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change /'d*x and 2., we get after some algebra
Ca™ = (2m)*(=20)(—i)™ 2 6(Pn—(E,—M))
X(E,—M)"sine(E,—M)
X{ IMzm,A I 2ﬂ:(—)manp,A [ %,

boson
a=(

fermion

>, e— 0+

where the |Mp, 4|2 and | Map,4|? are spin-averaged
absolute squares of matrix elements of source currents
[72«(0) for 4 =q, 1(qg) f»(0) for A= p| between ¥, and
intermediate state ¥,, ¥, and ¥,, respectively.

We find immediately that C,® is pure imaginary
for m even, pure real for m odd, as used in (18) and (23).

Note that E,—M >0 for A =boson, while (£,— M)™
Xsine(E,— M) is even in E,— M for m odd. Thus every
summand of ), is positive for A4 =boson, m even, or
A =fermion, M odd. Putting m=0, 4 =boson, m=1,
A=proton, this proves that ImC,®<0 and also
ReC,1 M <0.

VII. REMARKS

(a) Equation (21) shows that the asymptotic be-
havior depends critically on the smoothness of the
relevant current commutator across the light cone. For
example, if F(r,t) is continuous in ¢,

r+e
/ F(rt)=2el(r,t(r)), r—eli(r)<rte

—€
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by the theorem of the mean. Then C®=0 if
S drrE[rt(r)]<e. On the other hand, if F(r,)
=g(r)o(r—t)/r with S dr g(r)< o and 520, then C @ 0.

(b) The necessity of the frame-dependent cutoff for
constant nonzero asymptotic ¢ is striking. For from
(18) and its pp analog, if |g(q) |2 were replaced by unity,
o(rp)~0(1/w?) and o (pp)~0(1/w) at most. However,
it may well be that the assumption of the analyticity
everywhere of f.(£) is not justified in local QFT.
Models have been examined in another work,? which
suggests that it is not, or perhaps better said, that the
question has not much meaning in local QFT because
of its divergent and ill-defined nature. Tanakal? gives
examples of light-cone behavior of source current com-
mutators [« d”6(—«?)/ ()", m=0, 1, 2, ...]] which
can yield Im7'~O(w) or even a higher power and thus
constant asymptotic o.

(c) Recent Serpukhov data!8 on total cross sections
for #=p, K—p, pp up to w=65 GeV show some waveiness
at these very high energies. This behavior can be
fitted by power series in 1/w as given by this theory.

The theoretical values of the constants C,™), in
particular, the values a(4B) of the asymptotic cross
sections, will have to await a reliable way to calculate
the current comutators on the light cone. But it is
seen from (19) and (23) that their scale is given by the
square of the cutoff length A.

1 K. Tanaka, Phys. Rev. 164, 1800 (1967).

18 Proceedings of the Lund International Conference on Elemeniary

Particles, 1969, cdited by G. von Dardel (Berlingska, Lund,
Sweden, 1969).
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The scattering wave functions for quantum electrodynamics are examined in the Coulomb gauge, in the
conventional Lorentz gauge, and in a reformulated version of the Lorentz gauge. It is shown that when the
Lorentz gauge is formulated so that Maxwell’s equations hold even when the Green’s-function pole is dis-
placed off the real axis, Z, is identical in the Coulomb gauge and in the Lorentz gauge. It is also shown that
the unrenormalized asymptotic states in the reformulated Lorentz gauge include a partial dressing of the
bare electrons by longitudinal and timelike photons sufficient to generate the electron’s static electric field.
Itis proven that for true bound states the radiative energy shifts in the reformulated Lorentz gauge and in the

conventional formulation agree.

I. INTRODUCTION

N earlier work? we introduced a reformulation of

which the physical states | @) are defined by
2 ()] ) =0, (1a)

t K. Haller and L. F. Landovitz, Phys. Rev. 171, 1749 (1968).
(12 é{) Haller and L. F. Landovitz, Phys Rev. Letters 22, 245

969).

# K. Haller and L. F. Landovitz, Phys. Rev. 182, 1922 (1969).

quantum electrodynamics in the Lorentz gauge, in

* Supported in part by the University of Connecticut Research
Foundation.



2 RENORMALIZATION CONSTANTS,

where Q) (x) is given by

QD(x) =1 k2QD (K)ek =, (1b)
k
and Q@ (k) is given by*
QD (k) = ax,o+ (2k32) (k). (1c)

In this formulation of the Lorentz gauge, Eq. (1a) takes
the place of the subsidiary condition X (x)| ¢)=0, on
which the usual formulation® of the Lorentz gauge is
based.

In Ref. 1 it was demonstrated that Eq. (1a) is the
proper subsidiary condition to use in defining the
Lorentz gauge. This is because the scalar operator
Q) (x) represents the invariant positive-frequency part
of 8,4, in the presence of interactions; the equations
of motion therefore imply the continued validity of
Eq. (1a), once it is postulated to hold at any one time,
and the permanent validity of Maxwell’s equations
(for the expectation values of electromagnetic fields)
is guaranteed. The consequences of substituting
X®(x)| ¢)=0 for Eq. (1a) are discussed in Refs. 1 and
2. One conclusion that was drawn in Ref. 1 was that the
form of the § matrix for quantum electrodynamics
(QED) remains wholly unaltered when the proper
formulation of the Lorentz gauge is replaced by the
conventional one, in spite of the internal inconsistencies
of the latter. In Ref. 3 it was shown that the new,
proper formulation of the Lorentz gauge leads to a the-
ory identical to QED in the Coulomb gauge, except for
processes that involve unphysical photons.

These results make it particularly desirable to under-
stand why the reported values of the renormalization
constant Z, differ in the Lorentz and Coulomb gauges.$
It is this question to which we address ourselves in
Sec. IT and in Appendix B in this paper. The conclusion
that we draw is that the identity of the .S matrix in the
two versions of the Lorentz gauge implies only that the
corresponding transition amplitudes are identical on
the energy shells and in the limit in which all Green’s-
function poles have been taken on the real axis [i.e.,
lim (e0y(E—Ho+1ie)~']. The definition of Z,, however,
involves the knowledge of the transition amplitudes with
the Green’s-function poles away from the real axis.
Careful study of the transition amplitudes in this
latter case reveals that Z, differs in the old and the new
formulation of the Lorentz gauge. In the new, correct
formulation, Z, in the Lorentz gauge agrees with the
value obtained in the Coulomb gauge.

4QM is the operator that appears in K. Bleuler, Helv. Phys.
Acta 23, 567 (1950); Gupta has recently commented [see S. N.
Gupta, Phys. Rev. 180, 1601 (1969) ] to the effect that the operator
which defines the subsidiary condition in S. N. Gupta, Proc. Phys.
Soc. (London) 63, 681 (1950), is the same as the one in Bleuler’s
later paper.

5 See Ref. 1, footnote 1.

6 See, for example, K. Johnson and B. Zumino, Phys. Rev.
Letters 3, 351 (1959); B. Zumino, 4bid. 3, 351 (1939); J. Math.
Phys. 1, 1 (1960) ; C. R. Hagen, Phys. Rev. 130, 813 (1963).
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In Sec. III we note that the zero-time scattering wave
function for the electron-photon system in the old and
the new formulations of the Lorentz gauge differ only
to order e (the displacement of the Green’s-function
poles off the real axis); and that these 7e discrepancies,
though important in singular transition amplitudes,
such as are involved in wave-function renormalization
graphs, do not contribute in ordinary scattering ampli-
tudes. Nevertheless, the noninteracting electron-photon
states, which the wave function is assumed to approach
as t—=+ o, profoundly differ in the old and new
formulations of the Lorentz gauge, even though, in
both cases, the same Hamiltonian is invoked as the
time-displacement operator.

