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When we write out the explicit form for f from Kq. (1),
we see that

cosao;

(tN —u~ —uj+t) cos($~&pr+t) —2(u;u;yt)
(A3)

(m' —u; —u,~i) —2(u,u;~i)"' cosg;ay, ~t)

Froin this one can see that as cosQ; i&/;+t) varies
between +1 and —1, so does cosco; and vice versa.

The two solutions arise because the p; angles are
defined only in the range 0(@;(s.. If we note that
cosfg; —(2s —P;~t)j=cos(p~+p;+&), then we can ex
tend the range of the p's to 0(p;(2s- and use only one
of the solutions for costo in (35). We choose the one
with the difference Q, —p;+i.
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Physical-region constraints on the low partial waves of m~ scattering are derived on the basis of analy-
ticity, crossing, and positivity of the absorptive parts. These constraints are sensitive only to the low-energy
behavior of the partial-wave amplitudes. The necessity for subtractions in the dispersion relations implies
that no results can be obtained for s and p waves.

I. INTRODUCTION

N a recent paper, ' hereafter referred to as I, we
~ - developed a technique for obtaining rigorous con-
straints on the partial-wave amplitudes of x'xo elastic
scattering in the physical region. These were derived on
the basis of analyticity, crossing, and positivity of the
imaginary parts of the partial-wave amplitudes. They
took the form of inequalities on integrals involving the
imaginary part of the low partial waves and were sensi-
tive only to the low-energy region. They could there-
fore be tested once a phase-shift analysis became
available, or they could serve to discriminate between
various proposed phase shifts.

In this paper, we shall extend the techniques to xw

scattering with isospin. In Sec. II, we obtain sum rules
involving the absorptive parts of all partial waves for
each isospin. Using the positivity of these absorptive
parts, in Sec. III we rewrite the sum rules as inequalities
involving integrals of the low partial-wave amplitudes
which are sensitive only to the low-energy region.

One might have hoped that these inequalities would
serve to discriminate between some of the low-energy
I=O s-wave phase shifts which have been proposed for
xz scattering. However, if one admits subtractions in
the fixed-t dispersion relations for each isospin in the
t channel, no information can be obtained on s and p
waves. But the absence of exotic mesons has led many
authors to suppose that the fixed-t dispersion relation

~ Research /Yale Report No. 2726-584 (unpublished)g sup-
ported by the U. S. Atomic Energy Commission under Contract
No. AT (30-1)2726.' R. Roslties, Phys. Rev. D 2, 247 (1970),

corresponding to I= 2 in the t channel, is unsubtracted.
In our formalism this does lead to a family of sum rules
involving s and p waves. However, we show in Sec. IV
that these sum rules cannot be used fo derive any useful
information on the s and p waves.

Because no information is obtained on s and p waves,
the simplest constraint involves l= 2 and l= 3, for which
no phase shifts have yet been proposed. In a narrow-
resonance scheme, we obtain

where'm and I' denote the mass and width of a resonance
and g is the 3 7'- resonance. Substituting the observed
value ns, =1663 MeV, we obtain

I"g(340 MeV, (1.2)

whereas experimentally we have I',=111 MeV. This
numerical example suggests that the inequalities in-

volving a small number of partial waves may not be
very stringent. But by including more partial waves,
the inequalities tend to become equalities, and therefore
represent severe restrictions on the higher partial waves
if the lower ones are given.

II. DERIVATION OF SUM RULES

' V. S. Jin and A. Martin, Phys. Rev. 13$, 31575 (196$),

On general axiomatic grounds, ' one can write a
Froissart-Gribov formula for the partial-wave ampli-
tudes f~"'(I) for /~&2 in the region 0(I(4' ', where j
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(2.7)T&'&(t,u) = T&'&(s,t),

the symmetry of T&"(t,u) can be expressed as follows:

denotes the isospin. Denoting the full amplitudes by Defining
T&'&(t,s) (the first variable indicates the channel in
which the isospin is measured), we can write' (in units
such that 4m. 2= 1)

T&'&(t,s)
QO

=fo"&(t)+ — ds' A &'&(s',t)

f 1 2 s
+

&s' —s s'+ s+t —1 1 —t s'+t 1—
i=02 {21)

