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Making use of rather general dynamical assumptions, it is proven that the problem of determining rela-
tivistic pion transition amplitudes may be completely reduced to the study of unitary representations of the
noncompact dynamical group SO(3,1}SO(4, 3},since matrix elements of physical observables are shown
to form a closed algebra which is identical with the Lie algebra of this group. These assumptions are Lorentz
and isospin invariance of strong interactions, the Lehmann-Symanzik-Zimmermann reduction technique,
an effective-interaction Lagrangian or partial conservation of axial-vector current, the usual equal-time
commutator algebra between axial charges, and the absence of exotic states. The connection with the dy-
namical group approach previously proposed by Barut is discussed.

I. INTRODUCTION

&~VER the last few years the relativistic framework
of dynamical groups proposed by Barut' has been

successfully applied to strong decays of meson' and
baryon' resonances as well as to the study of mass
spectra and form factors of hadrons. ' The essential
assumptions made in such studies may be summarized
as follows.

(a) Hadron states are assigned to unitary irreducible
representations of some noncompact group G which
contains the Lorentz group as a subgroup (in order to
guarantee relativistic invariance of the theory). 2 priori,
suitable candidates for G are, for example, the groups
50(3,1), 50(3,2), 50(4,2), 51.(2,C), 51.(6,C), etc. The
ultimate selection, however, is only to be dictated by
results which agree with experiment.

(b) Once the group G has been selected then its gen-
erators (which are self-adjoint operators in the Hilbert
space of physical states) are phenomenologically identi-
fied with physical observables such as, for example,
momentum, angular momentum, electromagnetic cur-
rent, etc. In this way matrix elements representing
measurable quantities may then be easily calculated
by group-theoretical considerations.

It is amazing that physical consequences following
from the above set of assumptions agree quite well with
experiments for suitable choices of the group G.

In fact, even the simplest possible dynamical group,
50(3,1), has been able to describe very well the pion-
baryon decay rates of many resonances' by making use
of only two free parameters which are an effective

* Supported in part by the U. S. Atomic Energy Commission.' A. O. Barut, in Coral Gables Conference on Synwnetry Principles
at Hi gh Energies, University of 3IIiami, 1964, edited by B.
Kuryunoglu and A. Perlmutter (Freeman, San Francisco, 1964);
Phys. Rev. 135, 3839 (1964); 156, 1538 (1967); in Procceedings
of the Second Coral Gables Conference on Symmetry Principles at
Hi gh Energi es, University of 3fiami, 1965, edited by B.
Kurgunoglu, A. Perlmut ter, and I. Sakmar (Freeman, San
Francisco, 1965).

2 A. O. Barut and K. C. Tripathy, Phys. Rev. Letters 19, 918
(1967).

3A. O. Barut and H. Kleinert, Phys. Rev. Letters 18, 754
(1967); H. Kleinert, ibid. 18, 1027 (1967).

4A. O. Barut and H. Kleinert, Phys. Rev. 156, 1546 (1967);
161, 1464 (1967); A. O. Barut, D. Corrigan, and H. Kleinert,
ibid. 16'7, 1527 (1968).
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coupling constant g and eigenvalue v of one of the
Casimir operators of the SO(3,1) group. Of course, the
parameter u is adjusted phenomenologically by requiring
a best fit to the experimental data. However, if one
wishes to avoid the freedom in the choice of s, one is
then naturally led to the study of larger dynamical
groups such as, for example, 50(4,2), which was pro-
posed by Barut and Tripathy. This group has received
a great deal of attention in the series of excellent papers
by Barut et al. ,

' Nambu, ' and Tao.'
Although all the calculations mentioned above show

good agreement with experiment, it is of course not
at all clear whether other choices for G might be more
suitable. Furthermore, if one really expects the study
of a given dynamical group to be physically meaningful
one should be able to derive its I.ie algebra from general
physical assumptions.

It is the purpose of this paper to show that the dy-
namical group which describes the hadronic world may
be rigorously derived starting from the following usually
accepted physical hypotheses.

(a) Relativistic and isotopic invariance of the
theory.