In Sec. III we carefully examine all contributions
to the asymptotic wave function that arise when the
zero-time scattering wave function has the form
dictated by the conventional version of the Lorentz
gauge. We demonstrate that there are terms, which
superficially appear to vanish due to the operation of
the Riemann-Lebesgue lemma as {—==- o, which in
fact persist to form the asymptotic scattering states
assumed in the new, correct formulation of the Lorentz
gauge. In Sec. III we also show that the old formulation
of the Lorentz gauge is not wholly consistent with
Maxwell’s equations.

In Sec. IV we note that, unlike the case of the energy
continuum, the bound-state wave functions are in no
way affected by the substitution of the old for the new
formulation of the Lorentz gauge. The energy shifts,
too, are identical for these two cases.

II. COLLISION PROBLEM IN QED
A. Wave Functions and Transition Amplitudes

In this section we address ourselves to the scattering
problem for the following cases: Case I is the scattering
problem in the conventional Lorentz gauge. In this case
we have

lim (Hy'+Hy ~E) [¢:) =0, (2a)

with?

(Vi) =| e+ (Ei—Hy +ie)HY |:®), (2b)
where

X®D@)|e)=0 and (HJ—E;)|¢;)=0.

Case II is the scattering problem in the reformulated
Lorentz gauge. In this case we have

lim (3¢q'+3¢1" ;) [$:(9) =0 (3a)

and
(@)= | @)+ (L~ +ie)=15¢y [ §:©0),  (3b)

7 'The symbols denoting electrodynamic Hamiltonians are used
as defined in Refs. 1 and 3. The primed Hamiltonians refer to
the level-shifted forms that correspond to the res;aective un-
primed variety. Thus for example, Hy'=H,+AE, H\=H,—AE,
3o’ =3Co+AE, and 3¢,' =3¢, —AE, so that the continuum spectra
of Ho and H and of 3Co and H coincide. Since the spectra of H,
and 3Cy coincide, the level shift is identical in cases I-ITI.
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where QM (x)| @;)=0 and (3¢ —E,)| 2:)=0; |&:) is
given by | @,)=e"2| ¢;). Case III is obtained from case
II by a pseudounitary transformation; in case ITI we
have

lim (H’ +Hy —E)|d:i0y=0 (4a)
and
[:@)y=1 o)+ —Hy+ieHy [f;©). (4b)
A is given by
H/=H/+[DH]=H/+[D,A] (5a)
and also by
AY=H\r+He+Hor—AE, (5b)

where
Hyr= -Zk (k) ax, ey J(—K) - 2(d)
+a'k, e J(k)-2() ],
o= [ axty p@p(s)en|x=3) ",

Ho,r=—2 3(k)"*{ax,o[p(—k)+k-J(—k)/| k| ]
+a',z[o(K)+k-J(k)/| k| 1} .

The discrepancy between Egs. (2a) and (4a), and
between (2b) and (4b), respectively, accounts for the
dynamical differences between the conventional and the
new formulation of QED in the Lorentz gauge. As was
previously pointed out,® cases I and II are nof related
by a pseudounitary transformation, although cases
IT and IIT are.

From H=Hy+H=e¢PHe P, we can show that

Ay =H{e P+ —e A—H/1—cP). ()
This, in turn, allows us to rewrite Eq. (4b),
[9:€) = eo)+(Ei—Hd +ie) ™ .
X[Hie?—(H —E;)(1—e ) ]|$:©)
+i€(Ei—Hol+i£)_1(1— _D) o
X(E—H+ie H | ¢:).  (7)

In the limit as e— 0, we know that Eq. (4a) holds,
but it is not convenient to consider Eq. (7) in that
limit yet. Rather we write Eq. (4b) as

[§:9)=| o)+ (EimH+ie)"H | o)
and find that

(H—E)|§:©)=ie(E:i—HA+ie)H{ | ¢5). (8)
We note that in the derivation of Eq. (8) the use of the
level-shifted Hamiltonian is essential, since only in
that case are (Hy—E)|¢)=0 and lim..o(H —F))

[$:©)=0 both correct.
Equations (7) and (8) lead to

e 2| §;9) = | o)+ (Ei—Ho' +ie) " Hi'e 2| §:©)
‘ —ie(Eo—H +ie) (1 —eP)| ¢s),
8 Ref. 1, footnote 6.

(4c)

9)
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and inversion of the Green’s function in Eq. (9) allows
us to formally solve this equation, as follows:

[9:0) = |§,9) = [9:60)

—ie(Ei—HA4-ie)"{(1—e2)| ¢;). (10)

The transition amplitude between an initial state (1)
and a final state (f) in the new Lorentz gauge formu-
lation is given by T where T; ;=lim..¢T;;© and
where

T;:@=(aX|5e/|¥:), (11a)
or, equivalently,
Tr 9 =(o* |y [§:9); (11b)
and, from Eq. (6), we have that
Ts,i© =T+ e (1 el 1/71'<E)>A(Ei"Ef)
tiel{o*| (1 —eP)(Ei— A +ie- 1| 05)
—(e*|Hi (Ei—~H+ie) (1—e2) | ¢i)}, (12)

where Ty ;) = (o/*| Hy |:(9). The symbol (#*| denotes
the adjoint in the indefinite metric space, which is
discussed in Ref. 1, Sec. II.

Equation (12) affords us substantial insights into the
relation between the old and the new formulations of
the Lorentz gauge. When the transition amplitude is
nonvanishing on the energy shell as e— 0 (as, for
example, in a scattering transition amplitude involving
absorption and emission of photons by electrons as in
Yotex— yo+ew), the quantity proportional to ie
vanishes with respect to 7',;¢ in the limit e — 0, and
the transition amplitudes 7';,; and T';,; are identical on
the energy shell. Off the energy shell they differ by
(o*|(1—€2)|J:9)(E;— E,); this latter quantity never
affects any adiabatic processes (like scattering phe-
nomena) but is involved in nonadiabatic events (see,
for example, Ref. 2).

When, on the other hand, 7',; and T,; display (0/0)
singularities on the energy shell, as in the case of wave-
function renormalization terms, then we need to con-
sider the coefficients of the 7e terms carefully. When such
singularities occur, T;,; and T',; will differ (as will also
Zy for the two different formulations of the Lorentz
gauge). Since we have shown in Ref. 3 that the transition
amplitude 7';,; is identical to the one that results from
the Coulomb gauge, on and off the energy shell and
independently of any restrictions on any limiting
processes, the renormalization constant Z, in the re-
formulated Lorentz gauge and in the Coulomb gauge
must agree.

