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Feyrulnan-Diagram Models of Fermion Daughter Regge Trajectories*t
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Some Feynman-diagram models of Regge poles are used to study daughter trajectories of fermions in
backward pion-nucleon scattering. Both the simple model with bare propagators and a generalized model
that includes propagator self-energy insertions are considered. It is found that, in the simple model, the
erst daughter is a fixed (as a function of the squared momentum transfer I) double pole in the complex
J plane. When self-energy corrections to the propagator are included, the fixed double pole breaks up into
a moving daughter trajectory and a moving companion trajectory. It is found that away from I=0, the
daughter and companion trajectories get mixed up in a complicated and model-dependent manner.

The matrix elements Bl'i(J) are summed over J, and
the sum converted to an integral in the complex J plane,
using the Sommerfeld-Watson transform. Then, if
certain very plausible assumptions are made about the
coupling constant and mass as a function of J, one can
distort the contour of integration and pick up Regge
poles from the denominator of the propagator. The
Feynman propagator leads to fixed daughter-trajectory
poles (as a function of squared momentum transfer tt)
in the complex J plane which violate unitarity. To
overcome these troubles, a more sophisticated model
that includes self-energy corrections to the propagator
is also considered; this changes all the fixed poles in the
complex J plane into moving ones.

An off-mass-shell propagator of spin J carries lower
spin components J—I, J—2, . . . . These lower spin com-
ponents are related to daughter trajectories, as empha-
sized by Durand. ' In the fermion case, MacDowell
symmetry is related to the presence of both parities in
the off-mass-shell propagator. The off.-mass-shell propa-
gator can be expanded in a series of projection operators
of definite spin and parity which are singular at m=0.
Reggeizing this expansion leads to a parent trajectory
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Fl|-. 1. Spin 1=1+~ exchange contribution
wski, to 7I-E scattering, where k =p+ft.

L. Durand III, Phys. Rev. IS4, 1537 (1967).
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'HE daughter Regge trajectories found by Freed-
man and Wang' in unequal-mass scattering have

been studied in a variety of models. Recently a Feyn-
man-diagram model, originally suggested. by Van
Hove, ' has been used to study this and other aspects of
Regge-pole theory. This type of Feynman-diagram
model has been used to study the first daughter of a
boson trajectory, ' the second daughter of a boson
trajectory that closely parallels this calculation, 4 con-
spiracies in vr-p scattering, and multi-Regge cou-
plings. ' ' The work reported here applies the Inodel to
fermion Regge trajectories; in particular, we study the
first daughter of a fermion trajectory.

The simplest case in which a fermion Regge pole
occurs is in backward pion-nucleon scattering. Since
the masses of the pion and nucleon are diferent, this
case also gives rise to daughter trajectories. The ampli-
tudes in pion-nucleon scattering have an important
symmetry relation, first noted by Macnowell. ' Since
MacDowell symmetry follows from very general proper-
ties of field theory, any dynamical model of fermion
Regge poles must be MacDowell symmetric. We have
preserved MacDowell symmetry explicitly throughout
this calculation. In this paper, we consistently ignore
the complications of isospin and signature.

The infinite set of Feynman diagrams considered in
the model consists of those in which a particle of spin
J=i+ra is exchanged in a crossed channel (see Fig. 1).

*This work is part of a thesis submitted to the University of
Illinois in partial fulfillment of the requirements for the Ph. D.
degree.

$ Work supported in part by a National Science Foundation
contract and in part by a NSF Graduate Fellowship.

$ Present address: Department of Physics, University of
Washington, Seattle, Wash. 98105.' D. Z. Freedman and J.-M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 153, 1596 (1967).' L. Van Hove, Phys. Letters 248, 183 (1967),

3 R. L. Sugar and J. D. Sullivan, Phys. Rev. 166, 1515 (1968).
4 D. Steele, following paper, Phys. Rev. D 2, 1610 (1970).' R. L. Sugar and R. Blankenbecler, Phys. Rev, Letters 20, 1014

(1968);R. Blankenbecler, R. L. Sugar, and J. D. Sullivan, Phys.
Rev. 172, 1451 (1968).

6R. Slankenbecler and R. L. Sugar, Phys. Rev. 168, 1597
(1968); J. M. Kosterlitz, Xucl. Phys. 89, 273 (1969).

7 I. T. Drummond, P. V. Landshoff, and K. J. Zakrze
Nucl. Phys. Bll, 384 (1969); Phys. Letters 288, 676 (1969).

S. %. MacDowell, Phys. Rev. 116, 774 (1959).



FEYNMAN —DIAGRAM MODEI. S OF I KP iVI ION DAPJGIi. "1 ER . .

and a series of daughters such that, while each term is
singular at 1=0, the sum is finite. One of the virtues of
this type of model is that it provides a natural ex-
planation of how daughter trajectories arise and how
they cancel the singularities of the leading pole
traj ectory.

The structure of the first daughter of a fermion
trajectory is more complicated than that of a boson
trajectory. The simple model with Feynman propa-
gators, considered in Sec. II, leads to fixed single and
double poles for the fermion first daughter. When self-

energy corrections to the propagator are included, in
Sec. III, the fixed single pole becomes a moving one,
and the fixed double pole becomes two moving ones,
one of which is the daughter and the other of which has
a nonsingular residue at u =0.Away from u =0, the two
trajectories get mixed up in a complicated manner
reminiscent of the trajectories calculated by Cutkosky
and neo" using the Bethe-Salpeter equation with a
potential. These calculations suggest that it is unlikely
that the daughter trajectones are parallel to the parent
traj ectory.

II. FEYNMAN-DIAGRAM MODEL OF FERMION
REGGE POLES WITHOUT SELF-

ENERGY BUBBLES

The class of Feynman diagrams that we consider in
this section consists of those in which a particle of spin
J=l+-', =-', , sz, ss, . . . is exchanged in the u channel. We
use the model to study the first daughter trajectory,
which comes from the I—& spin component carried by.

the off-mass-shell propagator of spin J=l+is. ln this
model, we find that the first daughter consists of a fixed
single pole and a coincident fixed double pole in the
complex J plane. Since fixed poles in the complex J
plane violate unitarity and hence are unphysical, we

will consider a more sophisticated model in Sec. III in
which the fixed poles become poles that move as a
function of 8'=n'~'.