(b) Validity of the Lehmann-Symanzik-Zirnmermann
(LSZ) reduction technique. '

(c) Either an effective interaction Lagrangian Zr of
the typeio &r= (Fr) 'A (x)B"C (x) (where F ~190
MeV is the pion decay amplitude, A„~(x)is the axial-
vector current, C (g) is the pion field, and n=1, 2, 3
and p=0, 1, 2, 3 are isovector and space-time indices,
respectively) or the validity of PCAC $i.e., the assump-
tion that the soft-pion technique may be employed
whenever (F nt, ') 'B&A„(x)is chosen as an interpolat-
ing pion fieldj. "

' A. O. Barut and K. C. Tripathy, Phys. Rev. Letters 19, 1081
(1967).' A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters
20, 167 (1968);A. O. Barut and A. Baiguni, Phys. Rev. 184, 1342
(1969);A. O. Barut, P. Cordero, and G. C. Ghirardi, Phys. Rev.
D i, 536 (1970).' Y. Nambu, Phys. Rev. 160, 1171 (1967).

T. Yao, University of Pittsburgh report (unpublished}.
'H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo

Cimento 1, 205 (1955)."S.Vileinberg, Phys. Rev. 177, 2604 (1969)."M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960).

1657



1658 J. KATZ AND M. NOGA

II. REDUCTION OF DYNAMICAL PROBLEM TO
ALGEBRA OF MATRIX ELEMENTS

Ke start by considering a general pion transition
process

(2.1)a(p) ~ b(p')+~(a~),

where a(p) and b(p') denote arbitrary hadron states with
momenta P and P', respectively, while 7r(/I, n) denotes a
pion with momentum q and isospin index n. The S
matrix for this process is defined by

(d) Validity of the usual equal-time commutators
between axial charges. "

(e) Absence of exotic states having isospin I= 2.

From the above assumptions it is then easy to reduce
the dynamical problem of calculating decay amplitudes
involving pions to the study of representations of a
certain noncompact group. In fact, we show in Secs. II
and III that the above assumptions lead us to conclude
that hadron states form unitary representations of the
noncompact group SO(3,1)SSO(4,3). In addition we
show that the physical interpretation of the generators
of this group is unique and unambiguous and that the
relativistic transition amplitude is written as a sum of
matrix elements of a certain class of generators of the
group in question.

lap)=e""la), (2.10)

where M denotes the boost operator and ( is a vector
in the direction of y with magnitude given by

form:
(2m-)"'

'"&bp', q ISlap)'"=F; - &'(P'+~ p-)
(2q//) i/2

X(p —p') &bp'IA. .(0) I gp). (2.8)

In the derivation of the last equation, we have also
used translation invariance, i.e.,

&bp'IA. (x) I gp) = expL —~(p' —P) x)&bp'IA. (o) lay)

Comparing Eq. (2.8) with (2.3), we note that the
invariant Feynman amplitude 3II (p', //; p) may be
written as

~-(P'1; P) =J'='(2 )'(4P'P")'"(P P')"—
&& &bp'I A. (o) I ap). (2 9)

From the above equation it is now evident that
M' (P', /7; P) may be obtained by calculating the matrix
elements of A„(0)between two ha, dron states Ibp')
and

I ay). It should also be mentioned at this point that
the state lap) representing a hadron of momentum p
may be obtained from the state

I a) at rest by means of a
homogenous Lorentz transformation, i.e.,

' &bp';q lslap)' ='"'&bp' q lap)'", (2.2) hi(l = lplip'. (2.11)

(where a and b denote all other quantum numbers) and
is related to the invariant Feynman amplitude
J(f-(p'v P) by

'"(bp'q ISlap)' = —(2 )'b'(P'+V —P)(2 ) '"
X (8q'p'p") "'iaaf. (p'q; p) . (2.3)

Sy use of LSZ reduction technique, ' one may then write

'"(bp'; qn I
S

I
ap)'" = — — — d4x

(2~) 3/2 (2~0) i/2
&b I

e—it MA a(0)
I
g) (2.12)