B. Gauge Invariance of Z,

In this section we compare Z, in the two formulations
of the Lorentz gauge. We first define the operators

TO(E)=H/+H{(E,—H+1ie)'H{,
T(e)(Ei) =30y 43¢y (E;— H+1e)~ 130/,
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and
T k) =AY +HY (E,—H+ieyHy .
We then use Eq. (12) to write

(es] T(e)(Ep) le)={es| TO(E,)ep) .
+ie[{ep| (1—eP) (Ep_ﬁ+'i5)_lHll les)
—(ep| HY (Ep—H+ie)H(1—e7P)|e)], (13)
with (Hy —E,)|ep,)=0. The level shift for this case is
AE=46E,, the self-energy of the electron® of momentum

It is possible to relate!® Z, to the expectation values
of the T operators defined above; in the case of the
old formulation of the Lorentz gauge this leads to!!

(ep| TO(E) |ep) =ie[(Z2).—1]; (14a)
for the case of the new formulation we have
(o] TO(Ey) |25y =ie[[(Z)1—1]. (14b)

For the case of computational simplicity, we make use of
(&l T“)(Ep) l&p)="{e,] T(E)(Ep) les) . (152)

_Equation (15a) demonstrates that the expression for
(Z5)1, is entirely independent of whether it is evaluated
in the formalism of case IT or III. We can define (Z5); by

lim [{ey| (£, —H+i€)[es)

—(Zs) L{ey| (Ep—Hy'+ie) ' |e,)]=0 (15b)
or, equivalently, by
1}2} [(ep| (Ep—H+i€)™| &p)

= (Z) 1{ep| (Ep—3ey'+ie) | £,)]=0 (15¢)

using the representations of cases III and II,

respectively.
Equations (14) and (15a) lead to

(Z2)o=(Zs) . +1im (e | [H\ (Ep—H+ie)"(1—eP)
>0

—(1—e2)(Ey—H+ie)"Hi']|ep). (16)

Note that there are no further (ie)~! singularities in
the expectation value on the right-hand side of Eq. (16);

9 Since the Coulomb gauge is not manifestly covariant, we
have had recourse to a noncovariant formulation of the sub-
traction procedure in order to give a unified treatment of the
renormalization problem for cases I-III. The values of the re-
normalization constants may depend on the details of the sub-
traction and limiting procedures that are adopted. However,
gauge invariance of the renormalization constants is true, in-
dependently of these procedures, provided that the same pro-
cedures are invoked in the different gauges.

0 B. S. DeWitt, UCRL Report No. UCRL-2884, 1955, Eq.
(10.84) (unpublished).

1t (Zs)r will be used to designate the electron wave-function
renormalization constant in the conventional Lorentz gauge,
(Z2)1 in the reformulated Lorentz gauge, and (Z,) ¢ in the Coulomb
gauge. (32)z, (32)1, and (32)¢ will be used to denote the iterative
series of the corresponding electron wave-function renormali-
zation constant up to first order in a.
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this is a corroboration of the result that the electron
self-energy is identical in cases I-III.
To lowest order, Eq. (16) yields

(32)2=(32) L+lei_1}01 (ep| [HY (Ep—Ho +ie) D

—D(Ep—Hi+ie)Hy ]|e,), (17a)

which can be rewritten as
(32),=(32)L—lim 3 |{e,| p(k) | )| 2(2k3)~1
e->0 n,k

X(Ep—Entk)(Ep—E,—k-+ie)-1, (17b)

where 3_, signifies summation over the eigenstates of
the noninteracting fermion Hamiltonian.

For corroboration we relate this result to the dis-
crepancy between (Z;)¢ (in the Coulomb gauge) and
(Z5)1 (as evaluated in the old Lorentz gauge formula-
tion), remembering that (Z,)¢ and (Z), are identical.

From

(ZZ)L=lei_I}(} ieley| (Ep—H+ie)"ep), (154d)
we obtain, in lowest order,
(39)=1+lim (190 O(E,) —0E,®],  (18)

where o©(E,) =3, |{ep| Hs|#)|*(Eym Euie . M,
can be written!?

H1=Zk QR 2™ =3 [ax,erJ (k) - 2(3)

+a', e J (k) - e(2) V2
+ax,elp(—k)—J(~k)-k/|k| ]
—ax,qlp(—k)+J(—k)-k/| k| ]
—a',zlo(k)+J(k)-k/|k| ]
+a',olp(k) —J (k) -k/[k| ]}, (19)
and it is convenient to write
o (Ep) =019 (Ep)+00 9 (Ep),

where o; and oy, are the parts of ¢ that originate from
transverse photons and from nontransverse (longi-
tudinal and timelike) photons, respectively.
We find that ¢, (E,) is given by

[ ez lo(k)[n)|
S
n,k 2k3

(Ep“En'*'k)(En‘"Ep""k)
E,—E,—k-+ie

2 Equation (19) incorporates correction of a sign error in Eq.
(7) of Ref. 1. g a

o9 (Ep) = —

, (20a)
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and we can represent this by
Tnt O (Ep) =00 O (Ep)+ier,O(L,),
where
ol =2 | (eplp(k) | ) | M Ep—EntFk) (285" 5
n,k

since [Ho,p] and p commute, o,: can be shown to be
given by

ou @=L [(epp() )| *(2k771. (20b)
72t (Ep) is given by
Tnt O (Ep) = —Zk [ (eal p() [) | *(2k%)7
X(Ep—E,+k)(Ep—E,—k+ie)™. (20c)

Up to second order in the electric charge, we therefore
find that!?

(30) =lim (147 (Ey) 9 (E,) ]

In the Coulomb gauge, (32)¢ to the same order is given
by
(ss)o=lim [1+7.9(5,)],

since there are no nontransverse photons in that gauge,
and since H¢ can only contribute to 6£, but not to
(32)¢ to second order in the electric charge.

We therefore find that

(32) 1= (3)o—lim 5 | e, | p(10) | )] 2(22%)

e->0 n,k
X(Ep—En+k)(Ep—E,—k+ie)™!,
which verifies Eq. (17b).

III. ASYMPTOTIC BEHAVIOR OF SCATTERING
WAVE FUNCTIONS

A. General Kinematics

In this section we review a scattering formalism that
allows us to identify the asymptotic forms of scattering
wave functions from the Hamiltonian governing the
behavior of the colliding system. For this purpose it is
important to allow the dynamics of the system to de-
termine the temporal evolution of the wave functions
without dictating the explicit forms of the asymptotic
states by adiabatically switching the interaction terms
or by imposing artificial temporal limits on wave
functions.

The treatment to which we have recourse, and which
for completeness we review here, is due to Moses.!
Following Moses, we will treat a Hamiltonian I7 given

1 See Ref. 11.
“H, E, Moses, Nuovo Cimento 1, 103 (1955),
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p)r H=Hy-+H, where Ho and H; are both strictly time
independent. We will study the behavior of a wave
function [¢(£)) which obeys

Ho+H) () =1i(3/3t) |¥(8)), (21)

and, in particular, we will examine the asymptotic
limits to which such a wave function can tend.1s
Let us consider a set of states |#(E4,b)) and |w(E,,a))
so that
(Ho—Ey)|u(E4,b))=0 (22a)
and

(H—E,)|w(Eq,a))=0; (22b)

b and «a refer to eigenvalues (discrete or continuous) of
operators P and Q, respectively, for which [Ho,P]=0
and [H,Q]=0, although [H,,Q] need not vanish. We
assume that P and Q remove all degeneracy left by H,
H, respectively. We moreover assume that the energy
continua of Hy and H coincide.