We begin by defining the notation to be used (see
Fig. 1) and. giving a few kinematical formulas for
reference. The nucleon center-of-mass energy in the I
channel is given by

E= (W'+m' —u')/2W = (p lz)/W = (p' k)/W, (1)

where 8"=O' =N. The momentum and scattering angle
in the center-of-mass system are given by

p
' = m'+ (u+—m' u')'/4u— (2)

p„' cosg„=u' ,'(s+u)+ (—u+-m' —ii')'/4u. (3)

It is convenient to work with a set of amplitudes
suggested by Gribov, Okun, and Pomeranchuk. "They
write the scattering amplitude as

JK=u(p') pA i(s,u) (li+W)+As(s, u) (lr W) 5u(p), —(4)
0 R. E. Cutkosky and B. B. neo, Phys. Rev. Letters 19, 1255

(&967).' V. Gribov, L. Okun, and I. Pomeranchuk, Zh. Eksperim.
i Teor. Fiz. 45, 1114 (1963) )Soviet Phys. JETP 18, 769 (1964)].

where k=q+p. The Ai and As amplitudes are related
to the usual invariant amplitudes A(s,u) and B(s,u),
defined by

DR=u(p')l A (s,u)+ ', B-(s,u)p (q+q')5u(p),

by the relations

8=Ai+A s, (Sa)

A = (A,+A,)m+ (A i —A,)W, ($b)

and to the conventional amplitudes fi and fs by

y, =L(L+m)/4 5A„ (6a)

fs ——f(E—m)/4x-5A, . (6b)

The statement of Macnowell symmetry in terms of A &

and Ag is
A i(s,W) =A s (s, —N7) . (7)

To investigate daughter trajectories, we need to
know the analytic properties of A& and A&." Since
A (s,u) and B(s,u) are analytic functions of s and u, we
see flolll (3) that A i(W)+As(W) and (A i—As)W rllilst.

be analytic functions of u. Since Ai(W) =A&(—W),
either Ai(W) 1/W or Ai(W) W at W=O. Because
it is unphysical to have 5K vanish at 8'=0, we assuiIie
that

A i(W) 1/W at IV =0. (8)

&Ve follow, for the most part, the conventions and
Feynrnan rules given in the work. of Scadron. " The
exchanged particle of spin J=l+-', can have either
parity ( —)' or parity —(—)', so we have to consider
both kinds of vertices. Following Scadron, we call the
former vertex "abnormal" and the latter vertex
"normal"; recall that the pion is a pseudoscalar particle.
Note that the diagram with "normal" vertices (no ys),
denoted by +, corresponds to the exchange of —', , s+,
-';, . . . particles, while the diagram vrith "abnormal"
vertices, denoted by —,corresponds to the exchange of
-',+, —', ,

—',+, . . . particles. As we shall show, the two
diagrams are related by a simple transformation, so
that we only need to compute one of them explicitly.

Our Feynman rules come from the effective inter-
action Hamiltonian

2l+1
g+(J) k(J'i (x)

Cg

Xel. , cI.,Pp. (x) p.(x)+H.c. (9a)

for the vertex with —,', ~+, . . . particles, and

X (its) r)., r)~,tP~(x) p.(x)+H c (9b). .
for the vertex with ~+, 2, . . . particles, where

«=2'(l!)'/(2l) t, (1O)

and where p is the pion field, f~ is the nucleon field,

"M. Scadron, Phys. I~ev. 165, 1640 (1968).
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& is the four-component spinor field of the spin The numerator for a high-spin propagator is given in
1=l+2 particle, and 8,=8/Bx '. the Appendix in both contracted and uncontracted

The diagram we wish to compute is shown in Fig. 1. forms. The matrix element for the normal vertex is

u —M'(J)

2l+1 p'» p"i( )'T —„'(34I).(k+M) p" i p" i

~&~"' =g+'(~) u(P') u(p),
cz

(11a)

where 7= i+~i, and for the abnormal vertex is

2l+1 P'"' P'"'( —)'(i~ )T', .'(M) (k+M)(iv") p"' p"'
O1rgi

—i =g '(J) u(p')
~ ~

u(P),
&z u —M'(J)

(11b)

where i(—1)'T„.„~(M)(k+M) is the numerator of the
Feynman propagator and p stands for p& .pz. The
argument M of T means that all momentum factors
enter as k"k "/M' instead of k"k "/W'

The contracted form of the off-mass-shell propagator
is evaluated in the Appendix. Since (4'yq)(k&M)(iy5)
=k&M and (i75)y„(iy5) =y„, we can get the matrix
element with abnormal-parity vertices from the normal
one by changing M —+ —M. The matrix elements then
become

g+'(~)
NLJ'+'= — u(p') p"Pi~i'(z)(k+M)

1V'—M'(J)

spin-1 propagator into spin-1 and spin-0 parts. Let

W' —M' (W'+m' —44') '

3f' 4I/t"
(16)

p'Pi+i'(s) =p„"Pi+i'(s„)+(2l+1)Ap„"—'Pi'(s„)
+l(2l —1)h'p„2i—4Pi i'(s )
—(2l —1)(p 'A)P " 'Pi, (s„)

+ (lower-spin terms) . (17)

Substituting (17) into (12) using (16), one has

Using the expansion of Pi+i'(s) in powers of s, we can
write p2'Pi+i'(s) as

where

pk'
m —— A —M p2z 'Pz' z I, 12 ~"&z+z' s„A.'&Sf

3I gg~ (+) —
g

p2 — m2+ (W2+m2 u2)2/4M2

p2s —@2 i (g+u) + (W2+m2 p2)2/4M2

(13)

(14)

(IV'+ m' —u') ' k 1
+(2l+»g+' —(P-')' 'P '( -)

4~V

p'z= p„' cos9„+
W' —M' (W'+m' —u')'

~ (13)

This is just the decomposition of the off-mass-shell

The off-mass-shell propagator of spin J=l+-,' carries
lower-spin components l —» l —~, . . . , ~. To study the
first daughter trajectory, we expand Eq. (12) in first
derivatives of Legendre polynomials with argument
cos8„, the center-of-mass scattering angle in the n
channel. We get the contribution of the leading tra-
jectory by replacing p' by P

' and 8 by s„. When
Reggeized, this reproduces the usual result. To get the
6rst daughter contributions, we keep all terms con-
taining Pi+i'(s„) and Pi'(s„) in the expansion of (12).

From Eqs. (3) and (14) we get

,(P-')' 'Pi'(s ) p k '
—g~'— m& —(k+M)+ . (18)8"—3f' M

With the help of the identity

kV &3SI kV~M
k&M = (k+LV)+ (k —W),28' 25

we see that (18) is MacDowell symmetric. The operator
(k&W), acting on a state of the ir-X system in the
center-of-mass system, picks out states of definite
parity. "Summing (18) over J and converting the sum
to an integral in the complex J plane, using the Som-
merfeld-Watson transformation, preserves MacDowell
syrnrnetry, since each 5RJ is MacDowell symmetric.
The complete Regge representation of this integral is
therefore also MacDowell symmetric.
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The amplitude for Regge exchange is

E(k) —Q gz(, (+)
E=O

1z2

dJ 0aM(J)
p-'-" "&~+'( z-)—g+'(J)—

cosx'J W' —M'(J)

(W2+m2 ~2) 2

—2gp'(J+1) (J+1)
4W' M'(J+1) M (J+1)

2mp k (p k)' LATM(J+1)j—g~'(J+1) m'& — + +Lspin-(j —2), . . . , terms', (19)
M(J+1) M'(J+1)-W' —M'(J+1)

where we have changed variables from / to J=1+z.
We assume that the coupling constants g~'(J) have no singularities which prevent us from opening up the

original contour C to some vertical line in the left-hand J plane and picking up the Regge poles in the upper right-
hand quadrant. This gives contour integrals of the form

F(J)dJ
M'(J) —W'

F(J)dJ
and

M(J)

F(J)(jJ
M'(J)

where y is a closed contour in the J plane that includes the zeros of the denominator. Since for fermions, the
Regge trajectory n(W) is a function of u't' instead of I=W', we factor M'(J) —W' into LM(J) —WjPM(J)+Wj
and treat the propagator as the product of two poles —one at W=M(J) with solution J=n(W) and the other at
W= —M(J) with solution J~n( —W). This method preserves MacDowell symmetry, whereas treating
PW' —M'(J)) ' as a single pole at u= M'(J) does not. In the boson problem, ' the propagator is interpreted as a
single pole at t =M (J). If we wish to do this in the fermion problem and still maintain MacDowell symmetry,
we must add the normal and abnormal parity contributions ORJ ~+' and 5K+~ & and assume that g+' and g

' are
related. The interpretation used here seems the most natural and satisfactory one.

