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Using Feynman rules derived from the chiral-invariant Lagrangian for pions, explicit evaluation is made of
all contributions to all Feynman amplitudes in the limit of zero external 4-momenta, through order f„
These calculations are formal in that they involve divergent integrals. For all except the tree-graph diagrams,
the results depend explicitly upon the pion "gauge, " or Weinberg's function f(er'). However, we show that
through order f„ there is a unique choice of gauge for which, notwithstanding the divergences, the ampli-
tudes vanish in the soft-pion limit in accord with the soft-pion theorems. We conjecture concerning further
application of this special gauge for the removal of divergences.

I. INTRODUCTION

S was shown by Weinberg, ' the effective Lagrang-

~

~

ian for massless pions with SU(2)SU(2) in-
variance may be written as

J.= —.,' (D„sr.) (D„srbr) .

Here D„denotes the covariant derivative of the pion
fields sr (a= 1,2,3), and may be written as

paper, ' corresponds to the choice

f(ors) = (ees)&/s cotL(ers)&/&/f ] (1.8)

f.
rl, b(sr) = b.b

L(f(~'))'+~']"'

The matrix d E, which enters into the definition of
D„rr, is given in terms ot this arbitrary function f(ee ) by

(1.2)D„7r.= d.b(oe)it„sr b. f {f(~2) L(f(~2))2+~2]1/2 2~sf &(~2))
X —— , (1.9)

~2 2 ~2The matrix function d, b(ee) depends on the manner in
which the pion fields transform under the chiral
generators X ot SU(2)SU(2). Following Weinberg,
we write

from which it follows that the Lagrangian is

LX.,sr b] = —if.b (ee),

f.b (ee) =b.bf(er')+ sr.sr bg (oe') .
with

(1.4) The equivalence theorem' ensures that on-shell
T-matrix elements derived from this Lagrangian are
independent of the choice made for the function f(ot').
However, the Lagrangian is not renormalizable in the
conventional sense, and is usually used only as an
effective Lagrangian, which is to say that only the
tree-graph contributions to a given matrix element are
utilized. The corollary of the equivalence theorem
proved by Coleman et al.' ensures that these too will
be independent of f(ee').

Let us write

Then although f(ees) is arbitrary once we have ensured
that f(0)=f, the pion decay constant, the requirement
that the fields m transform under a nonlinear realization
of SU(2) SSU(2) enforces the specification of g(ee') by

1+2f(er') f'(se')
g(~') =

f(ee') —2ee'f'(ee')

Three choices of f (ee') occur with some frequency in the
literature. Weinberg himself often uses

~2

)
n=0(1.6)

(1 3) I s f~'{b.bLf'+ er'] '+sr~srbLf'+ee']

&& 9~'(f')' —4ff' —1])(B.~-) (~.~b) (11o)

Other authors, for example, Bardeen and Lee, ' mak. e a
choice which leads essentially to the 0- model,

f(oes) (f s ~2) 1/2 (1.7)

The transformation law used, for example, by Callan
et al. ,

' by Isham, 4 and by the present author in another

* On leave of absence from Queen Mary College, London.
' S. Weinberg, Phys. Rev. 166, 1568 (1968).' W. A. Bardeen and B.W. Lee, Phys. Rev. 177, 2389 (1969).' S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239

(1969};C. G. Callan, Jr., S. Coleman, J. Wess, and B. Zumino,
ibid. 177, 2247 (1969).

4 C. J. Isham, Nuovo Cimento 59A, 356 (1969).

2

where ao ——1 and the remaining coefficients u are
arbitrary real numbers.

To use the Lagrangian L to calculate the T-matrix
element for x-x scattering requires only the isolation
of the quartic term in L, which involves the parameter
a&. Explicitly, we have

1., = f —' -'[(1+-2a )~'(B—~)'
+ (1+4ar) (oe B„ee)']. (1.12)

' J. M. Charap, Can. J. Phys. (to be published).' J. S. R. Chisholm, Nucl. Phys. 26, 469 (1961);S. Kamefuchi,
L. O'Raifeartaigh, and A. Salam, :M'. 28, 529 (1961).
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and, of course,

Sab= a b )

Sac a c )

Sack a

(1.15)

sab+sac+sad pa +pd +ps +p. (1 16)

The on-shell matrix element obtained by setting p,'
=pss=p. '=pq2 ——0 (these are zero-mass pions) is, as
guaranteed by the equivalence theorem, independent
of u~. The Adler condition~ which requires the on-shell
matrix element to vanish when s, b ——s„=s ~

——0 is also
clearly satis6ed.

