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FIG. 3. Total cross section for I=~ p-wave E~ scattering
versus center-of-mass energy.

factor is calculated explicitly. The amplitude, which
shows more rapid variation, is obtained by taking the
appropriate quotient.

a peak. at 890 MeV. The general shape of the curve is
similar to previous results. The cutoff is noticeably
lower, but the width is still on the same order as pre-
vious calculations using 1V/D. We derive a value of
about 210 MeV which is comparable to the results of
Fulco, Shaw, and Wong and about four times the ex-
perimental value. One is led to doubt whether the
inclusion of further channels will significantly improve
the situation and that the defect is inherent in cV/D.

The large change in the cutoff from previous results
conclusively demonstrates the strong influence of the
E*vr channel on the Ez amplitude, and future multi-

channel models should include it. This conclusion and
the simple method for calculating the coupling constants
for inclusion of such channels seem to be the major
results of this work.
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The new invariant amplitudes of Bardeen and Tung for nucleon Comp ton scattering, which are free of both
kinematic singularities and zeros, are examined. The forward scattering amplitude, and the continuous-
dispersion sum rules derived therefrom, are obtained. Using the data of a recent calculation by Damashek
and Gilman, tests of these sum rules are shown to be quite satisfactory, indicating the validity of the dis-
persion relation, the good parametrization of the forward proton Compton scattering amplitude, and the
presence of a J=0 fixed pole within the accuracy of present experiment.

I. INTRODUCTION
~" ISTORICALLY, dispersion relations as applied

to particle physics were first derived and
analyzed by Gell-Mann, Goldberger, and Thirring'
in 1954. Owing to kinematical complexity and experi-
mental unfeasibility, a full-scale analysis' of nucleon
Compton scattering was not available until a recent
eGort in the accurate measurement of the unpolarized

~ Work supported in part by the National Research Council of
Canada.

~ M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys. Rev.
9S, 1612 (1954).

~ See the references quoted in R. Koberle, Phys. Rev. 166, 1558
(1968). Also P. S. Baranov, L. V. Fil'kov, and G. A. Sokol,
Fortschr. Physik 16, 595 (1968); G. C. Fox and D. Z. Freedman,
Phys. Rev. 182, 1628 (1969).

total photoabsorption cross section. ' This permitted a
calculation of the real part' of the spin-averaged for-
ward amplitude from threshold to 20 GeV, although
the comparison of such a calculation with experiment
has yet to be done. 4

The form of the invariant amplitudes for (nucleon)
Compton scattering was 6rst investigated over ten
years ago. In 1958, Prange' wrote down six invariant
amplitudes based on the principles of Lorentz, gauge,

parity, and charge-conjugation invariance. They were

' M. Damashek and F.J. Gilman, Phys. Rev. D 1, 1319 (1970).
4 S. J. Brodsky, A. C. Hearn, and R. G. Parsons, Phys. Rev.

187, 1899 (1969).
5 R. E. Prange, Phys. Rev. 110, 240 (1958). Actually he dealt

with electron Compton scattering.
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later modi6ed by Lapidus and Chou, ' and Hearn and
Leader, to eliminate the kinematic singularities, but,
unfortunately, the kinematic zeros (constraints) re-
mained. A satisfactory set of amplitudes possessing
the necessary analytic properties shared by the in-
variant amplitudes of other processes (e.g., m.X-+sX,
yN~n. Ã) was presented after a recent attempt of
3ardeen and Tung' acting primarily toward that
purpose.

In this new set of invariant amplitudes, ' the Mandel-
stam representations can be written down without
ad hoc subtractions. ' The low-energy theorems also
appear quite naturally. In particular, the forward-
dispersion relation can be treated directly in terms of
the invariant amplitudes without any constraints.

The extension of the forward dispersion relation to
the continuous dispersion sum rules (CDSR) and the
continuous-moment sum rules (CMSR) is straight-
forward. At the moment, the real part' of the amplitude
must be obtained via the dispersion relation because an
experimental value is not available. Numerical analysis
using these data show that the extended sum rules are
well satisfied. This indicates that the parametrization
of Damashek and Gilman' on the forward proton
Compton scattering amplitude is a good one, and
confirms the existence of a fixed pole' proposed earlier.

In Sec. II we discuss the new amplitudes of Bardeen
and Tung, ' together with a comparison of the work of
Hearn and Leader. ~ In Sec. III the ordinary forward
dispersion relation is extended. A distinction is made
between the CDSR and the CMSR. Numerical cal-
culations are also carried out and discussed with con-
clusions presented in Sec. IV.

