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The predictions of the Amati-Bertocchi-Fubini-Stanghellini-Tonin multiperipheral model based on pion
pole dominance are calculated quantitatively and compared with experimental data, by using the Veneziano
representation for the ~-7r amplitude, with a cutoR at the mass of the g resonance for the input kernel, and
neglecting off-shell eRects. We 6nd ct'~(0) 0 30 Ap(0) 0.16, an average multiplicity growing as 0.74 lns,
an elasticity factor of 0.69, an average pion-pair transverse momentum equal to 0.43 GeV/c, and an average
invariant mass squared equal to 0.84 GeV'. The only serious discrepancies with experiment are the trajec-
tory heights, which correspond to a kernel strength 2-,—5 times too weak. The inclusion of the high-subenergy
contribution and the inclusion of off-shell eRects by several methods of oR-shell continuation are considered,
but none is found to be satisfactory. The importance of interference terms, due to diRerent ways of arranging
the Anal-state particles along the multiperipheral chain, is discussed.

I. INTRGDUCTIGN
' 'N the last two years there has been interest in the

~ . multi-Regge model (MRM) of production processes
(see Fig. 1) and the corresponding multi-Regge boot-
strap by way of unitarity. ' However, the multi-Regge
amplitude can only be expected to approximate the
physical production amplitude when all subenergies are
large ())1 GeV), whereas experimentally the important
subenergies are of the order of or less than 1 GeV. ' To
justify the MRM then requires the unreasonable
assumption that duality holds even at such small
energies. Furthermore, in order to simplify their
equations, some authors' have made the kinematic
approximation that

S IX: $1$2' ' 'S&.

This kinematic approximation is good only if all the
s s are large compared with the masses and momentum
transfers involved.

For these reasons, there has recently been renewed
interest' in another model of production processes: the
multiperipheral model with pion pole dominance first
proposed by Amati, Bertocchi, Fubini, Stanghellini,
and Tonin (ABFST) in 1962.' This model is shown
in Fig. 2. The model assumes that all final-state particles
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'G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968);
G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev. Letters
22, 208 (1969);I. G. Halliday, Nuovo Cimento 60A, 177 (1969);
I. G. Halliday and L. M. Saunders, ibid. 60A, 494 (1969); L.
Caneschi and A. Pignotti, Phys. Rev. 180, 1525 (1969); 184,
1915 (1969); G. F. Chew and W. R. Frazer, ibid. 181, 1914
(1969); J. S. Ball and G. Marchesini, ibid. 188, 2209 (1969);
S. Pinsky and W. I. Weisberger (unpublished).' See, e.g. , S.-J. Chang and R. Rajaraman, Phys. Rev. 183,
1517 (1969); Aachen-Berlin-B onn-CERN-Warsaw Collaboration,
Nucl. Phys. $8, 471 (1968).' G. F. Chew, T. W. Rogers, and D. R. Snider, UCRL Report
No. UCRL-19457, 1970 (unpublished); J. S. Ball and G.
Marchesini, Phys. Rev. 188, 2508 (1969).

L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,
626 (1962); D. Amati, A. Stanghellini, and S. Fubini, ibid. 26,
896 (1962). This model will hereafter be called the ABFST
multiperipheral model.

2

(with the possible exception of the first and last links)
are pions, since experimentally at energies from tens
of GeV to thousands of GeV the large majority of the
produced particles are observed to be pions. ' The model
furthermore assumes that all exchanged particles are
pions. A possible justification for this last assumption is
that the one-pion-exchange (OPE) model works well
when one or two pions are produced'; it is therefore
plausible that increasing the number of final pions just
increases the number of exchanged pions. Another way
of saying this is that two-body and quasi-two-body
processes are peripheral, i.e., the amplitude is large only
when the momentum transfer is small; it is therefore
plausible that general production processes are multi-
peripheral, i.e., the amplitude is large only when all the
momentum transfers are small. Because of the small
pion mass, this implies the dominance of pion exchange.

The ABFST multiperipheral Inodel predicts' some
features of high-energy scattering which are in qualita-
tive agreement with experiment. The model predicts
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Fic. 1. Diagram for multi-Regge amplitude. Wavy lines
correspond to Regge poles; s=—(I'+I")'; s1—= (80+/1)',
s„=—(I'. ,+I„)2.

P

FxG. 2. Diagram for ABFST multiperipheral amplitude. Solid
lines and wavy lines correspond to on-mass-shell and oR-mass-shell
pions, respectively; t; = q,2, for i=1, 2, . . . , n.

