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elastic scattering amplitude fo(a) as previously des-
cribed is adequate, So(s) possesses enough structure?

28 The so-called triangle amplitude for T'o(s), not 7 (si,ss,s3)
[cf. Refs. 10 and 11 and 1. J. R. Aitchison and C. Kacser, Phys.
Rev. 173, 1700 (1968)], is partially represented by So(s), since
its 8-fuaction part has been added to T,1(s): coTo,0(s)p (k%) =1
~+2fo(s). Its principal-value part is the third term in Eq. (8) with
Yo(s) set equal to Wl(s). Now ¢ (k%) vanishes on the right-hand
cut when the phase shift § goes through 3=, but it does not vanish
at the exact (complex) position of the resonance, s=ao. Hence it is
not obvious how much interference there is between the integrals
of the direct and crossed Watson terms in 7'(sy,$s,53) when sy,
say, is near «o. As far as the logarithmic singularity of T'(s) at
a;&W_ is concerned, the discontinuity across the cut which it
generates is proportional to c¢oZ,o(s)¢ (k%). Addition of a further
2/0(s) to coTo,0(s)(k2), to represent the contribution from the
principal part of the triangle amplitude near s=ai, would result
in a factor exp(248). This may be more appropriate than coT, ¢(s)
X (k% for s near ai, as shown in Ref. 11 and the paper by
Aitchison and Kacser cited above, which study in detail the
triangle singularity at s=oq and its effect on the singularity of
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to be a useful explicit approximation to the partial-wave
amplitude Ty(s) in the physical region.

the crossed Watson term at the same point. However, fo*(s)
Xexp(248) /k does have an undesirable right-hand cut starting at
k=0. It is not quite obvious which of the two effects, the one at
s=4 or the one at s=ay, will be more important. s=4 is the
physical threshold. «; is also close to the physical region, since one
meets it by crossing from above the right-hand cut of So(s)
[remaining in the same sheet of Wo(s)] or the right-hand cut of
To,1(s)+triangle amplitude, as the case may be. However, for a
resonance of finite width, ez will not be exactly in the physical
region but some distance away. It is for this reason and the fact
that, even though «; is a fairly strong (logarithmic) singularity,
no spectacular effects seem to be associated with it, whether the
contribution of the triangle amplitude is considered or not,
(cf., e.g., Refs. 2, 4, 10, and 11) that the approximation to To(s)
has been chosen so as to satisfy property (1) of the Introduction.
As a compromise one could, of course, replace ¢ (k%) in Eq. (9) by
some polynomial in %2 to be determined from experiment. This is
a more realistic procedure in any case, but it has the disadvantage
of introducing additional unknown parameters into So(s).
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We use current algebra and analyticity to study vertex functions occurring in the 4p7 system. Employing
the conserved vector current and partially conserved axial-vector current relations, and the SU (2) XSU (2)
algebra of currents, we generate Ward identities which relate two- and three-point functions of vector and
axial-vector currents. Extracting the pion poles from these vertex functions and exposing their isospin con-
tent, we define form factors whose analytic properties may readily be studied and, in particular, deduce from
the Ward identities a relation involving the pion form factor. With suitable low-energy approximations which
maintain the correct cut structure, we use this relation to calculate an effective-range formula for the pion
form factor, and consequently from unitarity, the p-wave == phase shift. Our results are generally in agree-
ment with experiment. Using A; dominance, we are able to obtain analytic effective-range formulas for the
form factors appearing in the vector-current matrix element of =, A; mesons. From these form factors,
measurable in the reaction ete™— 74, we calculate the 4, — pr width and the 4,-p spin correlation. Finally,
we extend our methods to encompass both w7 and w4 1 cut contributions, and derive a set of coupled integral
equations which we solve approximately for the =7 and 74, form factors. We conclude with a general

observation on the complementary roles played by current algebra and by unitarity.

INTRODUCTION

ARD-PION methods refer to the procedure
whereby hadronic matrix elements of physical
interest can be extrapolated to off-mass-shell values
of the particle momenta. The foundations® of the
procedure originate in the conserved vector-current
(CVQC) theory, the partially conserved axial-vector
current (PCAC) hypothesis, and current algebra.
Earlier approaches involved zero four-momentum
limits and provided such exact statements about
extrapolated amplitudes as the Adler consistency rela-
tion? and the soft-pion theorems.? The hard-pion tech-
* Supported in part by the National Science Foundation.
1 For general background, see S. L. Adler and R. F. Dashen,
Current Algebras (Benjamin, New York, 1968).

2S. L. Adler, Phys. Rev. 139, B1638 (1965).
3 See, e.g., S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

niques* pertain to arbitrary four-momenta, thus ex-
tending the range of utility of these off-shell methods.
Physical mesonic matrix elements are expressed, in
their extrapolated form, in terms of vacuum expectation
values of products of local operators which can be
identified with hadronic vector and axial-vector currents
satisfying the algebra of currents. As Schnitzer and
Weinberg* have shown, the content of this method is
summarized in a set of Ward identities, which give
constraints among the N-point functions of the theory.
Further dynamical structure must be added to this
system of constraints in order to obtain detailed
knowledge of the matrix elements in question. In this

4 H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967),
hereafter referred to as SW. See also S. G. Brown and G. B. West,
ibid. 168, 1605 (1968) ; T. Das, V. S. Mathur, and S. Okubo, Phys.
Rev. Letters 19, 1067 (1967), and Refs. 9 and 12 below.
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paper, we show how the constraints of current algebra
may be complemented with constraints of a basically
different, but equally general, nature. In particular,
we suggest that the concepts of analyticity and uni-
tarity can be incorporated advantageously into the
Ward identity structure and that the simultaneous
implications of current algebra and of unitarity provide
more predictive power than either scheme is capable of
giving when applied disjointly. We will discuss the
extent to which we are presently able to implement the
complementary constraints of current algebra and of
analyticity and unitarity. These considerations have
already been applied in a limited way to the determina-
tion of the pion form factor and the 7'=J=1 == phase
shift.5 Some extensions of this work and some more
general conclusions will be given below.

I. FORM FACTORS AND WARD IDENTITIES

In this paper we shall confine our attention to the
three-point functions of the vector and axial-vector
currents of SU(2) XSU(2):

W%(g,p)

= / dady e=i97¢2v(0| T9,4,%(x)3,4,%(y) V2(0) |0},
Wae(q,p)

- / dady e=05ei#(0| T9,4,5x) A,°(3) V() |0), (1)
Wun2(g,p)

= [ty e Ol LAV 10,

in which @, b, and ¢ are isospin indices. To illustrate
the relation of the above quantities to matrix elements
of direct physical interest, we show how the first of them,
for ¢=3, gives the off-shell electromagnetic form factor
of the pion, extrapolated in the momenta g, p, and
k=p—g. On shell, the pion form factor F(¢) is defined by

'ieabS
WFU)QM 2)

where Q=p-+¢ and /= —F? Straightforward reduction
and application of the PCAC relation®

G“A “a = F':rm1r27ra (3)

(a(qa) | V>0) | w(pb))=—

yields
(m(ga) | Va3(0) | (D))

B L(ma?~+q%) (ma>+pH)Wa(g,p) 1~ P—ma® @
B (4wq°~’p) V2R 2t '

5J. J. Brehm, E. Golowich, and S. C. Prasad, Phys. Rev.
Letters 23, 666 (1969). Further work along these lines appears in
R. Rockmore, 3bid. 24, 541 (1970).