It is clearly a simple and straightforward matter to
compute matrix elements in the tree-graph approxima-
tion for more complicated processes involving large
numbers of pions. For each such process, there will be a
sof t-pion theorem (Adler condition) which we are
sure will be satisfied by the tree-graph contribution to
the amplitude alone, as well as by the full amplitude.
However, we cannot (yet) calculate the full amplitude
from our Lagrangian, because it is nonrenormalizable.
We are then in a rather frustrating situation; we have a
Lagrangian which might be utilizable to obtain the full
5 matrix in this model world of chiral-symmetric
interactions between massless pions. We know that if we
were able to calculate the full 5 matrix, all the con-
sequences of chiral algebra, in particular, the soft-pion
theorerns, would be satisfied, for we have built chiral
algebra into the Lagrangian. We can calculate only the
tree-graph contributions, and there see how the soft-
pion theorems are indeed satisfied. What is crucial is
the presence of derivatives in the couplings, which
give factors proportional to momenta in the matrix
elements, which then vanish in the soft-pion limit.
Now in higher orders than the tree-graph contributions,
these derivatives can sometimes act on ietereu/ lines,
and then it is not at all clear how the soft-pion theorems
come to be satisfied. But precisely because of the
derivatives acting on internal lines, the loop integrations
are so badly divergent as to render the theory non-
renormalizable, so that we cannot really believe any
result of a perturbation calculation anyway.

' S. L. Adler, Phys. Rev. 13/, 81022 (1965).

The three examples given in Eqs. (1.6)-(1.8) for
f(222) have, respectively,

Qy= —
g ) Cg = —

g ) Qy= —3. (1.13)

In the general case, if we calculate the tree-graph
contribution to the T-matrix element for x-m scattering
illustrated in Fig. 1, we obtain

f~—'P, 5s,qL(1+2a )r(s, s+s«+s~~) s—~sj
+~..~ .L(1+2")('+".+'.)—".3

+b,dbs, t (1+2ar) (s,s+s,+s,q) —s,qg} . (1.14)

Here we have introduced
I'"IG. 1. Tree-grayh contribution to the x-x scattering amplitude.

Even so, there may be something to be learned from
the attempt to calculate higher-order terms in perturba-
tion theory. We may not believe the results, but may
still get some insight into how even in higher orders
the soft-pion theorems are satisfied, and may even get
a clue towards solving the problem of making meaning-
ful calculations beyond the tree-graph approximation.
So, fully cognizant of the dubious significance of the
calculations, we will examine the soft-pion theorem to
higher orders for x-m- scattering. We need also to
consider the soft-pion theorem for an even simpler
process —the propagator.

IL FEYNMAN RULES

The Lagrangian is of the form

n, = —(1+2ar), pr ———(1+4ar),

and will also use

6!2=1+4ay+3ar —2a2,

p2 ——2+ 12ar+ 16a22—8a2,

(2 2)

(2 3)

as = 2aP+4a] +4a2+ 6ara2 —2Q2
&

P 2 = —3—24ar —58ar2 —40aP+ 20a:
+52ara2 —12gs. (2.4)

In general, n„ndaP„depend upon ag a2 ~ ~ ~ an, .
The terms in the sum in the expression for the

Lagrangian give rise to vertices in Feynman diagrams
at which 2e lines meet, e= 2, 3, . . . . If at such a vertex
the pion lines carry isospin indices a~, a~, . . ., a2n and
momenta (directed in towards the vertex), Pr, P2, . . . ,
P2„, then the vertex factor in the computation of a
Feynman diagram contribution to the invariant

1(g ~)2+ Q 1f —2eg~ (~2)n(g ~)2
n= j.