The first daughter trajectory consists of all the fixed-pole terms, M(J) ' and M(J) ', in Eq. (19).The second
term in (19) is part of the first daughter since it contains first- and second-order poles at M(J+1) =0 which can
be inverted to J=n(0) —1. The third term in (19) has a moving pole that is part of the leading trajectory and
fixed poles that are further parts of the first daughter.

If we now open up the contour C in Eq. (19) and evaluate the contour integrals, we get

g~'(n(0))n'(0) 2mAE
R ' =V,(+)(W)(k+IV)+ V, +)(tv)(A —IV)%~ —(p.') ('-V'. (0) '(—z„) E'

cosign(0) W

d n'(IV)gg'(n(W))
+~E'Ir —Pn(W)+Ihip-"' ' "& (~) '( —z )

dW cos)rn(W)

g+'(n(o))n'(o)n(o)
W+ 2' p„'( ( ) *)P (0),*'(—z„)+(lower-spin terms), (20a)

where
cos7rn(0)

—n. g~'(n(IV))n'(W)
Vi(+) (W)— p~'( (' ) **)&a(w)+-''(—z~)

2W cosign(W)
g+'(n( —W))n'( —W)

p„" ' '~) "F ( )=*'(—z„)(m—E)', (20b)
cosign( —W)

g '(n( —W))n'( —IF)
Vi( '(W)= ' F~(—)&)+i ( z~)

2W cosign( —W)
g—'(n(W))n'(W)

p 2( (~) *''&
( )- '( —z )( —E)'

cosign(W)

P', (3:)(W) —Vi(&) ( W)
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A„.,„(W)= T„,„~(M)(@+M)

]~V' —3f'

T„., i,~(M) (@+M)
+ — —Zg" (W')d, „~(W), (21)8"—3E'

FEG. 2. Full propagator for a particle of spin J=I+-', .

The first two terms, Vi(W) and F,(W), in Eq. (20a)
are the contributions of the leading trajectory; the
remaining terms come from the first daughter

trajectory.
In comparing Eqs. (20) with more conventiona, l

treatments, one should look at E' ', since it corre-
sponds to the exchange of -,'+, —', , -', +, . . . particles. The
1/2IV and (m —E)'/2W factors in I'i(14'), Eqs. (20b)
and (20c), are kinematical singularities. The second
term represents an additional complication that is not
present in the boson problem. For large s and sma11 u,

(iii —&)'(P ') " ' ''& is"i—-*'(—& )

where p stands for the set of indices p~ - p, ~. The off-
rnass-shell propagator T„,„~(M)(@+M) is discussed in
the Appendix. In order to calculate h„,„~(W) from (21),
we must adopt a model that enables us to determine
the self-energy function Zz"'(W). We assume that
two-particle intermediate states dominate and we
neglect multiparticle intermediate states. This means
that we include only the bubble diagrams. In general,
such diagrams are divergent. Since we are primarily
interested in the qualitative features of the result, we
can adopt a model to handle these divergences. We
define various amplitudes, A~(W), B~(W), . . . , derived
from Z~""(W). We then calculate the imaginary part
of Zq"'(W) using Cutkosky's rules and write dispersion
relations for the amplitudes Aq(W), . . . . When J is
suKciently large, the dispersion integrals diverge; we
handle this by using a cutoB on all divergent integrals.
The amplitudes we define are related at H/'=0 because
of the O(4) invariance of the Feynman integral at
7&V=O. We show this by introducing a cutoff in the
Feynman integral. After Reggeizing, we can let the
cutoff —+ ~ since u (0)(~i; in a sense, the Regge
behavior provides its own cutoff.

We calculate Zzi'(W) by calculating the diagram
with one bubble (Fig. 3), using Feynman rules and
comparing the result with (21). The result for normal

—(~a ~2) 2 vertices is
g~(&i') —1 2[+ 1 d4Q

W g x;a(W) &( 1)ig2
ci (2')'

giving additional, second-order, singularities at H/ =0
which the first daughter trajectory must cancel. Clearly
the first daughter of a fermion trajectory is much more
complicated than that of a boson trajectory.

Equation (20) can be shown to be correct by ex-

panding LFi(W)+F'2(W) j and WI Vi(W) —V~(W)) in
powers of s and showing that the 1/W and 1/W' singu-
larities are canceled by the first daughter terms in Eq.
(20a).

Q"' Q"'(Q+~)Q" Q"
X - — — — — —.(22)

(Q~ gg'i+ jg) $—(Q P) i p~+—jc)—
Equation (22) also holds for abnormal vertices, since

it is independent of M. It is shown in the Appendix that
(iy5)T„,„~(M)(%+M)(iy5) can be calculated by sub-

III. FEYNMAN-DIAGRAM MODEL OF FERMION
REGGE POLE WITH SELF-ENERGY BUBBLES

The fixed poles found in Sec. II violate u-channel
unitarity. In this section we extend the model so that it
satisfies two-particle unitarity in the I channel by
including self-energy corrections to the bare propa-
gator."In particular, we can study what happens to
the fixed double pole when self-energy corrections are
included.

The full propagator for a fermion of spin J=l-+
satisfies (see Fig. 2)

k M(Jj

FIG. 3. Bubble diagram used
to calculate Z J~.~(W),
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stituting M~ —M. From Eq. (21), it is clea,r that
(ip&)A„, „~(W)(ip&) can also be calculated by taking
M —+ —M.