6 The pion decay constant is F,=94 MeV. It is defined by
{0 8,4,%(0) |7 (p0) ) = (2wp) 60l =
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The second and third of Egs. (1) possess physical
interpretations which will be indicated later in this
section.

Along with the three-point functions of Egs. (1) we
shall have need of the following spectral representations
for the propagators:

/ dy 50| TV, (3) Vr#(0)|0)
= — 184 ANV (k) —Cy 6,400 ],

/ dx ¢-4:(0| T4,4(x) 4,%0) |0) )
=~iaab[AwA(q)+Fﬂ s —(CA+F«2)5u45v4],
q2+m7’_2
where
dx kuk,
ApVA(k)= fx_{_kzpv,A(x)(ﬁw‘l‘ " ) (©)
and
Conm f pr.al®,. )
X

The spin-zero part of the axial-vector current spectrum
has been saturated with the pion state. The spectral
functions py and py are related to (0] V,2(x)V,*(0)|0)
and (0|4 ,%(x)A4,%(0)|0) as usual. In addition, we have

W2l 2
/ 0 65050 T0,4,5(x) 4,5(0) | 0) = —bar— 3,
q2_|_m1r2
and (8)
MiF 2

2+mﬂ_2

/ g o150 T0,4,5(5),4,%(0) | 0) = — it
q

The chiral commutation relations” we use are

8(xo—yo)[ Va2 (),V,*(3)]=—8(x—)earcV»* (y) +5T,
(ko= o) [V (x),4,°(3)]=—8(x—)earcd,* () +ST,

)
5(950—3’0)[14 4“(95):14 vb(y)] = -—6(x—y)each.,°(y)+ST ,
8(xo—yo)[A2(2), VP (y)]=—8(x—y)earcd ,*(y)+ST,
where ST refers to the Schwinger terms which, following
Weinberg,® we assume are not isovector operators.
Equations (9) provide relations among the quantities
in Egs. (1) and (5)-(8); the resultst are the Ward
identities

1
~——), 0
@Ptmat pPma
e - p” ) > (11)
PHma pitma’

vk)\WA“bc(‘]:P) = ifabcmw4F1r2<

AW xe?e(g,0) = eabamﬁl*‘W?(

7 We differ from SW in convention by a factor of 2;
8 S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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qugy

kkWﬂv)\abc(q:P) = ieabcI:AuvA (Q) +F .

9*+ma?

Pub ] , (12)
P2+mﬂ'2

'—AWA (P) —F?

DWW a(g,p) =iW\**(q,p)

+eavems’Fqn/ (¢ +m+?),  (13)
gV (g, p) = —iW\**(q,p)
Fieas[AnA(p)+F 2pspr/ (p2+ms?)
—ApY (k) = (Ca+F2—Cy)budna]. (14)

By comparing ¢, contracted into (12) with %\ con-
tracted into (14), and using (11), we obtain

(Ca+F2—Cy)(ky—kib,s) =0,
whence
Cy=C4+F.2. (15)

Thus Weinberg’s first sum rule® depends in no way on
the assumption of a conserved axial-vector current.
The above derivation of (15) is identical with that of
Weinberg except that (3) has been invoked rather than
9,4 ,0=0.

Equations (10)-(14) exhaust the content of the
current commutators and must now be supplemented

with further structure. For Schnitzer and Weinberg, .

the next step ultimately took the form of pole dom-
inance. Each of the channels (ga), (pb), and (kc) was
saturated with the appropriate m, p, or A; meson
poles, and the residual vertex factors were assumed to
be as smooth in momenta ¢, p, and % as possible. The
procedure of meson-pole saturation of the vacuum
expectation values and imposition of chiral symmetry
has been usefully cast in an equivalent Lagrangian
scheme by Arnowitt and co-workers.® It is the imple-
mentation of the Ward identities with pole dominance
in all channels that we specifically wish to avoid. In
particular, we shall not employ p-pole dominance of the
vector current (kc¢) channel but rather incorporate the
w7 branch cut, and, in principle, higher-mass cuts as
-well. In this way, the instability of the p meson is
properly treated and, more importantly, the foundations
are laid for introducing analyticity and unitarity as
added ingredients to the theory.

Pion-pole dominance will continue to be used; the
stability of the pion and the fundamental role of PCAC
place this assumption on a different footing than ob-
tains for p dominance and 4; dominance. Indeed, pion
dominance of the spin-zero axial-vector spectral func-
tion has already been used in (5) and (8), and, from
(4), is needed to secure the interpretation of Wj%%(g,p)

® R. Arnowitt, M. H. Friedman, and P. Nath; Phys. Rev.
Letters 19, 1085 (1967), and Ref. 17 below. For a complete
listing of the effective Lagrangian literature, see S. Gasiorowicz
and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969).
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as the off-shell pion form factor. Accordingly, we factor
the pion poles from the vacuum expectation values and
write

F2m*
T \26(q, p) = deas Frap), (16
a2be(g,p) =ieas 2 ) A(g,9) (16)
b Wmﬂ
Woae(q,p) = eabcm,ﬁjl—;;[F a(g,)
+ mﬂﬁ,ﬂzpm,p)] , ()

H/W)‘abc(q’p) = ieabc {FW)\(Q,P)

b» u
+F7[m,,2—f—j)2F")\(P,q)+ 2+q2FV)\(QaP)]

Ma
F?
.+_
(m*+p*) (m"+-¢%)

qum(g,p)} . ()

Before embarking on a theoretical analysis of Egs.
(16)-(18), we digress briefly to exhibit part of the
physical content of the functions F) and F,, and also
to review some pertinent results of pole-dominated
hard-pion calculations.? It is convenient for this purpose
to express Fy and F,, in terms of matrix elements of the
vector current. From (4) and (16), one can identify
F; A as

(m(ga)| Vx*(0) | m(pb))

1€abc )
= —————F\¢:p) Jo?=p*—m.".

()

(19a)

Similarly, F,» can be interpreted in terms of the matrix
element for the experimentally remote process, A
decay:

(m(ga) | V2(0)| A1(pbi))

€abe

" (o)
mA2+P2
Xl: FP)\(%P):I . ’

g4 p=—ma®,q =—ma

€, (@) (P)

(19b)

where €, (p) is the polarization vector of the 4; meson
of momentum p, helicity 4, and g4 is defined by

(0] 4,2(0)| A1(pbi)) = (20) *arga€s () -

In Eq. (19b) we have ignored 4; instability in construct-
ing the asymptotic state |A1(pbi)). The matrix ele-
ments in (19a) and (19b) may be expressed in terms of
invariant functions, or form factors, with appropriate

(20)
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kinematical factors. This has been done already for
Eq. (19a) in Eq. (2). For Eq. (19b) we have, taking
t=—F?