II. NEW DTVARIANT AMPLITUDES

For the process E(pi)+y(ki) ~X(ps)+y(k2), the
scattering amplitude u(ps)e„"(ks)3f'„,e,(kq)u(Pq) can be
expressed in the following form according to Bardeen
and Tung' ":

f

6

M„„=Q 2;A;,

oQ$ K $pp 2KIs,Kp p

,'K'(~„iqKq„~—„i~K~„)+PK(K„i~„+iq„K„)
iyK(K„P„+P„K„)—,

Zg miyK8„——PK8,—', K'(y y, ——y,y )
K„'(iyKiy„iy iv—K) —', (iy„i'—i—yK—iy„)K„—

—m(K„iy„+iy„K„)+(K„P„+P„K„),
6L. L Lapidus and C. Kuang-Chao, Zh. Eksperim. i Teor.

Fiz. 37, 1714 {1959)/Soviet Phys. JETP 10, 1213 (1960)j.
'I A. C. Hearn and E. Leader, Phys. Rev. 126, 789 (1962).
8 W. A. Bardeen and Wu-Ki Tung, Phys. Rev. 173, 1423 (1968).
9 D. Holliday, Ann. Phys. (N. Y.) 24, 289 (1963).
'0 M. J. Creutz, S.D. Drell, and E. A. Paschos, Phys. Rev. 178,

2300 (1969).
~' We use the Pauli metric.

P'K' —(P E)'=~~(su —m4).

s and t are the standard Mandelstam variables.
The proof of gauge invariance for 2; is immediate.

Using the obvious fact that in the c.m. system

(P+K) e*(k2) = (P+E)c(kg) =0'
[in the gauges e4(k2) =e4(k&) =Oj, one may further
eliminate, if desired, the four-vector P„(P„) in terms
of K„(K„).

That the 2 s are free of both kinematic singularities
and kinematic zeros" can be seen from an explicit form
of the s-channel helicity amplitudes":

ft rt~'= —c,os(-,'8,) (1/Sm) {2[(s—m') '+m't jA 4

+m(m4 su) A 5 [(s—m')' —mnt)—A,), —

f tr,.~~'= cos'(-', 8,) sin'(-', 8,)[(s—m')'/Smuts $
X [2mA4+-', (s+m') As+mA gg,

f ~, . ~;———cos'P8, )[(s—m')'/Smf(2A4+mA~+A~),

f t, r, xg' —sin(-', 8,)[1——/Smgsj
X ((s+m') tA ~

—m(s —m') tA 2

+2[(s—m')'+(m' —su) jA )
f; q, ~q' ———cos(-', 8.) sin'(-', 8,)[(s—m')'/Ss)

X(2Ag+2AB),

f. g )g'= —sin'(-', 8,)[(s—m') '/Smsgs7
X [(s+m')Ar+m(s —m')A2+2m'A q],

(2)

~'P. Ader, M. Capdeville, and H. Navelet, Nuovo Cimento
56A, 315 (1968).

's We follow the convention of H. D. I. Abarbanel and M. L.
Goldberger t Phys. Rev. 165, 1594 (1968)j for the helicity ampli-
tudes. The f's are normalized to

~/«=t:i4 l 'i~/v'slj'Za) ifp.)i'
in the c.m. system. Notice that there are a few mispr&ntp &n the
expression of fyj;y~' and 1'

y 1;y1' in Ref. 8.

24= K—'(P„ip„+iY„P„)+PK(K„iy„+iy„K„)

+iyK(K„P.+P„K„) P—KiyK8„„

mK—'8„„+2mK„K„

25 —— K'P—„P„+PK(K„P„+P„K„)

+,'[P2K-2 (P —K)2]6„„P2K—„K„,

z6 —— iyKP—„P„+',P K-(P„iy„+iy„P„)

'P K—(-y„iyKy„y„iyK—y„)+'mK'(-y„y„y„y„)—

+ ~~ mP ~ K8„„+~~P2iyK8„„i'—K„K„

+ ', m'(K-„iy„+iy„K„) ,'m(K„—P—„+P„K„)

+ ', mK„(-iyKiy„iy„iy—K)

+,'m(i, „iy-K iyKiy-„)E„(1)
where

K= -', (kg+ks), P =-', (pj+p2), K'=-,'t,
P E= „'(s—-u),—P'= ', t m', -—
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as well as the form of the regularized, parity-conserving,
t-channel [V{—k4)+V(kl) -+E(pe)+E(—pl)7 hdicity
amplitudes:

foal, lie+ f 4 4 111=[t/4m(t —4m2) 14]