In order to solve (21) for A~, we expand all quantities

in projection operators of definite spin and parity. .I:n
the Appendix the bare off-mass-shell propagator
T„,„(M)(0+M) is expanded in a series of projection
operators:

W+M
T„,„~(M)(@+M)= T„,„~(W) —(7r+IV)+2'

hV —3E—(A —I'V)
2JV

IV' —ll '

2I+1 2MIV'

where

IV+M kV —M
5„,„~ '(W) — (@+IV)+ (0—W) +(spin&I —2), (23)2' 2N~

2l kV' —M'

2I+1 M'

&&[+ k„„p"-'I'„„...„„...„,„'(W') —Q T„,„...„„...„,'(ll' )y"*'k„„][(@+IV)+(A—IV)]

is a spin-(J —1) projection operator defined in the Appendix that is orthogonal to T„,„~(W) [see Eq. (A7)].
We can also expand the full propagator 6„;, (W) in a series of projection operators. In the Appendix it is shown

that

O.;.' '(W) =——2 v..(W')v""'I'. "'.- .i;.'(W')
2I+1

(24)

is a spin-(J —1) projection operator and is orthogonal to T„,„~(W) and 5„,„~ '(W). Although it is not present in

(23), it must be included in the expansion of A„„(W).We write the expansion as

6„,„(I'V)= T„,„~(I~V)[D(I'V) (A+W) —D(—W) (7r —IV)]— S„,„~ '(IV) [E(IK)(7r+ IV) —L(—I~V) (A'. —IV)]
2/V 2I'V

———P I y&"'I' ... ~ '(II")P'(—II')(0+I~V)+7'(IV)(0 —I~I')]
2I+1 21' 2»

+ ——P I'„,.„...„, ...., '(II~'-")q" 'I:„„[P(II) (7r+ IV)+7'( —II') (0—IV))
2I+1 2' ' »

+—(')„;.~ '(I'V) [G(—I'V) (0+I'V) —G(IV) (0—W)]+ (spin & 1—2) . (25)
28'

Equation (25) satisfies MacDowell symmetry,

A„,„~(W)=6„,„~(—IiV),

and is symmetric under the interchange of the p and s indices,

(26)

(27)

We have used (26) and (27) to reduce the number of independent self-energy functions in (25).
We solve for the self-energy function in (25) by substituting (22), (23), and (25) into (21) and reducing the

resulting tensor equation to a series of linear algebraic equations. This is done by applying various projection
operators, contracting the p indices with the z indices, and taking the trace in the spinor indices. The projection
operators are chosen so that the resulting algebraic equation involves the minimum number of unknown self-
energy functions.

Since T„,„~(W) is orthogonal to all lower-spin projection operators in the expansion of T„„~(M)(@+M) and
A„,„~(W), we get an equation involving only D(IV) by contracting Eq. (21) with T„., "~(W)(k+W) and
T" „(W)(k+W). We .then contract pi' with i i', etc. , to obtain

(IV —M)D(IV) ((+1)(7r+I V) —(3+1)(0+8')

= i(—1)'g'
2I+1 d4Q Q"' Q"'Ti. Q" Q"(7r+I'V)(Q+m)(@+IV)D(I'V)

ci (2vr) 4 [g2 m2][(g P) 2
(28)
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Equation (28) is reduced to an algebraic equation for
D(W) by carrying out the indicated contractions and
taking the trace in spinor indices. The result is

Solving Eqs. (31) and (35) for F(W) and G(W) gives

F (W) = [(2l+1)M —g'C(W) ]/H (W), (36)

G (W) = —g'B (W)/H (W), (37)

where

A(lV) =i

(29)
wllere

D(W) =
W —M —g'A (W)

Q"(Qp+m)d4Q
(30a)

(27r) ' (Q' —m'+ip) [(Q—k) ' —p'+ jp]

t34

H(W) = (2l+1)M' —2l(W+M)g'B(W)
—'Mg' (W)+g'C(W)'/("+')

+g'B (W)A (—W) . (38)

Finally, we get an equation involving E(W) and
F(W) by applying &I"'P„I"'(k+.W) and S",„~ '(0+W)
to (21) and proceeding a,s before:

A( —W) =i
(2s.)4

X— (30b)
(Q2 m2+i p) [(Q k) 2 pi2+ip]

[M—g'C(W)/(2l+1)]F(W) g'B(W)—E(W) =1. (39)

Combining Eq. (39) with Eq. (36), we find

E(W) = [2l(W+M) —g'A (—lV)]/H(W) . (40)

where Q"= (Qp, Q) and k"= (lV,O) in the center-of-mass

system, and Q, =(Q k)/W.
tA'e can obtain two simultaneous linear equations for

F(W) and G(W) with a suitable choice of projection
operators. One equation is obtained by applying
y&'P„,&' and I'",„'(A—W)&"' to Eq. (21). By carrying
out the expansion in Eq. (23) to spin l —sp, we see that
these operators are indeed orthogonal to all but the
spin-(l —s) part of T„,„~(M)(l't+M) and hence of
A„., „~(W). Proceeding as before, we get

[(2l+ 1)M —g'C(W)]G PV) = g'B (l'U) F (l~tV), —(31)

where

B(W) =i(2l+1)
(2vr)

Q" 'Qp'(Qo+m)
X— (32)

(Q' —m'+ip) [(Q—k)' —p'+ip]

d4

C(W) =i(2l+1)
(2~)'

PLQ

X —— — . (33)
(Q' —m'+i p) [(Q—k) ' —p'+i p]

As before, we get B(—W) and C(—W) by Qp
—+ —Qp.

In particular,
C(—W) = —C(W) . (34)

We get a second equation for F(W) and G(W) by
applying I'",.„'(W') (li —W)y"' and 5„., &~—'(W) (k+W)
to Eq. (21) and proceeding as before:

In Sec. II, we calculated the matrix element for the
exchange of a particle of spin J=l+—,'in the I channel
using the bare propagator. %e get a model that satis-
fies two-particle unitarity in the I channel by replacing
the bare propagator in (11a) with the full propagator
that we have just calculated. This gives

5K~&+& =g+'[(2l+1)/c&]u(p') p'» p'~&

', .'( ) "'. "' () ( )

This matrix element can be calculated by using the
expansion given in (25) and the results of the Appendix.
The result is

oRg&+& =A i~(W) (lr+M)+A p~(W) (li —W), (42a)

where

A,~(W) =g'(1/2W) (p "8~i'(s)D(W)
+m'p„"—'Fi'(s) [D(—W) —G(W)]
—2mE„p„"-'F&'(s) [D(—W) —f(W)]
+E.PP„Pi-2Z, '(s) [D(—W) —k(W)]

+(spin( I—2)}, (42b)

A p~(W) =Ai~( —W), (42c)

f(W) =G(W) F(W)-
= —[(2l+1)M—g'C (W) +g'B (W)]/

H (W), (42d)

h(W) =G(W) —2F(W) —(2l+1)E(W)
= —[2(l+1)(2l+1)M+2l (2l+1)W

—2g'C(W) —(2l+1)g'A (—W)

+g'B(W)]/H(W), (42e)
L~„'=[W'+m' p']/2W—

W+3II 2l C(W) and H(W) is given by (38), G (W) by (37), and D(W)
— -g'B(W) —g' — F(W) by (29).