(w(ga) | V»°(0) | A1(pbi))
AW sn+BOkpr+C(0) ke

= _éabcfv(z) P) ,

(40’1)“’41) 1z

in which 4, B, and C are constrained by vector current
conservation to satisfy

A+p-kBHEC=0. (22)

If the A;3 form factors are continued to the region
t> (ma+m.)?% then 4, B, and C describe that part of
the process ete”— w4, which proceeds through the
isovector component of the electromagnetic current,
a process measurable in colliding-beam experiments.
We note that F can be expanded off shell as

F\(¢,p) =FQx+Gka, (23)

where F and G are functions of ¢? p?% and %% with F
symmetric and G antisymmetric in ¢* and p® The
Ay-dominated off-shell form of F,) can be expressed as

Svatpupo/ma®
pme
X (A 8o+ Blopr+Clolr+Dppr+Epoky) ,
where 4, etc., now depend on ¢? $?% and k2.
Each of the functions F and F,) contains a p-meson

pole in the variable k2. We can determine the following
coupling constants from the pole residues:

orr = (1/gp)[(m92+k2)F]q’=p’=—mﬂ-2, k=—mp?,
Lapr= (l/gp)[(mp2+k2)AJQ’=—mr’, p’=—m4®, k’=—mp®, (25)
hagr=(1/g)[(m2 k) Blg*——mn?, pPm—ma’, k'=—mp®,

where we have defined g, by
O Vxe(0) | p(kjd) ) = (2wr) bcagoer (k) .

The expressions in (25) presuppose the treatment of
decay matrix elements (rr|p) and {(mp|A4:) in which
the unstable mesons p and A4 are assigned real masses in
accordance with the asymptotic condition. The coupling
constants gorx, 4pr, and k4 ,m determine the decay rates

Fv)\(q’P) =84

(24)

(26)

2 gpre® lq!3
T(p—mm)=—————, (27a)
dr m,?
ql
F(Al—)pﬂ)z DN 3g:‘1p7r2
21r71'l,.12
lq|?
+ [(gapr—mawihape)2—mamyha,2]t , (27Dh)

m,?

where |q| is the magnitude of the decay momentum in
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the parent rest frame. The hard-pion calculation of
Schnitzer and Weinberg gives the coupling constants
of Eq. (25) in terms of a single parameter 8,

gpmr(sw) = (3 _6)mP2/4gﬂ )

Gapr S = [5 (ma2—m,?) _mA2]/4F1r , (28)
Bape W) =—§/2F,
as well as the pion form factor
146 3—6 m,?
FSW(f) = -+ (29)
4 4 mp2—i

The value d~—3 gives I'(41— pm) and I'(p — =),
in reasonable agreement with experiment. We note in
passing that some results of p dominance in its simplest
form (unadorned by chiral dynamics) are reproduced
by 6=—1,

Gonngo=m,2, F()=mz2/(m2—1), (30)

but for which I'(41— pm) is too small. The SW results
of Egs. (28)-(30), provided here for future reference,
are based on meson-pole dominance in all channels.
If we avoid the use of p-pole dominance and instead
incorporate #-plane analyticity, we can supply a further
test for the value of the SW parameter §. In addition,
a crucial test of the parametrization is the 4;-p spin
correlation, to which we shall return later.

In Egs. (16)-(18) we have exposed the isospin and
pion-pole structure of the vacuum expectation values
given in Eq. (1). The quantities thus defined, F,
F,\, and F,,, are the fundamental amplitudes in our
approach. The Ward identities (10)-(14) impose con-
straints on them as follows:

k\EX(g:0) =1p"— ¢, 31)
TaFn(q,p) = —F 1k, (32)
BaF un(g,0) =A™ (9) — A4 (), (33)
2 Fn(0,0) =FLx—Fx(g,p)], (34)
QB un(g:0) =AnA(p) —AnV (k) —FxFon(g,) . (35)

If we contract p, into (35), and use (34) and (15) we
get

guprF un(g,0) =ACv—p,AnY (k)

+FL[E\(g,p)—Or].  (36)
Since W ,.a%%(g,p) possesses the crossing property
Wun¥(g,p) = =W (—p, —9), 37
it follows that
Fun(g,p)=—Foan(—p, —9). (38)
Similarly,
Fx(g,p)=—F\(—p, —q). (39)

If we replace ¢ — —p, p— —q in (36) and use (38)
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and (39), we obtain
qupsF un(,0) =Cv—g:A07 (k)

+FW2EF>\(Q7P) _Q)\J (40)
By adding (36) and (40), we get
F2(F)(g,0) — O\ =qupsl (g, )
4 1 / dx pv (%) (P2—q*)kr—k*Qx @)
2 x x+k?

Given the assumptions of CVC, PCAC, and current
algebra, Eq. (41) is exact. The contributions to the
Ward identities from incalculable Schwinger terms and
o terms are rigorously absent by virtue of the isospin
structure of the three-point functions for chiral SU(2).
Divergences appearing in certain models of the three-
point functions do not affect the validity of Eq. (41)
because regularization procedures can be shown to
leave the Ward identities, Egs. (10)-(14), intact.?
In addition, only pion poles have been extracted from
the matrix elements of currents in Eq. (1). No assump-
tions about vector or axial-vector current dominance
by, e.g., the p or A1 mesons have been made in obtain-
ing Eq. (41). Thus, Eq. (41) is a sound starting point
for confronting the basic assumptions of hard-pion
theory with experiment, and it is to this task that we
now turn our attention.

II. EFFECTIVE-RANGE APPROXIMATION

The attitude we shall take in working with Eq. (41)
is motivated by considerations of -plane analyticity.
The last term in (41) is mainfestly an analytic function
of t=—Fk* with a right-hand cut starting at the ==
threshold, the lowest mass hadronic contribution to
pv. The three-point functions F) and F,,\ contain form
factors which are real analytic functions in the same
cut ¢ plane, provided we fix $? and ¢? at small enough
real values, e.g., p*=¢?*= —m,>. Examination of the dis-
continuity of (41) across the #-plane cut reveals an
interesting relation between analytic functions of ¢,
a point we discuss further in the concluding section of
the paper. In this section we confine our attention to
performing a calculation of the pion form factor. In
doing so, we must treat the function F,,\ approximately
because our present knowledge of the form factors
associated with this term is limited. We can use the
SW approximation for F,,. to obtain an expression
having the correct ¢-plane cut, thus leaving (41) in the
form of an integral equation whose solution involves the
SW parameter é.

The SW construction of F,,a(g,p) presumes that the
¢% p? and k? dependence of the form factors resides
in propagation functions for each of the three currents,

FunSV(g,p) = (1/g4°¢0) At (9 As? (p)
X AxyY (B)T2a (g,0)
10 K. Wilson, Phys. Rev. 181, 1909 (1969).

