B+C) .

(82a)

(82b)

(82c)

Fzo. 11. Relationship among v, p, ', y, and y'. y1(y2. A is a pion
in the normal phase, 8 in the Goldstone phase. g'=-4'(s —4), (83)

Iet l denote the angular momentum of the channel
considered. The c.m. momentum q is given by
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and M is the input 0 mass (M'=—m '=m '+2'').
We denote by T„» ' the nth-order amplitude in isospin
I and angular momentum l, and by A„', 8„', and C„'
the 1th partial-wave projections of A, 8, and C at order
n.

Our convention for unitarity is

s—4 'I'
ImT'(s) =—

~

2't (s)
~

'
32' s

C,(s) =——
8~2

ds'

s' —s 2[s'(s' —4)]'t'

M2
)&In — (813)

s' —4+M'

where the function C is defined as

3f2
Z =8(44')Q, (1+— — 24',

2/2
(84)

where Q( is the I.egendre function of second kind, so we

have
(,p[—2 —4(gv')/(s —M')],

(Bi +Ci ) = —48( p+Z( (eveil waves),

(Bi'—Ci') =Z( (odd waves).

2. Second-Order Amplitudes

I.et us define

(85)

(86)

(87)

1. First-Order Amplitudes

First-order amplitudes correspond to the Feynman
graphs of Fig. 2. The partial-wave projection of the
exchanged 0. pole is

ds
C (s)=—

Spr' 4i44 s' —s 2[s'(s' —4)]"'

s' —2M' —[(s'—4) (s' —4M')]'"
+in . (814)

s' —2M'+ [(s'—4) (s' —4M') ]'"

f(t) =C(t)/(t —M'), (815)

where C(t) satisfies a dispersion relation

For the pole terms in the t channel, we must define the
analytic continuation in l of the projection since 3E'&4,
so that one cannot apply blindly the Froissart-Fribov
integral. This is done in the following way. Consider
an expression of the form

(88)

1
B,„(s)= —— [(m —+m„)' s]i '—[(m m„)'—s]'"—

8&2 s

[(mz+my)' s]"'+[(m—z my)' s]—'"—
Xln

2(m, m„)"'
(mz' —my') m.

+ — ln ——1+in[(m,m„) ' ']
2$ SSg

00

4(t) =— p(t')—

ds P((s)f(t),

The angular momentum projection of f(t) is

(816)

(817)

and the constants

B,=B..(0) —8.„(0) which we can write formally as

(810)
(811)

C (M') 1
X&~(s) — —+— p(t') hatt'

A. Pole Terms (818)
(t' —t) (t' —M')

The pole terms correspond to the Feynman graphs
of Fig. 4. Poles in the s-channel are given by

( 2
A"" '=8),p

—4(@')~ [4Bp+3B..(s)+5B, (s)]
ks —M'

Thus we can write

p(t')
1

+2(& ) [4C.()+»C.()]
s—M2

1
Q((1+t'/2I') —Q((1+M'/2g')X— dt', (819)

&' —M2+ (gf)2) 2

(s—M')'

X('44))..(n)+4&..(.) —4(p, —y,)3), (iii&) which is well defined and is analytic in /. A very similar
procedure can be applied to the case of a double pole.

1 tM'+1
)n44+ in 44 4 ), (8—9)—

Ss' iM' —1

B2——B,.(0)—B (0) = (1/Spr') lnM,
Bp ——B..(1) .
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Let us now dehne

M'1 1 '~
Q (1jt/2q') —Q((1+M'/2(g"-)

2[t(t —4)] t 4+M-S+' 2q'
(820)

U-(s) =-
S~' 2q' 4az~

Q, (1+t/2q') —Q, (1+M'/2q') 1 t —2M' —[(t—4)(t —4M')]'('
)

2[t(t—4)]"' t —2M'+ [(t—4) (t—4M') ]"' (821)

1 1
V (5)=——

Sr' 2q'

1 1
V.(s) = ——

Sr' 2q'

1
W (s)= ——

Sr' 2q'

1 t 4"'Q—l(1+t/2q') —(M'/t)Q((1+M'/2q')
Gt—

t/2q& —M/t & 1 M 2q
dt-

t —M'4M 2

, 1 t 2q') —Ql(1+M'/2q') —[(t—M')/2q')(M'/t)Q('(1+M'/2q'

4 2

(822)

(823)

(824)

W (s) = ——— — dt-—
S~' 2q' -ur'