M 2l+1 2l+1 We can show that A„.,„~(W), and hence DR~~+&, has

W+M 2l no singularities by expanding the self-energy functions

gpC(W) gpA( W) G(W) 1 (33) in Taylor series about W=O. To do this, we must first
M 2l+1 expand A(W), B(W), and C(W) about W=O. Equa-
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tions (30), (32), and (33) express A(W), B(W), and
C(W), respectively, as four-dimensional divergent
integrals. As mentioned earlier, we make these Qnite

by using a cutoG. This is a rather crude model, but it
has all of the important features of a more exact calcu-
lation. We use these integrals to express B(0) and C(0)
in terms of A(0) and to express B'(0) and C'(0) in
terms of A'(0). These relations reflect the fact that
ZJ"", as given by Eq. (22), has no singularities in W
at S'=0. The results obtained in this manner are
model independent since they depend on the 0(4)
invariance of the Feynman integral at 8'=0 rather
than the details of a model. We And that the functions
A (W), B(W), and C(W) can be expanded as"

A(W) =A (0)+WA'(0)+ (43)

.B(W) = —A (0) —3WA'(0)+, (44)

C(W) = (2l+1)WA'(0)+ (45)

The self-energy functions A i(W), B~(W), and Ci(W)
have cuts in the W plane from m+p to +~ and from
—(m+p) to —~ . We use Cutkosky's rules to calculate
the discontinuity across the right-hand cut:

f't'

+ ——
7r

(m+ p)

-—(m+p, )

IV"(W' —W —ie)

1mB'(W')
dIV' —, (50a)

IV"(IV' —IV —i~)

C, (IV) = H (2I+1)A, '(0)

ImCi(W)
d8"

tions at W=O. Once A(W) is given, B(W) and C(W)
must satisfy dispersion relations twice subtracted at
W=O to satisfy Eqs. (43)—(45). Further self-energy
functions, will presumably be subtracted even more
times at W=O. Since Di(lV) has a, simple pole at the
renormalized mass with a residue given by the re-
normalized coupling constant, one could also introduce
two subtractions in the dispersion relation for A ~(W).

Since ImAi(W) &0, we would expect that A~(0) &0.
This is confirmed for J=~ by the Kallen-l, ehmann
representation of the full propagator. The self-energy
functions Bi(W) and Ci(W) can be written as

Bi(W) = —A i(0) —3W'A ('(0)

ImBi(W')
dW'

ImA, (IV) =— d () S,(()2—m2)

X~+((0—«)' —~')Q "(Qo+m) (4()

(m+y)

f,:t, 2 —(m+p, )

W"(I4"—W —ie)

ImCi(IV')
(50b)

IV"(IV —W —ie)
= —p(W) "+'Ll'(IV)+m 3/8~IV. (4&)

Similarly, we get that

1mB'(W) = —(21+1)p(W)" '(L(1V)+m)/8vrW (48)

ImCt(W) = —(2l+1)p( W)" +E( W)/8~ ~IV& (49)

where

p2(W) t
W2 (m+p)21LW2 (m ~)2$/4W2

L&'(W) = (W'+m' —p, ')/2W.

We write dispersion relations for A t(W), Bt(W), and

Ci(W) using these approximations of their imaginary
parts. While the number of subtractions required is

ambiguous, we use the relations at W=O LEqs. (43)—
(45)$ as a guide. Once Ai(W) is given, the first two
terms in the Taylor expansion of B&(W) and Ci(W) are
determined by the analyticity of h„,.„~(W) at W=O. A
calculation of the second daughter trajectory would
introduce further self-energy functions and more rela-

"Equations (43)—(45) can be obtained by evaluating ri(0),
etc., by performing a Wick rotation and introducting polar
coordinates and a cutoff A. In this way, one finds, for example,
that

2&g I' (l+ 23) " +2&+3

(2~)~ r (I+2) 0 (R2+m2) (R~+p~)'

4 r(l+-;)r(-;) g ~+

(2~)3 Z'(l+3), (g2+~~p) (@2+&2)~

Note that after Reggeization we can let A —+ ~, since a(0) &&
(J=l+i).

Using Eqs. (43)—(45), we can expand the self-energy
functions in Taylor series. From Eq. (30), we get

D(W) =
M+g'A (0)

WLI —g'A'(0) 7 + . (51)
t W+g'A(o) j'

m*(J) =M(J)+g'(J)A (m*(J)),

G'(J) =g'(J)/D+g'( J)A'(m*(J))]

(54a)

(54b)

In this calculation we will not rewrite the self-energy
functions in terms of the renormalized mass and cou-

The self-energy functions f(W) and h(W) can be
expanded as

I
kV) = — +

M+g'A (0)
—2 (1+1) IV X2151 —g'A'(0) ]

h(I«) = + (53)
M+g'A (0) [M+g'A'(0)]'

From (30) we see that the pole in the W plane is

displaced from W=M(J) to the zero of W —M —g'

XA (W) =0.This is the well-known phenomenon of mass
renormalization. The full propagator A„,.„~(W) has a
simple pole at W=m~(J), the physical (renormalized)
mass, with a residue given by the renormalized cou-

pling constant G2(J). These effects come only from

D(W) and are given by
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pling constant because we are only interested in the
qualitative features of the amplitude after Reggeization.

As we mentioned at the beginning of this section, we
can get the results for abnormal vertices from the
normal ones by M ~ —M. Since we want Regge poles
corresponding to 2+ particles rather than ~ particles,
we make the substitution M —+ —M before Reggeizing
the amplitude.

=Ri(W) (k+W)+R2(W)(k —W),

where Rp(W) =Ri(—W) and

(55)

Applying the Sommerfeld-Watson transform to Kq.
(42), one has

R=P [Ai~(W)(k+W)+Ap~(W)(k —W) j

Ri(W) = ',i—-
g'(J)

p p(J—-'-)g, ( s )
cos~J 2W W+M(J) —g'(J)A~(IF)

g(—(m —E.)'-
W M(J+1)—+g'(J+1)A~+i( W)—-~ «(J+1)~„(W)/~; (W)

2~x„[ 2(J+ 1—)g P(J+1)M(J+1)+g'(J+1)(&.+i(IF) C+i( —W))l/&. +(iW)

+I', P[(2J+3)g'(J+1)(—2(J+1)M(J+1)+2JW)—2g'C~+i(IV)

2(J+1)g4A~+i( —W)+g4+J+i(IV) j/+J+i(W)+(lower-spin terms), (56)

where H means that we have substituted 3f —& —M in
(38).

When we open. up the contour C, we pick up the
leading Regge pole of J=np(W), where

IV M(nP(N&))+gP(nP(1~V))A p(a ) (—W) =0. (57)

We have defined np(I~V) so that Ai(IV) s '( '"') ')' in
accordance with the usual conventions. In principle,
we could compute J=np(W) from (57) once M(J) and
g' were given. Since the self-energy function Az(W)
has cuts from N~ =nz+)J, to + pp and from IF= —(m+ p)
to —~, the resulting trajectory would properly become
complex above threshold, IW )m+p. Here we just
take np(W) as given and assume that g'(J) is sufhciently
analytic to deform the contour.

