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It is suggested that the hypothesis that the matrix elements of the stress tensor are dominated by the
neutral isoscalar spin-two mesons may be expressed by a field-source identity. This states that, to the
lowest order in the gravitational constant , the traceless part of the complete stress-energy tensor is pro-
portional to a linear combination of the renormalized field operators of the neutral, isoscalar spin-two
mesons. It is shown how this identity may be realized in a Lagrangian field theory, in a manner analogous
to the work of Kroll, Lee, and Zumino for the vector-meson dominance of the electromagnetic current. The
conditions imposed by Lorentz covariance are discussed. The field-source identity determines the parts of
the singular terms in the stress-tensor commutation relations which are the most singular in the coupling

strength.

I. INTRODUCTION

HE hypothesis of a universal conserved vector
current and the vector-meson dominance of the
electromagnetic current has been very fruitful in the
theory of the electromagnetic and weak interactions of
the hadrons.!:?2 This idea was expressed by Kroll, Lee,
and Zumino® in terms of a Lagrangian field theory;
they exhibited a Lagrangian field theory in which the
total electromagnetic current operator for the hadrons
was, to a good approximation, identical with a linear
combination of the renormalized field operators for
the neutral vector mesons.

Since the discovery of spin-two mesons, it has been
of interest to examine the parallel hypothesis that the
matrix elements of the traceless part of the stress tensor
are dominated by spin-two (tensor) mesons.? An ad-
ditional hypothesis that led to interesting results was
that the matrix elements of the trace of the energy-
momentum tensor were dominated by scalar mesons.®

In this paper, we show how the idea of tensor-meson
dominance of the matrix elements of the stress tensor
can be expressed in terms of a Lagrangian field theory
with a “field-source identity.” Our work is carried out
in a manner similar to that of Kroll, Lee, and Zumino.?

Just as the response of a system to an external
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¢ This idea was perhaps first exploited in detail by H. Pagels,
University of North Carolina report (unpublished). Related ideas
have been discussed by R. Delbourgo, A. Salam, and J. Strathdee,
ICTP Report No. IC/66/15, Trieste (unpublished); and by W.
Krélikowski, Phys. Letters 24B, 305 (1967). These authors
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matrix elements of the stress tensor and those of the 2+ meson
fields. In connection with the idea of the universality of the
coupling to the Pomeranchuk pole, the matrix elements of the
s(tlres;)tensor were considered by P. G. O. Freund, #bid. 2, 136

962).

& Recently, P. G. O. Freund and Y. Nambu [Phys. Rev. 174,
1741 (1968)j have shown how the coupling of a scalar field to

the trace of the stress tensor can be formulated in a Lagrangian
theory with a nonpolynomial interaction Lagrangian.
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electromagnetic field measures the electromagnetic
current for the system, the response to an external
gravitational field can be used for measuring the stress
tensor of the system.® We therefore introduce the cou-
pling of the gravitational field with the hadrons.

As is well known, a theory of the gravitational field
is essentially nonlinear and must be described by a
transcendental Lagrangian density, in order that it
give the gravitational field equation with the stress
tensor as source.” However, the small magnitude of the
gravitational constant k makes it meaningful to consider
an expansion in . In this paper we shall make the ap-
proximation of treating the gravitational interaction
to the lowest order in x. To this order in «, the free
(linearized) gravitational field will be treated as a
zero-mass spin-two field. For convenience, we shall
often refer to this as the “graviton” field.

We now suggest that tensor-meson dominance may
be expressed by the hypothesis, that to the lowest order
in the gravitational constant «, the irreducible spin-two
part ®,, of the complete stress-tensor operator of the
hadrons is identical to a linear combination of the irre-
ducible spin-two parts U,, of the (renormalized) field
operators of the neutral isoscalar spin-two mesons,® and
that similarly, the trace of the (divergenceless) stress-
tensor operator is a linear combination of the traces of
the spin-two meson field operators. The complete

6 See, e.g., J. Schwinger, Phys. Rev. 130, 406 (1962). The stress
tensor ©,, can be defined in terms of the response of the system
to an external gravitational field through the variational equation
8, W =1 fd*(—g)?0@,,0g,5, where g, is the metric tensor and
g=detg,. W is the action integral and the variation &§,W is
induced by an infinitesimal coordinate transformation. Thus the
stress tensor @, is proportional to the functional derivative of the
action integral with respect to the metric: ©,,=2(—g) V%W /g,

7 See, for instance, S. N. Gupta, Rev. Mod. Phys. 29, 334
(1957); Phys. Rev. 96, 1682 (1954); P. G. O. Freund and Y.
Nambu, ¢bid. 174, 1741 (1968).

8 We use the term “irreducible” in the group-theoretic sense.
By the irreducible spin-two part of a symmetric tensor operator
we mean the traceless, divergenceless part of this operator.
Note that a symmetric tensor operator which has a nonzero trace
and divergence is the sum of an irreducible spin-two operator,
a part involving an irreducible (divergenceless) spin-one operator,
and a part involving two scalar operators. For a symmetric,
divergenceless operator such as the stress tensor, the spin-one
part is absent, and the two scalar operators reduce to one.
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stress-tensor operator ®,, is a linear combination of the
divergenceless operators (U,,—n,,Uv) for the neutral
spin-two mesons fields. These relations will be referred
to collectively as the “field-source identity.”

