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Current Algebra beyond the Tree Approximation
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A method is presented for constructing current-algebra amplitudes which satisfy (1) threshold theorems,
(2) crossing symmetry, (3) approximate unitarity, and (4) cut-plane analyticity; and reduce to the usual
tree approximation in the narrow-resonance limit. Pion-pion scattering is considered in detail to illustrate
the method. A derivation of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation is provided which
makes no reference to vector-meson dominance.

I. INTRODUCTION

HE current-algebra approach to hadron physics
has been extremely fruitful as a uni6ed phe-

nomenology of weak, electromagnetic, and strong
processes. The underlying assumptions, once accepted,
lead to a number of sum rules and soft-pion threshold
theorems. ' However, these predictions do not exhaust
the content of the theory, since the current algebra
still constrains amplitudes away from threshold, much
as does ordinary gauge invariance in hadron electro-
dynamics. An important question is how best to utilize
the additional information contained in the current-
commutation relations.

An ingenious way to approach this problem is to
construct realizations of the current algebra by means
of a phenomenological Lagrangian. ' Such a Lagrangian,
when evaluated in tree-graph approximation (no
closed-loop graphs), satisfies all the current-algebra
constraints and threshold theorems. This approxi-
mation is then the first term in a systematic expansion
of the 5 matrix, with the number of closed loops char-
acterizing the order of the perturbation, and the sum
of all graphs of a fixed order separately satisfying the
constraints. ' In spite of the beauty of this approach,
it is beset with a number of difficulties. Among these
are the following:

(1) The tree approximation to the 5 matrix violates
unitarity badly, since all amplitudes are real.

(2) It is very dificult (or impossible) to compute
higher-order corrections, since the Lagrangians
are nonlinear and nonrenormalizable.

*On leave of absence from Brandeis University, Waltham,
Mass. , 1969-70.

$ Supported in part by the Air Force OKce of Scientific Research
under Grant No. AF-AFOSR-69-1629 (Rockefeller) and by the
AEC under Contract No. AT(30-1) 3178 (Brandeis).' For a review of the subject, see S. L. Adler and R. F. Dashen,
Current c4lgebru (Benjamin, New York, 1968); S. Weinberg,
Rapporteur's talk, in Proceedings of the Fonrteenth International
Conference on High-Energy Physics, Vienna, 1968', edited by J.
Prentki and J. Steinberger (CERN, Geneva, 1968), p. 253.' S. Weinberg, Phys. Rev. Letters 18, 188 (1967);J. Schwinger,
Phys. Letters 248, 473 (1967); J. Wess and B. Zumino, Phys.
Rev. 163, 1722 (1967). See S. Gasiorowicz and D. Gefhn, Rev.
Mod. Phys. 41, 531 (1969),for a review of the subject.

3 S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 1/7, 2239
(1969); C. G. Callan, S. Coleman, J. Wess, and B. Zumino, ibid.
177, 2247 (1969).

(3) Even if such corrections could be computed, the
resultant renormalized perturbation series would
probably diverge, since the perturbation param-
eter has the strength characteristic of strong
interactions.

(4) There is no reason why the tree approximation
should be a good approximation to the complete
theory even if it could be calculated by these
techniques.

An alternative method for constructing realizations
follows from the Ward-Takahashi identities of current
algebra. ' ' Arty (coupled) set of amplitudes which
satisfies the Ward identities automatically satis6es all
the current-algebra constraints. It is obvious that the
solution to the Ward identities is not unique, so that
one must add additional dynamical information if
there is to be any hope of completely specifying the
amplitudes. The advantage of the Ward-identity
method for such a program is that one may explore the
consequences of various dynamical requirements with-
out fear of violating current algebra. For example, if
one postulates certain smoothness conditions for a set
of amputated one-particle irreducible amplitudes which
satisfy the Ward identities, one obtains the same 5
matrix as that of the tree approximation to phenomeno-
logical Lagrangians. ' 3oth versions of the tree
approximation have the same shortcomings.

In this paper we show that it is possible to avoid this
approximation by making direct use of unitarity as a
dynamical constraint. As a result we are able to for-
mulate a method for constructing amplitudes which
satisfy the following: (1) the Ward identities, (2)
threshold theorerns, (3) crossing symmetry, (4) approxi-
mate two-particle unitarity, and (5) cut-plane analy-
ticity, and which reduce to the usual tree approximation
in the narrow-resonance limit. The steps of the method
for on-shell scattering processes are7:

(1) Solve the Ward identities connected to the ampli-
tude of interest by the techniques of Ref. 5,

4 H. J. Schnitser and S. Weinberg, Phys. Rev. 164, 1828 (1967).
~ I. S. Gerstein and H. J. Schnitzer, Phys. Rev. 170, 1638

(1968). We use the normalizations and conventions of this paper.' The Ward-identity method is summarized in H. J. Schnitzer,
Proceedings of 1969Erice Summer School (unpublished).' For an abbreviated report, see H. J. Schnitzer, Phys. Rev.
Letters 24, 1384 (1970).
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which explicitly displays all one-particle re-
ducible amplitudes implied by the identities.

