2 MULTIPERIPHERAL INTEGRAL EQUATION FOR FINITE:--

When we write out the explicit form for f from Eq. (1),
we see that

COSw;

(m*—w;i—1i11) cos(pikdir1) —2(mirsiy1)'/? 43)
(m2—tb;—ti11) = 2(witt541) % cOS (i biy1) '
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From this one can see that as cos(¢;—1=¢it1) varies
between 41 and —1, so does cosw; and vice versa.

The two solutions arise because the ¢; angles are
defined only in the range 0<¢;<w. If we note that
cos[¢pi— (2 —¢ir1) ]=cos(¢:+dsr1), then we can ex-
tend the range of the ¢’s to 0<¢;<2m and use only one
of the solutions for cosw in (35). We choose the one
with the difference ¢;—eip1.
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Physical-region constraints on the low partial waves of = scattering are derived on the basis of analy-
ticity, crossing, and positivity of the absorptive parts. These constraints are sensitive only to the low-energy
behavior of the partial-wave amplitudes. The necessity for subtractions in the dispersion relations implies

that no results can be obtained for s and p waves.

I. INTRODUCTION

IN a recent paper,! hereafter referred to as I, we
developed a technique for obtaining rigorous con-
straints on the partial-wave amplitudes of = elastic
scattering in the physical region. These were derived on
the basis of analyticity, crossing, and positivity of the
imaginary parts of the partial-wave amplitudes. They
took the form of inequalities on integrals involving the
imaginary part of the low partial waves and were sensi-
tive only to the low-energy region. They could there-
fore be tested once a phase-shift analysis became
available, or they could serve to discriminate between
various proposed phase shifts.

In this paper, we shall extend the techniques to 7w
scattering with isospin. In Sec. II, we obtain sum rules
involving the absorptive parts of all partial waves for
each isospin. Using the positivity of these absorptive
parts, in Sec. IIT we rewrite the sum rules as inequalities
involving integrals of the low partial-wave amplitudes
which are sensitive only to the low-energy region.

One might have hoped that these inequalities would
serve to discriminate between some of the low-energy
I=0 s-wave phase shifts which have been proposed for
wr scattering. However, if one admits subtractions in
the fixed-¢ dispersion relations for each isospin in the
¢ channel, no information can be obtained on s and p
waves. But the absence of exotic mesons has led many
authors to suppose that the fixed-f dispersion relation

* Research [Yale Report No. 2726-584 (unpublished)] sup-
ported by the U. S. Atomic Energy Commission under Contract
No. AT (30-1)2726.

1R. Roskies, Phys. Rev. D 2, 247 (1970),

corresponding to /=2 in the ¢ channel, is unsubtracted.
In our formalism this does lead to a family of sum rules
involving s and p waves. However, we show in Sec. IV
that these sum rules cannot be used to derive any useful
information on the s and p waves.

Because no information is obtained on s and p waves,
the simplest constraint involves /=2 and /=3, for which
no phase shifts have yet been proposed. In a narrow-
resonance scheme, we obtain

T, 4 rmg\°

T < -—(.H) ’

Ty 21\my
where m and T" denote the mass and width of a resonance

and g is the 3~ 77 resonance. Substituting the observed
value m,= 1663 MeV, we obtain

I',< 340 MeV, 1.2)

whereas experimentally we have I'y=111 MeV. This
numerical example suggests that the inequalities in-
volving a small number of partial waves may not be
very stringent. But by including more partial waves,
the inequalities tend to become equalities, and therefore
represent severe restrictions on the higher partial waves
if the lower ones are given.

(1.1)

II. DERIVATION OF SUM RULES

On general axiomatic grounds,? one can write a
Froissart-Gribov formula for the partial-wave ampli-
tudes f;@(f) for 1> 2 in the region 0<t<4m,%, where ¢

2Y. S. Jin and A. Martin, Phys. Rev. 135, B1375 (1964).
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denotes the isospin. Denoting the full amplitudes by
T®(ts) (the first variable indicates the channel in
which the isospin is measured), we can write® (in units
such that 4m,2=1)

TO(,s)

1 00
— FoOO) 4 - / ds' A5 )
mTJ1

1 1 2 s’
X( + ——In ),
s'—s  S4sti—1 1—i s'+i—1
i=0,2 (2.1)
T™(2s)

2s 1 r
=3f1(1)(t)(1+———)+—/ ds’ AN(s' 1)
i—1 TJ1
6(1—1—2s)
(1-1)?