We can represent the wave function (0) by

W) =X / 0B, [ED) | uEad))  (23a)

and, at all other times, [¢(¢)) by

9= / 0By f(Eob; ) u(Eab}).  (23D)

Similarly, since the & and the % span the same space,
we can also represent ¢(0) by

W(O) =3 / 0By g(En) | 0(Bre))  (240)
and [¢(2)) by

V@) =% / 4B, g(En) () exp(—iF);  (24D)

in Egs. (23a) and (24a), f(E,b) and g(E,a) are smooth
and reasonably narrow spectral packet functions.

We can expand |w(Ex,a)) in terms of the eigenstates
of Hy and P according to

lw(Ek,a»:% /quX(Eq,b;Ek,a)I%(Eq,b)% (25)

Equations (22a) and (22b) then lead to
(E/C—EQ)X(EQ:Z’5 Ek’a)

=3 By V(Eab; B XEL 5 B, (260)

15 The Hamiltonians H, Ho, and H;, the wave functions
and #(£,i), and the amplitudes 7 (2,b) and x(a,b) refer t‘f)(ti
general scattering problem here. These symbols, as used in Sec.
IIT A, have no relation to the quantities represented by the same
symbols in the rest of the paper, where they refer to electro-
dynamic quantities, )
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where
V(Eyb; Eg ") =(u(E,b) | Hi|u(E,b)).  (26b)

According to Eq. (26a), X(E,b; Ey,a) is presumably
singular; if the integral on the right-hand side of Eq.
(26a) is bounded, X(E,b; Ey,e) has a pole at E,=E,.
We therefore take the multiple-valuedness of (E;—E,)
XX(Eqb; Er,a) into account by defining

T(e)(EQ’b; Ekya) = (Ek—E'Z)X(EQ)b; Ekﬁa) ) (273‘)
where 7€ (E,,b; Ey,a) obeys

T(e)(Eq>b§ Lra)=2 | dEqy V(Eqb; Eg,b")
b/

XATO (B b5 Bra) [ Ex—Ey-iel™
FNEy; V,0)8(Er—Ey)} . (27h)

Here we have invoked the wisdom of hindsight to choose

T©(Eqb; Ex,e) to have a pole slightly displaced into

the lower half-plane; the \(E,; 8',a)8(E,— E,/) has been

added to compensate for the arbitrariness of the dis-

placement of the pole in the integral and to add an

arbitrary amount of homogeneous solution to |¢(%)).
We can now write Eq. (24b) as

WD) =X f QB g(Era) (T (Eqb; Eua)
b,

X[Er—E+ie 'HNE; bya)d(Er—Eg)} I u(Eq,b))
Xexp(—iFEx); (28a)

here orders of integration over E, and E; have been
interchanged. We choose N(E,; b,a) so that 3« g(Er,a)
XN(Ex; bya) = f(Ep,b), in order to specify the incident
wave packet in terms of eigenstates of Q.

We also let
Y ¢(Ee,@)TO(Eg,b; Ery)
=2 f(Era)T O (Eqb; Erya).

Equation (28a) then reads
WO~ [ aB, Sl

Xexp(—iEqd)+3 / AE(dEy f(Erya) T (Egb; Erya)
a,b

X[ En—Eq+ic] | u(Eqyb)) exp(—ilist). (28b)

If we now wish to evaluate the probability
amplitude of finding the system |¢(¢)) in the state
defined by |u(E,b)), we compute the amplitude
&(8) =(u(E,,b) |¢¥(2)). We can represent this quantity by

¢(t) :¢i(t)+¢s(t) +¢v(t) ) (293'>
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where ¢:(f), ¢5(f), and ¢,(¢) are given by

¢i(l) =f(E(1;b) CXP(-—’L.eq) )
bs() =2 f(Eq,0)T O (Eyb; Eqya)

X / dEy exp(—iE)[Exn—E i, (29b)

which may be rewritten as
bs()=—2mi 3 f(Eq,0)T 9 (Eq,b; Egya)

’ Xexp(—iL0)8() (29¢c)
[where 6(2) is the step function 6(¢) =1 for >0, 8() =0
for t<07], and

bu() =5 / QB[ f(Bua) T (Eob; Era)

— (Ey@) T (Eq,b; Eq,a) ] exp(—iE)
X[Er—E+iel .

Note that for the choice of N(E,; b,a) we have made,
Eq. (27b) becomes

AL (Emb; Ek;a)

(29d)

=V(Eqb; Lra)+22 / ALy V(Eqb; Eqr ')
b/

XTO(E,b'; Erga)[Lr—Eqg+ie]™. (27c)

If lime, T(E,,b; Ex,a) is bounded and has a
bounded derivative on the energy shell, in the interval
over which the integral in Eq. (29d) extends, ¢,({)
vanishes in the limit /— == . The asymptotic limits of
¢(t) then are ¢,(f) as t——c0, and ¢;()+¢s(f) as
t—+4o0; thus |¢(f)) describes scattering from (Eg,aq)
to the various (£,,b) states. If T (E,b; Ex,a) does not
obey the previously specified requirements, however,
then ¢,(f) does not vanish asymptotically, and the pro-
visional surmise that we made, that the eigenstates of Hy
form the asymptotic states of the system, was mistaken.
In this case, the application of artificial “switching”
formalisms, that compel the system to approach the
eigenstate of H, asymptotically, would be inconsistent
with the dynamical laws as given by the time-indepen-
dent Hamiltonian. It is simple to show that for potential
scattering from well-behaved short-range potentials,
the vanishing of ¢,(f) as {—==o is guaranteed. In
field theories the transition amplitudes commonly
violate the conditions required for the vanishing of
¢.(t); the wave function |¢(¢f)) develops components
other than the incident part, which persist at all times,
even as [ —— » . These components augment the inci-
dent wave to “renormalize” it, i.e., to provide it with a
cloud of virtual particles generated by the self-inter-
actions of its constituent members. In Appendix A we
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will illustrate this effect in detail. In the following,
Sec. III B, we will discuss the application of this

procedure to QED.

B. Asymptotic States in QED in Different Gauges

In QED the complication inherent in disconnected
vacuum-polarization bubbles prevents us from simply
collecting the renormalized “incident wave’’ components
from the time-dependent wave function (as can be done
in the case of a static model). Nevertheless, we can
invoke this procedure to clarify the relation between the
asymptotic states of QED in the conventional formu-
lation of the Lorentz gauge on one hand, and the
reformulated Lorentz gauge on the other.

The interaction Hamiltonian H; in the conventional
formulation of the Lorentz gauge may be written H,
=H,r+Hq,r+[HoD].

If we consider a collision, for example, one between
an electron and a photon, then among other matrix
elements in the transition amplitude we find a sequence
of terms in which [Ho,D] is always the operative part
of the interaction Hamiltonian. This sequence of terms
gives rise to a contribution to the wave function which
is given by

()= / AE; f(B:) exp(—iLiit) & |n)(Ei=Entie)

X { <” l [HOI,D] l i>+<7’l ] [HOI,D][Ei—Ho'"{—’L'e:]‘]
X[HJ,D][i)+ - +(n|[H ,DIE:—H+ie] - -
[E:—H)+ie[H,D]|3)}. (30)

Since [H¢,D] and D commute, and ignoring all terms
proportional to (i¢)?, the transition amplitude to a
state |I) is given by

bu(t) = / dE; f(E:) exp(—iE)(*|[—D+(2)~D?