T&'&(t,s)

i

———T&0& (t,u) =0,
(8 8

t=te

(
8 8

T&'&(t,u) =0,
85 BQ t=u

8 T"&(t,u) symmetric in t,u.
Bt2 BS2

(2.8)

(2.9)

(2.10)

2s 1
=3fi '

(t)~ 1+ + — ds' A&"(s',t)

Returning to the variables s and t, these equations
become

I
X — --—

-s s s +s+t 1

2s'+t —1

(X—
where

6(1—t —2s)

(1—t)'

s
1n

s +t 1——2), (2,2)

8—T&'&(s,t) =0, (2»)

83—T&"(s,t)
813

=0 (2.12)

/ &t 8 3&
2 82

T& '(s, t) symmetric in t,u. (2.13)
&at as)' as&

A &'&(s', t) =P P C„(2t+1)
~ ~ ~

The advantage of writing the symmetry conditions in
this way is that the unknowns fo, fo, an(0) (2) an (i) do

'( + ( ' ) not enter into (2.23). Sitnilsrty, 2'tn(rl) sstishes,
S —j

and C;; is the crossing matrix

1/3 1 5/3
C;;= 1/3 1/2 —5/6

1/3 —1/2 1/6
(2 4)

It is clear from (2.1) and (2.2) that we have enforced.
the proper s,l symmetry at 6xed t. However, crossing
symmetry implies that T&0&(s,t) and T&')(s, t) are sym-
metric under t,u interchange, while T&'&(s,t) is anti-
symmetric. Recalling that

8—T&'&(s,t) =0,
8$ e=l—2t

(2.14)

83
T&'&(s,t) =0,

8=l—2t

(2.15)

while T&'&(s,t) satisfies

t3 && && ) 2 &&2

T&"(s,t) symmetric in t,u, (2.16)
&at asi as'

T&"(s,t) =g C;,T"'(t,s), (2 5) T&"{s,t) ~
.=2,2

——0, (2.17)

S= 1—$—Q. (2.6)

' See, e.g., R. Roskies, Xuovo Cimento 6SA, 467 (1970),
Appendj. x g.

these t.,N symmetry properties erst allow us to determine
fo' '(t), f0&'&(t), and fi"'(t) and then imply restrictions
on A "&(s',t). These give rise to the sum rules.

We can express the symmetry property of T (s,t)(o)

in a different form. Let us consider T&0'(s,t) as a function
of $ and I, with s determined from

T&"(s,t)
Bf e~l—2t

=0 (2.18)

Equations (2.11), (2.14), and (2.17) can be solved for
f0&'&, fo&'&, and fi&'&. This solution is given in the Appen-
dix. These solutions can then be inserted into (2.1 ),
(2.15), and (2.18). A tedious calculation shows that

8 &&)' 82
T&'&(s,t) antisymmetric in t,u {2.19).

«at as2' as'
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(2.12) becomes

3(1—3t)'(d' (1—3t)(2s'+t —1) d'
ds'

i

—(A&'&(s', t)+5A(~&(s', t)g + —A&'&(s', t)
kdh2 (s' —1+2t)'(s' —t)' Ch' (s' —t)'(s' —1+2t)'

(
2 5 6h' —9t+2+15s't —3s"—3s'

+ —A &'~(s', t) X —— +— +(1 3t—)
ttt 3 (s' —2+2t) ('s' t t' — (s' t t'(s' ——2+2t)' )
d 5 4 10 tst' Qt+2—+11s't 3s" —3s')—+ —A ~"(s', t) X —— —(1—3t)
dt 3 (s' —t)' (s' —1+2t)' (s' —t) '(s' —1+2t)'

3 12 2
X —, +(1—3t) — +-

(s' —t) 4 (s' —1+2t)4 (s' —1+2h) '(s' —h)
' (s' —1+2h) '(s' —t) '

12(2s'+t —1) 8(2s'+t —1) 3(2s'+t —1)
0, (2.20)

(s' —1+2t)'(s' —t) ' (s' —1+2t) '(s' —t) ' (s' —1+2t)'(s' —t)'
while (2.18) becomes

d 3(1—3t) (3s"+15s't —7s' —St+2)+ —A &'~ (s', t) +P'A &"(s', t) —(5/3)A &' (s', t)+A "'(s',t))
dt (s' —t) '(s' —1+2t) '

dA&0~(s', t) CA&'&( st)»' jt 1—
ds' 2- — —5

dt Ch (s' —1+2t) '(s' —t) '
(3t-1)dA ("(s', t)