X[(t—4m')A 1+(s—u)A4],

f44, 111 f —x 4 11 = [(Qt)/4m][mtA4 —(s—u)A47

f4 x, ll'/sing, =etA4,

f; t, 1 1'/sin'(-,' 8,) cos'(-', 8,)= [t(—t 4m—') "'/2m]
x [mA —s (t—4m') A 47,

f,*;.1 1'/sin( —,'8&) cos'(—',8&)+f 44;1 1'/sin'(~18, ) cos(—',8,)
= [t"'(t—4m') "'/2m)A4

f* ~, 1 1'/sin(-,'8,) cos'(128&) —f 44,.1 1'/sin'( —,'8,) cos(,18,)
[t=(t 4m—')/4m]A „

cosg, = 1+2st/(s —m') '

cos8,= (s—u)/[(t —4m') t]'t'.

It makes the structure of the nucleon Born terms"
completely diferent from the pure hadron case. By
considering the special cases of forward scattering (for
which only Z4, ge, and 24 survive) as well as backward
scattering (for which only Zl, Z2& and Ze are left), a
disentanglement of the nucleon Born terms into the
contribution to respective A s can be made with rela-
tive ease. The result is the same as inserting into Eq. (5)
the old Born terms. ' Both agree with Table II of Ref. 8.
From that table one sees that the Born terms contribute
not only to the single spectral function [(m' —s) '
+{m2—u) 'for crossing-even, (m' —s) ' —(m2 —u) 'for
crossing-odd amplitudes], but also to the douhle
spectral function [(m' —s) '(m' —u) ', crossing-even
amplitudes only] of the Mandelstam representations.
This removes the previous problem adding ad hoc
subtraction' constants to the Mandelstam representa-
tion for the Hearn-Leader amplitudes (A;"s). The low-
energy theorems' for A; to second order in the photon
energy (which arise purely from a study of the kinematic
structure of the amplitudes) can be derived by inspec-
tion, since the A; s do not have any kinematic singu-
larities or zeros.

(The u channel is again yX~vX, the same as the
s channel. )

The connection of this new set of A s with the
familiar Hearn-I. eader~ amplitudes can. be found easily

by comparing the t-channel helicity amplitudes in the
two representations. This is due to simple EE (equal-

equal) kinematics in the t channel. Denoting the Hearn-
Leader invariant amplitudes by A (i=1, 6), we first
have

f 44. 11 = [pg(A1 +Ae ) 2&tA4

+ mk, cosg, (A4'+Ae'))/2m,

f x 4. 114= [pl(A 1 +A2 )+2KA4
+mk, cos8,(A4'+A, ')]/2m '

(4)
f~.,

„'=sing, 81k'(A4'+A 4')/2m,

f,), ,4 — [p,(A, ' A—2')+mk$ c—osg$(A4' —A5 ))/2m,

Z,k,(A,' A, ') 2p,k,A,']/2— —

f )... , ,4= sing, [E,k, (A4' —Ae') —2P1klA 4'7/2m,

~h~~~ p
—x(t 4m&)1&2 and k,=-'(t)'1'=E, . A com-

parison of (3) and (4) leads to'

A, = (2/t) [(A '+A. ') —(( —)/4 )(A '+A ')7

A, = (4/mt) [—Ae' ((s u)/—gm)(—A4'+As')7

A, = (1/2m)[A4'+Ae'],

A, (,„m )- [;(, )(A,' —A, ') —{t—4m )A, '7,

A, = —[8/(su —m')]P(A 1'—A2')+mA 4'] )

.=-[/("- )7[-:t(A'-A')-( —» '7

Anot er feature of the A s emerges from imposing

gauge jnvarjance (charge conservation) 111 oC ' directly

IG. FORWARD-DISPERSION SUM RULES

In the forward direction, Z~= Z~= 23=0,

Z4= PJCivE8„„, —24= 2(P E)'6„—„
& = —!P &b. 'v&&.—v 'v&v ).