28’ +t—1 s’
><( In —2)], 2.2)
s'+i—1

1 1
x[ -
s'—s ' tsi—1

1—¢
where

AW ) =2 2 Cy(2+1)
l 7

2t
XImfl(f)(s’)Pl<1+ - 1) (2.3)
s —
and Cj; is the crossing matrix
1/3 1 5/3
Cy=1(1/3 1/2 =5/6]. (2.4)
1/3 —1/2  1/6

It is clear from (2.1) and (2.2) that we have enforced
the proper s,# symmetry at fixed ¢. However, crossing
symmetry implies that 77@(s,t) and T'®(s,f) are sym-
metric under #% interchange, while 7M(s,f) is anti-
symmetric. Recalling that

TO(s,t) =22 CTP(t,5), (2.5)
J

these ¢,# symmetry properties first allow us to determine
Fo @), fo®(), and f1V(¢) and then imply restrictions
on AUI(s')f). These give rise to the sum rules.

We can express the symmetry property of 7©(s,f)
in a different form. Let us consider 7 (s,f) as a function

of ¢ and %, with s determined from
(2.6)

s=1—t—u.

3See, e.g., R. Roskies, Nuovo Cimento 65A, 467 (1970),
Ap_pendix 1L ' '
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Defining

TOWtu=T"(s0), 2.7)

the symmetry of 7(t,4) can be expressed as follows:

] A
(—— — ———)T(‘”(t,u) =0, (2.8)
ot du t=u
a \3_
(——— — ——> TOGu)| =0, (2.9)
af du t=u
9% 9% _
— —TO®(t,u) symmetric in ¢,u. (2.10)
912 ou?

Returning to the variables s and f, these equations
become

a
—TO(s,8) =0, (2.11)
at s=1-2¢
63
—TO(s,4) =0, (2.12)
ard s=1-2¢
9 9\ '
(— - ——> —TO®(,f) symmetricin t,u. (2.13)
dt  ds/ 9s?

The advantage of writing the symmetry conditions in
this way is that the unknowns £, f,®, and f1¥ do
not enter into (2.13). Similarly, T®(s,f) satisfies

d
—T®(s,f) =0, (2.14)
ot s=1-2¢
93
—T A (s,1) =0, (2.15)
a? s=1--2t
a a\2 9?
(—— — —) —T®(s,f) symmetric in t,u, (2.16)
ot s/ 9s?
while 77®W(s,#) satisfies
T(l) (S,t) ] g=1—2[=0 ) (217)
FYS
—TD(s,1) =0, (2.18)
a2 s=1-2¢

a9\ o '
(— — —~) —TW(s,t) antisymmetric in ,%. (2.19)
ot ds/ ds?

Equations (2.11), (2.14), and (2.17) can be solved for
Fo@, fo@; and f1M. This solution is given in the Appen-
dix. These solutions can then be inserted into (2.12),
(2.15), and (2.18). A tedious calculation shows that
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(2.12) becomes

/wd /{<d2[A PI(s’ 454 21(s’ z)]) 130 +-1) + (dZA (s’ t)\ 3(1—-3)°
L O \ae * > 1420 =0 \ag (s’ —0)2(s' = 14202

d 2 1 S 6{2—9¢+2-+155"t—3s'2—3s’
‘*‘(—A w01(s’ f)) < + +(1-31) )
3N(s'—=142)%  (s'—1)3 (5" —1)3(s’ —1+42¢)3

d 4 10 612—9¢+2+155"t—3s'2—3s’
LI W S )
dt N —0 (' —1+20° (s —1)3(s' —14-20)3
d 3(1—3) (3524155t~ 75 — 5t
(e IO I )= /94 m )+,
dt (s —0)3(s"—142¢)3
3 —4 2
X (1-31)( +
(=t (=142 (=142 1) (S —1420)% —1)?
2025 +1— 25" +i— 3(25'+1—1
12(2s'+¢—1) 3 8(2s'+t—1) n (2s'+t—1) >]}=0’ (2.20)
(" =14204" =0 (" =1420)%(s"=0)* (' —1420%s"—2)*

while (2.18) becomes

/w J l: <2dA OI(s')  _d4 m(s',z)> 2s'+1—1 A4S 0) (3t—1)
S _—J 9
1 dt dt (" =14-2H)2(s"'—1)? dt (s"=142H2("—1)?
3s'2—s'(1438)+¢