Since the matrices of Qnite Lorentz transformatjons

Use of Eq. (2.10) simplifies extremely the calculations
of the matrix element &bp'IA„(0)lap). In fact, since
the invariant amplitude (2.9) is Lorentz invariant, we
may assume without loss of generality that the initial
state lap) is at rest. The final state

I
by') is then ob-

tained by boosting the state
I b) at rest to momentum

p'. The calculation of the invariant amplitude is then
reduced to the determination of matrix elements of the
type

&&e '&*(U —m ')(bp'IC (x) Iap), (2.4) &ble
—i$ Mlg) (2.13)

%e can then proceed further either by making use of an
effective interaction Lagrangian' of the type

&blA„(0)Ia). (2 14)

In order to determine these matrix elements, we start
by assuming the validity of the usual equal-time com-
mutation relations between axial charges, '2 i.e.,

Z =(I' )-iA .(x)B~C (x)

and its corresponding equations of motion

where the states
I
ap)'" and

I
bp')' have been normalized can be found in the literature, "the preceding problem

to is then reduced to the determination of the matrix
'"(bp'I ap)'"= b.bb'(p —p'). (2.&) elements of A„(0)between two states at rest, i.e., to

the calculation of

(Cl —m ')4 "(x)= —(P )
—'rj&A„(x) (2.7) d'x Ao~(x, t), d'y Ao//(y, ~) =q, ~//vis (2 13)

or PCAC" Li.e., (F m ') '8/'A„(x) is chosen as an
interpolating pion field and the soft-pion technique is
then employed) and rewrite Eq. (2.4) in the following

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962}.

where I& denotes the generator of isospin transfor-
mations.

rr S. Strom, Aririv Fysiir 29, 467 (196&i; S3, 46$ (&966)
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I.et us next consider the matrix element of the corn- by the following Lie algebra:
mutator (2.15) between hadron states lbp') and lap&.

(3.1)We obtain

L~...~,.j=z(g„j,.—g,.~„,—g„,J,.+g„.j„,), (3.2)

(bp'I d'x Ap(x, 0), d'y Ap"(y, 0) l ap& and

(3 3)

where b and n denote the 6th row and nth column of
the matrix xo . With this notation, Eq. (2.17) may then

be written in matrix form as

XP"XP~—X0~X0 ——i e ~&I&, (2.19)

where also I& is a matrix. Introducing the usual
abbreviation

Lxo,xosj—=*o»s-xosxo,

Fqs (2 17) and (2.19) may then be written as

L»-,xosj =z"»I~ ~

(2.20)

(2.21)

The above equation will play an important role in the
rest of our discussion. In fact, we proceed Sec. III to
make use of this equation along with Lorentz invariance
and absence of exotic states to study relations among
the matrix elements (b l

A„(0)l a) and show that they
form a closed algebra which is isomorphic to the Lie
algebra of the group SO(3,1)SO(4, 3).

III. DEMVATION OP DYNAMICAL ALGEBRA.

Any reasonable theory describing strong interactions
of pions with hadrons must be I orentz and isotopic-
spin invariant. This then implies that the invariance

symmetry group E is the direct product of the isospin

group SU(2)r and the Lorentz group SO(3,1) i.e.,
K=SU(2)rSO(3, 1).Clearly, the group Eis generated'

=zp"(I') p.b'(p —p') (2 16)

To evaluate the left-hand side of Eq. (2.16), one inserts
a complete set of intermediate states lnp„& and uses
translational invariance to carry out the spatial and
momentum p„integrations. This yields

(2~)o g L(bpl ~o (o) I np&(npl~o'(0&l ~p&

—(bpl~o'(0) lnp&(npl~p (o) l~p&3

=ip»(I&) o„(2.17)

where we have canceled a common factor of &'(p —p') on
both sides. It should be also stressed that the above
relation can only be derived for states lbp) and jap&
with the same momentum y. Therefore, we shall restrict
ourselves to hadron states at rest without loss of
generality.