In this paper, we show how the tensor-meson domi-
nance hypothesis can be formulated as a field-source
identity in a Lagrangian theory; in this theory, the lin-
earized gravitational equation (in an arbitrary gauge)
is of the form

(;D)\(P)\uu) = _K[®yﬂ+ @uv(l)] 5 (1.1)
where
‘(’D)\(P)\MV)E23)\[1‘)‘;“'_'%6)\#]:‘0‘?(1
—%5)\7Paua_%W#V(Pkaa-ra)\a):l; (1~2)

and 0,, is found to be of the form

@MV: Bf[:Uﬁ“’(/) —Nwl U)]"*“BI’EUAVU’) - anu(/,)] , (@ 3)

with u=U,°.

Here, T*,, is the affinity (for the gravitational field),
0., is the leptonic contribution to the stress tensor,
and ©,, gives the hadronic contribution. U, and
U are the field operators for the neutral spin-two
mesons f and f’.° 5,, is the pseudo-Euclidean (Minkow-
ski) metric.

Here we do not explore the consequences of the ad-
ditional hypothesis that the matrix elements of the trace
of the stress tensor may be dominated by scalar mesons.
We hope to discuss elsewhere a theory with both tensor-
meson dominance and scalar-meson dominance.

In Sec. IT, we outline the description we use for the
massive neutral spin-two meson fields and for the gravi-
tational field. In Sec. ITT we formulate the condition on
the (gauge-invariant) interaction Lagrangian that
would lead to a field-source identity; this is done without
examining the detailed structure of the strong-inter-
action Lagrangian. We briefly discuss the relations be-
tween the matrix elements of the stress tensor ©,, and
the source tensors J,, for the neutral tensor mesons, that
follow from the field-source identity. In Sec. IV we
discuss the question of the renormalization of a single
neutral tensor meson, considering only its strong
interactions. We also briefly discuss the propagator of
the unmixed tensor meson. In Sec. V we discuss the
constraints imposed by Lorentz covariance on a theory
with a field-source identity. In particular, we point
out that the field-source identity determines the parts
of the singular terms in the stress-tensor equal-time
commutation relations which are the most singular in
the coupling strength g. It further requires that some of
the singular terms be ¢ numbers.

In subsequent papers we shall discuss applications
and further questions relating to the tensor-meson
dominance hypothesis.

9 We recall that the observed tensor mesons are the A4,(1300),
Kr(1420), f(1260), and f’(1515), where the numbers give the
approximate masses in MeV.
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II. NEUTRAL MASSIVE SPIN-TWO MESON FIELD
AND LINEARIZED GRAVITATIONAL FIELD

In this section we briefly outline the description we
shall use of the massive spin-two meson field and the
massless ‘“‘graviton’ field, i.e., the gravitational field
in the linear approximation. The derivation of the field-
source identity can be carried out in a class of theories
of the spin-two meson interacting with the gravitational
field.

In choosing a description of the free spin-two meson
field, we shall impose the following requirements.

(a) The energy of the field should be positive
definite.

(b) The canonical variables and the commutation
relations should follow in a simple way from the
Lagrangian. This will be true if the Lagrangian density
is of the first order in the time derivative of the field
variables; the action principle then allows a simple
determination of a set of canonical variables.!

(c) Ttis convenient and elegant to use a theory of the
massive spin-two meson field which goes over to a simple
gauge-invariant theory of the linearized gravitational
field in the limit of zero mass.

For this, we shall describe the gravitational field by
the affinity and the metric tensor, and use the linearized
form of the Palatini Lagrangian density.'*!> For the
massive spin-two meson field, we shall use a similar
Lagrangian density, with a mass term added.!® In this
paper we shall treat the gravitational integraction to
the lowest order in the gravitational constant «.

The part of the Lagrangian density describing a
neutral massive spin-two meson, interacting strongly
with the hadrons, will be taken to be the following:

£=£0+5(U"”), (21&)
Lo= (Unv_%_nuvu) (2 0,,11",“,-— 0,,1'[,,— 6,,11,,)
+ 2(n T8 o 112, — o 110) — 3m2(U# Uy —u?),  (2.1b)

where g(U*) describes the strong interaction of the
spin-two mesons.s Here

U#v: LIVW H)\ﬂl’: H)\Vﬂ ) (22)
and we have used the notation
u=U,?, I,=1I%,, II*=II,,. (2.3)

10 J. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953).

1 E, Schrodinger, Space-Time Struciure (Cambridge U. P.,
Cambridge, England, 1963), p. 107.

2 R. Arnowitt and S. Deser, Phys. Rev. 113, 745 (1959).

13 Such a Lagrangian theory of the massive spin-two meson
field has been studied by S. J. Chang, Phys. Rev. 148, 1259 (1966),
and by S. Deser, J. Trubatch, and S. Trubatch, Can. J. Phys.
44 1715 (1968).

14 The free Lagrangian £, leads to a positive-definite energy
(although not a positive-definite energy density), as shown by
S. J. Chang (see Ref. 13).

15 If grJ ,py=089/8U*+” were independent of U, then § would be
just grJ U,



2 SPIN-2 MESONS AND FIELD-SOURCE

In (2.1), the terms arising from the gravitational
interaction of the spin-two mesons have been omitted,
so that (2.1) is correct to the zeroth order in the gravi-
tational constant «. #%* is the pseudo-Euclidean
(Minkowski) metric (1, —1, —1, —1).