(42)
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and that the proper vertex factor I',o,;(g,p) is at most
linear in ¢,p,
Tr0n(q,0) =T'18:0Qy+T2 (87 ks — bkr)
+F3(5m;b¢+5.,,,qf), (43)

in which I'y, T's, and I'; are constants. Given this hy-
pothesis, we recover the SW result that A4 is pole domi-
nated. To demonstrate this, it suffices to consider
p?=¢? in which case
IaF un SV (g,0) | pi=g?= (CvCaT's/g4¢,)

XLpoprd i (@) —qugaldss? () Jp2=g?,  (44)
to be compared with the Ward identity (33), which
takes the form

dx pa(w)

x+p? x
Equations (44) and (45) are mutually consistent only if
dx 1 CyCals
J i pofl S
x+p? x84’

which implies that p4(x) is localized at some mass 742,
with strength g4%:

VLN I p’=*=

(qugp—pupr) . (45)

(46)

pa(x)=ga20(x—m42), Ca=gi¥/mi?, (47)

and simultaneously
I';= _gp/CV- (48)

Insertion of these results into (42) for p?>¢% and
comparison with the Ward identity (33), yields

A (492)
with no condition on Ty We adopt the SW
parametrization

Iy=T1(2+49). (49Db)
We can now solve for F,, directly from Eq. (35); we
get
gAZ PVP)\
FﬂFV)\——— U, 6v)\+
P2+mA2 'WLA2

PV(x) kvk)\

_/ X <5V)\+ )
R:Hx\ x

T AN (R) vpa

g Sl <,,+P )
mﬁ

X[qoQ(2408)(grko—q- kbay) —Gnpa—0beng*].  (S0)

ma’Cy p*+ma®
This expression for F,, satisfies the Ward identity (32).
We note that pole dominance of A is not necessary in
this approach. Thus a hybrid treatment of the 4ipm
system is permitted, in which we use pole dominance
in the axial-vector current variables p? and ¢? but use
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t-plane analyticity in the vector current channel. An
analogous treatment of (0| TV ,2V,%V»¢|0) is not valid
because it would violate crossing symmetry. From
Egs. (42)-(43) and (47)-(49) we obtain the following
expression to be used in Eq. (41):

quprl un(g,p)
ga® 1495 dx py(x)
= —LONE—kA(p?—¢? — . (581
e ow-hr-p] [ . 6D

We shall take the point of view that the 22=0 value of
Jdx py (x+k%)~! is adequately given by the SW result

Cy=g*/m,. (52a)
If we also use?®
ga=g and m2=2mz2, (52b)
Eq. (41) becomes
1 rdxpv()
FLRNgp)—Ql== | —
2J x(x+k?)

1446 «
X(l—~———>[kx(i72—qz)—ka2]- (83)
4 m,?

For p2=¢*= —m.? we get, for the pion form factor,

L rd 145
F()=1+ v, —x—>. (54)
2F ;2 x x—t\ 4 m,?

T

Our first step in solving Eq. (54) is the specification
of py, the vector spectral function. Since (51) is a low-
energy approximation, it is consistent for us to consider
only the 7= contribution,

1 p3
|[F()|—, t>4m.®
Vi

672

(55)

pv™ (1) =

where P?=1(t—4m.?). Equations (54) and (55) imply
that, on the =7 cut,
1 P? 146 ¢
TmF = —1Fl2—<1— ———) ;
aiy \/t 4 ’WLP2

where a;;=127F,2. Given (56), we can use the inverse
amplitude method to solve (54) as follows. Defining
G()=F(t), with G(0)=F(0)=1, we have

(56)

ImF 1 pP3 146 ¢
ImG=— =~——<1———~*~) (57)
|F|? an V't 4 m,?
and therefore
¢ A rx—dm2\3/2
oo ()
8wa11 J ama? X
146 x \ dx
(1Y
4 m,* x—t
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where we use a cutoff A, in accordance with our low-
energy approximation. Equation (58) is readily inte-
grated, giving the effective-range formula

1406 ¢ 1
F({) =(111|:¢111+bt+g(l><1_ T "“;)“g(o)jl , (59)

Mp
where 87b= —In(A/m.?), for large A, and
2P (WH)+2P iP? Ma?

=l ——, g(0)=——.
g(®) r o o k g(0) .

Equation (59) contains an effective-range parameter
b, which we fix by requiring that the p-pole appear at
the correct mass,

(60)

ReF1(m,2) =0, (61)
from which
—1 m.2 3—062P,3
b= —<a11+ +—- '_Lp> )
m,? T 4 7 m,
(62)
(mp—i—ZPp)
p=1n
2

For 6=—1%, this corresponds to A/m,2=¢. Such a
large cutoff, in a model which, as we shall show, is
confirmed by every direct experimental test, would
imply that the elastic unitarity approximation is a
better one physically than one might a priori have
expected.

We can determine the p resonance parameters by
examining F(f) near t=m,?, where Eq. (59) becomes

F() =an/{—Nmp—t—iT'm,(P/Py)*m,/~/t]}, (63)
implying a p width
13—6P,3
Torr=— e —, (64)
N4 om,?
with
d
A —_—dn<’— ReF‘1> . (65)
dt t=mﬂ2

Numerical values for the p width as a function of the

parameter & are given in Table I. Extracting the prm
coupling constant from the p width,
2 gonn? P2

r=-2"2"_% (66)
3 4w m,?

and comparing with (64), we obtain, within 5%, the
KSRF relation,"™ modified by the factor %(3—9),

2F>=3(3—0)m,/ gper®. (67)

11 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (%966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

12 The KSRF relation cannot be proven from current algebra
alone: D. Geffen, Phys. Rev. Letters 19, 770 (1967); S. G. Brown
and G. B. West, 4bid. 19, 812 (1967).

18 The KSRF relation has been obtained using current algebra
and an effective-range formula for the I'=J=1 == phase shift:
L. S. Brown and R. L. Goble, Phys. Rev. Letters 20, 346 (1968).
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TasBLE I. Parameters of the 4.pr system as a function of 8. Entry (b), |g1/g0], is the ratio of helicity
coupling constants, defined in Sec. IV, for the decay 41— pw. Other notation is self-explanatory.

8

0 -1 -1 -3
(@) Tarpr (MeV) 250.0 116.0 480 16.0
(b) |21/80] 0.95 0.87 0.76 0.55
(©) T per (MeV) 102.0 124.0 146.0 170.0
d) 7.(F) 0.627 0.635 0.643 0.651
€ |Fmp2| 57.2 42.0 322 25.4
() T(o— e*e)/T(p— ntr™) 6.8 1075 501073 3.8X1073 3.0X10-
(&) [(P3/\/t) cotdu oo (ms?) 15.2 14.9 14.6 14.3

In Fig. 1, we plot the colliding-beam datal for | F(¢) |2
versus f{. The maximum value that the quantity
| F(#)]? attains near the p pole depends sensitively upon
the SW parameter 6. Comparison with theoretical
values given in Table I tends to favor values of 6> —3.
Since the approximations made in obtaining Eq. (59)
become less valid for £>m,% we shall not look for any
significance of the results in this region.

