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It is interesting to note that even when we increase
our kernel strength by a factor of 5 to get the output
Pomeranchuk pole at 1.0, the average multiplicity is
only 1.04 lns [see (4.3e)]. Our model seems to indicate
that the average multiplicity for E-E scattering is
closer to 1 lns than to 2 lns (see Ref. 15).

iVote added in proof. The Michigan experiment of
Ref. 15 has now been completed. They obtained an
average multiplicity per inelastic collision to be 1.14

lns. We wish to thank Dr. Donald E.Lyon for informing
us of this result before publication.
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The inelastic channels E*m and E are included in a three-channel model of the I=
~ p-wave Em amplitude.

Feynman diagrams for vector-meson exchange are used as input to multichannel E/D equations, which are
solved to obtain the scattering amplitude. Coupling constants which cannot be measured experimentally
or calculated using SU(3) are obtained by employing SU(6)~ in the rest system of one of the particles at a
given vertex. The X w channel, neglected in previous calculations, is observed to influence the amplitude
strongly, but the width of the E'*(890) is calculated to be 210 MeV or about four times the experimental
value.

I. INTRODUCTION

~~OMPARATIVEI. Y little work has been done on~ the effect of inelastic channels on the parameters
of resonances in the E„system. Those channels which
lie lowest and should therefore be considered 6rst are
E*x and Eg with threshold energies of 1030 and 1042
MeV, respectively. The Eg channel has been included
in a two-channel model of the p-wave Xm system in an
article by Fulco, Shaw, and Wong. ' Aside from this
latter and an article by Gupta, Saxena, and Mathur'
which presents the results of a single-channel calcu-
lation of s-, p-, and d-wave E~ phase shifts, the liter-
ature on the Ex interaction seems relatively sparse.

By contrast, multichannel models of the ~m inter-
action have been studied in great detail. Two-channel
models of the p meson which have been studied include
a treatment of the ~z-mao system by Zemach and
Zachariasen, ' and of the m.x-EE system by Balazs. 4 A
complete comparison of the several possibilities xx-xm,
xx-EE, and vrx-mes-EK was also performed by Fulco,
Shaw, and Wong.

There are, however, difficulties in a calculation of the

* Present address: National Accelerator Laboratory, Satavia,
Ill. 60510.' J. R. Fulco, G. L. Shaw, and D. Y. Tong, Phys. Rev. 137,
81242 (1965).' K. C. Gupta, R. P. Saxena, and V. S, Mathur, Phys. Rev. 141,
1479 (19ee).' C. Zemach and F. Zachariasen, Phys. Rev. 128, 849 (1962).

4 L. A. P. Balazs, Phys. Rev. 137, 3168 (1965).

P-wave E7r interaction usin'g IC*7r as an inelastic channel
which are not encountered in an analysis in which Ep
is the only inelastic channel or in any of the multi-
channel mx calculations mentioned. In the latter cases,
all coupling constants may be determined either directly
from experimental measurements of decay rates or
indirectly by SU(3). In a model of the K~ interaction
which includes E*m as an inelastic channel, one en-
counters coupling constants which must be evaluated
either by appeal to higher symmetries or by making
assumptions about 4-&o mixing in the vector-meson
octet. We have chosen the former approach and evaluate
such coupling constants by using SV(6)s in the rest
system of one of the particles at a given vertex. The
model discussed in this paper is a three-channel one
with E*m and Eg taken as inelastic channels.

The single-particle exchange contributions are calcu-
lated as Feynman diagrams and are used as input
into a multichannel X/D equation. The diagrams used
and their partial-wave analysis are discussed in Sec. II.
In Sec. III we describe in greater detail the X/D
formalism used and the exact method of solution
employed. The results of the calculation are summarized
in Sec. IV.

II. INPUT DIAGRAMS

We use as input terms the set of diagrams shown in
Fig. 1. These consist of all permissible t- or I-channel
exchanges of pseudoscalar or vector mesons. Since we
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changes are energetically possible in the s channel and
their effect is therefore taken to be included via the
requirement of unitarity.

The form of the vertex functions shown in Fig. 2 for
V —+ PP is taken to be

gv~~e„(X) (kg —k2)"

and for P ~ VV is taken to be

~(fr vv/mJ ) e""'&y&4&,&„&9,

K

FIG. 1. Input diagrams. Channel 1 is Xm, channel 2
is E*w, and channel 3 is Eg.