+P„(222)"—'(22 8„22)2j, (2.1)

in which the coeKcients rr and p„depend on the a„
occuring in the expansion (1.11) of f(222). We have
already used
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FIG. 2. Contribution of order f ' to pion self-mass. FIG. 4. Further contributions of order f ' to pion self-mass.

amplitude is

&fss
" 2 (+ 1) ~ (')a)a (')a;a4.' ' '()as .)aa

X(s +s + +s.—.)) + (25)

There are (2e)!/I!2" terms within the braces { ), of
which we have given just one, these corresponding
to the distinct pairings of the 2e lines. We have used
s,; for (p,+p,)'.

The meson propagator is

i().t, (p'+is) '. (2.6)

The computation of a Feynman-diagram contribution
to the invariant amplitude proceeds in the usual
fashion, with vertex and propagator contributions being
multiplied together and integrated over all loop
momenta. There is an over-all phase of i. Finally, one
must divide the resulting integral by a symmetry factor,
appropriate to the particular diagram being considered.
This factor arises because when many identical lines
meet at a vertex a permutation of the lines may leave
the diagram unchanged. In more familiar cases the
combinations look after themselves, and there is no
double counting. But in a case like the present there is
double counting, unless we divide out by the appropriate
factor. This symmetry factor is the number of ways the
same contraction of internal fields may be made to
yield the given diagram.

I' lG. 3. QalllshUlg colltributlon of oD1er

f 4 to pion self-mass.

III. TERMS OF ORDER f
If we work only to order f ', the only vertex to arise

is the one at which four lines meet, given by setting

+=2 in (2.5). It depends on ai. The only amplitudes
which acquire contributions to this order are the 2-pion
to 2-pion scattering amplitude and the propagator.
We have already written down the first of these in
(1.14). Since it involves no loop integrations, it is
finite, no matter what value is given to aI and, independ-
ently of the value of a&, it vanishes when any of the
external 4-momenta is set equal to zero.

The diagram of Fig. 2 gives a contribution of order

f ' to the self-mass of the pion. The symmetry factor
is 2, and direct application of the Feynman rules of
Sec. Il gives for its contribution 3 to the invariant
amplitude

A= —i—
2

O'A: 6...,
-f —'{()„„,()„„Ln](2p'+. 2k') ]

(2s) 4 k'+i&

+(Iaias()aaaaLn&( p + k )+(2Pi—ei)2(p+k)'1

+~....~...,L (2p'+2k')+(-:P — )2(p —k)'j)

d4k p'+k'
i'Oaia2fss (2c(i+Pi)

(2m)' k'+re
(3.1)

3()'i+Pi= o (3 2)

Note that the requirement is that the most divergent
part of the integral vanishes; in this simple case, when

this requirement is satisfied the whole integral vanishes,
but this will not always be so. However, we shall

always find that the soft-pion theorems relate to the
most divergent parts of the integrals, as may be seen on

dimensional grounds.
The condition cleterniines unique/y

(3,3)

which, taken together with Eqs. (2.2), t, iv(.s

(3 4)

Of course the integral diverges. But we shall require
that the "soft-pion theorem for the propagator" be
satisfied to order f ' And this th. eorem says that, to
this order, the mass of the pion stays zero. Since Fig. 2

is the only contributing diagram of order f ', the
requirement is that 2 vanishes at p'=0. This can be
satisfied if and only if
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IV. TERMS OF ORDER f 4

Working to the next higher order, i.e., to f„', we
encounter diagrams with two closed loops contributing
to the self-mass, diagrams with one closed loop con-
tributing to the 2-pion to 2-pion amplitude, and tree-
graph diagrams for 3-pion to 3-pion (or 2 to 4) processes,
which we shall not evaluate explicitly.

Consider first the self-mass contributions. The
diagram of Fig. 3 gives zero if (3.3) is satisfied, since it
contains 3 as a factor. However, this is not true for the
contributions 8 and C of the two diagrams of Fig. 4.
The symmetry factors for these diagrams are 8 and 6,
respectively.