Therefore the forward scattering amplitude reduces to

31=X4t[(s—m')'/Sm][ —(2A4+mA4)sp sl
+Aei4r s4"Xel)X1. (6)

By comparing with the fl and f, of Gell-Mann et at. '
in the laboratory system, we obtain"

fr(v) = [(s m')—' /3~2—m](2A +4mA, )

f,(~) = [(s—m') '/32~m]A „ (7)

where 4 =(s—m')/2m is the laboratory energy of the
photon. The crossing symmetry of fl (even) and f2
(odd) in 1 follows froln the crossing symmetry of A4
and Ae (even) and A, (odd) under the transformation
S ~~ Q.

Because of the zero mass of the photon, the real parts
of fl and f2 do not. have singularities at the pole position
(s=u=m', or v=O). In fact, from (7) and the Born

TERt is

L~ev.+4 vuvt445 [ iv(I'+K)+m5 tiev. +—1»n.5/(m' —4)
+kiev„44vpvkg5 P iv(P K—)+m5 [iev„44vk4v„5/(m—' 44)— — —

p, is in units of a/2m."In terms of the Hearn-Leader amplitudes, one would have
fl(~) = 2(—Al'+A2 )+ 'tS(+4 35') =22' —uA o' ———A 1'+VA4', the
last two equalities follow from one of the constraints at &=0;
(A 4'+A 4') —~(A 4'+A 4') =0.
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terms for A4, A5, and A6, we have can also be written:

2v' " dv' Imfr(v')
Ref ()=/i(0)+

vo V V P
(9)

Equation (9) summarizes the analytic properties of
i(v) in v; i.e., there is a branch cut starting from

Pp=p+p / m 0+ 'y'2 t ~ a subtraction is necessary and is
performed at a convenient point v=0, where [from

Remembering these properties and invoking the
Regge-pole model's for fr(v), s's viz. ,

fr (0) = a—/m and f,(0) = —(rra'/2m') v (8)

= '/4 =ac/2m). It is only under such circum-" in additionstances that one can derive the CMSR, ' in a .i ion
to the more physical CDSR"' (see below).

In the following discussion we confine our attention
to the amplitude fi(v), because its imaginary part is
related to the unpolarized total absorption cross section
and a numerical calculation is possible.

The ordinary dispersion relation is well known'.

—v'I' cos~P Imfr(v) ——v —sinnP Refr(v)
4xp P

C&~ P'~v'+'t sin —'ir(nv +2P) sinn. P—cz p

4rr sin-', mnv nv +2p 2P

(p& o) (12)

When nv+2P=2, 4, . . . , the first term on the right-
han si e o van'd 'o f (12( anishes. " In such cases one is left
with a sum rule for C, allowing a determination of this
constant more easily than from q.E . 11.

As usual, however, the region between P=O and
v= vs (branch point of the unitarity cut) is unphysics. l.
In particular, the Born term (if present) is singular
within this region. Such a type of CMSR is void o

h
'

l
' t t if a numerical calculation is inten e .

The well-known method' of overcoming this difficulty
is to write, instead of (11)&

~ dv coseP Imfi(v)+sin~P Refi(v) fi(0)

(vs v s)p Vp
2P

p V

i
C g

—sz 7I
cx21

&

y'
av) Zv vP

~ 4m 4x sin-,'mo. „

one can derive the following CMSR:

SP—v'I'[cosirP Imfi(v) —sin7rP Ref i(v) j
cv sin-,'~(1+2P) c, N v'+'&

)&1+20 +
4~r 1+2P 4n sin-,'s nv

sin-', s (nv +2P) sinirP
X

nv +2P 2P

(10)
c sin-'~(1 —2P) c„ iV v' 'I' sin-,'rr(nv —2P)

4s sin-', irnv nv —2Pm' 1—2p

sinrrp—CcV 'I' (p& 1), (13)

where Refi(v) is made to appear above vs by means of
the factor (v' —vs')~. We simply call the sum rules of
h' CDSR" rather than CMSR. That is, even

if we made a change of variable (e.g., =v —ve e
integrand would not correspond to a "moment" in the
ordinary sense; furthermore, the amplitude would lose
its simp e cr't '

1 crossing symmetry in the new variable (e.g. ,
)'r).

DR,For completeness, we record another CD
where P) 0. If Refi(v) were available from experiment,
Eq. (11) would allow the fixed-pole residue C to be

robed more electively, for in the ordinary version ofpro e mo
finite-energy sum rules (FESR), where p= j. 23. . .
this term is present only in the lowest moment P =0 and
vanishes otherwise.

Furthermore, if fr(ee) is known, a subtracted CMSR

"This name refers to the sum rules of the type
N

dv v&f(v),
0

with p varying continuously. See, for example, E. Ferrari and G.
Violini, Phys. Letters 28B, 684 (1969).