3
dt (s' —1+2t) '(s' —t) '

From (2.13) we find

3s"—s'(1+3t)+t—L2A (''(s', h) —5A (''(st, h)+3A &'~(st, h) j— .
—=0. (2.21)

(s' —1+2t)'(s' —t) '

where

S(s,t,u) =S(s,u, t), (2.22a)

S(s,t,u) =
d2 1

ds' —LA ~'& (s', t) +5A &'~ (s', t)] —+-
dt' (s' —s)' (s'+s+t —1)'

1 1
+3 —A ('i(s', t) —6 —LA ("{s',t)+.5A ("(s', t) +3A '"(s', t) g

dh2 (s' —s) ' (s'+s+t 1)' (th- (s' —s) '

+12LA ("(s', t)+5A ("(s',t)+3A "'(s', t)) —,(2.22b)
(s' —s)"

where

A(s, t,u) =

A (s,t,u) = —A (s,u, t),

d2 I 1
ds' —L2A &"(s', t) —5A &'& (s' t)j —+-

dt2 (s' —s) ' (s'+s+t 1)'— (2.23a)

+3 —A &'i (s', t) —6i —$2A &'~(s', t) —5A i2((s', t)+3A ('~(s', t)j d-

dt' k(s' —s) ' (s'+s+t 1)' (Ck — 3 (s' —s) 4

+12$2A ~'&(s', t) —5A ~'&(s', t)+3A &"(s', t)j —. (2.23b)
s —s
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TAsr.z I. Expressions for pq
')

(1N).

y, &'& (zn) &,(»(m) y, &'& (m)

From (2.20)

From (2.21)

xzzn{ (m —1)L( —2) z ~+z(9q —9nz+23)—(3q—3nz+11)]
+ (q —m+2) L3q —3m+7—(—2) z + (9q—9m+ 19)]}

z nzL (—2)z-"+4—6q+6m —16]

m(m 1—)$3q 3—&n+8+ (—2) z +'] (5/3)m{ (nz —1)(3zn —3q —8
zn—t 3(q m—+2)'+2(q m—)+2 —(—2)z m+z]+(q —m+2)—(—2)z + (2q —2m+5)] XL3q 3m+10 ( 2) + ]}

+2(q —nz+3) (q —no+1)E1—(—2)z ~+z]

;znp—3q 3m—+10+( 2)—z m +(z3q 3n—z+8)] (5/9)mp3q 3—m+8+( 2—)z +']—-zz{q—m+3 —(—2)z "+'
X t 3 (q —m+2)'+q —m]}

We can omit the implications of (2.15) and (2.16)
because they can be recovered by combining the results
of I on the m- m amplitude with those involving only
T&'&(s,t).

Equations (2.20)—(2.23) are one form of the sum rules
on the absorptive parts. We can cast them in a form
analogous to those in Sec. IV of I by expanding (2.20)
and (2.21) in a power series around t= ~~. As in I, we
can expand S(s,t,u) and 2 (s,t,u) as double power series
around t= 3 and I=—', and retain those terms with the
proper symmetry. The results are as follows: From (2.20)

and (2.21),

2t+1 + (2s) "Ez& &(s)
ds'

(g' —sz) z+4 m=&& nz &

XP y &'&(zzz) Imfz&'&(s') =0, (2.24)
i=0

where
s= (s' —gsz)/(s' —1), g=0, 1, 2, . . . , (2.25)

and y, &'&(m) is given in Table I. I'z& & denotes the rrzth

TABLE II. Expressions for zz„&z& (m).

From (2.22);
q=2~ 3q . . .

q

r=0, 1, . . ., (q/2] —1

3nz(nz —1) (—1)q

eq, (') (nz)

g1Ã (1Ã 1) (8m, q —r+1 ~m, r+2)
2

q
—»z+1i q

—m+1
x

r j q r 1——

+3m(q m+1) ,(——1)z—~—'

e„(')(w)

2m(Zn 1) (Sm, z—ryz sm, r+z)

+-', (q —m+1) (q m) (—1)z—™1

From (2.23);
q=1, 2, . . . ;
r=0, 1, . . . , t (q —1)/2]

3m(m —1)(—1)z "z —,nz(nz —1) (5~,, ~+1+&m, ~+2)

+6'(q —)m+1) (—1)q ~—i

+3 (q —ra+1) (q —~) (—1)q
—sr'—1
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derivative of the Legendre polynomial. then we have

+1 q+I (2z)mP (m)(z)
ds'-

(s' —-,') q+q m=o qgg!