Direct evaluation gives

8 =8...,f '5(3ng—+Pa)

d4k d4/ p'+k'+P
X (4.1)

(2~) 4 (2~) 4 k'I2

or, setting p'= 0,

8o= 5„„,f '10(3n2+ Pg)%",

where 'K is the divergent integral

d'k d'l

(2~)' (2~)' l'

(4.2)

(4.3)

Similarly, at p'=0 the contribution Co of the second
diagram of Fig. 4 is

Co— e,„g,f~ '2 (3n—P+ 2n, P—,+2Pi')%'. (4.4)

Here, and subsequently, we have performed only
permissible manipulations of divergent integrals, viz. ,
symmetric integration, which sets to zero expressions
like

d4k f(k')k (4.5)

as well as, of course, having utilized 6 functions. We do
not make displacements of the origin of integration.

Just as the condition A 0——0 for the vanishing of the
self-inass to order f ' led to Eq. (3.2) and hence to
the determination of a, as in Eq. (3.3), so now the
condition that the self-mass vanishes also to order

f 4 leads to a determination of a~. We have in this case
the requirement.

D

a4.

FIG. 6. Contribution D to x-m scattering amplitude.

a~ ———9/175, n2 ———3/175, p2 30/175——. (4.8)

It is not hard to see that the condition that the
self-mass vanishes at all orders through f '" will
determine the coeKcients ai, a2, . . . , a„(as well as the
corresponding n; and P,); for to order f '", there is one
and only one diagram which involves n„and P, (always
in the combination 3n„+P,), namely, the diagram like
that of Fig. 5 with r closed loops. All other contributions
of this order involve coefficients of lower index i. Then
by complete induction on r, our statement is proved,
since a determination of 3n„+P„gives a determination
of a,. Thus formally there is a ueigue choice of f(m')
for which this kind. of naive calculation will give a
vanishing self-mass to the pion to all orders in f
i.e., for which the so/t-pion theorem for the propagator
is satisfied. What is of crucial interest is the question
whether the same choice of f(m') works also for other
processes. We do not know how to prove the conjecture
that it does, but we will show in the rest of this paper
that it is satisfied to low orders in the expansion in f

of V7 if and only if

10(3ng+P2) —2 (3ni'+ 2niPi+ 2Pi2) =0. (4.7)

Using Eqs. (3.4) and (2.3), this leads uniquely to

Bp+CO=O, (4 6)

which can be formally satisfied despite the divergence FxG. 7. Contributions E to ~-x
scattering amplitude.

Et

FIG. 5. Representative contribution
of a certain class to pion self-mass;
see text. EU
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I''rG. 8. Vanishing contribu-
tions of order f 6 to pion
self-mass.

Still working to order f 4, we turn now to the 2-pion
to 2-pion scattering amplitude, wherehere we encounter
one-closed-loop contributions. Ap

~ ~

A art from self-mass
insertions on the legs of the tree diagram, which vanish
because 3=0, these are the contributions of the dia-
grams of Figs. 6 and 7. The contribution D from Fig. 6
(which has symmetry factor 2) is

d4k

(2ir) 4

X{&.1.4&.8.4[4(3~0+Ps)&'+5(ps 4ps)—»s]

+~...,~...,[4(3n,+p, )k'y5(p, —4,)s„j
+ ai.444.4[4(3~0+Ps)&'+5(ps —4ps)ri4)} (4.9)

~ ——' ~~ '1' are the Mandelstam invariants,where s,,= (p,+p, ) are
which are to be set to zero in the soft-pion .imi . is
gives

D0= 4(&a,n,4;—4+ tie,a,ba;4+ a,a4 a,a,)
Xf.—4(3~,+P,)X, (4.10)

where we have introduced X for the divergent integral

Pm 'd d th t (3.2)
' t' fi d, thi y' id th

results (4.8) as did the requirement on the self-mass.
Thus encouraged, we turn to the next higher order.

V. TERMS OF ORDER f, '

In order f ', we must consider diagrams wit three
closed loops in the self-mass, diagrams with two closed

~ ~

diagrams with one closed loop in t e 3-pion to 3-pion
(or 2 to 4) amplitude, and the tree graph for processes
like 4-pion to 4-pion scattering.