To proceed further, let us define three matrices

( =1, 2, 3)by

(2.18)

wher«, p, &=1, 2, 3 are isospin indices, zz, v, p, o
= j., 2, 3, 0 are space-time indices, and I and J„„are
the generators of the groups SU(2)r and SO(3,1), re-
spectively. The metric tensor g„„is dered by

P;~.s(0)j='.-s ~, (0) (3.4a)
and

L~"".(0)j=zLg;~:(0)—g„~.(o)j. (3.4b)

Ke next consider the sum rules obtained by taking
matrix elements of the commutators (3.1)—(3.4) be-
tween two hadron states

l f) a,nd li) at rest. Thus we
dehne twelve matrices x„by

(*.)r'=(fl~. (0) li&(2 )', (3.5)

where the subscripts f and i denote the fth row and ith
column of the matrix x„.The matrix relations following
from the commutators (3.4) then take the form

fI;x„sj=zos~x„~

LJ„.,x, j=z(g„,x„—g„,x„),
(3.6)

(3 7)

where we have used the abbreviation de6ned in Kq.
(2.20). It should also be mentioned that the symbols I
and J„„occurringin (3.6) and (3.7) are not operators
but matrices. However, we have used the same symbols
for the linear operators I and J„,as for their algebraical
realizations since these matrices will, of course, satisfy
the same algebraic relations as those given by Eqs.
(3.1)—(3.3).To avoid any confusion, we stress that from
now on, any commutator which will be derived must be
understood as a matrix relation.

If we were now able to construct uniquely the set of
12 matrices x„,then we would be Qnished and the
invariant Feynman amplitude (2.9) would then be
uniquely determined. To proceed further in this con-
struction, we next write the most general form for the
commutators Lx„,x„~j.In order to do this, we note that
this quantity is antisymmetric with respect to the inter-
change of pairs of indices (nzz) and (Pv). Therefore, the
most general decomposition of this commutator is

Lx„,x„sj=zo»I'~„„~~+zZ,„„,~ ~I (3 8)

where P(„„}'yand Z~„„~~ &} are matrices, and the symbols

g00 ~
p g11 g22 g33 — ~

p gpv 0p $f pQp

The most important operator in our theory is the
axial-vector current A„~(0) taken, at the origin of a
reference frame. This operator is, of course, an isovector
and a Lorentz four-vector and therefore obeys the
following set of commutation relations:
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Z,„,, » -~) = —g-~Z (3.9)

where the minus sign is only a convention and T„„is a
matrix which transforms as an antisymmetric I orentz
tensor and obeys the following set of matrix relations:

[J„„,T,.]=i(g„T„.g,.T„, g.,T—,.+g, —T„)
and

[I,T„,]= 0.

(3.10)

(3.11)

We stress tha, t the application of Eq. (3.8) to the time
components

[xp,xpP] = ip P&Plop) ~

must give the same result as Eq. (2.21), i.e.,

(3.12a)

] and ( .) are abbreviations for antisymmetricity
and symnietricity in the corresponding pairs of indices.
It is now a simple matter to prove that F»„,}& is an
isovector and a symmetric Lorentz tensor while

Z ~„„~» ~l is a reducible symmetric isotensor and an anti-
symmetric Lorentz tensor. This proof can be found in

Appendix A.
The decomposition of the commutator [x„,x„~],

given by Eq. (3.8), reminds us very strongly of the
algebraic structure of steinberg's superconvergence
conditions' analyzed in a series of papers. ' "In these
works, the left-hand side of Eq. (3.8) is interpreted as
the s- and I-channel contributions to a superconvergence
sum rule while the right-hand side correspond to t-

channel meson-exchange contributions. In accordance
with this approach the matrices Z ~„„~» I are only re-

lated to the exchange of mesons with isospin «=0, 2

since Z ~„„~» ~ is a symmetric isotensor. It is usually
assumed that isospin-two states (which belong to the
class of so-called exotic states) do not exist. Therefore,
we require that the part of Z ~„,~

»» which transforms
under SU(2)r as an irreducible symmetric tensor with

« = 2 must vanish. This implies immediately that
Z ~„„~» &» is only an isospin scalar, namely,

[T„„,x„]= i(g„cx„g„cx—. ) (3.15)

[T",T"]=i(g"T" g—T- g-—T-+g"T") (3 16)

The commutators (3.1)—(3.3), (3.6), (3.7), (3.10), (3.11),
and (3.14)—(3.16) show that the 27 matrices I, J„„,
T„„,and x„ form a closed algebra which may be
identical to the Lie algebra of some dynamical group G.
If we are able to find the structure of this group G,
then our dynamical problem will be completely reduced
to the study of unitary representations of this group.