—=@N D+ -+ (=) )TD][4). (31)
Here, the various matrix elements (I*|D|3), (¢*|D|4)
contain a sufficient number of & functions in momenta
to eliminate the integration over the energy variable.!¢
For example, if |7) is a state of an electron and a trans-
verse photon |exyp,:), and |I) is a state of an electron,
a transverse and an “R”-type photon |exyyp’,1vq,z), then
(I*| D3y is given by

(I*| D | i) =1ty attred iy, o8, (24355

the 8(x—x),q0p’,p term absorbs the integration /'dE;,
and there is no further integration to which the Rie-
mann-Lebesque lemma can apply. A similar condition
obtains in the case of (*|D"|7). The effect of these &

16 See_Appendix A.
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functions is that the amplitude ¢;(f) persists at all
times; in particular, it does not disappear even at
t——o, and it combines with the original incident
state to give the state

|2 =5 e 2| (B exp(~iEd).  (32)

There are, of course, many other contributions to the
transition amplitude, among them many additional
terms contributing to wave-function renormalization!?
(i.e., those terms which do not vanish as {——o).
Among them are terms containing transverse photons,
and other terms in which the Q photons produced by the
[Ho,D] part of Hy are annihilated by Hg,z to give rise
to wave-function renormalization terms which contri-
bute Dalitz pairs to the dressed electron wave function;
in addition, there are terms in which disconnected
vacuum-polarization bubbles accompany other dia-
grams, and there are the previously ignored O((ie)")
terms.

All these contributions are dictated by the form of the
Hamiltonian which is in this way “correcting” or
renormalizing the assumed incident (asymptotic) wave
function.

In the new formulation of the Lorentz gauge, that
subset of terms contributing to the renormalization of
the incident wave, in which [H,,D]is the only operative
part of the Hamiltonian, has been collected in closed
form at the very outset of the formulation of the scat-
tering problem; the asymptotic states thus are e=2|3).

It is important to understand that the form of the
asymptotic states of the scattering system is not arbi-
trary. The Hamiltonian unambiguously determines it
once the wave function at /=0 is known. If a wrong
choice of asymptotic wave functions is made at the
outset of a problem, the dynamical laws “notify” us
of that fact by generating terms in the wave function
which fail to vanish in the limit / —— % and augment,
or renormalize, the “incident” wave by the so-called
wave-function renormalization terms. The wave func-
tion | @,) can therefore be understood in the following
way: In the conventional formulation of the Lorentz
gauge, the initially assumed form of asymptotic elec-
tron wave functions (i.e., eigenstates of H,) are un-
accompanied by any electromagnetic field. In the
reformulated version of the Lorentz gauge, the assumed
asymptotic electron wave functions (i.e., eigenstates of
JCo) are ““dressed” in a cloud of longitudinal and time-
like photons. This cloud does not, of course, represent
the complete renormalized asymptotic electron state,
since all transverse photons and the contributions of
H¢ are omitted from it. However, the wave functions
| ) which satisfy Eq. (1a) do include a sum over a
subset of “bare” electron and longitudinal and timelike

17 We will use the term ‘“wave-function renormalization” to
include all the multiparticle components of the incident state of
the system.
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photon states which form a part of the complete asymp-
totic electron states.

C. Scattering States and Maxwell’s Equations

The Hamiltonian H, which generates the equations
of motion of QED in the Lorentz gauge, gives rise to
the wave equation [JA4,= —7j, The subsidiary con-
dition 9,4,=0 makes this wave equation equivalent
to the full set of Maxwell’s equations. In Ref. 1 it was
shown how the reformulated version of the Lorentz
gauge guarantees the permanent validity of (@ (y*| 9.4,
X |¥) =0, whereas this latter equation does not hold
for |¢(?)) in the conventional formulation of the
Lorentz gauge. In the latter case the expectation values
of the electromagnetic fields may not obey Maxwell’s
equations.

If we examine a scattering wave function |¢;©) up
to first order in electric charge, we find that, to this
order,

@)W =] o)+ (Li—Hd +ie)'H{ | i),

and Q@) (x) [¢; @)D is given by
QO (x) [:(9) O =P (%) | 1)
+2 QD) o) H | @[ Ei—Eitie]™. (33a)

For example, if | ;) is a one-electron state |e,) then, if
we define £,=Q%(x)|e,), we have that

p(k)

Ea=%i2k:7"e’:""‘|€p>,

(33b)

and if we let &, be given by
E0=22 QD (X)| ;)i HY |ey) (Ei—LEjtie) ™",
7

then we have that
bo=—i(2R)7 [ eiX{eilp(k)|ep)

J X(wp—Ej—k)(wp—E;—k+ie)™t.
We see then that Q™ (x) |¢:9) D is given by

[ ei){oilp(k)|ep)
“) (YD = 1, eik-
FOE@9:) ’ gjk(wp-Ej—k+ie)

X, (33¢)

which, to O(e), does not vanish.

More generally, since we have shown that e=2 ;)
=|¢;©), and QD (x) [¢:©) =0, we have, from Eq. (10),
that

QP () [ Y(0) = 6@ (x) (B — H+-ie)~L
X(l _e_D); ‘Pi> ;

which in general does not vanish to O(e).
The physical significance of the nonvanishing of
QP (x) |¢:©) can be understood in the following way:

(34a)
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The validity of the subsidiary condition 9,4,=0 at
t=0 implies

*|V-A—ills|§)=0, (35a)

where |{) is any state vector that satisfies Eq. (1a);
this is equivalent to

120 RVA(e* (@D (k) — QD (—k)*) | ¢ e =0, (35b)
K
Similarly, the equation
§*[(V-E—p)[{)=0 (36)
is equivalent to
SEE (@910 (— B | O)ettr=0.  (34b)
k

Equation (35b) must be true for both |¢;®) and
|:(), since either subsidiary condition X (x)| ¢)=0
or QM (x)|@)=0 guarantees it. The failure of
QO () |¢:9)=0, to O(e), implies that, to that order,
the expectation value of V-E—p=0 does not hold.
Although in many cases (such as in the calculation of
finite cross sections) such discrepancies to O(e) will
vanish in the limit e — 0, this need not be the case for
quantities for which the first order in e is the leading
term (as, for example, in the case of Z3). In contrast to
this, (¢*|(V-E—p)|$)=0 is always exactly obeyed by
scattering states in the reformulated Lorentz gauge,
even when the energy pole of the Green’s function is
displaced from the real axis.

It is of interest to compare the states | ¢;) and | @;),
the initially assumed asymptotic states (before wave-
function renormalization) for the two versions of the
Lorentz gauge, with respect to the expectation values
of the electromagnetic fields which they imply. In the
case of | ;) states, we have that

5 B ¥ XD ()X D (— )% 1) =0,
k

i.e., that
(¢*|V-E|¢:)=0.
In the case of | ;) states, we have that
(@*|V-E—p| 2:)=0.

In other words, in the conventional formulation of the
Lorentz gauge, the | ¢;) electron states consist of elec-
trons unaccompanied by their static field; in the new
formulation, the | ;) electron states consist of electrons
that do carry their static electric field with them.
Neither the |¢;) nor the | ;) electron states are ac-
companied by any magnetic fields, since in both, H,
and 3Co, the photons are decoupled from the transverse
currents. In both these cases the magnetic field
“dressing” is left to subsequent wave-function renormal-
ization by H; and 3C;, respectively.