In this calculation we are primarily interested in the
poles arising from

8'g+i( —W) = 2(J+1)M'(J+1)
+2g'(J+1)M(J+1)CJ+i(W)
—g'(2J+1)(IV—M (J+1))8g~i(W)
+g'[C~+i'(W)/2(J+1)+& J+i(W)A ~+i(—W)j

=0. (58)

From Fq. (52), we see that Hq+i(0) =0 has at least
two roots:

8g~.i(0) = [2(J+1)M(J+1)+g'(J+1)Ay+i(0)]
X[M(J+1)—g'(J+1)A J+i(0)j=0 (59)

Setting the second factor equal to zero gives

J=ni(0) =np(0) —1. (60)

Setting the first factor equal to zero gives another root,
J=nz(0), that is not related to the leading trajectory
in any simple way. However, the expansions given in

(52) and (53) show that J=n~(0) does not have a,

singular residue at TV=0, so that we have not intro-
duced any additional singularities into the amplitude.
This is reminiscent of the "aunt" trajectories found in
Bethe-Salpeter equation calculations'; however, we
shall call them companion trajectories.

We can use the theory of implicit functions" to
obtain integral representations of ng(W) and ni(IV)
for small IWI. The first derivative of the leading
trajectory at 8'=0 is given by

While it is essentially impossible to solve (58) analyti-
cally, we can get the qualitative features of the solu-
tions. In particular, we can look at the small-W and
small-g' limits.

g'(J)A~'(0) —1
n()'(0) = dJ-

2m-i „M(J)—g'(J)A J (0)

Similarly,

(61)

ni, ~'(0) =
271 2

—(2J—1)g'M (J+1)A ~+i'(0) +(21+1)g'A g+i(0) —2g'A ~~i(0)A ~+,'(0)
dJ

[2(/+1) M(/+ 1)+g'A gpi(0) )[M(1+1)—g'A gpi(0) j (6'-)

E. Hille, Aealytic Puectioe Theory (Ginn, Boston, 1959), Vol, I. The theory of inverse and implicit functions is discussed in
Sec. 9.4, pp. 265—275.
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ul'(0) =

where yt is a contour that includes only the J=ut(0)
=up(0) —1root and yz includes only the root J=uz(0).
For the first daughter trajectory, we get that

o(0)-l
up'(0),

up(0)+ p

O(W)

as required by analyticity i5, i6

For small g', u~'(0) is given by

u„'(0) = —u&'(0)+0 (g') . (64)
o„(0)~.

0a (0) = ao(0) —
)

~ - —l.5

Fro. 4. Qualitative behavior of the Regge trajectories
in the small-g' limit for 0(a0(0)(—,'.

C (J,W) = 2CJ(—W)+ (2J—1)BJ(—IV),
O(J', W) = (2J—1)Bg(—W),
@(J,W) = CJ (—IV)/2J+B J(—W) Jf J(W) .M(a) =0.

For ——,'&up(0) &-', , u't(0) &0 and u~'(0))0. T»»s
useful in getting a qualitative picture of the first
daughter and companion trajectories as a function of H/".

One can also compute the residues P(W) using the
integral-representation approach. It is found that
Pr(W) 1/Ws and P~(W) const for small W, and that
the 1/Ws and 1/W terms in Pr(W) have the form
required by analyticity. "

where
Next let us consider the small-g' limit. As g'~0,

Hg+r( lV) ~ M'(—9+1). Let J=a be the value of J
such that

Then we can make perturbative expansions about
g'=0. If we let ur, ~(0)= a—1+g'xr, ~+ ., then,
assuming Jf,(0)&0, we have

xi&0,

x~&0 for 0&a&—',

(65a)

(65b)

&xi&0 for ——,
' &a&0. (65c)

J= a—1+gb (W)+-', g'c (W)+ (66)

and solving for the unknown functions b(W), c(W), . . ..
Since the equation Hz+&( W)=0 is quadratic —in

M(J+1), it can be factored into two factors linear in
M(J+ 1):

g'gf (J+1, W')
Jgz, (—1V) =2(J+l)(gg(J+1)+

4(J'+1)

[g'g(J+2 1'V) —8(J+l)(1VO+g'8')]"')
4(J+1)

g'C (J+1, W)
M J g

4(J+1)4(J+1)

X[g'8 —8(J+1)()VO+g'8)]"') (67)

~5 G. Domokos and P. Suranyi, Xuovo Cimento 56A, 445
(1968);5FA, 813 (1968};N. W. MacFadyen, Phys. Rev. 1'7l, 1691
(1968).

P. K. Kuo and J. Walker, Phys. Rev. 1'75, 1794 (1968); D.
Steele and J. D. Sullivan, ibid. 166, 1515 (1968).

The above relations tell us that ut(0) &u~(0) for
0&a&—', and u~(0)&ur(0) for ——,'&a&0. The point
a=0 is a singular point of the system and must be
excluded from the present discussion.

We can calculate the large-S' behavior by a per-
turbative expansion of J=u(W g) about g=0 by setting

]))l)'hen g'g —8(J+1)(WO+g%) = 0, the two factors are
equal and we have a branch point of J=u(W). This
means that there is at least one point at which the two
roots u~(W) and ut(W) coalesce. When g'=0, this
point is at H/ =0. As g' —& 0, this point moves toward
the Ren axis in a plot of Reo. versus g .

When
g'Ic' —8(J+1)+I& I8(J+1)&voI,

we can expand the square root in a power series in g2

using the binomial theorem. This expansion is valid
for large 8", but not for the region around FI/ =0. If we
set one of the two factors in (67) equal to zero, expand
the square root, and use Eq. (66), we get, upon setting
the terms of order g equal to zero,

b(W) = %up'(0)L —(2a—1)IVB,(—IV)/2aj'(s. (68)

Notice that J=u(W; g) is not an a,nalytic function of g'.
Since B,(W) has cuts from nr+p to + go and from

—(m+p) to —po, b(W) has a nonzero real part for
I
W

I
&~+~ For

I
W

I
~ ~, b(W)-~W

Figure 4 shows how the parent and first daughter
trajectories look for 0&a& —,'. For this case, ur(0) &a—1
&u~(0). We also know that ur'(0) &0 and that u~'(0)

—u&'(0). This means that the branch point occurs
for W small and negative. When W& —(nz+p), b(W)
becomes complex and J=u(W) again has a nonzero
real part.

Figure 5 shows how the trajectories behave as g' —+ 0.
The first daughter and companion trajectories coalesce
and form a fixed double pole as the two branches
approach each other. The branch point moves towards
W=O as g2 —+0. For 8" less than the branch point,
u(W) is imaginary. As g -+0, the two imaginary
branches approach the real plane and become part of
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Re

0.5-

—(m+ p. ) (rn+ p. ) W

-0 5--

the fixed double pole. For W( —(m+ii), the two com-
plex branches approach the fixed double pole as g' —& 0.
The intercept at W=O, no(0), moves toward a as
g'~ 0; for g'40, no(0)Wa because of mass renor-
malization.

Figure 6 shows the trajectories for ——,'(a(0. In
this case, n~ (0) (nr (a—1.We also know that ni'(0) (0
and n~'(0)——ni(0). This means that the branch point
occurs for small, positive l~V. Above threshold, ~W~

)m+p, b(W) becomes complex, so that J=n(W) again
has a nonzero real part.