The field equations obtained from (2.1) are the follow-
ing:
apnpuv_%(annfi“ avnu) _%Wuva)\(ﬁ)\ - H)\)

=3 (U o —ntt) — 580 v

(II")\“ —%5)\“11")-*— (H”)\” '—%5)\”:&”) — n"”H)\

(2.4)

= W —18,#(9,W77) —38\7 (9, W *), (2.5)
where
grJ w=38Y(U*)/8U* (2.6a)
and
Ww=Uw—Lnpwy. (2.6b)

We shall assume that the tensor current J# describ-
ing the hadronic interaction of the spin-two mesons, to
zeroth order in the gravitational constant «, is diver-
genceless to this order:

3.J*=0. 2.7

Equations (2.4)-(2.7) lead to the following equations:
O*(Upy—nws) =0, (2.8)

=28, Unt 0, Usu— nUp) (2.9)
u=(—gr/3m%j, j=J.°, (2.10)

((P+m?) Uy~ (9,0, m*nw)u=grt . (2.11)

For the linearized free gravitational field, we shall
take the linear approximation to the Palatini Lagrangian
density!2:

Lgrav® = (I — 30*h) {20,1%,— 9,1 — a,Tu}

+2(7lwrﬁaul‘aﬂv_raf‘a) ) (212)

where 4 gives the deviation, to order «, of the metric
tensor g* in the gravitational equations from a flat
(pseudo-Euclidean) metric p*:

gw=n""+xh",

h=ha®, and T?,, is the affinity. T', and T, are defined in
terms of T™,, in a manner analogous to (2.3). k is the
gravitational constant. (2.12) gives the following free-
field equations:

0ol — 30,0, — 31, (02 Ine—[_1?h) =0,

F)‘y,y = %(8,}1,)\,— ayh)\“ - ('))\h,w) .

(2.13)

(2.14)
(2.13)

The action integral and the field equations are invari-
ant under the gauge transformation

Py — iyt (6,.A,.+ dA,),
Ty, — I+ 0,0,A,.

(2.16)
(2.17)
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In terms of 4,,, the free-field equation may be written as

0,0y 9,0Mny— 0,0 — Py

— (8 Ine—[ ) =0. (2.18)

So far the gauge has been left arbitrary. In the Hilbert
gauge,® defined by

3°(hyo—2nuoh) =0, (2.19)
the free-field equation takes the form
(P (huw—3muh) =0, (2.20)
which gives
[Phw=0. (2.21)

In this paper, however, we shall write all relations in a
gauge-independent form.

III. INTERACTING FIELDS

TFor simplicity we first consider one neutral spin-two
meson interacting with the gravitational field. The
Lagrangian for the system will be written as

L= £gmv+ £T+£int y (3~1)

where £r, the free Lagrangian density for the spin-two
meson field, is given by (2.1b), and £y, the free
Lagrangian density for the linearized gravitational
field, is given by (2.12). The interaction Lagrangian
density Lin; will be written as

Lint= rKh;wJ””"‘ ceint, 5 (32)

where 7 is a parameter to be fixed later, and J# is the
source tensor describing the strong interaction of the
neutral spin-two meson and is given by (2.6a). The part
Lint’ of the interaction Lagrangian density does not
involve %,,, but involves derivatives of /,,; it is to be
determined by the requirement that £iny be gauge
invariant and that it should lead to a field-source
identity expressing the source of the gravitational field
as a linear function of the spin-two field operator U,,.

These requirements do not specify £in¢ uniquely;
they define a class of theories of the neutral tensor meson
interacting with the gravitational field.

For simplicity, we shall first express the field source
identity in terms of the tensor field U,, and its trace,
rather than in terms of the irreducible part of Uy,.
We denote the source of the gravitational field by ©,,,
and identify it with the total stress-tensor density,
including that of the gravitational field as well as that
of the matter fields.!” Thus ©,, has zero divergence:

9,0,,=0. (3.3)

16 See, e.g., W. Thirring, Ann. Phys. (N.Y.) 16, 96 (1961).

17 Note, however, that here we are considering ©,, only to the
zeroth order in «; to this order, the (divergenceless) stress tensor
does not involve the terms arising from the gravitational field.
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We shall here seek a field-source identity of the simplest
form, such that @, is a linear function of U,, alone and
does not depend on its derivatives. From (3.3) and (2.8)
it then follows that we must seek a relation expressing
®,, as a multiple of U,—1,U,°.

It is clear that £i,; must be nonzero, in order that
such a relation follow from the Lagrangian (3.1). The
equations of motion for the linearized gravitational
field %,, with interaction, that follow from (3.1), are
(2.15) and the following:

9T % — 18,0,k — 30 007hne—] %] = —3xO,,, (3.4)
where
6£int aeeint. a£int
LTI LLES
5}1,‘,, ahuv ahuv,)\

if we assume that, to lowest order in «, we can obtain
the desired identity with an interaction Lagrangian
density that involves only the first time derivative of
Ry

We thus look for £y satisfying

5£int aceint
hy Ol

aoeint -
-(")x( >=BK(UMV—T’IM’UVF) ) (3~6)
hﬂv.)\

where $ is a constant to be determined.
From the equation of motion (2.4) for U,,, we may
write

[qu_ﬂyquU]‘: (gT/mZ)Jﬂv_f"m‘zg)(H)\ﬁﬂ'): (37)
where
SD(H)‘W) o 2[6)\1-[)‘“,,—-%(6,‘1_[,-{— avHu)
—%nuvan(ﬁ)\_nk)] 3

as on the left-hand side of (2.4).
From (3.6), (3.2), and (3.7), it now follows that'®

(3.8)

0Lint’ BgT B
r]'“’—-fc_la)\li ]= —J —D(II1,) . (3.9)
My n m? m?