In order to find the structure of G, we And it conven-
ient to introduce six matrices F„,defined as follows:

~Pv ~P v Tjgv ~ (3.17)

It is then a simple matter to verify that the matrices
F„„commutewith all the 2 1 matrices I, T„„,and x„
and that they satisfy the Lie algebra of the SO(3,1)
group, namely,

L~"P.-]=5(g"F" g-F„g„p,.+—g..F.,)—. (3.18)

This implies that the group G is the direct product of
SO(3,1) with a group Gp which is generated by the Lie
algebra given by comrnutators (3.1), (3.6), (3.11), and
(3.14)—(3.16). Thus the problem is now reduced to
finding the group structure of Go ~ This can be done
quite easily if we de6ne a metric tensor g, b for

d,nd
a, b= p, s, p, o-, . . . = 1, 2, 3, 0

a, b=n, P, r, . . .=5, 6, 7

rewrite the important relation (3.8) as follows:

[x„,x„~]=ig„„p~&I& ib —dT„,. (3.14)

From (3.14) it is now simple to express T„„in terms of
the x„'sand make use of the Jacobi identity to deter-
mine the comrnutators [T„„,x, ] and [T„„,T„].These
calculations can be found in Appendix 8, where the
following results are derived:

L*...*"]= ' -"I (3.12b)

and which follow from the equal-time commutator
algebra which the axial-vector charges satisfy. "

Comparing Eqs. (3.12), we obtain
a11d

gl l g22 g33 — 1 )

g55 goo= g77=+ 1,

gab= 0 if 8+$ )

(3.19)

~»ool~= «y. (3.12c) and introduce, in addition, matrices

I » vj~= g v«y ~ (3.13)

Since I~ is a Loreritz scalar it follows immediately (by
making use of the comrnutators [J„„&(oo)~]=- 0; see

Appendix A) that A t„„)&is also a Lorentz scalar and
therefore we conclude

deined by

a11d

Lgb — Lbg

~nPy«y
)

Py ~/V ~

(3.20)

Using the results given by Eqs. (3.9) and (3.13), we

'4 M. Noga and C. Cronstrom, Nucl. Phys. B15, 61 (1970);
Phys. Rev. D 1, 2414 (1970).

A. McDonald Phys. Rev. D 1, 72 1 (1970).
'6 L. R. Ram Mohan, Phys. Rev. D 2, 299 (1970).

With the above definitions the commuta, tora (3,1), (3.6),
(3.11), and (3.14)—(3.16) may then be compactly re-
written in the form

[~cbc+cd] &(g bc+ad g bdL'cc gccL bd+ gcdI bc) . (3.2 1)
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The above commutation relations define the well-known
Lie algebra of the noncompact rotational group SO(4,3).

To conclude this section, we would like to stress once
again that the dynamical problem of determining the
I'eynman invariant amplitude for processes involving
pions has been completely reduced to the study of the
algebra of the noncompact group SO(3,1)SO(4, 3).
Since operators representing physical observables
operate on the Hilbert space of physical states this then
implies that hadron states must form a representation
space of the dynamical algebra of observables, i.e., of
the Lie algebra of the group SO(3,1)3SO(4,3). From
this it then follows that any unitary (reducible or ir-
reducible) representation of this group may correspond
to possible physical states. Of course, there is no reason
at all to demand that physical states transform accord-
ing to unitary irreducible representations of this group,
since the required Lie algebra relations are also fulfilled
if one considers unitary reducible representations.