The self-mass acquires contributions from a number
of diagrams like that of Fig. 8, which being proportiona
to 34r i+P i vanish without further constraint. The
nontrivial diagrams are those of Fig. 9; their symmetry

evaluation of their contributions at p'=0, using the
Feynman rules, gives

F0——i8„„f '105 (34r4+Ps) 'JJ,

G0= —i8„„f 010[pi (p2 —44r0)

+3(~i+Pi) (3~0+Ps)jy,
H =i 0 f '[(424r '+724ri'Pi+94nipi +26P, ')'1J

&

+-'(P —2ni) (3P '—2nipi —34ris) ttj, (5.1)

f '5[4(Pip2+24rips+3pic40 rric40)'JJ-

+ 0 (Pi 2~i)—(Ps 4~0)—&j

I

These expressions involve the divergent integrals

d4k

(24r)'
(4.11) (24r) '

d4/ d4m 1

(24r) 4 (24r)' k'l'
(5.2)

In a similar fashion one derives, for the soft-pion
=0& E ' of the contribution of the

first diagram in Fig. 7 (which has symmetry factor

EO = if~ pa&a28asa4(6ill +44rlpl)

) sJX. (4.12)+ (&a,a4&n, a4+~a, a4 a,a,)pi ~

The other two diagrams give contributions I'
ps E' and Ep",

of the coeKcients of the three products of Kronecker
8 symbols. The sum of these three diagrams then gives

&0=~ '+&0'+&0"
= &(ba,a,44 4+~.,ns'a, a,+'-N, a4 a,a4)

Xf~ 42(3nis+2nipi+Pis) K. (4.13)

—4In order that the Adler condition be met to order ~
we then require

DO++0 (4.14)

which is possible only if

er 6 to ion self-mass.(4.15) Fro. 9. Further contributions of order, p'—4(3 .+P.)+2(3 .'+2 P+P')=0.
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(2m)4

d4l

(2m)'

de —2

(2~)'S &'&(k+1+m) . (5.3)
(2m) 4 Pm'

These integrals have the same degree of divergence, but
are of different structure. For the f ' contribution to
the self-mass to vanish, we require

This reduces to

Fp+2Gp+Hp+Io= 0. (5 4)

$105(3np+P p) 20(—n,+P,) (8u,+5P,)
+ (42ni'+ 72uiPPi+ 94',Pio+26P, ')]'JJ+ —,'(P, —2u, )

XP(3Pi' —2uiPi —3ni') —5(P9 4up)] 5= 0. (5.5)

If the conditions (4.8) and (3.4) are satisfied, the
coeKcient of 5 vanishes without further ado. Then
(5.4) reduces to the requirement that the coefficient of
'1J in (5.5) should be zero, which determines

ap = —163/2X3'X5'X 7,
np ——19/3'X5'X 7,
pa = 119/3X5'X /

(5.6)

Turning now to the two-closed-loop contributions to
the 2-pion to 2-pion scattering amplitude, we consider
(apart from vanishing diagrams corresponding to
self-energy insertions) the diagrams of Fig. 10, as well
as crossed variants of them. The symmetry factors for
J and for each of the variants of E, L, 3E, and S are,
respectively, 8, 4, 4, 2, and 6. YVhen evaluated in the
soft-pion limit (external momenta all set to zero), the
contributions are

+0= (~aiap~apaa+~ayap~apa4+~ayaa'aaap)

Xf P8(43n+P, )W, (5.7)

Kp'=Kp"= —f '(12n, +11P,)$2u,a..,&„„
+P (L..,&...,+4...S...,)]~, (5.8)

~p fa $12nl(3nl +3ulpl+pl )~agaaBapga

+2pi'(~. ..,~...,+4...&.„,)]~, (5.9)

3IIp' ——cVp"——f '6(ni+Pi)'(2n, b.„,b...,
+P.(~...,~...,+~...,~...,)]~V, (5.10)

Eo = fa 4(6ninp+2niP—2+2nipi+3ptpp)
X (~aiap)apa4+'aiap&apa4+'aia4&apap) + ~ (5 11)

A slight simplification has already been achieved by
using (3.2). The t and u-channel -crossed versions of
E, E', I, M, and M' are obtained from the s-channel
results given above by cyclic permutation of the
coefficients of the products of Kronecker-8 symbols.