, 1 t/2q') Ql(1+M—'/2q') —[(t—M')/2q'](M'/t) Ql'(1 M'/2q'X—
(t —M') 2

The contribution of the exchanged poles are

1 M'
8p'" '= —4(g8') ——Ql 1+ (483+38,

q 2q

—gv') Q
' 1+—[188,—4(8,—,))1 ' M'

2q' 2q'

For lQ0 the analytic continuation in /
'

l is defined as

1 1
P '(s) = —— dt

Sx' 2q' 4

X — -- i 1, 831

+2[3V.(s)+SV (s))+2(g8')

with

X[4U.(s)+12U (s)+3W,(s)+9W,(s)], 826

1 1
P.'(s) =——

S7l 2g
dt

X — ————— ) 1 —. 832
pole, l —( )l8pole, l

so that for the pole terms we have

(827)
Ke a1so define

even waves
(8~P) po lel —28po le, l,

odd waves

1

S
(828)

1 1
«Pl(S)C.(t) = ——

Svr' 2q' 4

B. Co1ztact Terms

The contact terms correspond to Feynman graphs of
Fig. (3). Let us define

1

P-'(s) = — «-Pl(~)8-(t),
2 1

1 M'
X l 1 — 1n — (833)

2q' 2[t(t —4))'(' t —4+M2

Ql(1+t/2q')

Sil' 2q' ~ 2[t(t—4))"'
1

~.'()=- d &()8-(t)
2

(830)
t —2M' —[(t—4) (t—4M')]'(~

t —2M'+[(t —4) (t—4M2)]'(2
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%e thus have

Ql(1+t/2q')
dt

[t(t—4)]'"
( S)i12+(S S)1/2

X ln —— —,(842)—s)]"' —(—s) "'+(so—s)"'

+contact, l 2{ti [7g (s)+g (s)
+4(g~') L2C-(s)+2C.(s)77

+40-'(s)+16(g~')70'(s)), (835)

[E(t,s) ]1*———
X' 2g

(843)S0 4M'+——4M4/(t 4) . —

p3+C) cotnat c1= '—4{8 [2Q (S)+8(g212)C (S) —S Sp

+9~.'( )+~.'( )+4(g") with

XI 4~. (s)+2 y '(s)]), (836)
%e then have

(p C)contactl —, 4[5' l(s)+p l(s)+8(g212)y l(s)]
(837)

C. Box Diagrams

The box diagrams correspond to the Feynman
graphs of Fig. 5. Let us define

ds' dt

2 b'" '= 2(g21') [E(t,s)+E(24,S)]l',
8"*'=2(grl') [E(s,t)+E(24,t)]l',

C ' '=2(g21')[E(S,24)+E(t,u)71'.

D. Seco&zd-Order Contributions

(844)

(845)

(846)

E,(s,t) =—
s' —s 4~~2 t' —t

Ke have thus

1 g pleo, l+g ncot cat+i+, b xo, l
2 = (847)

9[(t'—4M2) (s' —4) —4M4]
X —— (838)

(s't') ' "[(t'—4M') (s' —4) —4M']'"

We have, recalling Eq. (3.13),

(g l~C l) (j3~C)pole, l+(+~C)contact, l

+(h+C)"'"' (848)

H we write the isospin amplitudes TI' as

L'(s, t) = —SD(P1P2, P0—P4) . 839
we have

TI, l —C 2 +1,l (849)

The function E(s,t) has two pions in the s channel and
two 0-'s in the t channel.

Let us deine the partial-wave projections of E(s,t)
in the following way:

q"I, l

gC&+C]1'+g'L——&~C]2'. (851)

cl'0 1 =g[3I111+(Itt+C),17+g2[3,421+(pyC)2'] (850)

[E(s,t)]l'. two o's in the crossed channel,

[E(t,s)71'. two pions in the crossed cha, nnel.

Ke then have

Now we remember that we have [Eq. (3.6)]
C.= 1+4g(gv )B2..'(m. )2

=1+g$. (852)

1 1 " gl (1+t/2q2)
[E(s,t) 71' ——— dt—

~2 2q' „,- [t(t—4M2)]'l2

1 s'"—(s —S0)"'
X — ——— i2r+1n——,(840)

[s(s—s,)]'" s"'+(s—s0)'t'

with

If we rewrite Eqs. (850) and (851), dropping the index
l, as

q"0 —gt 0+g2t 0

cPI gt 1+g2t 1

q"2 —gt 2+g2t 2

(853a)

(853b)

(853c)

then the perturbation expansion in g of the partial-
wave T matrix up to second order is, for each isospin I,

s0 =4+4M'/(t 4M'), —(841) TI, l —gtlI +g2 (t21+2 P1I) (854)