1506

IV. BOUND-STATE PROBLEM

In this section we will demonstrate that the radiative
corrections to bound states in an external potential V
are identical in the new formulation of the Lorentz
gauge, and in the procedure that is invoked in making
such calculations in the usual formulation of the Lorentz
gauge,'® provided that [V,p(x)]=0; this condition on
V is in fact satisfied for large classes of potentials,
including those equivalent to c¢-number potentials
[V=/dx ¢yt E)V(x), as for example, a Coulomb
potential ].

The bound-state problem in the reformulated Lorentz
gauge can be specified by the equation

(3Co+V+30,—E,) | ¥,)=0 (37)

subject to the constraint @4 (x)|¥,)=0. If we consider
|¥,) to be generated iteratively, starting with |®,),
where the latter obey (3¢/+V—E,©)|®,)=0, then
it is clear that the constraint imposed by the subsi-
diary condition QM (x)|®)=0 never needs to be
applied, since 3¢, never connects states that satisfy
it with states that do not.

The bound-state problem in the conventional Lorentz
gauge can be specified by (H+V —E,)|¥,)=0, subject
to the constraint X |¥,)=0. In this case, if we solve
the problem iteratively, starting with |®,) given by
(HY+V—E,®)|®,)=0, we would quickly find that
the higher-order corrections fail to obey the constraint
imposed by this subsidiary condition. If we were to
take this constraint seriously, we would have to project
out the part of the iterated wave function that violates
1t.

We might do this by defining a projection operator
o in the Fock space of noninteracting photons and
electrons (moving in the external potential V) so that
« projects out those n-particle states that include un-
physical photons.!® We would then solve the eigenvalue
problem

Hy+V+aHie—(En)a) | ¥a) @ =0 (38)

by an iteration procedure, and if we start with | ®, )as
before, we would be assured that the constraint
X | ¥,)@y=0 would be obeyed. The question could
then be raised whether Eqgs. (37) and (38) give identical
solutions; and because of the fact that |¥,) and |¥,)
are constrained to occupy different parts of the indefinite

18 This result supercedes an earlier report on this topic by the
authors.

19 Because the space underlying this theory is an indefinite
metric space, care must be taken not to misunderstand the termi-
nology describing the zero-norm particle states. The subsidiary
condition x () | ¢) =0 is equivalent to ax,q| ¢) =0. State vectors
violate this condition when they include any afx o operators
operating to their right, as for example a'k,q| ¢) with | ¢) consist-
ing of bare electrons and transverse photons. Such “forbidden”
state vectors, however, correspond to a probability amplitude for
observing R-type rather than Q-type photons, since (@.*| ¢p)=1
if | ppy=a'"k,@|¢) and |¢s)=a'k,r| ). The convention we adopt
is that we refer to the forbidden photon as Q type, referring to the
operator structure of the ket vector, rather than to the designation
of the nonvanishing amplitude in the indefinite metric space.
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metric space, we might discover that indeed they do
not. Equation (38) is not, however, the one which has
been used to evaluate radiative corrections to bound
states in QED.? In actual practice, the constraint
imposed by a subsidiary condition has always been
ignored in these calculations, so that the wave func-
tion has always been allowed to spread into any
part of the space that the dynamics of the problem
(Ho+V+H,—E,)| ¥,)=0 dictated. The usual compu-
tational practice can be illustrated by choosing the un-
perturbed state vector to be a one-electron state | &),
which solves the problem (H¢+V—E;®)|&)=0;
then the first-order correction to | &) is given by

| 5<1>>=ZZ/ | @)D HY | 80))(Ei® —Eq®)~1  (39)

(where 3 indicates summation over all [ except /=0)
and the set |®;) consists of states containing some
Q-type photons which violate X (x)|®;)=0. These
are not, however, projected out, but are admitted as
basis vectors for the exact solution to the problem.

The consequence of the aforegoing circumstances is
that we must compare the bound-state problem in the
two versions of the Lorentz gauge when no subsidiary
constraints are imposed on the wave functions: in the
case of the reformulated version because the theory
implies independence of the computational procedure
from the constraints, and in the case of the traditional
formulation because the actual practice has been to
ignore them.

The expression for the iterative expansion of the
bound-state wave function |¥,) in the usual formu-
lation of the Lorentz gauge can be written?!

X(H+V—E, ) (A, —HY)|[¥,), (40)

where
Ay=E,—E,©=(®,|HY I V) (Pn| W),
(Ho+V+H1—E,)| ¥,)=0,
(Ho+V —E,©)|&,)=0.

In the reformulated Lorentz gauge, the corresponding
wave function can be written

]\i’n>=|‘bn>+(1_[q’n><¢'nl) R
X(H+V—E,9) " (&n—0y)|¥,), (41a)
where
A,=E,—E,©.
The use of Eq. (6) leads to

(W)= @)+ (1= @u)(®u])
XHS+V—E, (0))-1(Zn"H1I)3~D| \i/n>
+ (1= 2P| )(1—eP) [ ¥,). (41D)

20 See, for example, R. W. Mills and N. M. Kroll, Phys. Rev.
98, 1489 (1955); G. W. Erickson and D. R. Yennie, Ann. Phys.
(N.Y.) 35, 271 (1965).

2 K. Gottfried, in Quantum Mechanics (Benjamin, New York,
1966), Chap. 45.
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Since (®,|(1—eP)|¥,)=0 for |®,) in the physical
space, Eq. (41b) can be rewritten

”f‘Dl\i’n>= l@”)—l—(l—-— I ‘I>n><q’n|)
X(He+V—E,O)~YA,—H{)e P |¥,).
A, can be shown to be
an <q)n]H1,]\i/n>(<q>n| \i’n>)_1 -
=(®,|H{ e | ¥,)((®a] e 2F,)) 7

it follows?? therefore that for the iterative solutions
eP|¥,)=|¥,) and that &,=A,.

(42)

V. DISCUSSION

One conclusion that we may draw is that the subsi-
diary condition X (x)| ¢)=0 leads to inconsistencies,
and from the logical point of view is entirely unsuitable
as a basis for QED in the Lorentz gauge. Nevertheless,
the theory is remarkably resistant to mistakes that
might stem from the substitution of X (x)| ¢)=0 for
the correct QP (x)| z)=0. In Sec. IV we have shown
that bound-state wave functions, which are iterated
from an unperturbed state vector obeying X 9 (x) | ) =0,
develop corrections that violate this subsidiary con-
dition. Within the context of the “old” Lorentz-gauge
theory this would of course be a paradox, and if the
subsidiary condition were taken seriously, one would be
obliged to project the offending terms out of the solu-
tion in each order. When this is not done (it is, in fact,
not done in actual practice) the iterative solution
“repairs” itself, and instead of obeying X (x)|¥)=0,
it obeys the new subsidiary condition Q™ (x)|¥)=0.
Thus, the dynamics forces the wave function and the
energy shift to obey the correct subsidiary condition
even in spite of our failure to compel it to do so.