—[24101(s" 1) =5 A RIS 1) 4+-341(s" 1) ] : ]=o. 2.21)
(240 ) =S4 ) +34 0 )T =0

From (2.13) we find

S(s,tu)=S(s,u,t), (2.22a)
where
* d? 1 1
Sty = [ as| (SLamiesavient)(— + )
1 dar? (s"=s)*  (+s+t—1)3
3 dzA“ > ! ! ) [410 SARI(s" 4341 )j)
—A (st - 0 (s’ ¢t (st
+ (dﬂ &0) <(s’—s)3 (' +s+1—1)3 ( )+ @A)+ (s —s)4
1
F12[ A" ) +-5A4 (s H)+34 (s, t)]( ),} , (2.22b)
s'—s
while
A(stu)=—A(s,m,t), (2.23a)
where

4 d{ 24015’ j)—5.4121 ) ! ! )
= [ atf(Srzame—same) (oot o

a2 1 1 1
— (s — 9.4 0] 54121 1
+3<d52 Y ’t))<(s’—s)3 (s"+s+1—1)3 ) ( (24000 () 4341 t):l) (s —s)“

! -—5} . (2.23D)

s'—s

+12[24 [‘”(s D) —SAUE(s )+341(s, ;)](
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TasLE I. Expressions for v, (m).

7g® ()

Yo (m) v¢® (m)

From (2.20) $m{(m—1)[(— 2)4"”+2(9q 9m+23)
—(3¢—3m+-11)]
+(g—m+2)[3¢—3m+7
—(=2)7(9¢—9m+-19) 1)

Im[ (=2)emt—6g+6m—16]

—m[3(g—

From (2.21)

2

m(m—1)[3g—3m 48+ (—2)a—m+]

—(=2)T ™8 (2¢—2m+5)]
+2(g— m+3)(q —mA41)[1— (—2) 2]

$m[3¢—3m+10+4(— 2)‘1_m+3(3q 3m+8)]

Hg—m+

(5/3)ym{ (m—1)[3m—3q—8
— (=9I (g—m12)
X[3¢—3m+10— ( Z)q“”‘“]}

m+2)24+2(g—m)+2

(5/9)m[3g—3m~+8+ (—2)a—m+s]

— (=2

x[3(g— m+2)z+q m]}

We can omit the implications of (2.15) and (2.16)
because they can be recovered by combining the results
of I on the #%° amplitude with those involving only
TO(s,0).

Equations (2.20)—(2.23) are one form of the sum rules
on the absorptive parts. We can cast them in a form
analogous to those in Sec. IV of I by expanding (2.20)
and (2.21) in a power series around ¢=3. As in I, we
can expand S(s,f,%) and A (s,t,u) as double power series
around (=% and =% and retain those terms with the
proper symmetry. The results are as follows: From (2.20)

and (2.21),

r[w

241 a2 22)mP, ™ ()

S’ ._7) a+4 =g

m!

2
X2 7P (m) Imfi(s") =0,

=0

(2.24)

where
z=(s'—%)/(s'=1), ¢=0,1,2,..., (2.25)

and v,® (m) is given in Table I. P;" denotes the mth

TasLe II. Expressions for e ().

eqr® (m)

€qr® (1) €qr® (m)

3m(m—1)(—1)e =1

2
[ /q—m—+41 g—m+1
A5
L r g—r—1

+3m(g—m—+1) (—1)am1
g—m

(-(20)]

$g—m+1) (g—m) (=)™
r/q—m—1 q—m—l)]
(7)o

+3m(m—1) (Om,g—ry1—0m,rs2)

From (2.22);
¢=2,3,...;
r=0,1,...,[¢/2]—1

X
+

X

From (2.23); —m(m—1) @m.q—r41F0m,r42)
g=1,2,...;
r=0.1 ... [(¢=1/2]

—3m(m—1) Gm.q—r+1—~8m, r42) §mm—1) Gm,q-r41—0m,r42)

3m(m—1)(—1)e ™1

M /q—m+1 g—m+1
(77
L r g—r—1

+6m(g—m-+1) (—1)m1
qg—m

(5]

+3(g—m41) (¢g—m) (=)=
M /qg—m—1 g—m—1

()]
L r g—r—1

+3m(m—1) (B, grp1+0m, r42)