We look for a simple solution, such that

B=m?/gr (3.10)

and

aeeint/ -
6>\<~ )——— —(kB/m2)HATN,,) . (3.11)

J7DN
This gives
0Lint /I N = (—2kB/m?) [0 I12 0 — 3 (aIL A4 15011,
_%nnV(n)\"‘H)\)]‘*‘ Iunn (312)
where 9, is a function of %,, \ with the properties
(3.13)

As J# is divergenceless, £int’ by itself must be gauge

Jun=9,u, 07\.‘],“,)\2 0.

18 Note that, to the lowest order in «, the terms in 8£/d%,, that
would arise from the dependence of J,, on the graviton field /,,
(that is, the terms arising from 8J,,/8/,) do not contribute,
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invariant in the usual sense, that is, it must give a
gauge-invariant contribution to the action integral.
Equation (3.12) does not lead in a simple manner to a
gauge-invariant expression for £ins’. We therefore use
the field equation (2.9) for U,, and II*,,, and obtain
from Eq. (3.12) the following:

8.8ind' /Oty = (B/mOLUW D — Uer — 104
+%7]7\v Uaa,;l_l_%n)\uUaa,v

+ (U e—Ua2N ]+9#r.  (3.14)
A simple gauge-invariant solution for Lint’ is
Lint' = (rK/gT) (s, g U0 =2l y U P+ B U pPo#
0, U o—hy?UY? ), (3.15)

to the first order in «. This is, of course, not unique; for
instance, any term of the form £,,,,9** may be added,
where 9#* has the properties (3.13)

With £in¢ given by (3.2) and (3.15), we thus obtain

0= (7'm2/gT)(qu_77uan“) . (3.16)

This may be checked directly using (3.5), which gives,
to the lowest order in «,

®w= f{fuv—gT_‘[D2qu"‘3"3va::“ 9°9,U,,
4+ 0,0,U P+ 1u(0°0°U ,o—[2U,#)1}. (3.17)

On using Egs. (2.8) and (2.11) for the massive spin-two
meson field, this gives (3.16).
Equation (3.16) implies the relations

0wV = (rm*/gr)Us; ",
0,7=—r(3m*/gr)U. =1/,
where the transverse part Ug;9 of Uy,
U= (Uti—3%0kUmm), k,jm=12,3 (3.20)

gives a set of independent dynamical variables for the
spin-two meson field, and U," is the scalar part of the
field U,,. Similarly, we have defined

®k]'(t)= @kj“'%&kj@mm- (321)

Note that for the free spin-two field Uy, the scalar
part U,” is a redundant variable, while for the inter-
acting part, it is related to the trace of the source
tensor J,,. In the present work, we do not relate U.~
to a physical scalar field.

The above discussion applies to a system in which
there is just one neutral spin-two meson coupled to the
gravitational field, with the internal quantum numbers
of the vacuum. The normalization of J,,(x) may be
chosen by fixing the scale of the coupling constant g
such that the constant 7 in (3.2) or (3.19) is unity.*®

(3.18)
(3.19)

19 C, A. Orzalesi, J. Sucher, and C. H. Woo [Phys. Rev. Letters
21, 1550 (1968)] have suggested that for a local Hermitian
operator G (x) obeying certain conditions, one must have
Jd%x Guo(x) =cP,, where ¢ is a constant and P, is the momentum
operator of the system. If J,, (x) is a local operator obeying these
conditions, then our normalization would correspond to choosing
S J (%) =Po, or S'@x[Joo" (x) cosfr+-Jool) () sinfr]= P,
for a theory with two spin-two mesons which can mix.
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We then obtain

Ou=(m2/gr)(Up—1wU,%), (3.22)

which is the field-source identity for the tensor field
Uy It is the analog of the field-current identity for the
vector field. Here we have derived the field-source
identity without reference to the detailed structure of
Juv or ©,,, using the definition of ©,, in terms of the
response of the system to an external gravitational field
and using the assumptions of a divergenceless source
tensor J,, for the massive spin-two meson field and a
gauge-invariant interaction Lagrangian density Lint
satisfying the requirement (3.6).

We stress that the field-source identity (3.22) is a
relation involving the interacting spin-two field U#;
it can hold only when there is a nonzero coupling be-
tween the spin-two field and other matter fields (or a
self-interaction of the spin-two field with itself). One
cannot postulate a similar relation between the stress
tensor and the free spin-two field, as this would be in-
consistent with Poincaré invariance. This may be seen
from the equal-time commutation relations (ETCR).
Thus, Lorentz invariance requires the ETCR

1L Ooo(x),B00(Y) Jzg—ro=[Ou0(x) :
+On(y)d J6(x—y), (3.23)

while the canonical ETCR of the free spin-two fields
leads to the ETCR

1L Uoo(x) —n002t(x), Uoo(y) — 100 (Y) Jzgmpy=0.  (3.24)

That one cannot postulate an identity between ©,,
and a combination of the free spin-two field operators
is also evident from the way the identity was derived;
it was necessary to have an additional term £in’ in
the Lagrangian, proportional to gr—!, which gave rise
to the factor gz—! in the field source identity. The iden-
tity cannot be derived when gr=0. The field-source
identity thus expresses a property of a particular kind
of interacting spin-two field theory.