There are also three further diagrams similar to that.
which yields Eo, obtained by singling out successively

I'zo. 10. Contributions of order f ' to x-x scattering.

we obtain
Jp ——84(3np+ p p)X, (5.13)

Ko'+Ko'+Ko"+Ko"+Ko"+Ko'"
= —4(ni+Pi) (12n,+»P,)X, (5.14)

io'+io'+'o"=4(9ni'+9niPPi+3niPio+Pi')X, (5.15)

3Eo'+Mp'+Alp"+3IIp"+3f p"+~o'a
= 24(«+Pi)'X, (5.16)

&o'+&o'+ &o'+&o'
= —16(6uiu. +2n,Pp+2n, P,+3P,P,)X (5.17).

The total contribution of order f ' to the 2-pion to
2-pion scattering amplitude in the soft-pion limit is
obtained by adding the expressions in (5.13)—(5.1/).
The soft-pion theorem requires that this total should be
zero, and this gives an equation between the u's and p's.
Using (3.4) and (4.8) this in turn becomes an equation
for 3np+Pp, and again gives a determination of ap, n, ,
and pp. The result is the same as that obtained from
consideration of the self-mass, namely, tha, t given in
(5.6).

the other legs of the diagram; ea,ch of these diagrams
then gives an equal contribution.

If we denote by I the expression

X=—(8...,8...,+6...,6...,, +-5.„,6...,)f. "e, (5.-12)
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I ra. 11. Contribution 0 to 3w
to 3x amplitude.

FIG. 13. Contribution Q to 3x
to 3' amplitude.

00+~0+Q0=0 (5.21)

once again is satisfied with the va, lues for the n's and
p's already determined.

VI. DISCUSSION

The chiral-invariant Lagrangian for pions, given in
(1.1), is unique once the function f(~ ) is specified. This
function is in some ways analogous to the gauge of
electrodynamics. Physically significant quantities, like
on-shell amplitudes, should be "gauge" invariant. And
because the Lagrangian is chiral invariant, the soft-pion
theorems should be satisfied by these amplitudes.
Certainly both these properties —gauge invariance and
the soft-pion theorems —hold for the tree-graphs which
are usually all that are retained in calculations based
on an "effective" or "phenomenological" Lagrangian.
What we have seen is that if one calculates contributions
beyond the tree-graph diagrams using conventional
Feynman rules, then the resulting amplitudes a,re,
firstly (as is of course very well known) badly divergent.

FzG. 12. Contribution I' to 3'
to 3~ amplitude.

As a final check. , we have also looked at the 3-pion
to 3-pion amplitude in the limit in which all six externa, l
momenta are set to zero. Three sets of diagrams
contribute nontrivially. There is the single diagram of
Fig. 11.The symmetry factor is 2, and its contribution
in this limit is Qo,

0,= —i{6„,8„„„8„,,+permutations)

Xf '24(3n3+p3) X. (5.18)

There are 15 diagrams with the topology of Fig. 12,
each with symmetry factor 2. Their sum contributes Po,

Po= i(8„„8„„b„„+permutations)f
X 24(3nin2+oiP2+~, P,+P,P~) &. (&.19)

Finally, there are 15 diagrams with the topology of
Fig. 13, symmetry factor 1) and their sum contributes

0)

Qo= —(6 & &5 I 46 & &+permutations) f
X8(3+i'+3ni'Pi+3niPi'+Pi') 8C. (5.20)

The condition

But, what is not so well known, they are also, if inter-
preted formally so that coeNcients of infinite quantities
are given significance, not explicitly gauge invariant
and for the general gauge do not even formally satisfy
the soft-pion theorems.

What we conjecture to be true in general, and what
we have verified explicitly for low orders in f ', is
that there is a unique choice of gauge for which the
soft-pion theorems are satisfied for a/l processes, even
when the amplitudes are calculated using the Feynman
rules obtained, as we have obtained them, from a
naive treatment of the highly singular expressions
represented by high powers of field variables. We
conjecture further that this same choice of gauge may
render finite (after convenA'opia/ renormalization) even
the hard-pion amplitudes. If these conjectures are
indeed valid, we have a prescription for obta, ining finite,
meaningful amplitudes starting from the nonpoly-
nornial, nonrenormalizable Lagrangian of (1.1).