There exist data in the spacelike region from electro-
production experiments'®; in Ref. 5 we have compared
our results with these data. The pion charge radius
r» is determined from the form factor derivative at
t=0,

dF
7Rl =06—

dt

6 Mot
=__{1

2
t=0 My

1 3-5 2P}
i N [
3 4m,? mp

Numerical results are given in Table I, and are com-
parable in all cases to the p-dominance value
7.=(6/m2)1/2=0.64 F.

A representation for the pion form factor with the
correct wm branch cut has previously been given by
Gounaris and Sakurai,'® who write

F@Q)=70)/f(®, f®=[coton()—ilP*/V/1,

where 811, the '=J =1 7= phase shift, is given by an
effective-range formula, and serves as input to their
calculation. In contrast to this, our method of obtaining
F(#) avoids the use of 811 as input. In fact, we can
predict 611 by using unitarity. In the = region, we have

(69)

ImF = F*¢®11 gindyy , (70)

14V, L. Auslander ef al., Phys. Letters 25B, 433 (1967); and in
Proceedings of the Fourteenth International Conference on High-
Energy Physics, Vienna, 1968, edited by J. Prentki and J. Stein-
berger (CERN, Geneva, 1968); J. E. Augustin ef al., Phys. Letters
28B, 508 (1969).

15 C. W. Akerlof ef al., Phys. Rev. 163, 1482 (1967) ; C. Mistretta
el al., Phys. Rev. Letters 20, 1523 (1968).

16 G. J. Gounaris and J. J. Sakurai, Phys. Rev. Letters 21, 244
(1968) ; see also M. Parkinson, Phys. Rev. D 1, 368 (1970).

and comparing this with Eq. (56), we conclude that
Vi 146 ¢
cotdy = ——(1
P3

-1
—_—— ——) a1 ReF-1. (71)
4 m,?
A comparison of our expression for 811 with that of
Arnowitt ef al.'” and of Brown and Goble® has been
presented in Ref. 5. The p-wave scattering length is
obtained from

ps m/  3—5P,
("’— COt511) =[(Z11+ (1 _—— ——LP):I
'\/[' t—dma® ™ 2 mp

3—8m.\"1
.><<1+———~~—) . (72)
4 P2

P

Numerical values of this, given in Table I, are to be
compared with the soft-pion value,'® an=17m.?

60

2
IF1

40

20 il

L

60

B
800
/i MeV

Fic. 1. Comparison of the pion form factor, Eq. (§9), with
experimental data taken from Ref. 14. Closed circles refer to the
data of Auslander et al.; closed triangles to Augustin ef al. The
solid curve is calculated with = —3%.

1000

17 R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor, Phys.
Rev. 175, 1820 (1968).

185, Weinberg, Phys. Rev. Letters 17, 616 (1966); see also
Ref. 13.
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Olsson’s result,’® (15.04=1.2)m,2%, deduced from a
forward-dispersion sum rule, and with the hard-pion
result of Ref. 17, 14.5m,2.

The main result of this section is our effective-range
formula for the pion form factor, Eq. (59). The calcula-
tion was based on the SU(2)XSU(2) algebra of cur-
rents and PCAC. It has recently been proposed® that
our world is mathematically near one in which the pion
mass vanishes, m,=0, and SU(2)XSU(2) is an exact
symmetry of the Hamiltonian. If so, our formula for
F(#) should be expected to make sense in the limit
m.— 0. However, because of the presence of terms
proportional to lnm, [which arise from our approxi-
mation of the exact relation (41)7], the limit m, — 0 is,
in general, singular. The only exception to this is the
case 6= —1 for which the singular terms cancel, and we
find

LE(8) Jme—o
! P2 P -1
=dn[a11<1— —)-‘I— — In— —-%iPz] . (73)

M2 r P,

The value = —1 corresponds in the SW approximation
to qup,F =0, which suggests that at least for |¢] Sm,2,
gupyF s is in reality quite small. This may explain in
part the success of our calculation, despite a limited
knowledge of this term.

Having obtained a reasonable representation of the
pion form factor for energies at and below the p pole,
it is natural to consider an extension of the calculation
to higher energies. In doing so, it is important to take
into account explicitly additional intermediate states.
This leads us into the multichannel approach discussed
in Sec. ITI. Before turning to this, we note that, once
F(?) is determined then so are the 4 ;3 form factors 4 ()
and B(f). To establish this we must obtain equations
for the invariant functions associated with F,\(g,p) in
its A;-dominated form (24). Inserting this relation into
(50) and taking p*=—m,?, ¢*=—m,?, and k®=—{, we
find

8o 1 dx
=21 — [ Lot
" 4g,2) x—t
XL@+5)1=mad)+om:7D)
(74)
0 dx
B=— —_PV('x) ’
2F7rgp x—1i
1 dx ma?
C= ——pv(x)(l—i—a—‘) .
2F.g,J x—t x

1 M. G. Olsson, Phys. Rev. 162, 1338 (1967), and unpublished.
We have converted Olsson’s number to conform to our Eq. (63).

20 M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,
2}1195 (1968) ; R. Dashen, 7bid. 183, 1245 (1969), and references
therein.
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The functions D and E do not contribute on shell. In
obtaining (74) we have used Eqgs. (52). Equation (22)
is satisfied by Egs. (74), so that only 4 and B are
independent on shell. The basic analytic function of ¢
occurring in F, 4, and B is the integral Jdx pv (x)/ (x—1).
We can show that, by virtue of (52a),

d. 146 ¢ \!
]“V =2F,,2F(t)<1———————) )
x—1 4 m,?

so that formulas for 4 and B follow from the one for F,
Eq. (59). For the multichannel problem, it is no longer
the case that F can be obtained, and then 4 and B
determined from it; there the on-shell form factors are
coupled and must be solved for simultaneously.

III. COUPLED FORM-FACTOR PROBLEM

Two approximations have been employed so far.
The first was the use of the SW form for F,, Egs.
(42) and (43); from this, Egs. (54) and (74) followed.
These amount to integral representations for the form
factors with analytic properties dictated by the struc-
ture of the spectral function py. The contributions to
pv from the more massive intermediate states corre-
spond to cuts whose branch points are further removed
from the effective-range region. The second approxi-
mation of Sec. IT was to calculate py using only the 7r
contribution. We can easily do better without needing
more equations than (54) and (74). In particular, if
pv contains the contributions from both 7= and w4,
intermediate states, then (54) and (74), together with
the truncated formula for py, provide a coupled system
of equations for the form factors F, 4, and B.

