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The predictions of the Amati-Bertocchi-Fubini-Stanghellini-Tonin multiperipheral model based on pion
pole dominance are calculated quantitatively and compared with experimental data, by using the Veneziano
representation for the x-r amplitude, with a cutoff at the mass of the g resonance for the input kernel, and
neglecting off-shell effects. We find a(0) =0.30, «,(0) =0.16, an average multiplicity growing as 0.74 Ins,
an elasticity factor of 0.69, an average pion-pair transverse momentum equal to 0.43 GeV/c, and an average
invariant mass squared equal to 0.84 GeV2. The only serious discrepancies with experiment are the trajec-
tory heights, which correspond to a kernel strength 23~5 times too weak. The inclusion of the high-subenergy
contribution and the inclusion of off-shell effects by several methods of off-shell continuation are considered,
but none is found to be satisfactory. The importance of interference terms, due to different ways of arranging
the final-state particles along the multiperipheral chain, is discussed.

I. INTRODUCTION

N the last two years there has been interest in the
multi-Regge model (MRM) of production processes
(see Fig. 1) and the corresponding multi-Regge boot-
strap by way of unitarity.! However, the multi-Regge
amplitude can only be expected to approximate the
physical production amplitude when all subenergies are
large >>1 GeV), whereas experimentally the important
subenergies are of the order of or less than 1 GeV.2 To
justify the MRM then requires the unreasonable
assumption that duality holds even at such small
energies. Furthermore, in order to simplify their
equations, some authors’ have made the kinematic

approximation that
(1.1)

This kinematic approximation is good only if all the
s's are large compared with the masses and momentum
transfers involved.

For these reasons, there has recently been renewed
interest® in another model of production processes: the
multiperipheral model with pion pole dominance first
proposed by Amati, Bertocchi, Fubini, Stanghellini,
and Tonin (ABFST) in 1962.4 This model is shown
in Fig. 2. The model assumes that all final-state particles
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(with the possible exception of the first and last links)
are pions, since experimentally at energies from tens
of GeV to thousands of GeV the large majority of the
produced particles are observed to be pions.’ The model
furthermore assumes that all exchanged particles are
pions. A possible justification for this last assumption is
that the one-pion-exchange (OPE) model works well
when one or two pions are produced®; it is therefore
plausible that increasing the number of final pions just
increases the number of exchanged pions. Another way
of saying this is that two-body and quasi-two-body
processes are peripheral, i.e., the amplitude is large only
when the momentum transfer is small; it is therefore
plausible that general production processes are multi-
peripheral, i.e., the amplitude is large only when all the
momentum transfers are small. Because of the small
pion mass, this implies the dominance of pion exchange.

The ABFST multiperipheral model predicts? some
features of high-energy scattering which are in qualita-
tive agreement with experiment. The model predicts

Fic. 1. Diagram for multi-Regge amplitude. Wavy lines
correspond to Regge poles; s=(P+P')?; si=(Po+P1)? ...,
Sn= (Pn—1+Pn)2-

ko,;% !ko,z ku% %kl,Z l I l l l I kn.l! gkn,z
P qQu CH ' 9n p’

Fic. 2. Diagram for ABFST multiperipheral amplitude. Solid
lines and wavy lines correspond to on-mass-shell and off-mass-shell
pions, respectively; t;=g¢2, for i=1,2, ..., n.

b See, e.g., article by P. V. Ramana Murthy, in ANL Report
No. ANL/HEP 6909, 1968 (unpublished).
6 See, e.g., G. Wolf, Phys. Rev. 182, 1538 (1969).
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Regge asymptotic behavior, average multiplicity grow-
ing as Ins, a constant elasticity (ratio of the average
laboratory energy of the primary outgoing particle to
that of the incident particle),” and a transverse-
momentum distribution of secondary particles which is
independent of the energies of the incident and second-
ary particles. However, before we can seriously accept
this model, we would like to have a quantitative com-
parison of the predictions of the model with
experimental data.

This paper carries out such a quantitative com-
parison. In Sec. II we briefly rederive the relevant
equations in AFS’s paper,* with the generalization of
AFS’s equations to include off-shell pions in the input
kernel. We also discuss the approximations that are
used in deriving these equations. In Sec. IIT we describe
the -7 elastic cross sections used in our calculations.
In Sec. IV we describe the predictions of the model and
compare them with experimental data. We also show
that these predictions are almost independent of the
detailed shape of the input «-= elastic cross sections. In
Sec. V we discuss some possible modifications of the
mode] by the relaxation of some of the approximations
used in Sec. IT. We end with a conclusion in Sec. VI.