P (2l+1) Q ds' Imfg&'&(s')Fg&" (s') ~&0. (3.3)
i=0

)& P h &')(rrg) Imf &')(s') =0, (2.26)
i=0

(2.27)
q=1, 2, . . . ; .=0, 1 . . .f&/27,

bq, "'(m) = ((7
—qgg+3)((7 —qrg+2) oq„&')(q&g),

This relation involves only /(10, and is the desired
inequality.

For example, consider the terms (2.24), (2.26), and
(2.28) with q=1. There are two linearly independent
relations which give

and oq„")(rrg) is given. in Table II. Here [q/27 means
the largest integer &~(7/2. l

For completeness, we add the results of I:

ds' —(z'Pg" (z)L
—Imfg"'(s')

g (s' —o)'

+-,' Imfg&'&(s')+-,' Imfg&'&(s')7 —9zPg'(z) Imfg "&(s')
q+I (2z)mP (m)(z)

ds'
(s' —o) +' m=g qgg J

)& P gg „&')(qrg) Imfg "&(s') =0, (2.28)

Z (2l+1)
ds

(
' —l)'

+9Pg(z) Imfg&g)(s')) =0 (3.4)

with

&tg &g)(qm) =0,

i=0

(2.29)

)& (z'Pg" (z)[Imfg &'&(s')+2 Imfg &q) (s') 7

——,'zPg'(z) fImfg")(s')+2 Imfg&" (s')7) =0. (3.5)

Multiplying (3.5) by n and adding to (3.4) gives
gg qr (rN) = 2)& qr (m) = (g™+3)rm~m, r+g rgg~ q mr+o—

ds'

g
—m+2)

!+( 1)q-m —g (r+1)
g+1 —r )

g
—m+2—(&l+2 —r) (2.30)

r

(l =1, 2, . . . ; r =0, 1, . . ., [&l/27.

Equations (2.24), (2.26), and (2.28) are not all
independent. In fact, one can show that for a given q
there are altogether (7+1 independent equations.

It is easily verified that Imfo"), Imfo"', and. Imfg("
always enter into the sum rules with coefFicient zero,
so that the s and p waves are never involved in the sum
rules.

III. DERIVATION OF INEQUALITIES

&&(Imfg&'&(s') f((g —1)z'Pg"(z) ——', ggzPg'(z)7

+Imfg
&'& (s')fos'P g"(z) —9zPg'(z) +9P g(z) 7

+Im fg "&(s')f( ', + n2) Pz-(gz) —3nzPg'(z)7) =0. (3.6)

This is of the form (3.1) with

Fg (s ) = (gl —1)z Pg (z) —oggzPg (z) ~

P '"(')=lf~'P "()—2 P'()+2P(z)7 (37)
Fg&'&(s') = ('o+2n)z'Pg" (z) —3nzPg'(z) .

To convert this to an inequality we must satisfy (3.2).
But for large l, Fg&"(s'))0, independent of n. Conse-
quently, gg must be chosen so that Fg&'&(s'), Fg&'&(s') &0
for large /, i.e.,

(3.8)

We shall now combine the results of Sec. II with the
positivity of Imfg&'&(s) in order to derive inequalities
involving only the low partial waves. If we have a
relation

With this choice,

Pg(q)(s')) 2Pg(o)(s')

so it suffices to choose n such that

(3 9)

Z (2l+1) Z
i=0

ds' Imfg&'&(s')Fg&'&(s') =0, (3.1)
~ ~

p

where Fg&"(s') are known, and if Fg&')(s') satisfy

Fg&'&(s') &~ 0, l&lo (3.10)

zPg" (z) 3n
l& l„all z& 1. (3.11)

Pg'(z) 2(a —1)

Fg'*')(s') ~&0, l)l(), i,=0, 1, 2, (3.2) The left-hand side of (3.11) is a minimum at z= oo, and
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sPg" (s) 3n ))4.
Ei'(s) 2(n —1)

(3 14)