(2) Express the amplitude, evaluated on the mass
shell of the external particles, in terms of propa-
gators, form factors, and seagulls.

(3) Formulate the direct-channel two-particle pa, r-
tial-wave unitarity relations which couple the
two-, three-, and four-point functions.

(4) Assume that the imaginary part of the "full
seagull" is negligible in the elastic region, and
construct the modified partial-wave amplitudes
which result from this assumption and the
unitarity equations.

(5) Solve for the form factors and two-point func-
tions by means of the Omnes integral equation
or an effective-range expansion, so as to satisfy
the unitarity equations and guarantee correct
analyticity properties.

(6) Assume that two-point functions and form
factors so calculated may be analytically con-
tinued to the spacelike region, and insert them
into the amplitude constructed in step (2).

(7) Estimate the seagull in terms of a simple model
satisfying the hypothesis of step (4).

(8) Determine the free parameters of the model from
unitarity and the consistency conditions of step
(4).

The resulting amplitude has all the properties adver-
tised above. One of the advantages of this technique is
that there is no comrnittment to the existence of reso-
nances. Hopefully, they can be derived from the general
structure of the theory, unitarity, and analyticity. ' '

Pion-pion scattering is a particularly interesting
problem of current algebra. "Ke use it to illustrate the
details of our point of view, and to discuss the justifi-
cation of the various steps of the proposed method.
Unfortunately, we are not able to comment as to the
uniqueness of our aniplitude.

II. STRUCTURE OF AMPLITUDE

The general structure of an amplitude satisfying
current algebra can be expressed as the solution to a

Other attempts to combine current algebra and unitarity are
J. Iliopoulos, Nuovo Cimento 53A, 552 (1968); L. S. Brown and
R. L. Goble, Phys. Rev. Letters 20, 346 (1968); A. Amatya, A.
Pagnamenta, and B. Renner, Phys. Rev. 172, 1755 (1968); R.
Arnowitt, M. H. I'riedman, P. Nath, and R. Suitor, ibid.
175, 1820 (1968); J. J. Brehin, E. Golowich, and S. C. Prasad,
Phys. Rev. Letters 23, 666 (1969); R. Rockmore, ibid. 24, 541
(1970); P. V. Collins, Nucl. Phys. B21, 577 (1970).These papers
do not present a program to compute the complete xm amplitude
T(s,t), valid for a range of energies, but concentrate on special
features of low-energy wx scattering.

~An alternative program to implement unitarity in current-
algebra amplitudes has been developed by J. L. Basdevant and
B. W. Lee, Phys. Letters 29B, 437 (1969), who apply the Pade
approximation to the renormalized cr model. However, this method
seems to be limited to renormalizable 6eld theories. Our techniques
are closer to the spirit of 8-matrix theory."S. steinberg, Phys. Rev. Letters 17, 616 (1967); see also
N. N. Khuri, Phys. Rev. 153, 1477 (1967).

coupled set of Ward identities. I'or the particular case
of mm scattering, the techniques of Refs. 4 and 5, and
Appendix A, lead to a simple and explicit structure for
the amplitude describing II,(qi)+ IIb(q2) —+ II, (q&)

+IId(q4), which on the mass shell is"

T($ t N)ebcd

=qi qz.qbbq4 T (qr, q2i —q3)"" '
'F 'L—3,—V(iV+2) —4]

XLPo+ bP2$' '"+F. '(——',+Ei)

" "'""-"(;)-(.')'(:)-(:)
+([Peg '"LFb(s) —1]'Do(s) '+crossed terms}

+(LP~j'b ' LF2(s) —1j'A2(s) '+crossed terms}

—2(t Pi)'b''(n —t)LFi(s) —Ei)'6& (s) '

+crossed terms}

= (full seagull)+(5+P-wave polynomials)

+(full 5+P-wave tree structures) . (2.1)

In this equation, T,(q, , q, ; —qs)l"""' is the "seagull""
for axial-axial scattering evaluated on the pion mass
shell; the [Pr]' '" are s-channel projection operators
for isospin I; Fi(s) is the electromagnetic form factor
of the pion; Fo(s) (F~(s)) is the I=0 (2) form factor of
the iriro. vertex; Ar(s) is the two-point function for the
scalar field 0 projected to isospin I;

dm'pv(rn')
Av(s) =

SS —S

is the coefficient of g„„ in the two-point function of
isovector currents, Cv= Av(0); Ki= 1+ ', CvF ', X-
denotes the representation (2N, —2E) of chiral SU(2)
XSU(2) to which clA and the o field belong, and m = 1

throughout.
We emphasize that Eq. (2.1) is exact given the fol-

lowing hypotheses: (1) local, chiral SU(2) XSU(2)
current-commutation relations, (2) the equal-time
commutatol LA p' (x),clA '(0) ]6(x') = (r ' (x)6'( )xdefines
a local, scalar field, (3) BA(x) and o"(x) transform
according to the (2E,—2Ã) representation of chir al

SU(2)XSU(2), (4) the Weinberg first sum rule is

valid, " and (5) the two-point function J'd'x e'&

X(T(BA(x)BA(0)})p is dominated by the pion pole.
Assumptions (4) and (5) are made for technical con-
venience, and may be relaxed if need be.