The vector spectral function is given by

(Ol V,"’(x) V,b(O) IO)
=6ub(21r)_3[d4/€ e*(k)pv(—k?) (8, —kuk,/k?). (76)

With just == intermediate states we obtained Eq. (55).
If mA1 states are also included, we find

01 P13 02 P2
Ty = _ml],‘l2+“_

67 /1 4r /1
X[IA|2+%P22<mi‘421A+P'kBl2“t‘Bl2>]: an

where 6, and 0, are 8 functions referring to the == and
A thresholds, respectively. The momenta_are de-
fined by

Pl =i(t—4m,,2),
PR=[t—(matm)?|[{— (ma—m,)*]/4t,
and
pok=—%(+msl—m?).
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X

(a)

Im X = X

(b)

Fic. 2. Diagrammatic representations of (a) form factor &, (b)
ImJ, as calculated from the discontinuity formula implied by
unitarity. In (b) X represents a sum over allowed intermediate
states, and 9N denotes the set of relevant partial-wave scattering
amplitudes.

Assembling F, A4, and B into a row matrix

§=(F A B),
we see that
pv=(1/m)Fp5T, (78)

where p is a square matrix with nonvanishing elements:

61 P:3
prF= ar _\Z )
0y P Py?
e Gl
02 Py
PAB=PBA= Z‘l; 3(\/t)mA2P.k ,
6, Pt 0s (V1) P55
pBB= = m)mﬁ[(["k)z—tmf]: —;’*3—;”?“ .
From (54) and (74) we conclude that
ImS =Zmpy, (79)
where Z is the row matrix
Z=(Zy Za7Z5),
1 (1+96) ¢
=)
2F 2 4 mp (80)
Za=(1/4F g )L 2406)(t—ma?)+om*],
Zp=—08/2F1g,.

Our definition of the form factors 4 and B is such
that the phase-space matrix p in (78) is not diagonal.
While this is no disadvantage in seeking the solution of
the coupled equations, it is worth seeing how the form
factors may be transformed to diagonalize p. If we

BREHM AND E. GOLOWICH 2

define new A;; form factors Gr and Gz by

C-TYT"—‘mAzA 5

i (81)
GL=tP#B+p kA4,
then we get
01 P2
woy=—— |
T V1

el Pz_<1c7L| 2+2—t;1GT| 2) . (82)

127 m 42312 ma

To describe the decay 41— pm, we can define coupling

constants?
mpt—1
gT=<—.GT :
gﬂ l~mpz

mp—t _
(%)
8» t—mp2

(81)

in terms of which Eq. (27b) becomes

lq| mp?
<2—"—lg'T12+lg‘L12) .
127m.a*m 2\ m4?

Equation (79) is the basic equation of our approxi-
mate method for calculating form factors analytic in
the cut ¢ plane. The equation reads

ImEF,- = Z,-(gpﬁf) .

T'(41—pm)=

(83)

In this paper we shall give only a brief discussion of our
attempt to obtain its solution. Quite apart from the
problem of how F, 4, and B are to be determined from
(83), we view the equation as being of some interest as
the extension of Sec. IT to the problem of coupled form
factors. The novelty of this form-factor method is easily
visualized in terms of diagrams. Conventional disper-
sion theory based on unitarity employs a discontinuity
formula which can be illustrated in the familiar way as
in Fig. 2. If Fig. 2(a) represents the matrix element
(@] V,(0)|B), then Fig. 2(b) illustrates the prescription
for the imaginary part of its analytic continuation to
the region {>4m,% Physical intermediate states con-
tribute to the sum Y. and a calculation of the form

@@x =>x@@@x

T16. 3. Diagrammatic representation of Eq. (83), giving an
approximate procedure for calculating Im §; in the general problem
of coupled form factors, &;. The sum 3, denotes contributions to
pv from those two-particle states occurring in the coupled-channel
problem, and Z; are known polynomials.

% These are proportional to the 4;p7 couplings of F. J. Gilman
and H. Harari, Phys. Rev. 165, 1803 (1968); see also S. G. Brown
and G. B. West, 7bid. 180, 1613 (1969).
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T i i ™
p-wave = Zg )X
T ™ ia il

F16. 4. Method for calculating the p-wave =r scattering ampli-
tude M in the effective-range approximation from knowledge of
the pion form factor F and a known polynomial Zz. See Eq. (71).

factors requires knowledge of the multichannel partial-
wave scattering amplitudes. Diagrams of a different
sort suggest themselves to represent Eq. (83); these
are as shown in Fig. 3. This method also employs an
intermediate-state sum, but one in which the states
enter as they contribute to py. The factor Z; appearing
in Fig. 3 is a known polynomial in ¢ The method
illustrated in Fig. 3 is self-contained, albeit approxi-
mate. Knowledge of the partial-wave amplitudes is not
needed in solving for the form factors. If (83) is used to
obtain the form factors, then the method shown in
Fig. 2 may be used to solve for the partial waves.
This procedure has already been employed by us to
calculate the =m p-wave amplitude, in effective-range
approximation. The result (71) is graphically displayed
in Fig. 4. The Z factors appearing in (83) are readily
interpreted. If we use py=g,%(m,2—1) in Egs. (54) and
(74), we obtain the SW form factors, which may be
written

g2
psw= "7,
mt—1
8 g’
asw="2" 4 Za, (84)
Fo mpl2—i
2
pow— g,
my—t

Thus we identify the Z factors as the polynomials in ¢
which multiply g,2/(m,2—f) in the SW formulas for the
form factors.

It is not difficult to find functions &; whose imaginary
parts are given by (83). Let G(£) have the {-plane cuts
and set

F:=2:/G. (85)
Then

so that, with (79), we find

ImG= —mpy|G|2
=—7pZ%"=—R,
where
R=(2F,%a11) 71 (01P 1  f1+-30:Po17312f,)
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and f; and f; are the entire functions
Si=PPH1—-3(1+0)t/m,*)?,
Je=(t/m)[(1+8)t—ma>—38(t+ma>—m?)
+ (P2t/3ma) {[(1+08)t —m 42 P —%m 42} .
Because F(0) =1, we must impose the condition
G(0)=Zr(0)=1/2F,>2.

A function G(#) with these properties and one effective-
range parameter ¢ may be written

1 c 1
G=—| 1t ok Gt |

T a1 an

where

P2 (V)+2P, 1
N N I

\iLr 2. T

(P22t)”2r1 L—ma?—m2(P%) 2
g2= —In —i:l

12 T 2mamy

1 ' mattm ma
-+ —[(mﬁ—m,ﬁ—t ) 1n<——>——t:|
2mi? ma2—m? Mr

Mmat—mat—Adma2m.2 In(ma/mr)

)
dmw(ma®—mi?)3

with g1(0) =g2(0) =0, and the appropriate continuation
to t< (ma-+m.)? being understood. From (85), we have

1—1(148)t/m,?