' See, e.g., article by P. V. Ramana Murthy, in ANL Report
No. ANL/HEP 6909, 1968 (unpublished).' See, e.g., G. Wolf, Phys. Rev. 182, 1538 (1969).
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FIG. 4. Schematic representation o q.n f E . (2.6).
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take only the appropriate linear combination of A z(s,u).
For later applications, we here list the m-m and x-E
isospin crossing matrices:

~1
3

(Cz )..=(C z). = -',

1 1
3

5/3,

(2.30a)

l(6)'" l(6)"'&(C")-~=, , I ~ (23ob)

1/(6)""
(Crz) zz=

~

. (2.30c)
1/(6)'" —p&

III. m-~ ELASTIC CROSS SECTIONS

Because the amplitude is proportional to s I, in the
high-energy limit, (n), Ezr „/8;„., (~ Irr

~ ), and (tz') can
be calculated to a good approximation by considering
just the I~=0 case.

where

T,'= —,'F (s,t)+ p'F (s,u) —-';F(t,g),
T,'= F(s,t) —F(s,l),
T,'= F(t,pz),

I'(1—n(x)) I"(1—n(y))
F(x,y) =P

I'(1—n(~) —n(y))

(3.2a)

(3.2b)

(3.2c)

(3 3)

questionable, since its dominant decay mode may be 4z.
We include it as a compensation for the higher so
contribution, which we have neglected. In any case,
including or excluding the g does not change any
essential features of the model, but only changed
somewhat the numbers obtained.

Following Shapiro, if we use a single Veneziano term,
normalized to I', =125 MeV and m, =764 MeV, and
require the correct I=I.=O m-x phase shifts, then we
get the following representation for the ~-m amplitude
with s,t, and I being the usual Mandelstam invariants
(we put a bar over u so as not to confuse this I with the
previous I):

From the discussion in Sec. II, we see that the basic
equation to solve is (2.28). To accomplish this, we need
a knowledge of Az~(s„—u', —u), where, by (2.5)
and (2.29),

where n(x) = zz+bx, with

c=0.48,

b=0.90 GeV '
(3.4a)

(3.4b)

A P (so,p', p')

=2~ q' (zz', tz')
~
s, 'I' P C, (s,zz', tz') . (3.1)

As discussed in Sec. II, there is no unique or g priori
correct way of continuing Az~ off the mass shell; in
Sec. V we will consider several methods of continuation.
We now discuss what to use for AP(sp, tz', zz').

At present, there is no m-m. scattering experiment; so
there are no direct 7r-z data. Our present experimental
knowledge about ~-x scattering comes from studying
~E~mmE reactions using an OPE model. However,
we need to know a,zr(sp) for all three T's. At present,
we do not have sufhcient data to extract this informa-
tion reliably. Besides, there is no unique way of using
an OPE model to extract x-x cross sections. In this
paper, we use the Veneziano model for x-~ scattering'
to give us A ra(sp, zz', tz') in the resonance region.

At low energy, the x-m elastic cross section is approxi-
mately equal to the ~-zr total cross section (the p and f
resonances decay totally or almost totally into 2pr)
which by the optical theorem is equal to the absorptive
part of the forward elastic amplitude. We represent this
elastic amplitude by the m-7r Veneziano formula. There-
fore, A~(sp, zz', zz') is just a sum of b functions. In our
calculations, we cut off the so integration at the mass
of the g resonance and include the p, f, and g contribu-
tions (and the contributions of their daughters). In
Sec. V we will discuss the implications of the so cutoff.
The inclusion of the g contribution is somewhat

9 J. A. Shapiro, Phys. Rev. 119, 1345 (1969).

P= —1.22 (Ref. 10). (3.4c)

Equations (2.29), (2.30a), and (3.2)—(3.4) together
imply"

A p~(sp tz' tz') = 16zr( zrP/b)—
X [0.71b(sp —m, ')+ 1.136(sp mz )—

+1.278(sp —m p')], (3.5a)

AP(sp, tz', tz') = 16zr( zrP/b)—
X[0.48b(sp —m, ')+0.718(sp —mz')

+0.885(sp —mp')], (3.5b)

A P(sp, zz', tz') = 16zr( —zrP/b)

X[0.035(sp —m, ') —0.11h(sp —mz')

+0.098(sp —m ')]. (3.5c)

IV. PREDICTIONS OF MODEL AND
COMPARISON WITH EXPERIMENT

When ABFST first proposed this multiperipheral
model, they conjectured that the important contribu-
tion to the kernel in (2.28) comes from the low-energy
(the resonance region) zr-7r elastic cross section and that
the dependence of the latter on the mass of the virtual
pions is negligible. In this section, we calculate the
predictions of this model under these two approxima-
tions. In (2.28), we put a cutoff for the sp integration
at m, ' and replace Az"(sp —I I) by Az "(sp,tz—',tz').