"See Eq. (43) of Ref. 5.
"In perturbation theory it is conventional to call our "full

trees" the amputated, one-particle reducible parts. Similarly our
"full seagull" is the amputated, one-particleirreducible part."S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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By construction, (2.1) satisfies the Ward identities,
crossing symmetry, and the appropriate threshold
theorems. This last property can easily be verided as a
consequence of the normalization of the form factors,
and the suppression of the seagull at threshold. That is,
(2.1) predicts the Weinberg scattering lengths'0 to
0(m '/M') since (a) Fi(0)= 1 and Fo,,(0) = 1+0(m '/
M'), which follows from the Ward identities for the
three-point functions, (b) the seagull is 0(m '/3PF '),
and (c) P(4m ') =F(0)jO(m '/M').

We characterize the corrections to the various thresh-
old theorems by a typical mass M (not necessarily the
same for each), which represents the energy at which

important resonant effects appear in the channel in

question.
One can get further insight into the structure of the

mx amplitude by considering the s-channel partial-wave
projection of (2.1). The partial-wave amplitudes for S
and I' waves have the general form

IinT(s) =p(s) j T (s)
~

',

ImP(s) =p(s) T*(s)P(s),

Imh(s) =p(s) ~
F(s) ~',

(3.1a)

(3.1b)

(3.1c)

where p(s) is the appropriate phase-space factor. We
define a partial-wave decomposition

T(s, t) "'d =16m. P (21+1)Pi(cose)Ti, p(s)

~fp 7abed (3, 2)

so that, with the normalization chosen in Appendix A
and Ref. 5,

III. UHITARITY

I.et us consider the requirements of elastic unitarity.
The two-particle partial-wave unitarity equations are

where
T(s) = h(s)+F(s)'h(s) —'

h(s) =R(s) 2KI"(s)+—K'h(s) '

(2.2) S )1/2
Ti,r(s) = —2

~

e*'"sin8ir,
(2.3)

' s-4i

with I'( s)= P( s)h( s) ', and

E= |. for 5 waves

=K~ for P waves.

We have defined R(s) = the partial-wave projection of

f t, (s,t)+polynomials+ (t)+ (I) channel trees}, and
t, (s,t) =q»q~, q3iq4, T, (qi, q, ; —q3) &"" for notational con-
venience. Stated in other words, R(s) is the partial-wave
projection of

s—4)"'
p(s) = —— —

~
8(s—4) for S waves (3.3)

32~ s i

1 (s—4)"'
0(s —4) for F waves

48m gs

for 4&s&16. From Eqs. (2.2), (2.3), and (3.1) it is
straightforward to show that

R(s, t) ~ "d= t, (s,t) 't"d —3F '$3Xpr+2) —47 Imh(s)=p(s) ~h(s) ~'

Iml'(s) =p(s) h*(s)I'(s) .

(3.4a)

(3.4b)

I)+ f F27- bdLF2(t) —17'62(t)-'+
c bl

Recall that the seagull t, (s,t) is single-particle irre-
ducible with respect to the 0- field and the isovector
current, and is 0(m 4) at threshold, which means that
it should be negligible at sufFiciently low energies.
Hence, it is plausible that all important low-energy
effects are well represented by the tree structures and
polynomials, and that the characteristic mass associated
with the seagull is large. These assumptions lead to the
hypothesis that

L 7-'"( —)L ()- 7' () '

+( I ( I
. (24)

From (2.4) it is clear that R(s) has both right- and left-
hand cuts, although the right-hand cuts are entirely
due to t, (s,t). The self-consistent calculation of R(s)
plays a central role in our theory.

Imt, (s,t) 0 for 4&s&so,

where hopefully so is at least as large as the energy of
the first mm resonance. If one wishes, one might under-
stand this assumption to mean that the important
contributions to the seagull come from resonances of
large mass, which is neither unreasonable nor incon-
sistent with other phenomenological approaches to mm.

scattering. This hypothesis can be translated into the
following result:
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Iemznu 1. If Imt, (s) =0 to 0(e') for 4&s&s,, then'4

Iz(s) = K—I'(s)+0(e),

T (s) = [F(s) —K/I'(s)+0 (s),

R(s) =KT(s)F(s) '+0(s),

(3.5a)

(3.5b)

(3.5c)

R(s) is real to 0(es) (3.5d)

F(s) =K+K 'R(s)A(s), (3.7)

from which we obtain

ImF(s) =K 'R(s)p(s) ~F(s) ~' (3.8)

by virtue of (3.1c) and (3.5d). Equation (3.8) enables

us to construct an effective-range approximation for

F(s) in the usual way, valid for 4&s&sp. However, to
make proper use of (3.6) as a self-consistency condition,
we must know F(s) and A(s) for s&0. It is not obvious

that (3.7) can be continued to s&0 because of the
contradictory analytic properties attributed to R(s) in

(2.4) and (3.6). Although (3.6) continued implies that
R(s) remains real for s&0, (2.4) clearly implies that
R(s) has a left-hand cut. In spite of this difFiculty, we

are anxious to continue (3.7), since we have no other

way of determining F(s) and A(s) for s&0. A com-

promise solution is to continue (3.7) in such a way as
to minimize the inconsistency, by requiring the dis-

continuity of R(s) across the nearby portion of the
left-hand cut to be negligible for S and I' waves. A
sufficient condition for this is the requirement that the
characteristic masses associated with the (I) and (I)
channel trees be large compared to m . This then also
guarantees that the correction to the PCAC (partial
conservation of axial-vector current) prediction,

Fo,s(0) = 1+0(rn '/M'), is small. We adopt these
conditions in all that follows.