II. DERIVATION OF RELEVANT EQUATIONS
A. Integral Equation for Absorptive Part

Consider the process where (n-+1) pairs of pions are
produced. The kinematic variables are shown in Fig. 2.
We first consider the incident particles to be pions with
zero isospin; we will later consider the general case of
physical isospin and particles other than pions. Our
model assumes that the production amplitude is given
by the factorized form

T,,(P,P’; ko,1,R0,2,%1,1,k1,2,- . - ,kn,l,kn,2)
=[(g:2—u?)(g2*—n?) - - - (g —u) ]
XLTE(P,q1; ko,1,k0,2) TE(q1,92; ka,1,k1,0) -+ -

TR(Qn—l,qn; kn—l,l,kn—lﬂ)TR(Qn,P,; kn,l,kn,Z)] ) (2'1)

where the superscript R denotes elastic scattering, and
w=m,. The optical theorem can then be used to relate
elastic scattering to production processes. This is
illustrated in Fig. 3. Following ABFST,* we can derive
a recursion relation for the (2#-2)-particle contribution
to the off-shell absorptive part of the forward elastic
amplitude,

1
A, (s,u)= w/dso//ds'du’
8t

AR(SC’; _7'{’17 "‘%)Q(S,%; SI,M’;So)An_l(S/,M/)
(' +p2)?

7 AFS calls this the inelasticity, but our notation agrees with
that of most authors.

(2.2)
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F1c. 3. Unitarity relates the production amplitudes to the forward
absorptive part of the elastic amplitude.

Here

Q(s,u; 8"’ 5 50)
= [/ 2(S?+42) V¥ ] O (S 1 S2— i3S

— S8 So+4ulun’) O (sV/2—s'12—5172) | (2.3)
where
S=s+u—pu?,
S'=s"4+u'—u2, (2.4)
So=so+u+tu'.

Therefore, Q(s,h;s’,u’ ;So) determines the limits of
integration in (2.2). In (2.2), A®(so, —u', —u) is the
off-shell continuation of A £(sq,u?,u?), where

AR(s0,u,u?) = 2] qo™ [ 5o 2oei(so,u%u?) ,  (2.5)

with | q¢-™-| being the center-of-mass momentum. There
is no unique or @ priori correct continuation of (2.5) to
obtain AZ2(sp, —2', —u). In Sec. V we will consider
several methods of continuing off shell. Summing (2.2),
we get

1
A(su)=AE(su)+ — /dsof/ds'tlu’
8t

AR(so, — o', —u)Q(s,u; 8" 1’ 5 50) A (s 1t')
(' +-u?)? .

The physical forward absorptive part of the elastic
amplitude is given by A(s,#) continued to = —pu2 The
integral equation (2.6) is schematically illustrated in
Fig. 4.

If we take the high-energy limit and assume
sSSu?, u, so, then Q(s,u;s’,u’;so) gives the following
limits of integration for (2.6):

A(su)=A%(s,n)

1 sds’ [
—-I—- —_— dSo - du‘l
167I'3 4p? 0o S (s"/8) [u+s0(1—s’ /s) "]

AR (so, —u', —u)A(s' ;')
(' +u2)?

= +
u — u
—— u s’ Sy
s s —

F16. 4. Schematic representation of Eq. (2.6).

(2.6)

2.7
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Note that there is no upper limit on s, except that 5,<s.
The model therefore appears to depend on where we
cut off the s, integration. However, we know experi-
mentally that for general production processes, the
invariant mass of two adjacent pions in a multiperi-
pheral chain (arranged, for example, according to
longitudinal momentum) is bounded. This means there
must be a (So)max such that the contribution from
50> (So) max 1s negligible. For asymptotic s, we can there-
fore let the upper integration limit for s be either
(So)max Or . AFS conjectured that (so)masx is a few
GeV2 Of course, we can check the validity of this
conjecture only @ posteriori. This point will be further
discussed in Secs. IV and V.

The relatively large multiplicity corresponding to
this small invariant mass allows us to neglect 4%(s,u)
in the high-energy limit compared with A(s,u), since
the former is just the elastic contribution to the
absorptive part, whereas the latter is the total absorp-
tive part. Therefore,

1 sds’ [
A(su)~ —— / dso / — / du’'
1673 J 42 0 S J(s"/s) [utso(l—s’ [s) 1]

AE(soy, —u'y —u) A(s" ")
(' +u?)?
Equation (2.8) is an integral equation in two variables.
This equation has the special property that it can be

reduced to an integral equation of the Fredholm type
in one variable by assuming a solution of the form

A(s,u)=s%q(u).
Equations (2.8) and (2.9) imply

(2.8)

(2.9)

1 00
() = a’
Pel) 167r3(a+1)(2u)“+1/; v

Xqﬁa(u’)/ dso A2(so, —t', —u)
ap?

v {sotutu' —[(sotu-tu')>—4dun' ]2} ot
(w2 '

From (2.9) we see that the model predicts Regge
asymptotic behavior, with a being the position of the
Regge pole. Equation (2.10) has a solution only for
certain values of @, and a knowledge of 4 E(so, —u', —u)
allows us to calculate these values. For asymptotic s,
we are interested in the nearest value, corresponding
to the leading Regge pole.