The nature of the interaction J,, is constrained by
the requirement of Lorentz covariance. The explicit
nature of these constraints will be briefly discussed in
Sec. V of the paper. These constraints must be satisfied
in order that a theory with a field-source identity be
Lorentz covariant.

So far we have not considered the internal symmetry
properties of U,,(x), Ju(x), and ©,,(x). The discussion
given above can be directly extended to take these into
account and to include the interaction of more than one
neutral spin-two meson with the gravitational field.

For simplicity we consider here a theory in which
6, is a singlet under SUs; it then must be proportional
to alinear combination of spin-two meson field operators
which transforms as a singlet under SU;.2%:2t We write

2 In general, in the presence of SU3 and SU; symmetry break-
ing, the stress tensor can have parts that transform like the
hypercharge component of an octet or like the third component
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equations of motion analogous to (2.4) and (2.5) for
the f and f’ mesons, with source terms grJ,,” and
grJ ", which we assume to be divergenceless. We take
into account f— f’ mixing bv taking the interaction
Lagrangian to be

Ueint:r[’(hpv(]yy(f') C0507'+]“y(f) SinoT)]""eeint,, (3.25)

where £in¢’ is obtained from (3.15) by replacing U, by
U cosfr+U,, " sinfp. This combination trans-
forms as a singlet under SU;. Again we may normalize
Ju(x) by choosing r=1.1?

We now obtain the equation of motion for 4,, to be
(3.4), where ©,, is determined, using the equations of
motion for U,,? and U,,“", to be

Ou= (gr) ™ mp LU ") — U7V Jcosbr
+m2 LU — U, ] sindr} . (3.26)

The relation (3.26) is the field-source identity; it
expresses the stress tensor as a linear combination of the
renormalized field operators of the f and f’ mesons.

With this identity, the matrix element of ®,, between
two physical states 4 and B is related to the matrix
elements of J,, and J,,") between the same states.
This relation is, in general, more complicated than the
corresponding one for the vector mesons and the electro-
magnetic current, because the field operators U,
and U,,V" are, in general, neither traceless or diver-
genceless. This gives rise to additional terms, depending
on the trace of U,V and U, like those occurring
on the left-hand side of (2.11).

When the source tensors J,,? and J,,") have zero
trace as well as zero divergence, then u(f)=U,""=0,
uy=0, and the equations of motion give

(D2+m2) qungJ;m (327)

for the f and the f’. The field-source identity now takes
the simple form

Ou= (m2/gr)(cosbr)U,, V"
+ (ms2/gr)(sinfr) U, . (3.28)

In this case we have the following relation between the
matrix elements of ©,, and J,,:

(B| ©u(x) IA>
=[ms2/(ms*—¢%)] cosbr (B (x)[ 4)
+[ms?/ (mg?—g*)] sinbr (B[], (x)|4), (3.29)

where ¢=(pp—pa) is the four-momentum transfer
between the states 4 and B. Expanding the matrix
elements of @, J,, ", and J,,“") in terms of a set of
covariants, we can obtain relations analogous to (3.29)
for the corresponding invariant form factors. For in-
stance, when A4 and B are spin-zero mesons of equal

of isospin. We shall discuss this elsewhere, while discussing
applications of the field-source identity.

21Tt is also of interest to consider the results obtained for an
octet or a nonet generalization of the stress tensor, such as that
suggested by H. Pagels (Ref. 4).
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mass, we write

(B|©,L(0)|4)

= [(q;tqv_q277uV) —(342/P2)P#Pv]@(l]2) ’ (3-30)
where P=%(pa+ps), and obtain
,2
O(g)= cosfir F sy (¢%)
myt—q*
m 2
—sinfr T (g%, (3.31)
mf2—"92

where F¢(¢?) and Fsy(¢?) are related to the matrix
elements of J,, ¥ (x) and J,,“”(x) in a manner analo-
gous to (3.30).

When J,,” and J,,¢") are divergenceless but not
traceless, we have the equation

(P+m?) U —nuu ]
= gT[]uv(f) "(l/smf2)(anav—ﬂuvljz)j(f)] , (3.32)

and a similar equation for the f’. Here j\)=J, 7.
These give the relation

(B0 4)= 25| 7,0 4)
myt—q?
MfZ
— (Blfnv”’(x)lA) (3.33)
mg—q*
where
jpv(x) = J#V(x) - (1/3”7'2) (8,9, __77/”{:,2)j
=J u(x) ""qujav(x) (3-34)
and

J (@)= (P+m?) Up(®). (3.35)

Note that 9,J#(x)=0. As an example, we again con-
sider the matrix element between spin-zero (pseudo-
scalar) mesons 4 and B. We write the decomposition

<Bl 0,,(0)[4)= Ru®1(¢)+S,0:(¢%), (3.36)
where
Ry, = (guqv—'n#vq2) s (3.37)
PP, (03 9)
Sp=—— (P#qv+gupv):l- (338)

) + '__‘[(1) D v —
¢
Note that ¢*R,,=0 and ¢~S,,=0.
For the vertex function coupling a tensor meson f to
the pseudoscalar mesons 4 and B, we similarly define
the form factors F;°(¢? by

(B|Jw(0)| 4)
:vaFI('f)(q2)+SuVF2(f)(q2> (339)
= [qugF19(q)+ (1 —3P,P,/POF, ) (g9)]  (3.40)

when m4=mp. A similar decomposition is written for
(B|Jw(0)| 4). Fi"(g?) and F;¢"(¢?) are assumed to
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be regular at ¢>=m;* and ¢*=m;.?, respectively. Using
(3.39), we obtain relations of the form (3.31) between
the “energy-momentum structure form factors’?? ©;(¢?)
and the form factors F,;Y(¢?) and F;Y"(¢?) for the
vertex functions coupling the tensor mesons f and f’
to the particles 4 and B.