IV. CONCLUSIONS

The daughter and companion trajectories seem to
depend quite sensitively on the details of the model and
are therefore much harder to interpret than the leading
trajectory. The companion trajectory nz(0) must have
a series of daughters at n~(0) —1, n~(0) —2, . . . , to
cancel the singularities that the companion trajectory
introduces. Since in the simple model without self-

energy bubbles the second daughter contains a fixed

Re a(W)-0.5
,(w)

W

--0.5

~~(0)~~
--

I
")

Fir. 6. Qualitative behavior of the Regge trajectories
in the small-g2 limit for —

& &o.o(0) &0.

Fzo. 5. Behavior of the trajectories shown in 1"ig. 4 as g
—+ 0.

The solid lines are the trajectories for g'&0; the dashed lines are
the trajectories for g'=0. When g'=0, the first daughter and
companion trajectories coalesce to form a fixed double pole.

fourth-order pole, we speculate that when self-energy
bubbles are included, the result will be a second
daughter and three other trajectories, one of which
will presumably be the first daughter of the companion
trajectory we have just calculated. Lower daughter
trajectories are progressively more complicated.

We have assumed that 0. is a function of 8' instead
of I=8".It is sometimes felt that experiment suggests
that the leading fermion trajectories are Macoowell
degenerate, i.e., that they have the form n(W) =a+bW'.
%hile it is possible to get leading trajectories of this
form out of the model, it is unlikely that the daughters
will be MacDowell degenerate. If ne'(0) = 0, then
analyticity at IV=0 requires that n„'(0) =O, i" i6 where
n„'(0) is the slope of the eth daughter at W= 0. In this
model, however, nz'(0) is simply related to ni'(0) only
in the small-g' limit. Equation (61) reveals that ne'(0)
= 0 requires that g'A, &o&'(0) = 1, so that n~'(0) will be
nonzero in general. Since there will still be a branch
point, there will be no sharp distinctions between the
erst daughter and companion trajectories away from
8"=0.The second and further daughters will be even
more complicated. Such a model is indeed difficult to
reconcile with a simple picture of a parent and a series
of daughter trajectories of the form n(W) = a+bW'
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APPENDIX

In this appendix we summarize the important proper-
ties of fermion propagators. We discuss, in order, the
half-integral-spin projection operator, an expression for
the half-integral-spin projection operator in terms of
integral-spin operators and y matrices, and the off-
mass-shell propagator.

We write the projection operator of a state with
de6nite spin and parity as Tu, „~(W')(&A+W)/2W,
where W'=k' and (+A'+W)/2W is the energy pro-
jection operator. The argument W' of T ~(uW') dis-
tinguishes it from the numerator of the oR-mass-shell

propagator Tu, „~(M'). The tensor T , „(uWJ') has 2t,

indices, where J=/+ —,', and is determined by the fol-

lowing conditions'~:

T., u, u, ui (k'") ="T-.,'"-.," ';- w (k'),
(b) k"'T„,...„,„~(k') =0,
(c) p T„,...„, , (k')=0,
(d) Tu, g~(k')T"„"(k')= T„,„"(k').
"C. Pronsdal, Nnovo Cimento Snppl. 9, 416 (1958).
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Similar conditions hold for the l indices. From con- spin/to get total spin/=/+~i. The projection operator
ditions (a) and (c), it can be shown that T„,„~(W') is for spin / ,—is—Q' v=1 —P'+v. Hence, a spin projec. -

also traceless: t.ion for spin / ——', is
g»»T„, v~(W. ') =0. (A2)

In many calculations it is useful to have a formula
expressing T„,„~(W') in terms of the integral-spin pro-
jection operator F„,„'(W'), y matrices, etc. Fronsdaii'
gives the following formula:

nl'''nl;vi"'"l (W )

T„,„~(W2)(/r+ W)

l+1- l

F . '(W')+ Q 0„„&"'(W')
2l+3 l+1 n=i

where

XF„,...„„,...„,, „l(W) (/+W), (A4)

~..(W') = 2&LvN(W'), v.(W')]

y„(W') =y„kk„/W'. —

In the center-of-mass frame (k=0),
0.,;(W') =~~, = ~';l iran,

O.
ll „(W')=0,
v. (W') =(o,v).

An equivalent form of Eq. (A4) is

l

T (k')(k+W) = F '(k') — g y (k')
2l+1 n i=

Xp""'F„,. ..„„...„...'(k') (/t+W) . (AS)

Equation (AS) has an interesting interpretation.
Physically, Eq. (AS) corresponds to adding spin 2 to
"C. Zemach, Phys. Rev. 140, 397 (1965).

n .-.l;. "'l'(k')
/

+nl+lF i+1(«2)+v i+i (A3)
2/+3

One can easily verify that (A3) satisfies the conditions
of (A1). Physically, (A3) corresponds to adding a
spin-(l+1) operator to a spin- —', operator to get a total
spin of 2'=/+i~.

Another useful form of T„,„~(k') can be derived by
applying the relativistic generalization of the usual
spin /+~ projection operator to F„;„'(k') (k+W), where
k'= 1/t/". This is a relativistic generalization of Zemach s
work" and has the advantage of a clear physical
motivation. The tensor F„,„'(k') (/r+W) is a mixture of
spin /+2 and l ——,

' since it is traceless, symmetric, and
satisfies kn'F„, „'(k') (/t+W) =0. From the conditions in
(Ai), the part that gives zero when contracted with
y"' is pure spin /+~; the other part is pure spin l —2,
although it has 2/ indices.

The result is

z

(l/ )y& I ni. n „nl (W ) (A6)
2/+1 n i=

From (A1), it is obvious that g"'"T»...„;,„".„(k')
is proportional to T„,~ '(k'):

n 1
' nl vi "vl '(k

=I (/+1)IGT. , .. .;., '"l,' '("k') (A8)

From (A9), we get the following useful relation:

T„,...„,"'""'~(«2) =. l+1. (A9)

Kith the kinematics defined as in Sec. II, the con-
tracted form of the spin projection operator is

p'&' p'~ T . (k')p" p" l(/'r+ W)

(—1)'ci
Lp "&i+i'(s)(&+W)

2/+1
—(nz+E)'(/'r —W)p" 'Pi'(s) j. (A10)

(See Ref. 12 for formulas with one or two indices left
uncontracted. )

Next we come to the problem of choosing the o6-
mass-shell propagator. This is even more complicated
than it is for bosons. The naive approach would be to
substitute the corresponding expansion of F„,,'(M')
given in Ref. 14 into (A3) or (AS). However, this
method produces extraneous terms of spin /+-', and
lower. To illustrate this, let us substitute into (AS):

T„,„~(M)(k,+M)

l+1 k' —3II'
~nl+iF i+1(«2)yr i+1(/+M) ———

2/+3 (2l+3)M'

XI'„;.'(k') (k+3II)+ (lower-spin terms) . (A11)

The second term, P(k' —M')/M'gF„. '(k') (/t+M) v
van-

ishes on the mass shell and is a mixture of spin /+~
and spin / ——,. Furthermore, since its leading term is
not singular at 4'=0, it is not needed to cancel singu-
larities in the first term of (A11). In addition, it intro-

Therefore in Eq. (A6), the second term is the spin-
(l—2) part that is being removed from F„,„'(W')
X(A+W). Although 0" „~ '(W') represents spin / —~i,

it has 2/ indices and must, satisfy a more complicated
set of constraints than Eq. (A1).