(2.10)

B. Average Multiplicity

Since 4 .(s, —u?) is proportional to the contribution
to the total cross section from the production process
where (n+1) pairs of pions are produced, it is also
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proportional to the probability of producing (1)
pairs of pions. This means the average number of
produced pions is

()= §02(n+1)/1n(s, —u?)/ éoAn(s, —u?). (2.11)

If we represent the variation of the strength of the m-m
elastic cross section by an over-all coupling constant g,
where g=1 corresponds to the actual coupling strength,
one can easily show?*

da d
(n)= Z[g—:l 1ns+2|:g—(ln¢aphys):| . (2.12)
g=1 og g=1

g

Thus the model predicts that average multiplicity grows
as Ins as s — .

C. Elasticity, Transverse-Momentum Distribution,
and Average Subenergy

To derive the elasticity, we single out the primary
link (one closest to the incident particle) in the multi-
peripheral chain. This is shown in Fig. 5. If we let
Epionpair be the average laboratory energy of the
primary outgoing pair of pions and E;,, be the labora-
tory energy of the incident particle, then one can show*
Epion pair/Einc

1 © $a(w)
= / d%, / dS[)
16m3paPvs J o (' +u)? J a2
XAR(SO,—u',p2)/ dx(1—x)x*, (2.13)
0
where

 Cloompera )y = (s0—uu)
Xy= o .

If we assume this pion pair is the decay product of a
pure resonance, e.g., the p, then on the average each
pion will carry away half of the laboratory energy of
the resonance. The elasticity is therefore Fone pion/Eine
=3Fpion pair/ Eine. However, if we cannot specify which
of these two pions corresponds to the incoming pion
(this is in general the case in cosmic-ray experiments),
then the fast outgoing pion on the average will carry
away three-fourths of the laboratory energy of the
resonance. The elasticity is therefore

-E—one pion/Einc= 7‘} _pion pair/Einc . (2. 14)

s’ k=K, +kp

7

Fic. 5. Diagram used in calculating elasticity ; so=£2.
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We see that the model predicts an elasticity which is s’ k=k, +k ”

. . —_ 17Kz 5
independent of s. This last effect, due to the fact that

either decay particle may be considered to be the fast . ,
outgoing particle, does not apply when one of the decay P q’ q” P
particles is much more massive than the other, as in the

decay of Al 236) into N-. F1c. 6. Diagram used in calculating transverse-

momentum distribution.

To calculate the transverse-momentum distribution
and the average invariant mass squared of the secondary
pion pairs, one has to consider diagrams of the form of
Fig. 6. Calling ky the total transverse momentum of a
pion pair in the over-all c.m. frame (or the laboratory
frame) and neglecting the pions near the ends of the
multiperipheral chain (so that we can neglect all masses
and momentum transfers relative to s’ and s’’), one can F16. 7. Diagram for #-N scattering.
show?* that the transverse-momentum distribution and
the invariant-mass-squared distribution are given by With si=(P+k)% s,=(P'+k)%. In (2.15), the upper
the expression Fdky?dk?, where® limits of integration for x and y depend on the energy of

the secondary, ko, and on the total energy s/2. But as

noted by AFS,* when %,<Xs'/?, then these upper limits
F=(k*+kp?)te / / du'du’” are outside the support of the © function. For k<Ks!/2,
F is therefore independent of &y and s'/2 i.e.,
AR(R2, —ud, _MII)¢a(ul>¢a(ul/)//d ; F=F(k: k). 2.17)
xay
(o' +-p2)2 (s +-p2)? Thus the model correctly predicts that the transverse-

wna T (12 9 . momentum distribution is independent of both the
Xty T = (B +ke?)x(14y); incident and secondary energies.

' —(R24-ko?)y(14x); ke?], (2.15)

and D. Extension to N-N Scattering
_ O(—a*—b*—c*+2ab+2ac+2bc) First consider m-N scattering. The general multi-
T(ab0)= (—a?—b2— > 2ab+2ac+2bc)! P periph.erlzlxl d}ilagram is shown ir§ Fllslg, 7. Proceeding in
2.16 essentially the same manner as 1n the =-r case, one can

x=s"/s1, y=s"/s2, (2.16) show that the total absorptive part is given by

1 Axn®(s0, =o', — 1) Anr(s',0")Q (5,05 8" 4’5 50)

Ay (5,06) = Ay (s .8) + — dso | | ds'du @)
8t J (upm)? (o +u?)?

where m=my and A,x*2(s) is given by A»x(s, —m?). This equation is schematically represented in Fig. 8. Making
approximations similar to those in the 77 case, we have

Ann(s,u) =5 (u). (2.19)
Here

1 0
b (wN) (M) — / du' P () (M’) dso
1673 (a+1)2u)ett J, (utm)?

y Axn®(s0, =1’y —w){so+uu' —[(sotu-+u")?—duy' 112} ot
(' +u?)?

where o is determined by the integral equation for m-r scattering, i.e., Eq. (2.10).
We can easily generalize this to V- scattering. The general multiperipheral diagram is shown in Fig. 9. The
total absorptive part is given by

, (2.20)

AerR(SO’ _u’a _“)AﬂN(s,;ul)Q(S’u;SI:MI;SO)