The complication in equations such as (2.11), (3.26),
and (3.22) arises because in order to write local equations
for fields with spin higher than 1, it is necessary to
introduce auxiliary variables, which become redundant
for the free field, but are, in general, no longer so when
an interaction is introduced.

The relations involving the irreducible parts of U,
Ju», and O, are simpler. These irreducible parts (which
are the traceless, divergenceless parts of these tensors)
are the following:

U= U= 8,017V

= U+ (gr/3m?0,0,(( 1)~ J,7, (3.41)
~uv 7 %[nnv—a 4 (D2) ljj (3-42)
@nv wy %[nw_a 9 (Dg) I:IG) 7 (3-43>

The operation with the inverse d’Alembertian oper-
ator is defined as an integration over the appropriate
Green’s function.?® In terms of these new wvariables
(which are nonlocal in the way they are defined here),
the field equation (2.11) gives just

C1*+m?) Um'

and we obtain the following relation between the
irreducible spin-two parts of @, U, and U, Y":

gTJpw 3 (344)

~ my ms*
0= (——~ c050T> U, >+<~—— smBT) U, . (3.45)
8r gr

Equation (3.45) and the relation

mfIZ Mf2
0,7= <——cos®T> U oY+ <~—sin®T) U, ) (3.46)
8r gr

are equivalent to the relation (3.26).
The relation between the matrix elements of O,,
and J,,9, J,,U" is of the simple form (3.33).

IV. RENORMALIZED SOURCE OPERATORS FOR
NEUTRAL TENSOR MESON; TENSOR
MESON PROPAGATOR

We first discuss the question of the renormalization
of the neutral tensor meson, considering only its strong
interactions. We assume that renormalization constants
can be defined for the neutral tensor meson?; we make

2 H. Pagels, Phys. Rev. 144, 1250 (1966).

% Thus ([O0.%)7F (x) = Sdx' D(x-—x’)F (), where D(x) is
defined by [3,2D(x) =8(x) and appropriate boundary conditions.

% For instance, we can define renormalization constants for the
neutral tensor meson in particular models like the chain model
(sum of bubble diagrams).
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no reference to perturbation theory or the electromag-
netic or gravitational interactions. For simplicity, we
consider here a problem with a one neutral tensor meson,
so that there is no mixing. This can be extended directly
to take into account f-f’.

The Lagrangian density for the spin-two meson and
its strong interaction will be taken to be of the form
(2.1), but in terms of the unrenormalized fields U,,©
and I*,,@; and the unrenormalized source J,,®, with
the (unrenormalized) coupling g,. The unrenormalized
mass will be denoted by . We shall assume that

0T, ©=0. @.1)

The field equations for the unrenormalized fields are
again of the form (2.4) and (2.5), or (2.8)-(2.11).25

We shall normalize J,,® in the same manner as J,,
was normalized in the previous section. Introducing a
wave-function renormalization constant Z, we define
the renormalized field operator U, by

Up=Z"1120,© 4.2)

The Lagrangian density may be written in terms of
the renormalized field operators as follows:

L= £o( U’"’)
+ (Z— 1) { (UW - %"7””1") [:23,,1]:"#,,—- annv—‘ 6vnw]
+2 (ﬂ“ynﬁannaﬂv - Haﬁa)}
—2@Zm2—m?)(UP U py—u?)+ g 212U T, .
The renormalized field obeys Eq. (2.4), where
J =g go(m/mo)*Z7112] ,, @ —2g7 (1 —m?/mo?)
X [3,,H”,,,.— %(GMHV_{— avIIu) - %Uwak(ﬁ)\ - HX)] . (4-4)

As we have normalized both the unrenormalized and
the renormalized source operators, we obtain the
relations

(4.3)

Z11g/go=m/mq¢?, (4.5)
g mo’
UI-U‘ = _“Uﬂv(o) 3
go m*
(4.6)

1 m?
Jw=Tu® —~<1 — ——>§D(H*,‘.,) .
g mo?

In (4.6), D(1*,,) denotes twice the expression within
square brackets in (4.4). The relation between II*,,©
and II*,, is the same as that between U,,® and U,,.

This shows how the theory for the neutral tensor
meson may be written in a form similar to that given by
Kroll, Lee, and Zumino?® for the neutral vector meson.
We here get the result

2 me
Jw®=—Up—npu)—g 1 —D(II*,). (4-7>
4 mo*

% Here, we have assumed for simplicity that J,© does not
depend on U,,©.
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If the bare mass m, of the tensor meson is infinite,
then the unrenormalized source operator becomes
proportional to the renormalized operator (U, —nuu%):

T @ = (m*/g) (U p—nutt) - (4.8)

If we assume the interaction Lagrangian density
given by (3.2) and (3.15), obtaining the field-source
identity (3.26), then we obtain the relation

O =T+ g (m/ mAD(IPw).  (49)

We finally remark that, as with vector-meson domi-
nance, one may try an alternative hypothesis to express
tensor-meson dominance, namely, that the stress tensor
is proportional to the unrenormalized source operator
Juw©@.% With our normalization, this gives

Oun=7Ju", (4.10)

which leads to
m? m?