There is another projection operator of spin / —2

that is orthogonal to both T„„~(W') an.d On . ~—'(W')

1 k„;1~„,.
S',;.' '*(«') = —2 Tn~ 'i; t, &

'(k') (A&)
t si k2
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duces singularities of its own that must be canceled by
additional projection operators of lower spin. This is
clearly an unnecessary complication. This same ambi-

guity is illustrated by the fact that when in the three
forms of the projection operator, given in (A3), (A4),
and (A5), respectively, we substitute k&W —+ k&M
and g„„(k')~ g„„(M') everywhere, as suggested by
Feynman perturbation theory, the three resulting
expressions are equal only on the mass shell (O'=M');
off the mass shell, all three take on different values.
Physically the differences correspond to nonsingular

couplings of the daughter trajectories.
There is a systematic procedure for eliminating such

terms. We start by taking (A5) off the mass shell. We
do this by replacing k&W —+k&M and g„„(k')~
g„„(M) everywhere. We start with

I'„,„'(M') (k+M)+ Q y„„(M2)(k —M)
2I+1

&&q -'r„,...„„....„,, „'(M2), (A12)

where p„(M2) =y' g2( M)2The se.cond term, however,
still contains unwanted terms that vanish on the mass
shell. They can be eliminated by expanding (A12)

using Durand's' expansion of I'„,„'(M2) and making the
following substitution:

k„~ k„
k —M y„—. A13

3f

Since k(k —M) = —M(k —M) if O'=M', the two ex-

pressions are equal on the mass shell. Unfortunately,
the resulting off-mass-shell propagator is difficult to
express in closed form. However, a closed form is not
needed in order to expand T„,„~(M) in a series of

proj ection operators.
To complete the expansion we must expand ex-

pressions like Eq. (A13) in projection operators. The
factor @&M is first expanded as

t/V&M 8'wM
ka M = (k+IV)+ —(k —W), (A14)

25' 28'

where O'= W'. Using (A14) and the relations k(k+W)
=W(k+W) and k(k —W) = —W(k —W), we get

4"+4/M) (k —M) (v.+k./M)

JV —M I~V+M U~' —iV'
y (IV')(k+IV)y, (I~I')+ y (IV')(k IV)p„—(IV')+ k (k+W)y (W')

2T~V 2]V 235kV'

fV' —HEI' f:V'—HEI' fV' —M'
-k„(k—IF)y, (IV')+ -yp(I~V')(k+-IV)k„+ — y (ll')(k —H )k

22lf l4" 2MtV' 2M t/V'

IF' —M' W+M
+ (k+IV) k„k„+

3f 'H." 2'
lV' —3f' H"—M

(k —7~V) k„k„, (A15).M'I~V' 2'
where p„(W2) =y "g„„(W').

Using the substitution given in (A13) and the expansion given in Ref. 9, we get

Z v...(M')(k —M)v"" I'. "'."'~;.'(M')

(Y„„+k„„/M)(k—M)h„,„,+k„,„,/M)g„, „;„,(M') [g„„„;,„,(M') j g„,„,„,(M')+, (A16)
n perm

where the expression in square brackets is to be omitted. We now substitute (A15) and

g (M2) —
g (W2) ($)V2 M2) k k /M2W2 (A17)

into Kq. (A16) and express the results as projection operators of various spins. Using (A15) and replacing all

g „(M') by g „(W') gives the spin-(I ——',) terms. Replacing one or more g»(M') by —(W' —M')k k„/M'W' and
the rest by g„„(W') gives spin-(I —22) and lower terms. The final result is, keeping only I+2 and I 2 terms, —

W+M 5'—31
T„,„r(M)(k+M) =Z'„,„~(IF2) — (k+IF)+——(k —W~)

21~V 21~I/'

t/V' —M'
[Q k,„y&"'I'„„.,„„...„„„'(IV2)—Q I'„,„„...„„...„,'(k2)y""'k„„][(k+IF)+(k—IF)]

2I+1 23IIW2

2I IF2 —M' W+M tV —M
5'„.„~—2(W2) (k+M)+ (k —IF) +[spin-(I —2), . . . , terms'. (A18)

2l+1 M' 2W 28'
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The contracted form of the off-mass-shell propagator
can be expressed in closed form or in a series corre-
sponding to Eq. (A18). The closed form is obtained
from Eq. (A10) by substituting P for p' and p' cos8
for y' cos0; in addition, we replace

8"'—M'
+(2l+1) E'p" 'Pi'(s) (A+M)

'@JAN 2

m y2l 2' l
3E

(A20)

kaW —+ @+M and E~E= (p
—k)/M. where E,=(p k)/W.

Finally, we must consider the effect of parity. A
fermion of spin J=l+ ', is sa-id to have "normal ' parity
if its parity is (—1)' (i.e., Jp = ~+, 2, ~~+, . . .); a boson
has "normal" parity if its parity is (—1)~ (i.e., J~=0+,
1—,2+, . . .). A particle with the opposite parity has
"abnormal" parity (J~=~, 2+, . . . , for fermions;
J~=0, 1+, . . . , for bosons). The normality of a vertex
is the product of the normalities of each particle,
e„=e~e2e3. YVe can go from a normal vertex to an
abnormal vertex in a fermion-fermion-boson interaction
by inserting a factor of (ip&) at each vertex. In ~-X
scattering, for example, this means that exchanging a
particle with J~=~+, ~, —,

'+ results in an abnormal
vertex and an iy5 factor is needed at each vertex. In-
serting iy5 s at the two vertices is equivalent to sub-
stituting 3f —+ —M in the propagator. The o6-mass-
shell propagator is obtained from Eq. (A12) by ex-

andin and usin the substitution in Eq. (A13). Since

Starting from the form given in Eq. (A10) is equivalent
to the substitution stated in Eq. (A13). Then the off-
mass-shell equivalent is

p "' p "~T (M)p"' p"'(A+M)

(—1)'«—P3 Pry''(2) (k+3II)
2l+1

—(m+8) -'p" 'Pi'(z) (k —M) j, (A19)
where

p'=I "= p"p "g"(—M'),
p' cos8= p&p "g„„(M—'),

E=p~k„/M.

(iy,.-)(%+M) (iy;) = k M, —
p g

The contracted form of Eq. (A18) can be derived by
either contracting Eq. (A18) with the initial and final
momenta or by expanding Eq. (A19) using the well-
known properties of Legendre polynomials. The result

(~'V5) Yy~
1S

p'& p'&LT .„(M)p" p"L(%+M)

(—1)'«
p "P,+i'(s) (%+M)

2l+1
we can calculate (i&5) T„,„~(M)(@+M)(i&5) by making
the substitution M —+ —M.