IV. CONNECTION WITH DYNAMICAL GROUPS
PROPOSED BY BARUT

We have proved that matrix elements of physical
observables form the closed algebra of a dynamical
group which combines in a nontrivial way internal
(isospin) symmetry with space-time. Originally the
dynamical groups proposed by Barut et al. ' ' were only
restricted to the external (space-time) properties of
hadrons, while later these groups were combined with
internal symmetries by taking their direct products. "

We would next like to discuss what happens if we
restrict ourselves to matrix elements of physical ob-
servables describing external properties of hadrons, i.e.,
to sets of hadrons with the same internal quantum
numbers. This is equivalent to considering hadron
families with the same third component of isospin and
thus implies that we rule out all matrices I connected
with internal symmetries as well as the matrices x„'
and x„'which change the charges of the hadrons under
consideration. Thus we shall only deal now with the 16
matrices J„„,T„„,and X„'=—I'„.It is then simple to
verify that they form a closed algebra which is identical
with the Lie algebra of the group SO(3,1)I3SO(3,2).
This result tells us that hadron states with the same
third component of isospin must transform according
to unitary (reducible or irreducible) representations of
this group.

The dynamical group SO(3,2) was proposed by Barut,
Corrigan, and Kleinert4 in order to calculate mass
spectra and electromagnetic form factors of hadrons.
In their framework, hadron states are assumed to trans-
form according to unitary irreducible representations
of this group and the matrix I'„introduced above plays
the role of their so-called algebraic current. They then
consider one class of representations of the group
SO(3,2), which, of course, are also representations of the
group SO(3,1)SSO(3,2) which we have derived here

by identifying the matrices T„„withthe matrices J„„.
Thus we have shown that the assumptions made by
the preceding authors on the basis of an excellent
physical intuition can, in fact, be uniquely derived
making use of usually accepted dynamical assumptions.

V. SUMMARY AND CONCLUSIONS

Several dynamical models for the description of
hadron states which lead naturally to relations identical
to the algebra of certain Lie.groups have been proposed
over the last few years. Among them we start by
mentioning the popular Chew static bootstrap model, "
which was completely reworded in group-theoretic
language by Cook, Goebel, and Sakita. "Next we men-
tion the work of Capps, "who has shown under fairly
general assumptions that if one saturates supercon-
vergence sum rules with single-particle states, one is
naturally led to models in which hadron states are
associated with unitary representations of certain Lie
groups. More recently, algebraic superconvergence con-
ditions for the forward scattering of massless pions with
hadrons have been derived by Weinberg, ' "making
use of the effective chiral Lagrangian formalism.

All the preceding treatments led to the conclusion
that hadron states form a basis for unitary representa-
tions of certain Lie groups. On the other hand, in the
framework of dynamical groups one usually makes the
ad hoc assumption that hadron states form unitary ir-
reducible representations of some noncompact group.
Since this approach has been rather successful, one is
then led to conjecture that these dynamical groups
might in fact be derived from generally accepted physi-
cal assumptions. We have shown that this is actually the
case. In fact, we have derived relations identical to the
Lie algebra of the group SO(3,1)SO(4, 3) merely by
assuming isospin and Lorentz invariance, usual equal-
time commutator algebra between axial charges, ab-
sence of exotic states, and either an effective interaction
Lagrangian or PCAC. Since physical observables are
self-adjoint operators in the Hilbert space BC of hadronic
physical states, it then follows that K is the representa-
tion space of the Lie group SO(3,1)SO(4, 3). Thus
hadron states must form a basis for unitary (irreducible
or reducible) representations of this group, which is a
nontrivial combination of the isospin group SV(2) with
the Lorentz group SO(3,1).The generalization to larger
internal symmetry groups Dor example, SU(3)j is
straightforward and may be done along the lines dis-
cussed in this paper.

The dynamical groups proposed by Barut and his
collaborators were SO(3,1), SO(3,2), and SO(4,2), which

"G. F. Chew, Phys. Rev. Letters 9, 233 (1962)."T.Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965).

» R. H. Capps, Phys. Rev. 168, 1731 (1968); 171, 1591 (1968).
2' S. Q'einberg, Phys. Rev. Letters 22, 1023 (1969); in Proceed-

ings of the Fourteenth International Conference on High-Energy
Physics, Vienna, 1068', edited by J. Prentki and J. Steinberger
(CERN, Geneva, 1968), p. 253,
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are all subgroups of SO(3,1)SO(4, 3), so that aH repre-
sentations of the latter are also reducible representations
of the former groups. If we only restrict ourselves to the
external properties of hadrons, we have found that
hadron states with the same third components of iso-
spin are classified according to unitary representations
of the group SO(3,1)SO(3, 2). Note that the group
SO(3,2) is exactly the one proposed by Barut et a/. ' in
their calculations of electromagnetic form factors and
mass spectra of physical states.