4 An estimate gives Ret, (s) (s/M2) T (s), and Imt, (s)
~py(s)/Mzg Rei, (s), where M (y(s)) is a characteristic mass
(width) associated with the partial-wave projection of the seagull.
This implies that c(s)2~st(s)/314.

"The detailed error estimates will be suppressed in what
follows. A postiori it turns out that they are negligible in the
elastic region."PI (0) = 1 implies R1(0) = —E1/2X&' ', which gives Weinberg s
prediction for the P-wave scattering lengths, with a correction of
order riz 'dtz(0)/ds

for this energy region, "
Proof. The conclusions follow from the identity

Iml, (s) = ~h(s)+KI'(s) ~s for 4&s&16.

From (3.5b) and (3.5c), we have

R(s)=K[F(s)—KjA(s) ' for 4&s&sp, (3.6)

which is an important dynamical constraint on the
theory. Equation (3.6) is a, self-consistency condition
which requires R(s), as computed from F(s) and A{s),
to be identical to the partial-wave projection of (2.4).
Equation (3.6) rewritten is"

IV. LOW-ENERGY AMPLITUDE

A. Threshold

Equations (3.5c) and (3.9) imply that the S- and
I'-wave amplitudes are of the form

T(s) = —(d+ fs)F (s) for 4&s& s, . (4.1)

However, there is no guarantee that the partial-wave
projection of (2.1) will agree with (4.1). They will be
identical for s) 4, only if (a) Imt, (s) =0, and (b) R(s)
satisfies the self-consistency conditions. Since we can
always arbitrarily choose a parametrization of t, (s) in
which the first is true for sufficiently low energies, we
shift the entire weight of the discussion to R(s) If these.
two conditions are satisfied we will have a crossing-
symmetric, approximately unitary model. Therefore

(Partial-wave Projection of (2.4)) = —E(d+ fs) (4 2)

is the self consistency c-ondilion which will determine the
free parameters of the theory.

For s su%.ciently close to threshold, one can expand
the left-hand side of (4.2) in powers of (s—4), retaining
only the constant and linear terms. The results are":

coestamt terms

Fi(0) = 1 implies di=-', F
I=O:

(4.3)

[dp+4f oh= F '[N(N+2)+4j
+—,dpFp(0)[Fp(0) —I]+(10/3)dsFs(0)

X[F.(0)-1l-l.(4), (4.4)
I=Z:

[ds+4fs)= sF '[N(N+2) —8)
+ s dpFo(0) [Fp(0)—1j+sdsFr(0)

X [Fs(0)—1j—ls (4); (4.5)
"The subscripts denote the isospin associated with the various

parameters.

To be specific we assume that F(s) and A(s) are
determined for s&0 by analytic continuation of (3.7).
Since R(s) must then have the characteristics described
in the previous paragraph, we also assume that

R(s) = K—(d+ fs) (3 9)

is a reasonable approximation for all values of s of
interest, both positive and negative. These additional
assumptions enable us to compute R(s) from (2.4),
which now must equal R(s) as computed from (3.9).
If this self-consistency condition is satisfied, we can
determine all elements of (2.1). The amplitude so
constructed will have the properties described in the
Introduction. It is convenient to divide the remaining
discussion according to energy region: threshold, elastic,
and resonance regions.
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terms linear in (s—4)

fp—= —2F '+4[fg(1—Et)+-,'F
XdF (0)/«j+-', Fo(0)[fo(Fo(0)—1)
+dpdFo(0)/dl)+ (3/3)F&(0)[fs(Fs(0)—1)

-+dodFs(0)/dt)+dtp(4)/ds, (4.6)

Thus the additional conditions provided by (4.11) and
(4.13) remove the spurious poles from h(s) in a way
which is completely compatible with assumptions
underlying the results of (4.9). The model now satisfies
approximate unitarity and crossing in the neighborhood
of threshold.