"Shapiro (Ref. 9) normalized to F,=-112 MeV; he found
p = —1.09.

"Note that there is a difference of (16') in the normalization
used by APS in Ref. 4 and Shapiro in Ref. 9: A. "~ (s,t) —= (167'.)
X@shapiro (~ ])
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Ear/E .=0.5 0.6 (Re—f. 16), (4.2d)
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
I k~1 (GeV/c)

Flo. 12. Transverse-momentum distribution of pion pairs.

+1=0=0 ~0

o.l I=O.j.6)

(4.1a)

(4 1b)

the average multiplicity to be"

(n) =0.74 lns,

the elasticity to be

Err/E;„, =0.69,

(4.1c)

(4.1d)

the average transverse momentum of the produced
pion pRlI's to be

( ~
irr

~

)pj's~

pe, jp= 0 43 GeV/c y (4 1e)

and the average invariant mass squared for each pair

'~ Using (2.12) and (2.26), we have also calculated the constant
term in the expression for (n). We found (n) =3,7+0.74lns
and (n)~ ~=1.7+0.74lns. However, these constant terms are
fairly sensitive to the value of ~. Note that to calculate the
constant term, we have to solve the inhomogeneous integral
Eq. (2.7), since there is an arbitrary normalization in the solution
of the homogeneous integral equation.

In Sec. V, we will consider several modi6cations of the
Inodel by the relaxation'. Of these approximations, but
we will find that none of these is satisfactory.

Our calculations show the Regge trajectory intercepts
to be

(t &r
~ )one ~io~ =0.30—0.35 GeV/c (Ref. 17), (4.2e)

(k') =0.7—0.8 GeV' (Ref. 18}, (4.2f)

Comparing these two sets of numbers, we see that
the model's predictions for elasticity, average transverse
momentum, average invariant mass, and possibly
average multiplicity are close to the experimental
values, but the predictions for the Regge-trajectory
intercepts are too small. To generate the experimental
P and p intercepts, the kernel of our integral equation
(2.28) must be multiplied by a factor of 5 and 2.5,
respectively. If we increase the kernel strength by a

"For N-X scattering, we need to know the 7f.-E elastic cross
sections, as is evident from (2.23) and (2.20). We use those given
in G. Kallen, Elementary I'arricle E'hysi cs (Addison-Wesley,
Reading, Mass. , 1964).

'4 For 7t-7r scattering, we also found ay q= —0.80. In calculating
this number, we have included only the p contribution, since in
this channel, the Veneziano formula gives a negative contribution
from the f resonance Lsee (3.5c)g, and since cross sections should
be intrinsically positive.

"Experimentally, this number is not precisely known. From
experimental production cross sections at laboratory energies,
Chew and Pignotti (see Ref. 1) conclude that (n)=1.1 lns. On
the other hand~ cosmic-ray data gee (n) 2 lns for the average
number of produced pions. See P. V. Ramana Murthy, Ref. 5.
However, cosmic-ray data are most likely overestimating the
average multiplicity, because of the use of heavy nuclei as targets.
In a preliminary analysis of their new cosmic-ray data, L. W.
Jones eI' al. found that in the 100—400-GeV energy range the
average multiplicity with a liquid-hydrogen target is about 70 j&
of that with a carbon target. See L. W. Jones et al. , University of
Michigan report, 1969 (unpublished)."P.V. Ramana Murthy, Ref. 5; F. Turkot, in I'roceedings of
the Topical Conference on High Energy Collisions (CERN, Geneva,
1968).