1
Ann(su)=Ann®(s )+ — / dso/fds'du' ,  (2.21)
81t J (uymy? (' +u?)?

where A yy*v3(s) is given by Awxn(s, —m?). This equation is schematically represented in Fig. 10. Making approx-

8 AFS left out a factor of x*y* in their expression for F.
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imations as before, we get
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Anw(s,u)= 5%V (u). (2.22)
Here
1 0
¢a(NN) )= / du’¢a(wN) u ds
( 16m3(a+1)(2u)*+t Jo o (utm)? ’
Aen®(s0, =1y —t) {00’ —[ (soFu-u')>—duas’ ]2} ot
. (2.23)

where « is again determined by (2.10) for 7 scattering.
Similarly, the ratio of the laboratory energy of the
outgoing N-r pair to the laboratory energy of the
incident V can be easily shown to be

E-,N-r pair/Einc
80 )
du’ - — / dso
(W' +u2)? S urmy?

X Axn®(s0, —u’,m2)f da(1—x)xe, (2.24)
0

1 0
- 167T3¢a(NN) ,phys /;

where
[(so—m2+u')*+4m?u’ 12— (so—m*+u')

Xm
2m?

If we now assume that the N-m pair is the decay
product of A(1236), then on the average V carries away
789, of the laboratory energy of A(1236). The elasticity

is therefore _
EN/Eim,: 0-78EN—1r pair/Einc .

Note that if we had used a more massive NV-r resonance,
then NV would carry away even a smaller part of the
resonance’s energy. We can also easily show that for
N-N scattering, the average number of produced pions
is

da
(11)N_N=2+2[g——:| Ins
9gdg—1

(2.25)

9
—I—Z[g——(lnqba(NN)'Phys):l (2.26)
9g

g=1

Fi1c. 9. Diagram for N-N scattering.

(W -+uty?

The transverse-momentum and invariant-mass-squared
distributions are given by (2.15) with the substitution
of ¢a™ (1) ™V (") for pa(t')pal(u’).

E. Extension to Include Isospin

The generalization to include isospin is trivial once
we realize that a definite isospin in the ¢ channel is
carried through the multiperipheral chain because of
isospin conservation. See Fig. 11. If we work with an
amplitude of definite 7,, inclusion of isospin then just
introduces the parameter I, into our equations. Using
a subscript and a superscript to denote isospin in the
¢t and s channel, respectively, we get, in place of (2.9)
and (2.10),

A1(s,u)= 5Ty (u) , (2.27)
where
¢a1(%) = / au’
1673 (a;+1) Qu)rtt J,
Xd’al(ul)/ dSo AIR(Sm —’M/, —’I/L)
4p?
{sotuto' —[(sotutu')>—duu' ]2} ertl
X (2.28)
W Huy?
and
ArE(so, —t', —u)=>_ CiTAR (so, —1', —u), (2.29)
r

with Cr” being the appropriate isospin crossing matrix.
To obtain A(s,u) for any physical process, one has to

N N
N N
= NFIN o+
N N N
N W

F16. 10. Schematic representation of Eq. (2.21).

F1c. 11. A definite isospin in the ¢ channel is carried through the
multiperipheral chain because of isospin conservation.
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take only the appropriate linear combination of 4 7(s,x).
For later applications, we here list the 7-r and =-N
isospin crossing matrices:

11 53
CrMer=C"Dee= 1% % =%, (2.302)
% 6 1/2 %_ 6 1/2:
(CIT)WN=( (: ( )2 ) (2.30b)
/)2 1
CTD)an= . 2.3
R L) e

Because the amplitude is proportional to sz, in the
high-energy limit, (#), Ex or +/ Eine, {| kr|), and (k2) can
be calculated to a good approximation by considering
just the 7,=0 case.

III. =-= ELASTIC CROSS SECTIONS

From the discussion in Sec. II, we see that the basic
equation to solve is (2.28). To accomplish this, we need
a knowledge of Ar®(sy, —#', —u), where, by (2.5)
and (2.29),

A IR(SO:M2:#2)
=2| g™ (u?u?) [ 502 20 Crloa (sou®u?) . (3.1)
T

As discussed in Sec. II, there is no unique or e priori
correct way of continuing A% off the mass shell; in
Sec. V we will consider several methods of continuation.
We now discuss what to use for A r2(so,u2u2).

At present, there is no w-r scattering experiment; so
there are no direct -7 data. Our present experimental
knowledge about m-7 scattering comes from studying
7N — 7wN reactions using an OPE model. However,
we need to know oa?(so) for all three 77s. At present,
we do not have sufficient data to extract this informa-
tion reliably. Besides, there is no unique way of using
an OPE model to extract = cross sections. In this
paper, we use the Veneziano model for m-m scattering®
to give us A r®(so,u2u?) in the resonance region.