Ke suspect that the breakdown of gauge invariance
is only apparent, and has its origin in the naive inter-
pretation of high powers of fields operators that has
been adopted implicitly in deriving the Feynman rules,
in particular, (2.5). For example, in order to calculate
correctly the Schwinger terms in current-current com-
mutators in electrodynamics, an interpretation of so
singular a quantity a.s Py„P is needed which introduces
explicitly the electromagnetic potentials A„and so
is dependent on the gauge. Presumably some similar
gauge-dependent interpreta, tion of singular expressions
like ~'" is needed before one ca,n calculate correctly
and obtain a gauge-independent result from the
Lagrangian of (1.1). What we conjecture is that for
our unique choice of gauge, f(~'), the guage dependeef-
results of the naive theory and the gauge-independent
result of the "correct" theory will coincide.

One of the puzzles we have not been able to solve is
to guess the function f(m'), the first few terms in the
analytic expansion of which we have derived:

163

Eote added ie proof. We have now found that this
choice of the "gauge" function f leads to a matrix
function d, ( )t, sand hence to a metric g, q(s.)=—d,.d, i„
which to order f ' is unimodular, i.e.,

detd =detg =1,

and we naturally conjecture that this is the defining
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property of the special gauge we have considered. It
then follows that f(222) is the solution of the diEerential
equation

2~2f~ —f f —3(f2+222)2

with f(0) =f . This has as solution

f= (222)"2 cot-,'3,
where v is given implicitly by

o —sino=-'3 (222/f 2)3t2.

The metric g, ~ then has the attractively simple form

g.3=f '(f'+222) '(8,3—sr.sre/222)

+f —4 (f2+ 222) 2 (sr srb/222) 2
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Variational Calculation of Three-Body Breakup Amplitudes*
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A previously reported variational principle is used to compute three-body elastic and breakup scattering
amplitudes for positive total energies. The calculation converges quite rapidly and requires very little com-
puter time. The forms of the variational principle suitable for systems where some of the particles are
identical bosons are also derived. The examples presented are for Yamaguchi potentials and do not represent
any physical system; the'y were chosen to have large breakup cross sections. The results are presented as
Dalitz plots and other graphs which exhibit some interesting features.

I. INTRODUCTION
' 'N a previous article, ' we developed a variational
~ - principle for three-body scattering amplitudes and
applied it to a problem involving separable potentials.
Numerical results were presented for both elastic and
rearrangement scattering beneath the breakup thresh-

oM. There we saw that with only modest amounts of

computer time, we could obtain highly accurate values
of the T matrices for negative values of the total energy
8'. It was pointed out in PS% that the greatest ad-

vantage of our approach would be in calculations above
the breakup threshold since the asymptotic form of the
wave functions we use is the same above the breakup
threshold as beneath the threshold. In fact, a calcu-
lation for H/') 0 is essentially no more difhcult than a

* Work supported in part by the National Science Foundation
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t Present address: Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106.

' S. C. Pieper, L. Schlessinger, and J. Wright, Phys. Rev. D 1,
1674 (1970). We refer to this as PSW.

calculation beneath threshold. We have now completed
calculations for processes, including breakup, for total
energies greater than zero. As will be seen, the procedure
is very successful; the convergence is rapid, and minimal
computer time is needed.

In Sec. II we review the notation of PSW and rewrite
the variational principles found there. We then special-
ize the breakup principle to separable potentials and
present the results of a calculation using Yamaguchi
potentials. For problems in which some of the particles
are identical bosons, considerably fewer computations
are required. The formulas for these systems are derived
in Appendices A and B. In Secs. III and IV we discuss
in detail two such systems and present Dalitz plots for
the breakup cross sections. A considerable amount of
structure is evident. Appendix C is a discussion of a
class of integrals occurring in the calculations.

II. VARIATIONAL PRINCIPLE

In this section we review the conventions and the
variational principle of PSW. We also specialize the