®Mll = _‘-(va_"’lwu) —-g“l _——ZD(II)‘W) .
gr mg?

(4.11)

The two alternatives coincide when the bare mass
is finite. If s, is finite, then the two alternatives lead
to different relations between the energy-momentum
structure form factors and the vertex functions for the
tensor mesons. Thus, instead of (3.31), we would obtain
the following relation, analogous to that for the vector
mesons?®:

My’ cos(?qv/ q?

1__
myt—q* \ (ms®)o

(¢ = )w)«f)

mg2sinfrs . ¢?
(1—_
(ms?)

with the assumption (4.10), so that in principle, the
two different hypotheses for tensor-meson dominance,
which lead to (4.9) and (4.10), may be distinguished
experimentally.

We finally briefly discuss the propagator for the tensor
meson. The canonical equal-time commutation relations
lead to the relation

)fY(f) (@, (4-12’)

'm,«?——q“’ \

[UPQT(x;t):TIFZ(y)t):] = _iZhlapQ.lea(x_y) ) (413)
where
Upd"=Upa—31pU1", (4.14a)
= —2110%;+2(V2—4m?)~1
X (akal_%mgnk[)IlonL,n, (414b)
and
dpa ki’ =F(prnatnanpi—3npen12) - (4.15)

For the vacuum-expectation value of the commutator
[U#(x),UM(y)], we may write the spectral represen-
26 This would be analogous to the hypothesis made in Refs. 1

and 2 for vector-meson dominance. For a discussion of this for
the vector current, see Ref. 3.
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tation, in general, as

OILU= (@), 0(2)]|0)
= / A5 3(0,)pals)H O, on(s)

3@ 7poa(s)+(1/24)1Ppor(5)

+iz(Wd+dPP)po(s)} A(x—y, 5),  (4.16)
where
9+ oL
(), (7))
s s

V#r9(9,s) =5(9*9°@ + 87 9°d+

+ 94+ 9rar) . (4.17)
When 9,/#=0, we have the relations

p1=0, poa=1t6P0b=—%p0c= po, (4.18)

say. Equation (4.13) now leads to the spectral-function
sum rules?”

/ ds pa(s)=271, (4.192)
4mn?
* pa(s)  CZT1 © ds
| A e [ Smo+omen),
dmn? A m02 dmw? 52
(4.19b)

where Cis a positive constant, which depends, in general,
on the interaction. For the free field, C=1.

The lower limit of the spectral integrals is 4m,% when
we consider the spectral functions for the neutral iso-
scalar tensor meson. From (4.19a) and (4.19b), using the
positive-definiteness of pa(s) and py(s), we obtain

mo?>4dm,>. (4.20)

For a stable neutral tensor meson, we thus obtain
Mmo2> me.

For the renormalized propagator in momentum space,
we make the decomposition

ds
G)Mv,)\d(p) :/ _____#._l::Duv,)\U(j))s)p2(s)
S—p2—ie

Opp P p°

+ ;Mpo(S)} (4.21)
N

E(s)zuv,)\cr(p)_.!.d)onl’.)\d(?) , (422)

2 The spectral-function sum rules for spin-two fields have been
discussed by the author in an earlier paper [see K. Raman,
Nuovo Cimento 55A, 650 (1968) ; and Erratum (to be published)],
where these are given also for the more general possibility where
the source tensor J,, for the spin-two field has nonzero divergence
and trace.

RAMAN 2

in an obvious notation. Making the further decompo-
sition

@2uv,)\¢r(1§) - :-DIW,)\V(P)F2(P2)+ ey (4:23)

analogous to the decomposition in (4.16), we define
the square of the renormalized mass m? as the value of
P2, where

Re[Fa(m?) ]1=0. (4.24)

Proceeding as for the vector meson,* we may obtain
the relations

Fo(p?) = 2127/ (m* — p* —iym) , (4.25)

with

1
—. (4.26)
wmZps(m?)

a
L= —*[Re(Fz)‘l:l y
dp?

p2=m2

The possible choices of Z and the resulting normaliza-
tions of the matrix element (7| U,,(0)|0) between the
vacuum and a one-particle state may be discussed as
for the vector meson; we shall not give the details here.

This discussion may be extended to the problem with

f-f/ mixing.