At low energy, the 7w elastic cross section is approxi-
mately equal to the - total cross section (the p and f
resonances decay totally or almost totally into 2m)
which by the optical theorem is equal to the absorptive
part of the forward elastic amplitude. We represent this
elastic amplitude by the m-r Veneziano formula. There-
fore, A®(sou?u? is just a sum of § functions. In our
calculations, we cut off the sy integration at the mass
of the g resonance and include the p, f, and g contribu-
tions (and the contributions of their daughters). In
Sec. V we will discuss the implications of the sy cutoff.
The inclusion of the g contribution is somewhat

9 J. A. Shapiro, Phys. Rev. 179, 1345 (1969).
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questionable, since its dominant decay mode may be 4.
We include it as a compensation for the higher s,
contribution, which we have neglected. In any case,
including or excluding the g does not change any
essential features of the model, but only changed
somewhat the numbers obtained.

Following Shapiro,® if we use a single Veneziano term,
normalized to T'prr=125 MeV and m,=764 MeV, and
require the correct 7=L=0 =-r phase shifts, then we
get the following representation for the 7-r amplitude
with s,f, and # being the usual Mandelstam invariants
(we put a bar over # so as not to confuse this % with the
previous #):

T*=3F(st)+3F(s,1) —1F(t,@) , (3.2a)
T'=F(s,t)—F(s,), (3.2b)
T2=F(i@), (3.2¢)
where Il —a(@)I(1—a(y))
e o Y
where a(x)= a4 bx, with
a=0.48, (3.42)
b=0.90 GeV-2, (3.4b)
B=—1.22 (Ref. 10). (3.4¢)

Equations (2.29), (2.30a), and (3.2)-(3.4) together

imply!!

Ao®(so,u*u?) = 16w (—mB/)
X[O.716(80—m92)+1.136(80'—'1%}2)

+1.278(s0—m,») 7], (3.5a)
A1"(s0,u%p%) = 16w (—B/d)
X[0.485(50—mp2)+0.715(50—m]'2)
+0.885(s0—,2)], (3.5b)
A2R(Soy/“2:/l'2) = 167"(_71'6/b)
X[O.O35<So—'mp2) —0.115(30—'Mj'2)
+0.098(so—m2)].  (3.5¢)

IV. PREDICTIONS OF MODEL AND
COMPARISON WITH EXPERIMENT

When ABFST first proposed this multiperipheral
model, they conjectured that the important contribu-
tion to the kernel in (2.28) comes from the low-energy
(the resonance region) - elastic cross section and that
the dependence of the latter on the mass of the virtual
pions is negligible. In this section, we calculate the
predictions of this model under these two approxima-
tions. In (2.28), we put a cutoff for the so integration
at m,* and replace Ar%(so, —%', —u) by ArE(so,u?u?).
L Slia(l))giro (Ref. 9) normalized to T',=112 MeV; he found

u N ote i:hat there is a difference of (16x) in the normalization
used by AFS in Ref. 4 and Shapiro in Ref. 9: AAFS(s,5)= (167)
X A Shapiro (s 7)
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F16. 12, Transverse-momentum distribution of pion pairs.

In Sec. V, we will consider several modifications of the
model by the relaxation”of these approximations, but
we will find that none of these is satisfactory.

Our calculations show the Regge trajectory intercepts
to be

ar—0=0.30, (4.1a)
ar—1=0.16, (4.1b)
the average multiplicity to be!?
(n)=~0.74 Ins, (4.1c)
the elasticity to be
Ey/Eine=0.69, (4.1d)

the average transverse momentum of the produced
pion pairs to be

<’ kT] >pion pair ™ 0.43 GeV/C 5 (4.16)

and the average invariant mass squared for each pair

2 Using (2.12) and (2.26), we have also calculated the constant
term in the expression for (#). We found (#)r_»=3.7+4+0.74 Ins
and (#)y_n=1.74+0.74 Ins. However, these constant terms are
fairly sensitive to the value of «. Note that to calculate the
constant term, we have to solve the inhomogeneous integral
Eq. (2.7), since there is an arbitrary normalization in the solution
of the homogeneous integral equation.
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of outgoing pions to be

(k*)=0.84 GeV2. (4.1f)
The first three numbers given are the same for all
scattering processes. The last three numbers are for
N-N scattering'®; these corresponding numbers for -
scattering® are E./Ein=0.64, (|Kz|)pion pair=0.39
GeV/c, and (k?)=0.81 GeV2 The pion transverse-
momentum distribution for N-N scattering is plotted
in Fig. 12. We do not have an explanation for the peak
at 0.9 GeV/c. The corresponding experimental numbers

are

ar—=1.0, (4.2a)
ar-1~0.3, (4.2b)
(ny=~1Ilns—21Ins (Ref. 15), (4.2¢)
Ey/Eine~0.5-0.6 (Ref. 16), (4.2d)

(| &7 Jone pion=0.30-0.35 GeV/c (Ref. 17), (4.2¢)
(k?)=0.7-0.8 GeV? (Ref. 18), (4.2f)

Comparing these two sets of numbers, we see that
the model’s predictions for elasticity, average transverse
momentum, average invariant mass, and possibly
average multiplicity are close to the experimental
values, but the predictions for the Regge-trajectory
intercepts are too small. To generate the experimental
P and p intercepts, the kernel of our integral equation
(2.28) must be multiplied by a factor of 5 and 2.5,
respectively. If we increase the kernel strength by a

18 For N-N scattering, we need to know the #-N elastic cross
sections, as is evident from (2.23) and (2.20). We use those given
in G. Kiillén, Elementary Particle Physics (Addison-Wesley,
Reading, Mass., 1964).