$m(m—1) @m,g—rs1-+0m,r42)

X

X

X
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derivative of the Legendre polynomial.

i 2141 ot 2z5)mPy ™ (g
5 /‘ i 1 (2)
tJr (=) m=0 m
2
X2 80 @ (m) Imf(s")=0, (2.26)
=0
=1,2,...; ..[¢/2],
q [q/2] 2.27)

8P (m) = (g—m~+3)(g—m+2)eq, O (m)

and eg,(m) is given in Table II. Here [¢/2] means
the largest integer < ¢/2.
For completeness, we add the results of I:

Z 21+1 q+1 (Zz)ml)l(m)(z)
N
XZ wer®@(m) Imf;P(s") =0, (2.28)
=0
with
pgr®(m) =0, (2.29)

tar®(m) =2p¢,® (m) = (g—m—+3) {mam.rﬂ — M, g—r2

s g—m-2
+H(=1) [( +1>(g+1_r)
—ma-2
—<g+2—r><q " )]} (2.30)
4
g=1,2, ...; r=0,1, ..., [¢/2].

Equations (2.24), (2.26), and (2.28) are not all
independent. In fact, one can show that for a given ¢
there are altogether g4-1 independent equations.

It is easily verified that Imfo@, Imf,®, and Im f;®
always enter into the sum rules with coefficient zero,
so that the s and p waves are never involved in the sum
rules.

III. DERIVATION OF INEQUALITIES

We shall now combine the results of Sec. IT with the
positivity of Imf;(s) in order to derive inequalities
involving only the low partial waves. If we have a
relation

00

Z (2i41) Z ds' Imf, (s )F,D(s')=0, (3.1)
=0
where F;(s") are known, and if F;®(s’) satisfy
Fi(s)20, 1>, i=0,1,2, (3.2)
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then we have

0

z (21+1) z ds' Imfi®(s")F,P(s") 0.

=0

(3.3)

This relation involves only /</;, and is the desired
inequality.

For example, consider the terms (2.24), (2.26), and
(2.28) with g=1. There are two linearly independent
relations which give

z (2141) ~{22Pz”(z)E Imfi(s")

1 S —”
+9 Tm f,0(s") 45 Imf,®(s') ]—92P/ (z) Im f, V) (5')

+9P,(2) Imf,V(s")} =0 (3.4)
and

5 @i /

(s __1)5
X{ZP"(@)[Imfi @ (s')+-2 Im f,(s") ]
—32P/ (2)[Im f,(s")+2 Im f;*)(s") ]} =0.

Multiplying (3.5) by « and adding to (3.4) gives

(3.5)

T @) /w

1 (9%
X{Imfi (s ) [(a—1)22P/" (2) —5 azP/ (2) ]
+HImfi V(") [322P)" () —92P)/ (2) +9P:(2) ]
+Imfi @ (s )[(§+20)22P )" () —3azP/ (2) ]} =0.
This is of the form (3.1) with
FiO() = (a—1)32P/" () —3azP/(2) ,
FiO(s")=3[22P)" () —22P/ (2)+2P:(2) ],
FiO(s) = (5+22)22P;" (2) —3azP/(3).

(3.6)

(3.7)

To convert this to an inequality we must satisfy (3.2).
But for large I, F;V(s")>0, independent of a. Conse-
quently, @ must be chosen so that F;(s"), F;®(s')>0
for large /, i.e.,

a>1. (3.8)
With this choice,
Fz(2)(s/)>2Fl(0)(S/) 5 (39)
so it suffices to choose a such that
F,®( >0, I>1, (3.10)
ie.,
2P’ (z) 3a
>0, allz21. (3.11)
Py (2) 2(a 1)
The left-hand side of (3.11) is a minimum at z= «, and
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there the equation becomes

3a
(3.12)

One cannot satisfy this equation for /=2, since a>1,

but for
a2 (3.13)
we have
2P/’ (2) S 3a

P/ 2(a—1)

1>4. (3.14)

Choosing @=2, we derive the inequality (reinserting
the dimension of mass)

° gy s’ —4u?/3\
A
au? (5 —4u?/3)° s’ —4u?

= 43 s —4p2/3\2
5 / ——~Imf2<2)(s’)<———)
4,

ut (57 —4u?/3)% 2 s —4u?