B. Elastic Region

fs F—'———4[fg(1—E)+—'F 'dFt(0)/dt)
+-'Fo(0) [fo(Fo(0)—1)+dodFo(0)/dt j
+oFs(0) [fs(Fp(0) —1)+dsdFs(0)/dt)

+d ts (4)/ds,

I,et us consider our assumptions to be valid through
the entire elastic region. Again (4.2) is the key equation
to be satisfied, although we now require more detailed
expressions for F(s), A(s), and l, (s) Equ.ations (3.8)

(4.7) and (3.9), (4.9), and (4.13) enable us to construct an
effective-range expansion for F(s) with the correct
analyticity properties. In the absence of COD
(Castillejo-Dalitz-Dyson) singularities, "

—[-',F„'+4']Et=—-',EtF '—4[ft(1—Et)
+lF='dF (0)/«3 —lF (0)[f (Fo(0)—1)
+dpdFo(0)/dtj+-, 'Fs(0) [fs(Fs(0)—1)

+dsdFp(0)/dt j+3dtj(4)/ds. (4.8)

Fo(s) =Fo(0)(1+Bos+F~ '[N(N+2) —4]
X [gp(s) —gp(0) —sgo'(0) )

+»F='[gp(e) —go(o) j} ', (4 14a)

As a result we 6nd

dp=F '[N(N+2) 4)+—0(m '/M'),

fp=2F '+0(m '/M'),

ds ——sF. '[N(N+2)+2j+0( m'/M'),

fo Fs+0———(m '/M'),

F,(s) =F (0){1+B,s+ 'F '[N(1V—+2)+2)
X [go(s) —go(0) —sgo'(0) j

—»='[gp(e) —go(0) 7} ', (4 14b)(4.9a)

(4 9b) and

(4,9c) Ft(s)= (1+B&s+~F '[g (s)—g (0)

(4 9d)
' —Sgt (0)j} (4.14c)

with

F 'f~ 0(m '/M')f——p, (49e)

and

do dFo(o) m. '
Fp(0) —1 + =0

fp dh M'

do dFo(0) m '
Fo(0) —1 — + =0

fp dl M'

(4.12)

Since F 'f& is already of 0(m '/M') fp, we remove the
spurious singularity from Ar(s) by choosing

fr=0. (4.13)

where the 0(m '/M') are corrections which can be
characterized in terms of typical masses for the form
factors and seagull.

There is an additional question that must be con-
sidered before we are assured of the consistency of the
theory. From (3.7) and (3.9),

F(&)=E—(d+f&)~(&) (4 1o)

which means A(s) will have a spurious pole at s= d/f-
unless F( d/f) =E, or f—=0. To avoid the spurious
pole in the S-wave propagators, we must set

Fo(—do/fo) = 1 and Fs(—ds/fo) = 1. (4.11)

This is perfectly feasible, since m 'fp/do and m 'f, /d&

are both 0(1).Then

s —4 'I' s't'+(s —4)
32m'go(s) =2 ln

s — 2

s—4) "'ior—
s J

g~(~) =k(~ —4)go(e),

B= —F'(0)dF (0)/ds,

(4 13)

and with h(s) determined from Eq. (4.10).
We can simplify the discussion somewhat by means

of a simple hypothesis for the I'-wave vertex, which has
no analog for S waves. Motivated by the hard-pion
philosophy, we assume ImI"&(s)=0 for 4&s&st&so.
The consequences of this additional assumption are:

I.emma Z (KSFR relation). "If

Imtt(s) = 0 for 4($(sp
"It is illusory that Bo can be Axed by the requirement that

Fo( do/fo) =1, since Fo(——do/fo) =Fo(0)L1—(do/fo)Bo] to a
high degree of accuracy, as can be veri6ed by a numerical evalua-
tion of the omitted terms. Then Fo(0) = 1—(do/fo)B0 is consistent
with the dehnition Bo———F0(0)dF0(0)/ds —dFO(0)/ds. There is
no new information. Similarly for I=2.

'~ K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
225 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966); F. Gilrnan and H. J. Schnitzer, ibid. 150, 1362 (1966);
J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966); M. Ademollo,
Nuovo Cimento 46, 156 (1966).
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0
E
II

N

E
O

R, (x)

Bo = —(3/2) mp

EIl = —l/I P
Bq=0

x= (s-4) mp
II'

x

and the seagull T, (s,f)~"".The detailed consideration
of the self-consistency condition (4.2) at finite energies
depends on an estimate of the seagull. For this we take
over the model described in Ref. 5, which expresses the
seagull in terms of two real parameters, (r and fs, which
are expected to be of order F 'O(m '/M') i e

4T (~ f)" '"=[Foj"'"{2&i[3(~—2)'+(f —2)'
+(I—2) $—)s[2(s—2)s+4(]—2)s+4(~—2)s]}
+[& j""(2f.+5 )[(f—2)' —( —2)'j
+[F2)' ' (2]r[(f—2)'+(I—2)'j

—$2[2(s—2)'+ (t—2)'+ (u —2)'j}. (4.17)

then

That is,

and

Iml'i(s)=0 for 4&s&si&ss,

Kg ——0 and sg ——so.

dm'p r (m')—2F '—
m2

Iml', (s) =0 for 4&s&s, .

(4.16)

proof. From Lemma 1 (suppressing the error esti-

mates), we have

h, (g) = —Ittl't(s) for 4&s&ss.