4 For 7-m scattering, we also found az.2=—0.80. In calculating
this number, we have included only the p contribution, since in
this channel, the Veneziano formula gives a negative contribution
from the f resonance [see (3.5¢)7], and since cross sections should
be intrinsically positive.

15 Experimentally, this number is not precisely known. I'rom
experimental production cross sections at laboratory energies,
Chew and Pignotti (see Ref. 1) conclude that (#)=~1.11Ins. On
the other hand, cosmic-ray data give {z)=~2 Ins for the average
number of produced pions. See P. V. Ramana Murthy, Ref. 5.
However, cosmic-ray data are most likely overestimating the
average multiplicity, because of the use of heavy nuclei as targets.
In a preliminary analysis of their new cosmic-ray data, L. W.
Jones et al. found that in the 100-400-GeV energy range the
average multiplicity with a liquid-hydrogen target is about 709,
of that with a carbon target. See L. W. Jones e} al., University of
Michigan report, 1969 (unpublished).

16 P, V. Ramana Murthy, Ref. 5; F. Turkot, in Proceedings of
the Topical Conference on High Energy Collisions (CERN, Geneva,
1968

17 G. Cocconi, Nuovo Cimento 57A, 837 (1968); P. V. Ramana
Murthy, Ref. 5; Aachen-Berlin-Bonn-CERN-Cracow-Heidelberg-
Warsaw Collaboration, Nucl. Phys. B13, 571 (1969).

18 Experimentally, this number is not precisely known, but
experiments at laboratory energies with low multiplicity indicate
that the invariant mass is slightly above m,. See, e.g., Aachen-
Berlin-Bonn-CERN-Warsaw Collaboration, Ref. 17; I. R.
Kenyon, Nucl. Phys. B13, 255 (1969).
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TastLE I. Variation of ay—o with %, at three different values of (s0)max.

(S0)max (GeV?) mg=2.7 12.7 52.7
u; (GeV2/c?) ) 2 5 % 2 5 ) 2 5
ar.o 0.30 0.275 0.28 0.40 0.34 0.38 0.55 0.43 0.48
9% of total contribution 100 94 95 100 84 95 100 71 83
factor of 5, then we get contribution.!® This also means that our model will be
independent of (so)max as long as (so)mex is above the
ar—o=1.00, (4.3a)  resonance region.
Ar—=1=— 078 B (43b)
B. Off-Shell Continuation
(n)=1.04 Ins, (4.3¢) . . o
_ As there is no unique or a priori correct off-shell
- B/ Eine=0.62, (4.3d)  continuation of AZ(sou%u?), we consider several
(| x| Ypion pair=0.48 GeV/c, (4.3¢) met.hodS of continuation. ) )
Since the Mandelstam invariants satisfy the usual
(k?)=0.76 GeV™. (4.3f)  constraints

We conclude that with the present approximations, the
kernel in our model is of insufficient strength.

Although we wuse the Veneziano formula for
Ar®(so,u?u?) to get the above results, these results are
actually almost independent of the detailed shape of
ArE(so,u?,u?). Instead of evaluating (3.5a) with § func-
tions, we have substituted Breit-Wigner forms, nor-
malizing to the constants in (3.5a), and got almost the
same answers.

V. POSSIBLE MODIFICATIONS OF THE MODEL
A. Inclusion of High-s, Contribution

The most obvious way of modifying our calculations
is to raise the sy cutoff (so)max in (2.28), for this will
surely increase our kernel strength. This was the
approach of Ball and Marchesini.? However, increasing
(so)max increases the average subenergy of each pair of
outgoing pions and so decreases the average multiplicity.
But our multiplicity is already smaller than the experi-
mental value. In their calculations, Ball and Marchesini
can get ar—=0.95, but at the expense of getting
(n)=~0.2 Ins. Furthermore, increasing (so)max increases
the average momentum transfers. One way to see this
is to use a #' cutoff %,/ in (2.28), and observe the
change in a7 as %/ is varied. If we let or,—0(s0)
= (5 mb)/Ins, for so>m,?, then we obtain the result
shown in Table I.