© 4 45 s’ —4u2/3\3
+7f *————Imfw(s')(————).

w (5" —4u?/3)° 2 ' —4u?

(3.15)

Notice that because of the weight functions
1/(s’"—4u?/3)% the integral cuts off rapidly for large
s’ and is therefore sensitive only to the low-energy
region. In the narrow-resonance approximation, satu-
rating the left-hand side with the f° resonance, and the
I=1 part of the right-hand side with the g meson, one
obtains the result

4 ymys\°
I‘y< _(”‘) Pfo-
21\m,

(3.16)

Experimentally, this equation reads
111 MeV<340 MeV.

Of course, by including more terms in the inequality
it becomes stronger and stronger. However, the in-
equality then involves higher partial waves, and so is
harder to verify experimentally. For example, including

RALPH ROSKIES 2

an I=0, /=4 resonance, the relation becomes

Ty, 21 T, 9 Treo,1=4

> _

(mp)® 4 (my)°
One can apply these techniques to the family of
relations (2.24), (2.26), and (2.28). As « increases, the
weight functions cut off more and more rapidly, and
therefore the results will be sensitive to the partial-wave
amplitudes at lower and lower energies. It also appears
that as ¢ increases, so does the value of /y beyond which
(3.2) holds, so that more partial waves will enter into
the left-handside of (3.3). For example, if ¢g=2, one
cannot satisfy F;¢)(s")>0 for >4, so that no relation

involving only /=2 and /=3 can be obtained.

(3.17)

2 (m1=0,1=4)° '

IV. NO SUBTRACTIONS FOR ISOSPIN 2

We have seen in Sec. IT that none of the sum rules
involves s or p waves. This can be traced to the assump-
tion of subtractions for the fixed ¢ dispersion relations
T®(t,s). If we interpret the absence of /=2 mesons to
mean that T®(¢,s) is unsubtracted [in Regge language,
we assume that ar_»(0)<07], we should be able to re-
cover some information on s and p waves. These waves
are currently of great interest since they dominate the
low-energy region of = scattering. There are various
proposed s-wave phase shifts? up to about 1 BeV, and
it would be useful to be able to discriminate between
them on the basis of our sum rules.

In this section, we shall show that the no subtraction
ansatz does lead to sum rules involving s and p waves,
but that these cannot be reformulated as inequalities
involving only low partial waves. This ansatz is there-
fore of very little use for our purposes.

If T®(t,s) is unsubtracted, we can write

/

2
fo®l)= ——— [ ds’ A1(s' 1) In

4.1
w(1—1f) s'+i—1 .1

Combining this relation with our solution for fo®(f) in
the Appendix, and differentiating twice with respect to
{ to eliminate the arbitrary constants appearing there,
we find the following sum rule:

° L [PARGL) 1 1 14425 1) s 17
[« =
1 ae \s’—1+2t s'—t/ 6 dt L(s’~—t)2 (s'—1+2¢)2

144 )7 1 1\
)
2 dt \s’—t

s'—1+42¢
AL Or 25’ +i1—1
_|_.

1240 1 1 ]
3 @t Li'—1420 (v—02

3 L= —1+20)2
AW Hr 2s'+1—1

2 4
(s'=0)3 B (s’—1+2t)3]

AP )

2 4
2 Liy—14202 =02 + =08 (s’—1—|-2/f)3}

20 2 5(25'+i—1)

6 L1420 (9—1)° _(s’-1+2¢)2(s/_,)2]}=0' (4.2)

¢ See, e.g., Proceedings of the Argonne Conference on 7w and Kr Interactions, 1969 (unpublished).
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Substituting (2.3) for A1(s,f), one easily sees that this
relation involves s and p waves. As it stands, however,
for large I, it involves /=1 waves with an opposite
sign from I=0 and =2 waves, because for large / and
fixed s’ and ¢, the term with

drALI(s' 1)
= T (+1)
dr? (s'—=1)2 1

X[E Imf,(s") =% Im fyV(s")

,2t > @3

s’ —

i Imgo )11+

dominates.

The question then arises as to whether this realtion
can be combined with those of Sec. II [i.e., (2.24),
(2.26), or (2.28)7] to produce an expression in which all
partial waves enter with the same sign for large I.
We now show that this is impossible.