Then Iml'r(s) = 0 for 4&s&sr, which implies

pi(s)hr(s) = 0 in the same (finite) interval. Since

pi(s) &0, one must have hi(s) = 0. Then either I'i(s) =0
or Inst=0. Iiut if both ht(s) =0 and I'r(s) =0, there is

no I'-wave scattering, which is unacceptable. Hence

JCg ——0,
which implies

ht(s) =0 for 4&s&ss.

Remarks. It is known that at least two additional
assumptions must be added to current algebra to derive
the KSFR relation. Our two hypotheses are con-
siderably weaker than usual, as our derivation makes
no reference to vector-meson dominance. All that is

required is the hypotheses be true in a finite interval
of the elastic region. Our treatment of the KSFR
relation is compatible with vector-meson dominance
if our underlying equations can be extended to the
resonance region. Since E= 1 for 5 waves, there is no
analogous discussion for the xm.o- vertex.

We now assume X~=0 in all that follows. The re-
Inaining undetermined quantities are Bo, B~, 82, E,

R, (x) -.
Fm. 1. Comparison of the two sides of Eq. (4.2) for S and I

waves. El(s) denotes the function dered in (2.3). One requires
Ro(s) and Rr(s), as computed from the left-hand side of (4.2), to
coincide with the straight lines, and Rq(s) =0 for self-consistency.

As a further simplification, we fix X=1 and 82 ——0,
consistent with the absence of any significant structure
in the I=2 channel. (Some discussion of this choice is
to be found in Appendix B.)

We now have all the ingredients for the calculation
of Eq. (4.2). It turns out that one can satisfy (4.2)
reasonably well for a broad range of values for Bs, ]r,
and (s, which can be characterized by Bo&Br&0,
m 'lBil((1, and F 'fi F '&s=O(Br). This kind of
parametrization ensures that the S waves satisfy
unitarity throughout the elastic region. For the I'
waves, the self-consistency condition is not as well
satisfied, while the D-wave and higher partial-wave
amplitudes are purely real and not unitary, although
they are the projections of a crossing-symmetric ampli-
tude. The violation of unitarity in the elastic region for
higher waves is not serious if the amplitudes are suffi-
ciently small, which is ensured by our earlier require-
ment that the characteristic masses M for the (t) and
(I) channel trees are sufficiently large.

To be more speci6c, consider a definite choice of
parameters,

Bo= sBr = —(1/20)m —'

f,=$, = —(1/60) m.-sF.-s.

(4.18a)

(4.18b)

cot8 =ReF (s)/ImF (s), 4& s& 16, (4.19)

with the numerical results displayed. in Fig. 2. Similarly,
this allows us to obtain the scattering lengths from

(The motivation for this choice will become apparent
in the next section. ) We have computed both sides of
(4.2) with these parameters, with the results for the
5 and I' waves shown in Fig. 1. It is clear that the two
ways of computing R(s) are in excellent agreement
throughout the elastic region, verifying the self-
consistency of the model. This also means that Eq.
(4.1) is a valid representation of the 5- and P-wave
amplitudes in the interval 4&s&16. Since (4.1) is a
good approximation to the partial-wave projection of
our complete amplitude (in the elastic region), the
phase shifts can be conveniently computed from
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(4.14), namely '0

m.F —'
-EEPV+2)+4j(1+4m. 'Bo) '

327r
(4.20a,)

l00

80

2m J
$$(tV+2) —8$(1+4m 'Bg) ',

5 32m
(4.20b) 60

ail d
&~(1/24)m 'F '(1+4m 'B~) '. (4.20c)

40

20
The parameters of (4.18) imply a 15%%u~ correction to the
Weinberg scattering lengths in the I=O and 1 states.

V. UNITARIZED TREE APPROXIMATION

We have succeeded in constructing a representation
of 7r7f- scattering which satisfies current algebra, crossing,
and unitarity throughout the elastic region. I,et us now
be more speculative and extend the model to higher
energies by assuming that (1) elastic unitarity is a good
approximation for 16&s&32 (for which we have no
a priori explanation), and (2) the model constructed
in the previous sections is still valid in the inelastic
region. One criterion for the validity of these assump-
tions is the self-consistency condition for E(s). Figure
1 shows the comparison of the two sides of (4.2), in-
cluding the extension to the inelastic region. Since the
self-consistency condition is qualitatively satisfied for
s&16, our model can serve as a reasonable guide to ~sr

scattering above the inelastic threshold, although the
quantitative details may not be precisely correct.

The lack of complete self-consistency implies an
ambiguity in the computation of phase shifts for s& 16.
We have two options: (1) to represent the partial-wave
amplitude by (4.1), in which case elastic unitarity is
satisfied, but crossing symmetry is violated for s&16,
or (2) to project Kq. (2.1) into partial waves, which
preserves crossing but violates unitarity for s& 16. The
two procedures agree qualitatively in their prediction
of phase shifts for s&32. Therefore, we extend the S-
and P-wave phase shifts to 16&s&32, with the results
plotted in Fig. 2. Our choice of parameters in (4.18)
produces two resonances at s=30, in I=O and I=1,
with the I=O resonance being very broad, while the p
meson is quite narrow. ' In fact the p-meson width
predicted by (4.14c) is identical to that of the hard-pion
analysis (with 8= —1).4"

We now define what we call the Nmitarised tree
approximation, which we assume up to energies of
s&32. The components of this approximation are:

"We do not predict these resonances, but merely And their
existence is compatible with our hypotheses.