To conclude this discussion, we stress that the
dynamical calculation of the pion-hadron vertex func-
tion was reduced to a set of algebraic relations which
turned out to be the same as the Lie algebra of the group
SO(3,1)SO(4, 3). Finally, it should also be mentioned
that an algebraic treatment to the dynamical problem
of pion-hadron coupling constants has also been exten-
sively developed in a series of papers by Sugawara, "
who makes use of the LSZ reduction technique and the
assumption that the dispersive part of the three-point
function may be completely saturated by single-particle
intermediate states.
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APPENDIX A

In this appendix we show that the matrices V{„„l&
and Z~p„jt i'l introduced in Eq. (3.8) transform as tensors
under Lorentz and isospin transformations. We start
with the matrix relation (3.8), which is of the form

[x x s]=z~ s'I'Ip. )'+z~(p.)' ' ~ (A1)

pur first step is to express P („„l~in terms of x„".This
can simply be done and one obtains the following result:

result

[Jp ~I ~p ~ ]=z(g pI ~p ~~+g pI ~ppI

—g,.I"~-l' g—"I'E"~') (A5)

APPENDIX 3
The purpose of this appendix is to derive the com-

mutators [T„„,x, ]and [T„„,T„].We start from relation
(3.14) and obtain

T„, ,z[x„,x„—]. (81)
By making use of the above equation we may then write

[T„„,x,s]= ',i [x—,s-,[x„,x„]] (82)
We next apply the Jacobi identity to the double com-
mutator given above and obtain

[T„„x,s]=—;z{[x„-,[x„sx„-]]+[x„-,[x„-,x,s]]).
Making use of the Eq. (3.14), we then carry out the
algebraic reduction of the double cornmutators on the
right-hand side of Eq. (83). This yields the result

LT"*']=3z(g"x.' gppx')-
'3([Tpp»—']+LT"x']) (84)

The preceding commutator is then used to calculate the
sum [T»,x„'S]+[T„„xp~].After some simPle algebra,
we obtain

[T,„,x„s]+[T„„x„s]=;z(g,„x„sg,„x„s)-
——,'[T„„i']x.(85)

Inserting Eq. (85) into Eq. (84), we then obtain the
relation [T„„,x,fi]=i (g„,x„s—g„,x„s), (86)
which has been used in Sec. III.

We can now proceed further and calculate

From the above equation, we see that the matrices
I'(„„l~transform as a symmetric Lorentz tensor. The
same procedure can be used to prove that A („„l&trans-
forms as an isovector while Z~„,~~ &~ transforms as a
symmetric isotensor and an antisymmetric Lorentz
tensor.

I"I„„I&= ',i p~&&[x„~,x„~].—-

The commutator

[J...I'(„,) &]= ——,'ze &&[J...[x„,x„s]]

(A2)

(A3)

[T",T"]=3zLT",[*, ,x. ]]. (»)
In order to do this, we make once again use of the
Jacobi identity for the double commutator and obtain,
upon using Eq. (86), the result

can then be rewritten by making use of the Jacobi
identity as

[J„,I"{„,}~]=,'ie ~~([x.-&,[J...x„]]
+[x. ,[x.',Jp.]]) (A4)

Carrying out the algebraic reduction using the com-
mutation relations (3.7) and (3.8), we finally obtain the
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[T"T"]= Hg;[x. ,x. ]—g.,[x...x.-]
+g~P[xP ~xP ] g~~[xp P'p ]j (88)

«m»»ng the above relation with Fq. (81), we then
find

(g p p g" p gppT +gp T ) ~ (89)
Thus the matrices T„„form a closed algebra identical
to the Lie algebra of the group SO(3,1). Relation (86)
then tells us that the matrices x„ transform as four-
vectors with respect to the group in question.