The last row represents the ratio (in percent) of the
contribution with a cutoff in #’ to that without a cutoff
in #’. These numbers are obtained by varying the kernel
strength to get the appropriate o’s. This increase in
average momentum transfers undermines the whole
basis of the ABFST multiperipheral model—small
momentum transfers and consequently the dominance
of pion exchange. We therefore conclude that the in-
clusion of the large subenergy contribution is not the
solution to our problem. If there is a modification which
can fix up this model, it must damp out the large so

4
stHita=Y m2, (5.1)

=1

the Veneziano representation (3.2) has a natural off-
shell continuation by requiring 4 at fixed s (¢=0 in our
case of forward scattering) to always satisfy (5.1) when
the m.2 are taken off-shell. Assuming that the Veneziano
coupling constant 8 does not vary as we go off-shell,
instead of (3.5) we now have

AoB(so, —', —u1)
=167 (—B/b){[0.48 —0.451 ]6(s0—m,?)
4-[0.72—0.4022—0.887 13 (so—m1,%)
+[0.87—0.257—0.9a2— 1.2 16 (so—m2)} , (5.2a)
A1 B(so, —1', —u)
=167 (—mB/){0.485(so—m,2)+0.718(s0— %)

+0.885(so—m,%)}, (5.2b)
AoB(so, —t', —u)
=167 (—nB/b){[0.48+0.907 6 (s0—,%)
+[0.812+1.76540.717]18(so—m %)
+3[ a3+ 3.6a%+5.00+1.816(so—m,2}, (5.2¢)
where
= —2(u+u")—s,. (5.3)

From (5.2a) and (5.3), we see that this continuation
increases 4,%. However, as is evident from (5.2a) and
(5.3), the average momentum transfers are also drasti-
cally increased and so the basis of a multiperipheral
model with pion pole dominance is undermined.
Furthermore, this continuation leaves 4% unchanged,
because Af=Im7T¢*=ImF(s,t=0), which is indepen-
dent of 4, and it causes 4% to be negative when % or
' —oo, as is evident from (5.2c) and (5.3). This off-
shell continuation is therefore unsatisfactory.

The difficulty of increasing the average momentum
transfers is again encountered if in (3.1) we use the

19 This point is discussed in detail by Chew, Rogers, and Snider
in Ref. 3.
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off-shell partial cross sections obtained from the Born
approximation (meaning lowest-order perturbative
diagram) and related to the on-shell partial cross
sections by?®

01(50;7",’“) = EQ(u’,)M)/q]Zl_lo'l(%) ) (54)
where
q=[i(so—4u?)]"2, (5.52)
and
(o' u) = {[so>+2so(utu')+ (s’ —u)*]/4so} /2. (5.5b)

Equation (5.4) implies that the partial cross sections
blow up as % or %' — for /> 1. This same difficulty of
increasing momentum transfers also arises if in (3.1)
we continue |qe™-| off-shell.

Wolf® has successfully fitted single and double pion
production for |{] <1 GeV?/c? and laboratory momen-
tum between 1.6 and 20 GeV/¢ by using an OPE model
with the Benecke-Diirr off-shell continuation of partial
cross sections?!:

u1(guR
i(guR) iol(so),
#1(gR) qu

(5.6)

ot (sou) =

where ¢, is given by (5.5b) with #'=—u2% R is a
parameter (one for each /) determined by fitting data,
and

wi(x) = (20%)7'Qu(141/22%) , (5.7)

where Q,(z) are Legendre functions of the second kind.
Using the values of R obtained by Wolf, we find
al(so,u)/at(s0)<1 for 1=0,1,2,3 and for almost all
relevant values of sy and #. Although in OPE only one
pion is off-shell, we believe taking two pions off-shell
by replacing ¢, by ¢(«’,u) will probably make the
off-shell cross sections even smaller.

Another method of continuation is the Lovelace-
Wagner unitarized 77 Veneziano formula.?? For some
values of so and # this method gives off-shell partial
cross sections that are larger than the on-shell partial
cross sections, but for the important values of s, and #,
its off-shell partial cross sections are smaller than the
on-shell partial cross sections. Therefore, this continua-
tion again decreases the kernel strength.

Thus, the methods of off-shell continuation that we
have studied either decrease the kernel strength or
drastically increase the momentum transfers.

C. Inclusion of Interference Terms

In a general production process in which many
particles are produced, there are many ways of arrang-
ing the final particles along the multiperipheral chain
with all these arrangements corresponding to the same

2 See, e.g., H. Pilkuhn, The Interactions of Hadrons (North-
Holland, Amsterdam, 1967), pp. 279 fi.

21 J, Benecke and H. P. Diirr, Nuovo Cimento 56A, 269 (1968).

22 C, Lovelace, in Proceedings of the Conference on =7 and K=
Interactions, Argonne National Laboratory, 1969 (unpublished);
F. Wagner, Nuovo Cimento 64A, 189 (1969).
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Fic. 13. Nonplanar diagrams corresponding to interference terms.

physical process. The total amplitude is then actually
a superposition of amplitudes. Thus in calculating
production cross sections or #-particle contributions to
the unitarity sum, interference terms appear. These
interference terms correspond to nonplanar diagrams,
as shown in Fig. 13. In all our discussion so far, we have
neglected such interference terms, assuming that when
the momentum transfers are small for one arrangement,
they must be large for all other arrangements. It may
turn out that this assumption is a poor one. Including
interference terms may increase the kernel strength,
but at present no one has calculated how large a
contribution will come from such terms.