F=ayy , (86)
ayt-ct+figi+5 fog0
ann (2406)(t—ma®)+om.?
o e
Fr2ma? autct+ frgi+35 foge
gpr C11 0
B=——— (88)

Frma® ay+ct+f1g143 fage ‘

The procedure leading to relations (86)—(88) is
unfortunately inadequate because it does not give
A (0) correctly. The quantities 4 (0), B(0) are already
implicitly contained in (74), since from Egs. (15) and
(52) we infer Jdx py(x)/x=2F,2 and thus from (74),

A (O) = (6gﬁ/2F1rmA2) (mﬁ—m,,z) ’
B(0) = —0g,/Fxm4?,

clearly inconsistent with (87). We can improve on this

by writing
g2, @11 [(2H+8)(t—mat)+om.2  2ms?

gz B/ (t=ma + > &7
Iy 2m42\ aytci+ f1g1+3 fage an

The form factors F, 4, and B given in Eqgs. (86), (87),

and (88) then have the correct values at ¢{=0 and

appropriate branch points at (=4m.2 (ma+m.)?
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but with the correct imaginary part only for
1< (ma+m,)% In view of the latter, it is not clear that,
although Eq. (83) describes the pion form factor with
more of its dynamics than does Eq. (56), the provisional
coupled-channel result (86) is any better than the
single-channel result (59). Because of this, we shall
eschew giving any further numerical results.

CONCLUSION

The basic aim of this paper has been to perform a
hard-pion study of the 4w system which adheres to
the requirements of ¢{-plane analyticity and unitarity.
Our most important quantitative approximation was to
adopt the SW construction of the pion-pole-free part
of Wun®(q,p). As a consequence, we have been able
to obtain effective-range formulas for form factors with
the correct cut structure, but in terms of the SW param-
eter, 8. We devote the first part of this section to a
comparison between our results and experiment and, in
particular, assess the extent to which the § parametriza-
tion is successful. Table I gives the relevant physical
quantities for several values of 8.

(a) T'(41— pm) is evaluated from Egs. (25), (27b),
(74), and (75). Our Aipm coupling constants are
numerically related to those of SW, Eq. (28), by a
8-dependent factor which differs little from unity:

g h=g%v, hsw(._il__ ____.1_%__‘> .
3—5§1.1640.075

The widths in Table I are to be compared with the
current experimental value 80435 MeV.2

(b) | g1/go| pertains to the spin structure of the decay
A1— pw. The transition matrix element may be written
in general as

(w(ga)p(keg) | Ax(pbi))

—i(2m)*0(p—k—q)
= ? ‘GbengiJ'(l)*(d’ao:O) )

(8wiewpwg) 12

where (6,¢) is the direction of k, the p-meson momentum
in the A4; rest frame. In terms of quantities already
defined in (81’), the helicity coupling constants are

gi=g1=gr/ms* and go=—gr/mam,.

The ratio |g1/ge| can be measured from the decay dis-
tribution of a polarized 4;. The two recent determina-
tions? of |gi/go| are in conflict. Our formula, identical
to the SW result in this case, takes a particularly simple
form if we make the approximation m,=0; then

| g1/80] =V2(2-+3)/(3+39),

22 A. H. Rosenfeld ef al., Rev. Mod. Phys. 41, 109 (1969).

2 J. Ballam ef al., Phys. Rev. Letters 21, 934 (1968); Phys.
Rev. D 1, 94 (1970); their result is |g1/go| =0.4840.13. D. J.
Crennell et al., Phys. Rev. Letters 24, 781 (1970); their result is
[£1/80] =0.89_.06™0".
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which clearly shows how the Gilman-Harari prediction®
(g1>0) corresponds to d~—2.

(c) T'(p — 7mr) is calculated from Eq. (64), which we
derived from our effective-range formula for the pion
form factor, Eq. (59), and is to be compared with the
measurements in the colliding-beam experiments.™
Roos and Pisut® have analyzed and parametrized these
data and give

T'(p— nm)=122_¢t" MeV.

(d) We calculate the pion charge radius from (68).
Electroproduction experiments!s imply 7, =0.864-0.14 F
(Harvard) and 0.8040.10 F (Cornell). The analysis of
Ref. 24 gives 7, =0.7 F. Our calculations differ but little
from the p-dominance value over a wide range of choices
for 6.

(e) The peak value of | F(f)|? may be compared with
the data shown in Fig. 1. The sensitivity of this
parameter to 8 is evident from Table I. The data from
Orsay and from Novosibirsk imply 82 —3%; the peak
values in the two experiments differ appreciably. A
determination of § from | F(m,?) |2 cannot be made more
precise, given this discrepancy, and we urge further
intensive experimental investigation of the p region.

(f) Closely related to entry (e) is the determination of
the branching ratio T'(p— ete™)/T'(o — 7tn~). The
colliding-beam cross section at the p mass is

a? PR
—|F(my?) |2
m,d

olete = wta)| ,=

The branching ratio is given by!6
BR=m,2/127,
so that our form factor leads to the expression

2 an? 4 \?2
BR= —a? (———> .
9 Pm,\3—4¢

The tabulation may be compared with the Orsay
result®® BR = (6.5640.72) X 1075; as is the case with the
peak value, the Novosibirsk result is some 259, smaller.
Reference 22 quotes an average value BR=6.0X1075.

() The nm p-wave scattering length is obtained from
Eq. (72) and tabulated in the form of (P3/4/%) cotdu.
The most one can do by way of comparison with data is
to refer to Olsson’s result,’® (154=1.2)m,?, which is
deduced from a forward dispersion sum rule having the
p parameters as input.

The original choice of é~—% used by SW was made
to fit entries (a) and (c). Our tabulation indicates that
this value of 8 provides a reasonable picture of all
listed parameters of the 41pm system, with the possible
exception of entry (b). Here, the result of Ballam
et al.® demands d~—3%, while that of Crennell e al.®
is in excellent agreement with 6~—3%. The p branching

% M. Roos and J. Pisut, Nucl. Phys. B10, 563 (1969).
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ratio, entry (f), is also sensitive to 6 and presently
demands 62 —3%. The peak value of |F|? (or, equiva-
lently, the branching ratio) is directly obtainable from
the colliding-beam cross section, and leads to the
cleanest determination of 8. On the other hand, |gi/go|
is extracted from A4 production data via a more difficult
analysis entailing an A; production-plus-background
hypothesis. If this quantity could be obtained from some
other A; production experiment, such as $p annihila-
tion into w41, and were to confirm the result of Ballam
et al.,” then it would constitute strong evidence that the
SW parametrization is inadequate and in need of
serious modification. Along these lines, Brown and
West? have used the Bjorken limit?® and the algebra
of fields” in a modified pole-dominated hard-pion
analysis of the 41pr system. This analysis contains two
parameters and allows greater freedom in fitting the
data. However, if it is the result of Crennell ef al.®
that survives future experimental tests, then the SW
parametrization would be entirely adequate. The
calculations presented in this paper would then stand,
without exception, in good agreement with a wide range
of experimental results.