Choosing n=2, we derive the inequality (reinserting
the dimension of mass)

dS s' —4p'/3
6 Im f2"'(s')

ds' 3 s' —4p'/3 '
&5 - —Im f2&'i (s')

ds' 45 s' —4p'/3
7 —Imf.„&'i(s')

4„2 (s' —4p'/3)' 2 s' —4y, '

(3.15)

Notice that because of the weight functions
1/(s' —4p, '/3)', the integral cuts off rapidly for large
s' and is therefore sensitive only to the low-energy
region. In the narrow-resonance approximation, satu-
rating the left-hand side with the f' resonance, and the
I= 1 part of the right-hand side with the g meson, one
obtains the result

(3.16)

there the equation becomes

3G
l —1 & —. (3.12)

2(n —1)

One cannot satisfy this equation for l=2, since o.&1,
but for

(3.13)
we have

an I=0, 3=4 resonance, the relation becomes

I'r, 21 I', 9 I'
(3.17

(mro) 4 (mz) 2 (1sr O, i—4)

One can apply these techniques to the family of
rela, tions (2.24), (2.26), and (2.28). As n increases, the
weight functions cut off more and more rapidly, and
therefore the results will be sensitive to the partial-wave
amplitudes at lower and lower energies. It also appears
that as q increases, so does the value of /0 beyond which
(3.2) holds, so that more partial waves will enter into
the left-handside of (3.3). For example, if q=2, one
cannot satisfy F&&'i(s') &0 for /&~4, so that no relation
involving only l'=2 and 1=3 can be obtained.

IV. NO SUBTRACTIONS FOR ISOSPIN 2

We have seen in Sec. II that none of the sum rules
involves s or p waves. This can be traced to the assump-
tion of subtractions for the fixed t dispersion relations
7&'&(t,s). If we interpret the absence of I= 2 mesons to
mean that Ti'i(t, s) is unsubtracted Lin Regge language,
we assume that nr ~(0)(0j, we should be able to re-
cover some information on s and p waves. These waves
are currently of great interest since they dominate the
low-energy region of xx scattering. There are various
proposed s-wave phase shifts up to about 1 BeV, and
it would be useful to be able to discriminate between
them on the basis of our sum rules.

In this section, we shall show that the no subtraction
ansatz does lead to sum rules involving s and p waves,
but that these cannot be reformulated as inequalities
involving only low partial waves. This ansatz is there-
fore of very little use for our purposes.

If T&'i(t, s) is unsubtracted. , we can write

Experimentally, this equation reads

111MeV& 340 MeV.

S
ds' A i'i(s', t) ln . (4.1)

s'+t —1

(s' —1+2()' (s' —t) '

A i'i (s', t)
— 2s'+t —1 2 4

3 (s' —t) '(s' —1+2t) ' (s' —t) ' (s' —1+2/) '
2s'+t —1 2A i'i(s' t)

f."'(&)=—
~(1—t)

'
c u in more terms in the inequality Combining this relation with our solution for fo&" (tg in

A d nd diffe entiating twice with espect toer and stron er. However, the in- the ppen ix, an i erenit becomes stronger an s r g
is t to eliminate the arbitrary constants appearing there,equality then involves higher partial waves, and so is t to e imina e e ar i r

harder to verify experimentally. For example, includingd' we find the following sum ru e:
d'A &'i(s', t) ) 1 1 1 dA i'i(s', &) 5 17

dP ks' —1+21 s' t6 df (s' ——t)' (s' —1+2t)'
1 dA i'i(s', t) 1 1 ' 1 dA i'i(s', t) 1 1

2 Ch s' ts' 1+2t 3 —dt—

+
2 (s' —1+2t) '(s' —t) ' (s' —t) ' (s' —1+2t)'

A i'i (s', t) 20 2 5 (2s'+t —1)
+

(~' —1+2t)' (s' t) ' (s' —1+2t) '(s' —t) ' l—

'See, e.g., Procee ings o e rgon, P d' f th Argonne Conference on ~x. and Em Interactions, 1969 (unpubll. shed).