'7 G. Cocconi, Nuovo Cimento 57A, 837 (1968); P. V. Ramana
Mur thy, Ref. 5; Aachen-Berlin-Bonn-CERN-Cracow-Heidelberg-
Warsaw Collaboration, Nucl. Phys. BD, 571 (1969).' Experimentally, this number is not precisely known, but
experiments at laboratory energies with low multiplicity indicate
that the invariant mass is slightly above m, . See, e.g., Aachen-
Berlin-Bonn-CERN-Warsaw CoHaboration, Ref. 17; I. R.
Kenyon, Nucl. Phys. BIB, 255 (1969).
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TABzx I. Variation of el p with I,' at three different values of (sp)

(5o) (Gev')

not (GeV2/~2)
~r p

'P~ of total contribution
0.30

i00

nz0' ——2.7

2
0.275

94

5
0.28

95
0.40

i00

i2.7

2
0.34

84
0.38

95
0.55

i00

52.7

2
0.43

7i

5
0.48

83

factor of 5, then we get

o,l=p = 1.00,

o.g j
——0.78,

(n) =- 1.04 lns,

E~/E;„,=0.62,

(~ lr'l'~ ) 'o p„,= 0.48 GeV/c,

(k') =0.76 GeV'

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

contribution. "This also means that our model will be
independent of (sp) „as long as (sp), is above the
resonance region.

B. Off-Shell Continuation

As there is no unique or a priori correct oR-shell

continuation of As(sp, u', u'), we consider several
methods of continuation.

Since the Mandelstam invariants satisfy the usual
constraints

We conclude that with the present approximations, the
kernel in our model is of insufficient strength.

Although we use the Veneziano formula for
Ar (sp, u', u') to get the above results, these results are
actually almost independent of the detailed shape of
Ar (sp, u', u'). Instead of evaluating (3.5a) with 5 func-
tions, we have substituted Breit-Wigner forms, nor-
malizing to the constants in (3.5a), and got almost the
same answers.

V. POSSIBLE MODIFICATIONS OF THE MODEL

A. Inclusion of High-sp Contribution

The most obvious way of modifying our calculations
is to raise the sp cutoR (sp),„ in (2.28), for this will

surely increase our kernel strength. This was the
approach of Ball and Marchesini. 3 However, increasing
(sp), .„ increases the average subenergy of each pair of
outgoing pions and so decreases the average multiplicity.
But our multiplicity is already smaller than the experi-
mental value. In their calculations, Ball and Marchesini
can get o,l—p=0.95 but at the expense of getting
(n)=0.2 lns. Furthermore, increasing (sp),„ increases
the average momentum transfers. One way to see this
is to use a u' cutoff u, ' in (2.28), and observe the
change in nr as u, ' is varied. If we let o r,=p(sp)
= (5 mb)/lnsp for sp)m, ', then we obtain the result
shown in Table I.

The last row represents the ratio (in percent) of the
contribution with a cutoff in I' to that without a cutoff
in I'. These numbers are obtained by varying the kernel
strength to get the appropriate o,'s. This increase in
average momentum transfers undermines the whole
basis of the ABFST multiperipheral model —small
momentum transfers and consequently the dominance
of pion exchange. We therefore conclude that the in-
clusion of the large subenergy contribution is not the
solution to our problem. If there is a modification which
can fix up this model, it must damp out the large sp

s+t+u=P m' (5.1)

u= —2(u+u') —sp. (5.3)

From (5.2a) and (5.3), we see that this continuation
increases Aps. However, as is evident from (5.2a) and
(5.3), the average momentum transfers are also drasti-
cally increased and so the basis of a multiperipheral
model with pion pole dominance is undermined. .
Furthermore, this continuation leaves A ~ unchanged,
because AP=ImTq' ——ImF(s, t=O), which is indepen-
dent of I, and it causes A2" to be negative when I or
u' —&pp, as is evident from (5.2c) and (5.3). This off-
shell continuation is therefore unsatisfactory.

The difficulty of increasing the average momentum
transfers is again encountered. if in (3.1) we use the

"This point is discussed in detail by Chew, Rogers, and Snider
in Ref. 3.

the Veneziano representation (3.2) has a natural off-

shell continuation by requiring u at fixed s (t= 0 in our
case of forward scattering) to always satisfy (5.1) when
the m are taken off-shell. Assuming that the Veneziano
coupling constant p does not vary as we go off-shell,
instead of (3.5) we now have

Ap (sp, —u, —u)
= 16m (—mP/b) {[0.48—0.45u]b(sp —m, ')

+[0 72 0. 40—u' . 0 88—u].B(sp mr' —)
+[0.87—0.25u' —0.9u' —1.2u]8(sp —nz, ')}, (5.2a)

Ag"(sp, —u', —u)
= 16m (—vrP/b) {0.485(sp —m, ')+0.718(sp—mr' )

+0.888(sp —m ')} (5.2b)
Ap (sp, —u, —u)