VI. CONCLUSIONS

The predictions of the ABFST multiperipheral model
for elasticity, average transverse momentum, average
invariant mass, and possibly average multiplicity are
in the neighborhood of the experimental values. The
model’s predictions of trajectory heights are, however,
much too small, corresponding to a kernel strength
which is too weak by a factor of 23-5.

What is the explanation for the inadequate strength
of our kernel? We have seen that the explanation is not
due to our neglect of the high-subenergy contribution,
since the inclusion of the latter decreases the average
multiplicity and increases the average momentum
transfers. A possible explanation lies in the off-shell
continuation of the 77 cross sections, but we have seen
that it is not easy for an off-shell continuation to in-
crease the kernel strength without simultaneously
increasing the average momentum transfers. The inclu-
sion of K’s, 5’s, and other particles, as well as #’s, will
definitely add to our kernel strength. Since experi-
mentally the large majority of produced particles in
high-energy collisions are =’s, this added strength is
probably not significant. Furthermore, the use of
unmodified propagators for more massive exchanged
particles is probably an overestimate of their effect,
since these more massive poles are farther from the
physical region.

A promising possibility is the inclusion of interference
terms, but at present we have not calculated the sign
and the strength of such terms. Another possibility is
that the physical m-7 cross sections may be larger than
those given by our Veneziano prescription; this is
especially important if it turns out that there are a
strong threshold effect and/or a strong, low-mass
s-wave resonance. On this point we shall have to wait
until we have more information on =-m scattering.
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It is interesting to note that even when we increase
our kernel strength by a factor of 5 to get the output
Pomeranchuk pole at 1.0, the average multiplicity is
only 1.04 Ins [see (4.3e)]. Our model seems to indicate
that the average multiplicity for N-NV scattering is
closer to 1 Ins than to 2 Ins (see Ref. 15).

Note added in proof. The Michigan experiment of
Ref. 15 has now been completed. They obtained an
average multiplicity per inelastic collision to be 1.14
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The inelastic channels K*r and K are included in a three-channel model of the I =% p-wave K= amplitude.
Feynman diagrams for vector-meson exchange are used as input to multichannel N /D equations, which are
solved to obtain the scattering amplitude. Coupling constants which cannot be measured experimentally
or calculated using SU (3) are obtained by employing SU (6)w in the rest system of one of the particles at a
given vertex. The K*r channel, neglected in previous calculations, is observed to influence the amplitude
strongly, but the width of the K*(890) is calculated to be 210 MeV or about four times the experimental

value.

I. INTRODUCTION

OMPARATIVELY little work has been done on
the effect of inelastic channels on the parameters
of resonances in the K, system. Those channels which
lie lowest and should therefore be considered first are
K*r and K7y with threshold energies of 1030 and 1042
MeV, respectively. The K» channel has been included
in a two-channel model of the p-wave K= system in an
article by Fulco, Shaw, and Wong.! Aside from this
latter and an article by Gupta, Saxena, and Mathur?
which presents the results of a single-channel calcu-
lation of s-, p-, and d-wave K= phase shifts, the liter-
ature on the K interaction seems relatively sparse.
By contrast, multichannel models of the == inter-
action have been studied in great detail. Two-channel
models of the p meson which have been studied include
a treatment of the mm-mw system by Zemach and
Zachariasen,® and of the ==-KK system by Bal4zs.* A
complete comparison of the several possibilities rr-mw,
mm-KK, and rr-rw-KK was also performed by Fulco,
Shaw, and Wong.
There are, however, difficulties in a calculation of the

* Present address: National Accelerator Laboratory, Batavia,
I1L. 60510.

1]J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).

2K. C. Gupta, R. P. Saxena, and V. S. Mathur, Phys. Rev. 141,
1479 (19606).

3 C. Zemach and F. Zachariasen, Phys. Rev. 128, 849 (1962).

4L. A. P. Baldzs, Phys. Rev. 137, B168 (1965).

p-wave K interaction using K*r as an inelastic channel
which are not encountered in an analysis in which K7y
is the only inelastic channel or in any of the multi-
channel 77 calculations mentioned. In the latter cases,
all coupling constants may be determined either directly
from experimental measurements of decay rates or
indirectly by SU(3). In a model of the K interaction
which includes K*r as an inelastic channel, one en-
counters coupling constants which must be evaluated
either by appeal to higher symmetries or by making
assumptions about ¢-w mixing in the vector-meson
octet. We have chosen the former approach and evaluate
such coupling constants by using SU(6)w in the rest
system of one of the particles at a given vertex. The
model] discussed in this paper is a three-channel one
with K*r and Ky taken as inelastic channels.

The single-particle exchange contributions are calcu-
lated as Feynman diagrams and are used as input
into a multichannel N/D equation. The diagrams used
and their partial-wave analysis are discussed in Sec. II.
In Sec. III we describe in greater detail the N/D
formalism used and the exact method of solution
employed. The results of the calculation are summarized
in Sec. IV.

II. INPUT DIAGRAMS

We use as input terms the set of diagrams shown in
Fig. 1. These consist of all permissible ¢- or %-channel
exchanges of pseudoscalar or vector mesons. Since we