It is easily seen that for large s’, the coefficient of
Imf;®(s') in (4.2) is O(1/s’%). In the relations of Sec.
II, the coefficient is at least O(1/s’%). Consequently, in
any linear combination of (4.2) with any relation of
Sec. II, the term involving (4.2) will dominate for large
s’, and this gives opposite signs to /=1 and /=0 partial
waves for large /. However, writing (4.2) as

/“’ ds" a(s',1)=0, (4.4)
1

we see that this relation holds for ¢ in the interval [0,1].
Could we then choose a weight function w(f) so that

/ l dt w(?) /1 i ds’ a(s',£)=0

could be combined with equations of Sec. II to yield
partial-wave amplitudes of a given sign for large /?
For large /, the term involving (4.2) would be ap-

(4.5)

1655

proximately

1 4
/ dt w(t)/ ds’ — > (214+1)
0 1 (Sl~1)2 l

X[ Imfi(s') =% Im fiD(s") +-5 Im f1(s) ]

2t 1 1
e Yoo ), o
sS'—1/\s’—1+4+2t ' —t

whereas those from Sec. II would involve

0 1 1 s'—13
Z/ (214-1) pl(q+1)( >
1 Jy (s’ —1)ett (s —3)3 s'—1

XZ ImfiD(s)B,D, ¢=0,1,..., (4.7)

where B, are some constants, independent of / and
s’. In order that (4.6) be comparable to (4.5) for large
I, we need

1 2¢ 1 1
/ dtw(t)P/’(1+ )( + )‘
N sS'—1/\s'—142¢t ' —t

1 1 s'—1
<C Py (atD) (4.8)
(s —=31)3 (s’ —1)a? s'—1

for some constant C, for all large s” and large /, and some

Let s'=1%/a? in (4.8), and consider the limit [ —, «
fixed. Using the formula®

2
lim P, (cos—) =J(2), (4.9)

n
we find that the left-hand side of (4.8) becomes for
large !

bow(l)
3al? / dt—t—fz(Zi\/ (a2)), (4.10)
0
while the right-hand side is O(1//%). For large I, (4.8)
then implies that the integral in (4.10) vanishes for all
a, and therefore that w(f) vanishes. Consequently, (4.2)
cannot be combined with any of the relations of Sec.
II to give partial waves with the same sign for all
isospins for large /.

APPENDIX

The equations
d d
—TO(s,1) =—T®(s) =0, (A1)
dt 8=1—2¢ §=1-2¢
T(l)(s7t) I 8=1—2l=0, (AZ)
TO(s,0) =2 CyTO(,s), (A3)

5 See, for example, Higher Transcendental Funclions, edited by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. I, p. 147,
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where C;; is given by (2.4) and T'?(t,5) by (2.1)-(2.3), can be solved for fo©@(z), fo®(¢), and fr(2) to give

Fo@@O=(1-3) / X(@)dt' +5 / Y(')d! +4Z @) +5a+26(3t—1), (A4)
f0<2>(z)=—%(1—31)/ X(t’)dt’—l—Z/ Y({')dt —2Z()+2a—b(3t—1), (AS)
[0 =—3—1) / X(@)dt —b(1—0), (A6)

where @ and b are arbitrary constants and

Xz)—1 wd’{<d6A[”(’t))|: ! S Gl N 2)
(_97rf1 ’ dt ) (s"—=142H)(s"—2) (1—t)2\ 1—¢ ns’+t—1_ ]

1—f—2¢ ¢ 1 -1
+34 [”(s’,t)|: —12— In —2):]
(5 =1420%('—)?  dt 1=\ 1—¢  s'4i—1

_'[2A [Ol(sl:t) —54 [ZI(S/;t)]

25" +1—1 }
(' —1420)%(s"—1)2) (A7)

1 [ l[A I 4241 )]( 1 " d 2 | Y )
Y()=— | ds ') +2 'O — _—
@ T ./; ’ ’ ’ ("= dt1—¢ ns’-i—t—l

d d 1 1 2 s’
~[~A PI(s’,1)4-2—A m(s’,t)]( +———In )] , (A8)
dt dt s'—142t  §—t 1—t §'41—1

/

1 = (P24 ) —SA1RI(s 5) 1 1 2 s
Y
3r J1 6 s'—142t s'—t 1—t §'+i—1

A“](s’,t)r 1 1 6(3)5—1)/23’—!—),‘—1 s’
2 Ly—142t s—1 1=\ 1—  s'+4i—1