The resistance of QED to mistakes resulting from the
use of the wrong subsidiary condition X (x)| ¢)=01is
not, however, absolute. In the case of the energy con-
tinuum the situation is somewhat similar to the bound-
state problem, but with the important exception that in
this case there are discrepancies between |y (E;)) and
|¢©(E;)) of order ie. Here, too, the scattering wave
function repairs itself to an extent after the wrong
subsidiary condition X (x)| ¢)=0 has been used; but
the repair is not complete and the remaining discrep-
ancy between |¢©(E;)) and |¢©(E;)) accounts for the
fact that the former of these wave functions leads to an
electron wave-function renormalization constant (Z5),,
different from (Z32)¢. We believe that this discrepancy
can be understood as a consequence of the fact that in
the definition of (Z2)z, the Green’s-function poles of

22 Strictly speaking, the proof is valid for a true bound state,
in which the effect of the perturbation is to displace an energy
pole on the left-hand energy axis. In QED, the stable 1s hydrogenic
state marks the onset of a cut and the 2s and 2p states are reso-
nances in the energy continuum. We therefore must understand
the perturbative procedure in the sense of F. E. Low, Phys. Rev.
88, 53 (1952), and the theorem proven by Eq. (42) is not, strictly

speaking, applicable to QED. The discrepancy between (Z,)c¢
and (Z.)r should persist, for example.
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propagators (in the old Lorentz-gauge formulation) are
displaced into a region in which the theory develops
inconsistencies and in which Maxwell’s equations do not
hold. If the Lorentz-gauge problem is properly treated,
Zs is identical in the Lorentz and Coulomb gauges.
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APPENDIX A

In the appendix we will clarify the procedure (used in
Sec. III) by which we identified the wave-function
renormalization terms from the persistent asymptotic
parts of the scattering wave function; we will do this
first by using a static model as an illustrative example,
and then by applying the method directly to the wave
functions described in Sec. III.

In the static model we will couple an isovector boson
to an isospinor static source; we have that

I{=H0+F[1=H0+H1, (A1)

where _
Ho= 73 a'x a0k, a0r+M o,
k,a

lekz (ak,aVi,at0"k,a V' o),

where Vi, o=go(2wi) " /2r,U(k) and « designates the
isospin. H, and H; are given by Ho=H,+éM and
Hy=H,—8M, where 8M is the self-mass of the static
source. The spectrum of eigenstates of H, consists of
the bare source itself, and of superpositions of free
bosons and the static source; we will designate these
states as |V) and |ky,--- ki N)=(GD)"12Xaxqy' - -
a'ewy| V), respectively; we will consistently suppress
the isospin index in our notation.

For the case of boson scattering by the static source
in this model, we evaluate the wave function |¢(2)),
given by

()= / 0 7(0,o) exp(—ieogd)| p; N)
+ f 0k f(k,po) {Tw(o; ) (i )
+ / dq 79 (q; k) (wr—we+ie) 7 q; V)

+/0'Q1dqz T9(q1,92; k) (wr—wq(1) —wq+ie) ™!

X|qu,qe; )+ -+ / dq1dqs- - +dq, T9(qu,qz- * +,qnK)
X(wr—wg) —wWg@) — " —Wgn)+1i€) !

X[q1,92, - *,8n; N)] exp(—iwit). (A2)
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Here f(q,po) is a spectral wave packet {for example,
f(@,po) =exp[(— |q—po| 2) L], where L is the coherence
length of the projectile particle}; 77 (7; k) is given
by TO(j;k)=(j| T (E) k), where T(E;)=H+H,;
X (Ey—H+1i€¢)~'H;. The ket |¢(2)) is a special case of
the wave function appearing in Eq. (28b) and is used
to represent scattering from the initial state |po; V)
[suitably smeared out with the packet function
£(q,po) ] to the set of final states | N), - - -, | ki, - - Ku; V).

The probability amplitude for finding the system in a
state at time ¢ is given by

B(q1,- Q3 ) =(NV; Q1,8 |¥()).

We can now systematically examine the various
&(q1,- - *,4x; £) (characteristic of the various multiboson
states) to establish what their asymptotic temporal
limits are.

In the case of ¢(0;)=(N|¢()) we have that
T1)@(0k), the first-order contribution to 7'®(0k),
is given by

T @(0; k) =(NV|Hy|k; N)="Vy (A3)

and

¢ (0; l')=/flk FU&,p0) Vi(wrtie) ™ exp(—iwi) .

In the limit f —=zk 0 , ¢(1y(0; £) vanishes by the Riemann-
Lebesgue lemma since the coefficient of exp(—iwxt) in
the integrand is bounded.

In the case of ¢(q; ), we can express 7(q; k) by
separating it into a part [T®(q; k)], which describes
scattering and a part [7(q; k)], which represents a
renormalization effect by writing

TO(Q; k)=[T“(q; k) J:+[T(¢; k) ..

To lowest (second) order in g, the two separate parts
are given by

[(Te@ @ k) ]s=ViV—V V) (w)™ (A4

and

[T k) ]
= {(21!')—3/dk |Vl 2(—wK+ie)_1—5M(2)} dqx- (AS)

We note that the contribution of: [T (q; k)]s to
b2 (q; £) vanishes as {—— o due to the operation of
the Riemann-Lebesgue lemma; [T (q; k)], how-
ever, contributes a part

Cb (@ )= — (0, 0)(2) / i | V.| [eon(e—ie) T

XeXp( “iﬁ)ql) )

which persists as {——c since the §q,x in Eq. (AS5)
eliminates the integration in which the Riemann-
Lebesgue lemma would force the integral to vanish.
[¢(q; £)]- therefore augments, or “renormalizes”, the
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assumed incident wave at f— — o to form an incident
wave for which the lim,,_.¢(q; ¢), up to this order, is
given by

}E}}c P (Q; )= /dp F(p,p0)

X[l *(2#)‘3/ dx | V| 2(0),()‘2] exp(—iw,l). (A6)

In the case of ¢(q1,q2; £), we have that 77 (q,q2; k) to
I>west (ﬁrst) order is <]V, q1,d2 [ Hlik; IV) = (6q(1),k Vq (2)
43842 ,xVq@)V2™Y, and this leads to

D@ (@n82; ) = —V2 [ f(q1,P0) Vi (wq ) —ie) ™

Xexp(—iwgmt)+ f(@2,po) Vaw (wey —ie) ™

Xexp(—iwgwt)], (AT)
which also persists at all times and augments the
incident wave by contributing to the one-boson com-
ponent of the “virtual boson cloud” of the physical
(dressed) source.

It is easy to reconstruct the entire renormalized
incident state by systematically collecting all the parts
of the wave function ¢(¢) which, in the limit as t —— o,
are not forced to vanish by the Riemann-Lebesgue
lemma. These parts all originate from components of
the amplitude {i|7T©(M-+wi)|k; N) in which af
commutes past 7@ (M +w;) and acts on (i| to give
8q4.x(7], where (i| =(j|aq. Since we have that

[,H1+H1(M+wk—H+ie)*1H1]a'rk
=ap[H1+H (M —H-+ie)"1Hy ]
+(terms in which &' no longer appears),

we can write that the limiting value of the one-boson

amplitude ¢(q; #) is given by

lim (q;7) = f(a,P0) (1) N | T (M) | N)
Xexp(—iwg). (A8)

Similarly, one can compute the probability amplitude
of finding 7 bosons and the bare source in the scattering
wave function Y(f) as #—— . In that case one has

zl}}Eo ¢((I1, s 7q"’t)

=/ Ak (V5 Q- - 8| TO (M H-e00) | K5 V)

X(wp—wq@y =+ —wq(ny+i€) " f(K,po)

Xexp(—iwit) (A9)
and

LI_EEO ¢(q15 e n—1,9; t)

=22 f(@,po) (1) VAN G| (M —Hotie) ™
XTOM)|N) exp(—iwg), (A10)
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where ) indicates summation over the » terms in
which q,’s are permuted with q.