The k's represent the momenta of either the pseudo-
scalar or vector mesons, and the c's with a single numeri-
cal subscript are the vector-meson polarization vectors.
The e with superscripts is the completely antisymmetric
tensor and mJ is the pseudoscalar-meson mass. If we
consider the rest frame of the pseudoscalar meson, then
the latter vertex can be considered a collinear process
and the coupling constant can be evaluated via SV(6)w. '
However, in order to conserve energy and momentum,
we must take one of the vector mesons slightly o6 the
mass shell. We assume that the coupling constant is
independent of the masses of the particles and can then
evaluate all relevant coupling constants as

2gpIrg (2"/3)gx*Km gee 17 (+3)gIcx 'p

= —~&g,x*rr*=2(Q-,')g~*rr, = g,

are considering only P-P or P-V states in the direct
channel, we appeal to crossing symmetry by ruling
out diagrams which contain such states in the t 'or n
channel. The only allowed pseudoscalar-meson ex-

Following Sakurai, ' we take g„ /4m to be equal to
2.4, which corresponds to a p width of approximately
125 MeV.

In order to evaluate the diagrams involving vector
mesons in initial or final states, we must project the
amplitude onto parity-conserving helicity states. For
the negative-parity P wave state in w-hich the E*(890)
appears, the only possible parity-conserving helicity
amplitude is (1/v2)Le(+) —e(—)7 where the sign repre-
sents the helicity state of the vector meson. We project
the PV channels in our amplitudes onto such helicity
states and remove the kinematic singularities to arrive
at amplitudes suitable for input into the X/D equations.
Kinematic singularities for processes of the form
PV ~ PP will be proportional to 8' =gs and those for
PV ~ PV will be proportional to s. Partial-wave
projections of the amplitudes will yield further kine-
matic singularities of the form k"+'. lf we remove all
kinematic singularities and use isospin crossing matrices'
to project onto I= ~, J= 1 P-wave states, we arrive at

gpJ Egp~~
B(X~~Xm.) = — Pg(s, IJ~,p„IJrr,p. ,m,)-

4'
~ gx*x&

Fx(s,I p,i .,I .,I Ir,m—a ),
3 4z

FIG. 2. Vertex diagrams used. The upper vertex is for V —+ PP
and the lower for P ~ UV. The k's represent the momenta of the
particles and the e's the polarization vectors.

' H. J. Lipkin and S. Meshkov, Phys. Rev. 143, 1269 (1966).' J. J. Sakurai, Phys. Rev. Letters 1'7, 1021 (1966).' D. E. seville, &Phys. Rev. 160, 1375 (1967).
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F&(s)p»p»Is»p4)m)

( (pP —p p') (p p' —p")
~

2s+m' —g )aP+-
m2

III. METHOD OF SOLUTION

The requirement of unitarity for the relativistically
invariant amplitudes with the kinematic singularities
removed and the proper threshold behavior reads

Im(T;, ') = —5,)0(s—s,)0(A.' —s)p, (s),
where s; is the threshold for the ith channel and A. is
the cutoff used in solving the equations. The phase-
space factor is given by

p;= k'/gs for i = 1, 3
=k'gs for i= 2.

If we employ the ITretsky form' of the X/D equations,
we require that

Tg ——(SD ')e,
where A is given by the integral equation

A

cV,,(s) =B,,(s)+ —Q ds' K,),(s,s')Nq, (s'),
~ i=1 sg

and the kernel E is calculated using the Born terms as

1 )) s —Sp

K;;(s)= —, I
Bv(s') ——B,,(s) p, (s') .

S —Sl S —Sp

with

t)1 X+1
Xl -x)x 1)

&2 x—1

The denominator term D is given in terms of E via

s —
sp& p;{s')X,,(s')

D;, (s) = 5,, i
ds'

(s' —sp) (s' —s)

(p~' —p p') (ps' —p4')
x= s— p,' +2m2 4kk',

s

~= s —(pi'+pp'+pp'+mr')

(pP —pp') (pp' —mi')
+2m' 4kk',

with

1 t)1 x+1 1
Fp(s, mg, m»m) =

~
bp ln +br ———k'

8k's k2 x—1 3

bp= up+box,

bg —g)+GgX+Cpg

op= k'+mpP,

g) = 2m@+2mp' —2s+3k',
ap ——2m''+ mp'+3k',

6 =k
x= (s—2k' —2m'' —2mp'+m')/2k'

1 (1 x+1
)),[s,x,,x„x„xxxx)=

l

—))—x') )x +x),4kk' k2 x —1
with

The actual numerical calculation of E was done using
the matrix inversion method of Fulco, Shaw, and Wong. '
The N function was then integrated to give the real
part of D. The imaginary part of D is just the phase-
space factor multiplied by E. The total cross section
was then calculated from the imaginary part of the
invariant amplitude and the cutoff adjusted so that the
the peak corresponded to the mass of the K*(890).