"Therefore, p dominance is a good approximation to (4.14c)
and similar equations. However, the o.-dominance or narrow-width
approximation to (4.14a), (4.14b), etc. is highly suspect. We also
doubt whether the hard-pion approximation is very accurate
when applied to o decays since F0(s) =P'0(s)60(s) ' is not well
represented by a polynomial.

-20

l2 l6 20 24 28

S

I'rG. 2. S and t'-wave phase-shifts as computed
from projection of (2.1).

VI. CONCLUSIONS

We have described a method to construct current-
Blgebra amplitudes which satisfy unitarity, crossing
symmetry, and threshold theorems. As a specific result,
we found a parametrization of Kq. (2.1) which we call
the unitarised tree approximation It defines a scat.tering
amplitude T(s,t), whose partial-wave projection coin-
cides with (4.1) for 4&s&16,"butimproves upon (4.1)
in 0&s&4 and s&16. To take a broader view, the
power of the method can be traced directly to the exact
representation given by (2.1), which gives a very simple
structure to that which can be calculated, and sup-
presses that which is more dificult to calculate. Al-
though we have worked exclusively with vr7f- scattering,
these ideas should be applicable to other problems for
which the Ward identities of chiral current algebra

~~ The various calculations of Ref. 8 have not gone beyond this
first approximation.

(1) the representation (2.1), (2) the form factors, as
given by (4.14), analytically continued, as required by
(2.1), (3) A(s) as determined by (4.10), (4.11), (4.13),
and (4.16), (4) Eg=0, (5) Br= 3Bo= m, '; Bg=0, —
and (6) T, (s, t) as in (4.17), with tg=gg —— ', mp 'Il-—
We have already given a discussion of the properties
of this model in various energy regions. Now further
note that the unitarized tree approximation reduces to
the usual tree approximation in the narrow-resonance
limit. Our theory thus gives some sense of the accuracy
of the tree approximation of the phenomenological
Lagrangian technique.
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play a role, such ~N and xx scattering. Other problems
such as mN~2zN and 3x ~3m would provide inter-
esting exercises in the combination of current-algebra
and three-particle unitarity. Further questions are
raised by our intuitive treatment of the seagull, which
we would hope could be put on a firmer footing.

Finally, we feel our method should be regarded as an
alternative to the program of I ee.' Our results suggest
that his findings are probably a consequence of current
algebra, crossing symmetry, unitarity, and analyticity,
rather than the specific field-theoretic model. Further,
since his method appears to be applicable only for renor-
malized field theories, it is not clear what one is to do
if the theory underlying current algebra is nonrenor-
malizable. Here such difficulties are avoided, but the
price we pay is the appearance of free parameters such

as &0, Bl, 82, (1, and tl. Hopefully, these parameters
can be determined by a sharper application of S-matrix
methodology.
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APPENDIX A

We sketch the derivation of Eq. (2.1) of the text.
One begins with Eq. (43) of Ref. 5, and then displays
the structure for the S waves, due to the a- field, ac-
cording to the method of Ref. 5. On the pion mass shell,
the result is

m. 'F.'M(ql, q2, q3)
'""=CA'ql„q2, q31q4c~c"'(ql, q2, q3) acl. "'+ m. 'F.'[m. 'F.'1'Z"'(q3+q4, ql) ' "+L'f "j

g3 gl ps
&&X

—'(q, +q )' "[m 'F 'Fg"'(ql+q2, q3)'" '"+L'" "'j+ 4-+ + +-& —30 "0'" [ CA'qg, —
b c a c

Xq4 r (q3 q4)1 +2(q3 q4) )~V(ql+q2) '[ CA ql q2Z (ql q2)a '+~2(ql q2) ']+[ 0F +2(CA 2Cv))

x(,.—,) (c.-c,)+( )-( )+(')-(') . (ai)

The next step is to relate these proper vertex parts
and two-point functions to conventional form factors
and propagators. The Ward identities for the ~~V„
vertex imply

The ~~m. form factor is defined by

[(2~)'4q2'q3'3'"(&d(ql+q2)
I
~"(o)

~
&.(q2))

2P 2P (0) (' ieb, cdmc c c a Z (qlqq2) '
~ 2cc={qc+((c)c=m c

P (q 2)ab, cd (A6)—CA'ql„q2, I'{1)(ql, q2) „,),+2 (ql —q2)1

+[CA 2Cvg(q2 ql)—a~v(ql+q2—) 'al
F r (ql, q2) 1, (A2)

Therefore, PCAC implies

m 'Fq(0)a' '"= Iab"'+0(m '—jM') (A7)

which is related to the pion electromagnetic form factor
by

(ql+q2)1P1((ql+q2) )
=m„4F.2hv((ql+q2)2)I'{') (q, ,q,)), (A3)

where the correction is characterized by the extrap-
olation to the pion mass shell, and the last term in
Eq. (A5).