Summing the contributions to |¢(¢)) as t ——w over
the entire spectrum of boson states yields the following
expression for |¢,(?)), the scattered wave:

Lim[,(6))

= Z Z f(qﬂ’po)dfq(n) lqu o o Qn—1; ZV>
qn

=t
X (N3, - - Gna| (M —Ho+ie) T (M) | N)
Xexp(—iwgmit) (Alla)
=2 f(@,p0)a’o(M —Ho+ie) ' T (M) | N)
q Xexp(—iwgt).

The “dressed” source state |91), for which (H—M)
X |91) =0, can be represented by?

]i)“é)=1ing |9 €), (Al1a))
where
|98; ) =[3(e) 72[1+(M —H+ie)H, J|N)  (Allb)
and
lin(l) 3(e)=2,. (Allc)
From Eq. (A11b) it follows that
(M —Ho+ie) T O(M)| N)
=[a(9 12 9 |). (A12)

This result establishes that the residual “scattered”
wave which persists as £— — oo is given by

Jim [¥:(0) =2 f(@,po)a’y[(Z2)?|90)— | V)],

and combining this with the originally assumed incident
wave leads us to the expression for the limiting form for
the entire wave function,

lim [9()
=(Z)" £ fla,po)ay|90) exp(—ivgf). (A1)

In Sec. I1I, Egs. (30) and (31) show the wave func-
tion generated from the assumed incident state of elec-
trons and transverse photons by the interaction term
[Ho,D]. [Ho,D] can only connect a state (¢4*| ax,o with
astate | ¢p) since [H,,D] can create a Q-type photon or
annihilate an R-type photon. However, R-type photons
can never occur when [HoDJs operate on electron-
transverse-photon states, so that only the 3 x a'x,q
Xp(K)E%% part of D ever operates. The incident
transverse photons therefore emerge unscattered in such

% B. S. DeWitt, in Quantum Mechanics (Benjamin, New York,
1966), Chap. 10.
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Feynman graphs, and the resulting 6 functions obliterate
integrations in which the Riemann-Lebesgue lemma
might operate. For example, for ¢r{f) ={exvq,vp'.2*
X[¥(0)=(pwya.cl a0l ¥(0), where y(2) originates
from Compton scattering, we have for lowest (second)
order

¢(2),R(t)=/dqdk <ek"Yq’.t apr, o[ Ho,D]|vq,iex)

X (wrtg—we—g —p'+ie)~ f(k ko)
F(q,90) exp[ —i(wr+q)t],

where f(k)ko) and F(q,q0) are spectral packets for the
incident electron and the incident transverse photon,
respectively. It is easy to see that

(A14)

ligg (exrvqr,e| @pr, [ Ho,D ]| vq, 6x)
X(wptg—wp—¢ —p'+ie)™!

=Y att 47y (2038 76 e-x), p0qa” 5
so that

b () =ty (2p°2) (k' +q', ko)
XF(q',q0) expl —i(wjxrp1+¢)t].

Here again, the é functions have absorbed all inte-
grations leaving an oscillatory time dependence which
does not vanish at {——co; the corresponding state
vector augments or renormalizes the assumed incident
wave as in the previous example and as discussed in
Sec. III. We note that the identical effect occurs for
[H,,D]" for arbitrary ».

(A15)

APPENDIX B

In this appendix we will evaluate the lowest-order
contributions to Z, in various gauges to illustrate the
validity of the results presented in Sec. IT C. For this
purpose we will here use the usual covariant definition
of the self-energy terms and the covariant definition of
Z», although we will integrate the infinite integrals to
noninvariant cutoffs.

The second-order self-energy in the Coulomb gauge
includes contributions from transverse photons and
from the H¢ interaction Hamiltonian. The lowest-order
Z, stems from transverse photons entirely and the con-
tribution to 2r®(p,) from transverse photons is given

by

@ (p,) 12 dak
P = —y-
= ]
iy (p—k)—m

. e—5mT@) y

ey (B1)
mi+(p—1)?

where 2;® is the second-order self-energy correction to
an electron of momentum p, due to transverse photons,
and where ém, is the part of the self-energy due to trans-
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verse photons. We will express this quantity in the rest
frame of the electron and rewrite Eq. (Bla) as

(2) —24e?
2@ (p,) = —
7@ (py) (2n)¢

1 mty-p(l—x)
x[ dx[fd% —%ﬂv-px}
0 [R24-m2x+p2e(1 —x) ]2

(B1b)

—_ BmT@) s

where p is the vector (0,0,0,ip0). We will evaluate the
integrals by defining

L -+
/d“k=/dﬂ/ kzdk/ dky,
A —

where f'dk, is performed over the Feynman contour.
This leads to

27 (py) = (a/2m)(m~+iv- p)[In(2L/m)—% ].

For the case of the Lorentz gauge, £, ®(p,,) is given by

(B2)

ie2 d*k iy-(p—k)—m

/ Y —————y,—dm (B3a)
@nt) B e (p—by?
and this can be rewritten as

(2) —ie?
ZL (pll): (27’_)4 /dx

2L9(p) =

o fan mbist=n
W[k:’—f—mzx—{—p?x(l —x)]?

—3m¥y-pxy —om. (B3b)

The integrals are evaluated as before, leading to

2. (py) = (a/2m) (m~+iv-p)

X[(AnQ2L/m)+7/442 In(2N/m)]. (B4)

K. HALLER AND L. F.

LANDOVITZ 2

The preceding equations lead to the following expres-
sions for the lowest-order terms in Z,:

(32)c=1—(a/2m)[In(2L/m) —1], (B5a)
(32)L=1—(a/2m)[In(2L/m)~+7/4+2 In(2\/m)]. (B5b)
The difference between (3s)¢ and (3,)7, is given by

A%y=(32)1—(32)c=—(o/m)[In(2\/m)+1]. (B6)
This shows that A3,5#0, and, moreover, that
limx .o [A82/(82) ¢ ]50.

It is the latter equation which is significant, since in an
expression for a divergent renormalization constant,
the finite parts are dependent on the details of the
method of calculation and not significant to the final
result.?*

The quantity (3,)y is given by

(52)’4 = (32)L‘1in(} Tnz(s)(Ep) )

where 7, (E,) is given by Eq. (20c). 7., (£,) can
be shown to be given by

1

a9 (L)) = —eiyyy

i Wp—Wik—p1 -k _
K 24 1) 8 (1) — V-l (p-k)
Wp—Wik—pi—k1e
wp_f‘wlk-—pl —k

————————vattp, (B7)
wp+w;k_pl+k——ie} !

and, for p=0, this has the value
Tnt 9 (£p) = —(a/m)[In(\/2m)+3],

so that _
(32)=1—(o/2m)[In(2L/m)+%]
and
(32)2—(32)¢
m ——- =0
L -0 (32)0
#J. J. Sakurai, Advanced Quantum Mechanics (Addison-

Wesley, Reading, Mass., 1967), p. 283.