Analytic methods have been applied previously to
problems in current algebra. For example, there is the
work of Amatya, Pagnamenta, and Renner®® in
which o-pole dominance of the two-point function
(0| T (x)a(0)]0) is replaced by the continuum contribu-
tion from 77 states in order to learn something about
T=J=0 = scattering. Also, there exists a large body
of literature? on the unitarization of soft-pion calcula-
tions, the spirit of which differs considerably from that
of the work described here. In this paper, special
emphasis has been placed on the consistent treatment of
vector current matrix elements with analytic methods.
We believe that the calculation of the p-wave == phase
shift from the effective-range formula for the pion form
factor (see Fig. 4) is of particular interest, although we
hasten to emphasize that this result is meaningful only
within the effective-range approximation. Clearly the
p-wave amplitude cannot be strictly proportional to
F() because the former has left-hand cuts whereas the
latter does not. However, the existence of such an
approximate relation between cotdyy and F(¢) suggests
that the unitarity constraint can be employed in con-
junction with the Ward identities of current algebra to
generate relations of a more general nature. We shall
now show that this is the case.

We begin by returning to Eq. (41), rewritten for

2=¢*=—m,? as follows:

% S. G. Brown and G. B. West, Ref. 21; see also P. Horwitz and
P. Roy, Phys. Rev. 180, 1430 (1969).

26 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

2" T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

28 A. Amatya, A. Pagnamenta, and B. Renner, Phys. Rev. 172,
1755 (1968).

29 See Ref. 3 of Ref. 28.
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F2L0Ng,p) —On] = qupul (g, )

) dx py(x)
=§tQ)\ — .
X x—t

(41)

As already noted, Fy and F,,» may be expressed in terms
of form factors which are analytic in the cut ¢ plane.
Thus we may view (41’) as a relation among analytic
functions. Considering the discontinuity across the cut
for (2m,)?<t< (4m,)* where only the two-pion inter-
mediate state contributes, we have from Egs. (1),
(16), (18), and (41")

discg[ieach1,-2F)\:|p2=q2=——m1!’2
=3 (2m)*%(k—P )0 V\(0)|n)
[(mﬂﬂﬂ) (m=*+¢*) 4
X / dz e~122

4

(zs

Xl To,de@ad Ol | 6)

p'=¢ =—mr

disci teavequpl”wn(g,£) 1o =a*=—ma?
=disc qups W un®(¢,) ] p=gP=—ms
=2 (2m)*5(k—P,){0| V1¢(0) | n)

’

X .
[/dz e g, p,(n| TA,%(z)4,%0) [0>:l K (90)

2 2
p=¢ =—mr

in which
[ny=|m(prdr)m(pada)),
Pn =P1+P2 )

2= / dpudps 2.

(2m)® dids

The primes in Eq. (90) denote contributions containing
no pion poles in p? and ¢?%; i.e., F ;) 1s defined in terms
of that part of W,,\%* which remains when all pion
poles in p? and ¢* are removed [see Eq. (18)], and the
term in (90) which contains the matrix element of two
axial-vector currents is analogously defined. Note that
the factor ¢up, in (90) prevents the appearance of A
poles in p? and ¢? if we were to 4;-dominate the matrix
elements. The vector current matrix element contains
F*(1):

0] V22(0) | w (prdi)w (pad) )
= (p1— p2)r(Awiwe) H2F*¥esq,q, .

The integration over the two-pion phase space projects
the T'=J =1 partial waves of the four-point functions
in square brackets in (89) and (90); let these be de-
noted by M,,(#) and M,4"(¢). The discontinuity of
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the right-hand side of (41’) is given by py™, Eq. (55).
Since F* appears in the discontinuity of all three terms
of (41"), we have the result that M,,1(f), M.."(),
and F(f) are linearly related in the region (2m,)2<t
< (4m,)* Since this is a relation among analytic func-
tions of ¢, it holds throughout their common domain of
analyticity. This result cannot be obtained in any way
from conventional dispersion theory alone. Given the
usual hypotheses of current algebra, it is an exact
result, obtained from three-point function Ward
identities and unitarity. A similar relation can also be
deduced in a current algebraic analysis of four-point
functions.® In this case the relation is among
M7=V (s,8), MoaT=2(s,f), where s=—(g+p2)?, and
F(#), and the soft-pion limit,  or ¢— 0, is taken to
eliminate M.4. The Veneziano representation,® used

# P. Nath, R. Arnowitt, and M. Friedman, Phys. Rev. D 1,

1813 (1970).
3 G. Veneziano, Nuovo Cimento 574, 190 (1968).

AND E. GOLOWICH 2

off the pion mass shell, for M, then in principle pro-
vides a determination of F(¢). Our relation gives F(¢)
in terms of partial-wave amplitudes. If we wished to
invoke A; dominance in p? and ¢? for M4, we would
have a prescription for obtaining F(f) from on-shell
mr p-wave elastic scattering and from the I'=J=1
amplitude for =7 on shell — 414, off shell. We regard
this result as an interesting example of what can be
learned from the simultaneous application of the
constraints of current algebra and of unitarity. Further
consequences that it may have towards improving our
knowledge of the t-dependent form factors and phase
shifts for the Aipm system are actively being examined.
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We propose an unambiguous way of constructing amplitudes which satisfy both unitarity and the current-
algebra constraints. This consists in working out higher-order corrections on a Lagrangian which produces
the correct soft-pion limit in the tree approximation. We consider w= scattering in the ¢ model, and we
compute the perturbation series up to second order. The renormalization procedure preserves the partially
conserved axial-vector current condition and the current-algebra constraints at each order. In order to
sum the strong-coupling perturbation series, we use the Padé-approximation technique. Thereby, our
partial-wave amplitudes satisfy unitarity. The p and f, resonances are generated, although they were not
present in the Lagrangian. Our unitary amplitudes satisfy crossing symmetry to a very good accuracy,
showing the consistency of the results. Our results are in agreement with the “up-down” solution of the
I=0, s-wave 7r phase shift, with a very broad ¢ resonance; the /=2 s-wave phase shift is repulsive, and

agrees very well with experiment.

I. INTRODUCTION

LTHOUGH current algebra has been successful in

in describing low-energy pion processes, the pre-
dictive power of the theory in the form used so far be-
comes weakened as soon as the energy increases beyond
the threshold, since the unitarity is not taken into
account in the usual treatments. With the help of
chiral Lagrangians, one can realize the results of current
algebra within the framework of Lagrangian field

* Laboratoire associé au CNRS.

t Supported in part by U. S. Atomic Energy Commission under
Contract No. AT (30-1)3668B.

theory; based on this observation, we have proposed!
an unambiguous way of unitarizing the current-algebra
amplitude. This consists in taking a Lagrangian which
is renormalizable and which produces the correct soft-
pion limit, and in computing higher-order corrections
and summing the presumably divergent perturbation
series by the Padé algorithm.

The o model of Gell-Mann and Lévy? is ideally
suited for implementing this program. The Lagrangian

1B. W. Lee, Nucl. Phys. B9, 649 (1969) see also J. L. Gervais
and B. W. Lee ibid. B12, 627 (1969
2 M. Gell-Mann and M Lévy, Nuovo Cimento 16, 705 (1960).