= 16 (—P/b) {[0.48+0.90u]8(so —m, ')

+[0 81u'+1.76u+0.71]b(sp —mr' )
+-,'[u'+3.6u'+5 Ou+1.8]5(sp—m, ')}, (5.2c)

where
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off-shell partial cross sections obtained from the Born
approximation (meaning lowest-order per turb ative
diagram) and related to the on-shell partial cross
sections by'0

where
0'(so, u', u) = Lq(u' u)/qj" '0'(so),

q= B(so—4s ')j'", (5.5a)

ui(qmR) q
0' SO@ = - —0 $0

ui(qE) q„
(5.6)

where q„ is given by (5.5b) with u'= —u', 8 is a,

parameter (one for each /) determined by fitting data,
and

u((x) = (2x') 'Qi(1+1/2x'),

where Qi(s) are Legendre functions of the second kind.
Using the values of E obtained by Wolf, we And

0'(so, u)/0'(so)(1 for /=0, 1,2,3 and for almost all
relevant values of so and N. Although in OPE only one
pion is oR-shell, we believe taking two pions oR-shell

by replacing q„by q(u', u) will probably make the
oR-shell cross sections even smaller.

Another method of continuation is the Lovelace-
Wagner unitarized x-x Veneziano formula. "For some
values of so and I this method gives oR-shell partial
cross sections that are larger than the on-shell partial
cross sections, but for the important values of so and u,
its oR-shell partial cross sections are smaller than the
on-shell partial cross sections. Therefore, this continua-
tion again decreases the kernel strength.

Thus, the methods of off-shell continuation that we
have studied either decrease the kernel strength or
drastically increase the momentum transfers.

C. Inclusion of Interference Terms

In a general production process in which many
particles are produced, there are many ways of arrang-
ing the anal particles along the multiperipheral chain
with all these arrangements corresponding to the same

'0 See, e.g., H. PiIkuhn, The InterccHons of IIadroms I'North-
Holland, Amsterdam, 1967), pp. 279 ff.

' J. Benecke and H. P. Diirr, Nuovo Cimento 56A, 269 I,'1968).
2' C. I ovelace, in Proceedings of the Conference on ~~ and E~

Interactions, Argonne National Laboratory, 1969 (unpublished);
F. Wagner, Nuovo pimento 64A, 189 (1969).

q(u', u) = (Ps(P+2so(u+u')+ (u' u)—'j/4so} '~' (5. .5b)

Equation (5.4) imphes that the partial cross sections
blow up as u or e' —+~ for t& 1.This same diKculty of
increasing momentum transfers also arises if in (3.1)
we continue ~q™~off-shell.

Wolf' has successfully fitted single and double pion
production for

~
/~ (1 GeV'/c' and laboratory momen. —

tum between. 1.6 and 20 GeV/c by using an OPE model
with the Benecke-Burr oR-shell continuation of partial
cross sections

FIG. 13.Nonplanar diagrams corresponding to interference terms.

physical process. The total amplitude is then actually
a superposition of amplitudes. Thus in calculating
production cross sections or n-particle contributions to
the unitarity sum, interference terms appear. These
interference terms correspond to nonplanar diagrams,
as shown in Fig. 13. In all our discussion so far, we have
neglected such interference terms, assuming that when
the momentum transfers are small for one arrangement,
they must be large for all other arrangements. It may
turn out that this assumption is a poor one. Including
interference terms may increase the kernel strength,
but at present no one has calculated how large a
contribution will come from such terms.

7I. CONCLUSIONS

The predictions of the ASFST multiperipheral model
for elasticity, average transverse momentum, average
invariant mass, and possibly average multiplicity are
in the neighborhood of the experimental values. The
model's predictions of trajectory heights are, however,
much too small, corresponding to a kernel strength
which is too weak by a factor of 2~—5.

What is the explanation for the inadequate strength
of our kernel? Ke have seen that the explanation is not
due to our neglect of the high-subenergy contribution,
since the inclusion of the latter decreases the average
multiplicity and increases the average momentum
transfers, A possible explanation lies in the oR-shell
continuation of the x-x cross sections, but we have seen
that it is not easy for an off-shell continuation to in-
crease the kernel strength without simultaneously
increasing the average momentum transfers. The inclu-
sion of E's, q's, and other particles, as well as x's, will

de6nitely add to our kernel strength. Since experi-
mentally the large majority of produced particles in
high-energy collisions are m-s, this added strength is
probably not signi6cant. Furthermore, the use of
unmodi6ed propagators for more massive exchanged
particles is probably an overestimate of their effect,
since these more massive poles are farther from the
physical region.