'7 Y. C. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967);
Y. C. Liu and I. J. McGee, Phys. Rev. D 1, 3123 (1970).

'8 f&{p) receives contributions from the Regge poles of quantum
numbers: I'= (—1l~, C=(—1) r=even, G=(—1)~+i, namely I',
P', and A2, etc.

dv -[cosrrP Imfi(v)+sinsP Refr(v)]
(vs vos) p

cv sin-', ir(3 —2p) cv Ã'+ v' —'&
+3—2P

14~ 3—2P 4s sins~nv

sin-'rr(2+uv —2P) sinsrr(2 —2P)
X

2 „-
+C$2-2P

2+nv 2P— 2 —2P

(P& 1) (14)
9 Y.-C. Liu and S. Okubo, Phys. Rev. 168, 1712 (1968); M. G.

y ters 26B 310 (1968).
20W. Gilbert, Phys. Rev. 108, 10 8; . . i

Ref. 17.
'Th' name is not intended as perfect. We pye sim l want to

emphasize that it is a dispersion sum rule, w i e not' gnotin that a
name like CMSR could be misleading.
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FzG. 1. Plot (broken curve) of the right-hand side of the CMSR (Ii) divided by a factor E &. The left-hand side coincides with this
curve for all allowed values of P. The solid line is the contribution from the Pomeranchuk trajectory, which dominates because we
have taken %=20 GeV.
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FzG. 2. Plot (broken curve) of the right-hand side of the CMSR (12) divided by a factor N~&. The left-hand side coincides with this
curve for all values of P shown in the diagram, The solid line is the contribution from the effective secondary Regge poles (I' and A~),
which vanishes at P =0.75, 1./5, . . ., for an effective intercept of 0.5. The axed-pole term is nonvanishing there, but very small.
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FIG. 3. Plot (broken curve) of the
right-hand side of the CDSR (13)
multiplied by a factor S't'. For P &0.4
the left-hand side coincides with this
curve. For 1.0&p&0.4 both sides of
(13) (not multiplied by the factor N2t')

agree with each other to within
experimental accuracy. Numerically
vp=0. 150 GeV, fl(0) = —3.0 pb GeV.
The solid line is the contribution from
the Pomeranchuk trajectory. The
peak occurs at p=0.5, characteristic
of the CDSR alone.
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Numerical tests of the CMSR (11), (12) and of the
CDSR (13), (14) are simple, using the full data set of
Damashek. and Gilman. ' On the left-hand side, we have
Imf~(v) =(v/4~)or(p), and Ref~(u) is calculated from
the ordinary dispersion relation (9). On the right-hand
side a best 6t to the high-energy data yielded c„=96.6
p,b, c~ =70.2 pb, n„=0.5, and C= —2.5 pb. To our
surprise, all four sum rules give perfect equality on
both sides for all allowed values of P, as shown in
Figs. 1-4, with E=20 GeV. (In general they hold quite
well for X lying between 2 and 20 GeV.) This indicates
(1) an excellent parametrization and calculation of
1m'(v) and Ref&(v), respectively, performed in Ref. 3;
(2) a relia. ble feedback of the Reft(v) calculated from
ordinary dispersion relation into the CMSR or CDSR,
eliminating doubts" that have been raised about such
a procedure; (3) sizable evidence for the presence of
the 7=0 6xed pole (CWO).

Whether this fixed pole is really present or not can

"K.Ferrari and G. Violini, Ref. 16.

only be settled as soon as Imf&(v) is more accurately
analyzed in the higher energy region and Ref&(v) is
measured over a wider energy region. Of course, meas-
urement of Reft(v) also tests the basic principles used
to derive the dispersion relation, the CMSR and the
CDSR.

IV. CONCLUSION

A coherent study of the proton Compton scattering
is made possible by combining a recently proposed set of
truly invariant amplitudes and a dispersion calculation
of the real part of the forward amplitude. A distinction
is made between the oft-quoted CMSR and the more
physical CDSR. Within the present experimental ac-
curacy, all forward-dispersion sum rules revealed the
presence of a J=O fixed pole in the proton Compton
scattering amplitude. It is hoped that measurements of
the unpolarized total absorption cross section at higher
energies, measurement of the real part in the physical
region, as well as a partial-wave analysis of the (non-
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forward) amplitude, will all be possible in the near
future to con6.rn1 or to disprove the conclusions reacheh
here.
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