V. CONSTRAINTS IMPOSED BY
LORENTZ COVARIANCE

The invariance of a field theory under the Poincaré
group imposes constraints on the theory, which may be
expressed in the form of the equal-time commutation
relations (ETCR) among the components of the stress
tensor.?®:2? The general form of the stress-tensor ETCR
consistent with Poincaré invariance and locality has
been discussed by Boulware and Deser,? who give the
following form:

AL O00(2),B00(y) Jzg=so

=[Oor(x)+ Oor(y) Jor(x—¥)+ wo0,00(x,3) , (5.1)
i[@OO(x);(H)Ok(y)]x(Fyo
=[Ou(2)+ Ooo(y) 121 ]9:8(x—y)+woo,06(x,y) ,  (5.2)
1L O00(%), 011(¥) Jeg—u,
=[—0300x1(x)+ O o (v) 31+ Ou:(v) s ]
+8(x—y)+woo,re(x,y), (3.3)
7‘[@Ok(x):(")Ol(y):lwo#vlo
=[O0(x) 1t Oor(x") 9:16(x—y) +wor,u(x,y),  (5.4)
i[G)O/c(x)y@?nn(y)]xozyo
=[On(x)nri— Omi(®) ur
— ®nl(y)77m/rjala(x“y)+w0k,mn(x;y) . (3.9)

Here, the operators wog,00, €tc., are subject to the
constraints discussed in Ref. 28.

To find the implications of the Lorentz-covariance
conditions (5.1)-(5.5) on a theory with a field-source

28 P. A. M. Dirac, Rev. Mod. Phys. 34, 1 (1962); J. Schwinger,
Phys. Rev. 127, 324 (1962); 130, 406 (1963) ; 130, 800 (1963).
# D. G. Boulware and S. Deser, J. Math. Phys. 8, 1468 (1967).
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identity, we substitute the field-source identity into the
ETCR’s (5.1)-(5.5) and reexpress the resulting equa-
tions in terms of the dynamical variables U7 and ..
We then obtain the following results.

(1) The field-source identity determines the parts
of the singular terms in the stress-tensor ETCR which
are ¢ numbers and which are the most singular in the
coupling constant g.3% These are the following®!:

woo,06°(2,) = — (2/3g) V20rd(x—y) (5.6)
w%,mﬁ(%)’)
= (mz/g2>[%(77kman+ nknam_"%nnmak)a(x‘y)
—(2/3m?) 8m3010(x—y)]. (5.7)
Here we have used the notation
woo,ol;:gﬁZ(gzwoo,oks)‘i‘g_lwoo,ok
+ (terms regularin g). (5.8)
Note that (5.7) and (5.8) lead to the relation
@0k, mm*(%,Y) = woo,04°(%,Y) - (5.9)

This is in agreement with the result noted by Boul-
ware and Deser,? thatin the vacuum-expectation values
(woo,01)0 and {wor,mn)o, the parts proportional to the
third derivative of §(x—7y) are the same.

(2) The field-source identity and the stress-tensor
ETCR impose explicit constraints on the nature of the
field dependence of the source density J,,(x) in the field
equations for the neutral spin-two mesons.??

Details of these are given elsewhere.?® Here we shall
merely quote two important qualitative results follow-
ing from these constraints:

(3) When we require the Jacobi identity to hold for
triple commutators involving a component of J,, and
the canonical variables Uy;” and 7z, then the constraints
following from the field-source identity and the stress-

3 This is analogous to the result that the field-current identities
for the vector and axial-vector currents determine the singular
terms in the commutation relations for these currents. See T. D.
I(ﬁe, 7?. Weinberg, and B. Zumino, Phys. Rev. Letters 18, 1029

1967). .

3 When we write a spectral decomposition of the vacuum-
expectation value (0[[ @, (x),Ors(y)]|0), then the results (5.6)
and (5.7) lead to sum rules for the spectral functions of the stress-
tensor two-point function. These will be discussed elsewhere.

2 For a discussion of noncommutation and field-dependence
requirements on (divergenceless) sources of spin-two fields, see
K. Raman, J. Math. Phys. (to be published).

# K. Raman, Brown University report, 1969 (unpublished).
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tensor ETCR require that some of the singular terms in
the stress-tensor ETCR must be ¢ numbers.

(4) Also, as a consequence of some of these con-
straints, the interaction term gJ,(x) for the spin-two
field must be nonlinear in the coupling strength g.

These results indicate in what way a field-source
identity restricts a Lorentz-invariant theory.

VI. CONCLUSIONS

In this paper, we have suggested that the hypothesis
of tensor-meson dominance of the stress tensor may be
expressed by the requirement that the irreducible spin-
two part of the complete stress-tensor operator of the
hadrons is identical to a linear combination of the ir-
reducible spin-two parts of the renormalized field oper-
ators for the neutral isoscalar spin-two mesons, and that
the trace of the stress tensor is, similarly, a linear
combination of the traces of these spin-two meson field
operators.

We have shown how this hypothesis may be realized
in a class of Lagrangian field theories of neutral tensor
mesons with a gauge-invariant coupling to the gravi-
tational field. We have here treated the gravitational
interaction to lowest order; this has enabled us to pro-
ceed in a manner analogous to that used by Kroll,
Lee, and Zumino for the electromagnetic current.

We have also briefly discussed here the constraints
imposed by Lorentz covariance on a theory with a
field-source identity. These are in the form of conditions
on the source J,, describing the strong interactions of the
spin-two mesons. We have not exhibited an explicit
model satisfying these constraints. However, we have
not found any inconsistency among these conditions,
and we take this to support the existence of nontrivial
theories with a field-source identity.

Some of the questions that arise in this work are
(a) the explicit construction of theories with a field-
source identity, (b) the extension of the results obtained
here to all orders of the gravitational interaction, and
(c) the formulation of a theory with tensor-meson domi-
nance of the traceless parts of the stress tensor and
scalar-meson dominance of the trace.

These and other questions relating to the tensor-
meson dominance hypothesis will be discussed in subse-
quent work.
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