A promising possibility is the inclusion of interference
terms, but at present we have not calculated the sign
and the strength of such terms. Another possibility is
that the physical ~-m cross sections may be larger than
those given by our Veneziano prescription; this is
especially important if it turns out that there are a
strong threshold effect and/or a strong, low-mass
s-wave resonance. On this point we shall have to wait
upti) we have rg.ore information on x-z scattering.
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It is interesting to note that even when we increase
our kernel strength by a factor of 5 to get the output
Pomeranchuk pole at 1.0, the average multiplicity is
only 1.04 lns [see (4.3e)]. Our model seems to indicate
that the average multiplicity for E-E scattering is
closer to 1 lns than to 2 lns (see Ref. 15).

iVote added in proof. The Michigan experiment of
Ref. 15 has now been completed. They obtained an
average multiplicity per inelastic collision to be 1.14

lns. We wish to thank Dr. Donald E.Lyon for informing
us of this result before publication.
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The inelastic channels E*m and E are included in a three-channel model of the I=
~ p-wave Em amplitude.

Feynman diagrams for vector-meson exchange are used as input to multichannel E/D equations, which are
solved to obtain the scattering amplitude. Coupling constants which cannot be measured experimentally
or calculated using SU(3) are obtained by employing SU(6)~ in the rest system of one of the particles at a
given vertex. The X w channel, neglected in previous calculations, is observed to influence the amplitude
strongly, but the width of the E'*(890) is calculated to be 210 MeV or about four times the experimental
value.

I. INTRODUCTION

~~OMPARATIVEI. Y little work has been done on~ the effect of inelastic channels on the parameters
of resonances in the E„system. Those channels which
lie lowest and should therefore be considered 6rst are
E*x and Eg with threshold energies of 1030 and 1042
MeV, respectively. The Eg channel has been included
in a two-channel model of the p-wave Xm system in an
article by Fulco, Shaw, and Wong. ' Aside from this
latter and an article by Gupta, Saxena, and Mathur'
which presents the results of a single-channel calcu-
lation of s-, p-, and d-wave E~ phase shifts, the liter-
ature on the Ex interaction seems relatively sparse.

By contrast, multichannel models of the ~m inter-
action have been studied in great detail. Two-channel
models of the p meson which have been studied include
a treatment of the ~z-mao system by Zemach and
Zachariasen, ' and of the m.x-EE system by Balazs. 4 A
complete comparison of the several possibilities xx-xm,
xx-EE, and vrx-mes-EK was also performed by Fulco,
Shaw, and Wong.

There are, however, difficulties in a calculation of the

* Present address: National Accelerator Laboratory, Satavia,
Ill. 60510.' J. R. Fulco, G. L. Shaw, and D. Y. Tong, Phys. Rev. 137,
81242 (1965).' K. C. Gupta, R. P. Saxena, and V. S, Mathur, Phys. Rev. 141,
1479 (19ee).' C. Zemach and F. Zachariasen, Phys. Rev. 128, 849 (1962).

4 L. A. P. Balazs, Phys. Rev. 137, 3168 (1965).

P-wave E7r interaction usin'g IC*7r as an inelastic channel
which are not encountered in an analysis in which Ep
is the only inelastic channel or in any of the multi-
channel mx calculations mentioned. In the latter cases,
all coupling constants may be determined either directly
from experimental measurements of decay rates or
indirectly by SU(3). In a model of the K~ interaction
which includes E*m as an inelastic channel, one en-
counters coupling constants which must be evaluated
either by appeal to higher symmetries or by making
assumptions about 4-&o mixing in the vector-meson
octet. We have chosen the former approach and evaluate
such coupling constants by using SV(6)s in the rest
system of one of the particles at a given vertex. The
model discussed in this paper is a three-channel one
with E*m and Eg taken as inelastic channels.

The single-particle exchange contributions are calcu-
lated as Feynman diagrams and are used as input
into a multichannel X/D equation. The diagrams used
and their partial-wave analysis are discussed in Sec. II.
In Sec. III we describe in greater detail the X/D
formalism used and the exact method of solution
employed. The results of the calculation are summarized
in Sec. IV.

II. INPUT DIAGRAMS

We use as input terms the set of diagrams shown in
Fig. 1. These consist of all permissible t- or I-channel
exchanges of pseudoscalar or vector mesons. Since we