=0. (4.2)



2

that this proximately.3 for A l'l(s, t), one easily sees tha

, ho
~ ~

s and + waves. As it s an
olves I=1 waves wi

0for lar '/'"d=0 nd I=2 waves, because osign from I=v an =, use o

6xed s' and t, the term with

oo

ds' —Q (23+1)

)([3 Imf& s —
2 m3 &'t 'i —-' Imf&&&)(s')+e Imf&&2)(")j

dt u)(&,')

LOQT —EN E RG+ON CONSTRA I NTS 0P H Y S I CA L —RE G I ON

d2A &2& (s', t)

dt2

—Q (21+1)
(s' —1)' r

(1)&&P Imf&&')(s') —-', Imf&&')(s

2t
+—,

' Imf&&')(s') jP& ~ +m &

' ' " 1 (4.3)

—1 s —1+21 s —$

whereas those from Sec. II wwould involve

1I s —
3

p& &e+&)(2l+1)
(s' —1 '+' s ——,

4.7)yQ Imfg&'&(s')P, «), g=0, 1, . . . , .7

rises as to whether this realtion

can be combine wi

ex ression in which all

artial waves enter with t e sampai ia
"-at this is impossible.

e s' the coefI'cie"t of
I the relations of Sec.

(1/") Co

( ) 'lido i t fo l
mbination o 4.2 wi a

olvin, 4.2 wi om'g
s, '

o osite signs to I= 1 an = ps', and this gives opposi e
1 /. However, writing . aswaves for large .

ne

1 1
ch w&t) P&"(1+

0

1

&@+1) (4, 8)
1 s —

3

t C for all large s' and large l, and somefor some constan, o

~ ~

e '= ' ' ' 4.8 and consider the imit l ~~, o.Let s'=l'/&r' &n . , a
5fixed. Using the formula

ants independent of / and
4.6 be comparable to (4.5) or ar

ere ") are some constants, in e
for larges'. In order that 4.6 e corn

l, we ed

ds' &r(s', t) =0, (4.4) lim P„cos— =J&)(s), (4.9)

(4.10)2
0

O(1/P). For large I, (4.8)'g "-
p' t the integral in

o., and therefore athat w(1) van&s es. on
f the relations of Sec.mbined with any o e r

II to give partial waves wit e s
isospins for large l.

ds' u(s', t) =0dh w(t) (45)

be combined with equations of Sec. y'. II to ieldo ldb

(4 2)
m litudes o a give

For large E the term involving

'
e of 4.8) becomes forwe hand that the left-hand side o

a
' '

h lds for t in the interva 1 01.
i htf tio (/) oth t

at this relation o s o

dt J,(2i+(n&,)),
Could we then choose a weig u

Ql

APPENDIX

The equations

—T&')(s,t)
dt

= —T&')(s,t)
a=1-2t dt

=0, (A1)

T (s $))q—r 2&=0 (A2)

2 &')(s,t) =g C,,T&')(t,s), (A3)

-Hill New York, 1953), Vo. , p.ol. I . 147.b A. Er&ielyi (McGraw-Ehl, ew8i'her Transcendental Functions edited y~ See, for example, 8'zg er
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(0) h (2)(t), and f2( (t) to g»i21) (23) can be solved Io2 f(}(2 II) and T"'(h, s) bv 2.where C; » g'~en

f (0)(t) =(1—3«)

f0(')(t) = —2(1

X(t')Ch'+5

X(t')ot'+2

P(h, )dtt+4Z(t)+5g+2b (3

t

p'( t)ptt 2Z(h)+2(2 —b(3« —1) I (AS)

(A6)f (2)(t) = —-', (t —1) X(h')dh' —b(1 —«)

d 5 re arbitrary constants andwhere u an are a

1
X(t)=-

9m. ' —1+2t) (s' —t)

1 —t—2s'
f&l

(
' —1+2«)'( ' —t)'

6 2s'+t —1
ln — —2

I t '( I t——s'+t I—
1 2$+« —1 s—12— — in-

ch (1—t) ' 1 t s'+t——1

S

2)

2s'+t —1
[2] ' —, (A7)"'(' )— "'(', )3- .

1 d 2 s
+ — Inds' [At't(s t}+22I' t(s''t, )j —
, )(s t)

(A8)At't(s't)+2 —At't(s', t) (-— ,

00

z(t) = —— 1 2 s'
— In

s' t 1 t s'+t —11——
-2A [') (s', t) —5A &"(s', t) 1

ds'
s' 1+2t—

2 [2) (s', t)

s' —1+2t s' —t

S6(2t —I)
(2

+t —Is
—1n-

(1—t)' 1 t s'+t —1—