One neXt deCOrnpOSeS FS(q')ab'" and Z(q')a '" intO
isospin components, for which Weinberg's analysis"
becomes extremely useful. We find

3L '"=3(LU'+21V+2)b 'b'"

+—'(1V'+21V —3) (b 'bb"+b'b ") (A8)

on the pion mass shell, where Fl(q') and hv(q2) are as
in Kq. (2.1).

We must also consider the m.~a. vertices and a. propa-
gators, with the relevant Ward identity being and similarly decompose o- ~. We define the propagators

and form factors for the 0. field, normalized so as to
satisfy Kqs. (3.1c) and (3.3), i.e.,
2Za' '"(s) = 1U2 (1V/2) 21I1,(s)[F0) b '"

+[-1V'(1V—1)/(1V+3)2~2(s)[&2]'"d (A9)

CA q21(ql+q2)af Z (qlyq2)la
4P 4P {0)(q q )abcd+m 2P 2Labdc

+Z ""(q,)m. 'F.'[D.(q2) '+D. (q, +—q2)
—g (0)

—'j. (A4) and
The limit q~, q2 ~ 0 implies that

4p 4r (0) (0 0)abcd+m 2p 2jabdc

+m 'F 'Z "d(0)A (0) '=0. (A5)

2m 'Fg(s)' b=1V(1—V+2)F0(s)[F0j ' 'f

+-,2 (1V+3)(1V—1)F2(s)p'2]"r. (A10)
~ S. %'einberg, Phys. Rev. 166, 1568 (1968).
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T Po(3 205) & Tpoo(0 2134)& Tpo'(2 9g63) (B5)

In the text we verified that

T(s) = (d+fs)F—(s) (4.1)

adequately represents the S-wave amplitude for
4&~st&16. One can ask further whether (4.1) can be
continued to 0 ~& s &~4; i.e., does (4.1) satisfy the
Martin constraints' As an example, consider (4.1),
together with (4.9), (4.14), and B,=O, with undeter-
mined parameters 80 and E. A surrimary of the results
follows:

(B3) requires dTp" (4)/ds(0, which implies

So&0.05/[1V(1V+2)+4j.
(B1) requires TP(0)) TP(4), whence

1.4+0.1[1V(1V+2)—4j

32+g[1V(1V+2)—4j

which implies 80&0.05 for 37= 1.

(B6)

(B7)

~ Note our sign convention.
~' A. Martin, Nuovo Cimento 4', 265 (1967);58A, 303 (1968);

see also G. Auberson, G. Mahoux, O. Brander, and A. Martin,
CERN Report No. TH-1032 (unpublished); and R. Roskies,
Nuovo Cimento 65A, 467 (1970); 66A, 494(E) (1970).

By virtue of (Ag)-(A10),

Fp, o(0) =1+0(m, '/M') . (A11)

When the results of this section are combined with

(A1), one arrives at Eq. (2.1), where

T(s,t,u)~""=iF~'m, 'M(qr, qo, —
qo,

—q4)~"". (A12)

APPENDIX B: EXACT CONSTRAINTS

Martin has found exact constraints for the partial-
wave amplitudes in the region 0 ~& s ~&4. For the S-wave,
+'+' amplitude they are'4 "

Tooo(s)) Tooo(4), 0&s&4, (B1)

Tp"(0) ~& Tpoo(2(1+1/V3))~Tooo(3. 155), (B2)

dT,"(s)/ds(0, 1.7& s&~4, (B3)

dTp" (s)/ds) 0, 0 ~& s & 1.29, (B4)

0
0

2
I

Fro. 3. Graph of L
—To~(s)g versus s for the interval 0(s(4,

where T0~(s) is the S-wave m0 —m0 scattering amplitude as calcu-
lated from Eq. (4.1).

and

——,&B«0 for E=1

0(BO(1 for E&2.

To visualize the meaning of the constraints, we have
plotted —Tp"(s) [as computed from (4.1), E= 1,
Bp= —(1/20)m ', and Bo=Oj in Fig. 3. Although the
qualitative behavior is in agreement with (B1)—(B5),
inequalities (B2) and Tp(3.205) & Tp(0.2134) are
violated, since the minimum shown in Fig. 3 is at
s~0.5 instead of 1.29 &s & 1.7 as required. Further the
exact amplitude should have a larger rise near s=0.
The quantitative failure of (4, 1) near s=O should not
be entirely unexpected, since (4.1) does not have a
lef t-hand cut.

We conjecture that the partial-wave projection of
our comp/ete amplitude, the unitarized tree approxi-
mation, will lead to better agreement with (B1)—(B5),
since it coincides with (4.1) near s=4, but also has a
left-hand cut, and satisfies crossing. Therefore, it
should improve the agreement with the Martin in-
equalities, although we have not carried out the tedious
numerical work to verify this.

(B4) requires dTo" (0)/ds) 0, so that

Bo[1V(1V+2)—4j)-,'[1V(1V+2)—4j'Bo' (Bg)

which implies