The appendix to the Fulco, Shaw, and Wong paper is
quite complete, but a few additional remarks might be
in order. The expressions for the Born terms given
above are not entirely appropriate for use in the inte-
gral equations over the entire energy range considered.
Below the upper threshold for an inelastic diagram and
close to a threshold for any diagram, it is convenient to
expand the kinematic singularity-free Born terms in a
power series in the variable labeled above as x. The
singularities then appear more explicitly and analytic
continuation of the terms below threshold is possible.
Also, the grid employed to solve the integral equations
is invariably much too coarse to show the fine structure
of the resonance. The actual values of the E and ReD
were obtained by Lagrange interpolation on the values
at nearby grid points. These functions vary fairly
smoothly near resonance points while the phase-space

' J. L. Uretsky, Phys. Rev. 123, 1459 (1961).
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FIG. 3. Total cross section for I=~ p-wave E~ scattering
versus center-of-mass energy.

factor is calculated explicitly. The amplitude, which
shows more rapid variation, is obtained by taking the
appropriate quotient.

a peak. at 890 MeV. The general shape of the curve is
similar to previous results. The cutoff is noticeably
lower, but the width is still on the same order as pre-
vious calculations using 1V/D. We derive a value of
about 210 MeV which is comparable to the results of
Fulco, Shaw, and Wong and about four times the ex-
perimental value. One is led to doubt whether the
inclusion of further channels will significantly improve
the situation and that the defect is inherent in cV/D.

The large change in the cutoff from previous results
conclusively demonstrates the strong influence of the
E*vr channel on the Ez amplitude, and future multi-

channel models should include it. This conclusion and
the simple method for calculating the coupling constants
for inclusion of such channels seem to be the major
results of this work.
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The new invariant amplitudes of Bardeen and Tung for nucleon Comp ton scattering, which are free of both
kinematic singularities and zeros, are examined. The forward scattering amplitude, and the continuous-
dispersion sum rules derived therefrom, are obtained. Using the data of a recent calculation by Damashek
and Gilman, tests of these sum rules are shown to be quite satisfactory, indicating the validity of the dis-
persion relation, the good parametrization of the forward proton Compton scattering amplitude, and the
presence of a J=0 fixed pole within the accuracy of present experiment.

I. INTRODUCTION
~" ISTORICALLY, dispersion relations as applied

to particle physics were first derived and
analyzed by Gell-Mann, Goldberger, and Thirring'
in 1954. Owing to kinematical complexity and experi-
mental unfeasibility, a full-scale analysis' of nucleon
Compton scattering was not available until a recent
eGort in the accurate measurement of the unpolarized

~ Work supported in part by the National Research Council of
Canada.

~ M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys. Rev.
9S, 1612 (1954).

~ See the references quoted in R. Koberle, Phys. Rev. 166, 1558
(1968). Also P. S. Baranov, L. V. Fil'kov, and G. A. Sokol,
Fortschr. Physik 16, 595 (1968); G. C. Fox and D. Z. Freedman,
Phys. Rev. 182, 1628 (1969).

total photoabsorption cross section. ' This permitted a
calculation of the real part' of the spin-averaged for-
ward amplitude from threshold to 20 GeV, although
the comparison of such a calculation with experiment
has yet to be done. 4

The form of the invariant amplitudes for (nucleon)
Compton scattering was 6rst investigated over ten
years ago. In 1958, Prange' wrote down six invariant
amplitudes based on the principles of Lorentz, gauge,

parity, and charge-conjugation invariance. They were

' M. Damashek and F.J. Gilman, Phys. Rev. D 1, 1319 (1970).
4 S. J. Brodsky, A. C. Hearn, and R. G. Parsons, Phys. Rev.

187, 1899 (1969).
5 R. E. Prange, Phys. Rev. 110, 240 (1958). Actually he dealt

with electron Compton scattering.


