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change j'd'-o; and P„,we get after some algebra

C. - =(2-) (-»)(-')-& ~( --( -- )@

&&(E„—M) sine(E„—M)

xl IM",~ I'+(—)"IM.'~ I'&

A=
fei mlon

where the
l M„„,~ l' and lM», ~ l' are spin-averaged

absolute squares of matrix elements of source currents

Lj e(0) for A=n, tt(tI) f„(0) for A =P] between%„and
intermediate state N„, N„and 4„, respectively.

We find immediately that C&' ) is pure imaginary
for m even, pure real for hatt odd, as used in (18) and (23).

Note that, F.„M&~0 for—d =boson, while (E„—M)
&& sine(E„—M) is even in F.„Mfor t—rt odd. Thus every
summand of g„ is positive for A =boson, ttt even, or
A = fermion, M odd. Putting I=0, A =boson, m = 1,
A =proton, this proves that ImC "'&0 and also
ReC„()&O.

VII. REMARKS

(a) Equation (21) shows tha, t the asymptotic be-
havior depends critically on the smoothness of the
relevant current commutator across the light cone. For
example, if F(r, t) is continuous in t,

I~'(r, t) =2eI'(r, t(r)), r —e&~t(r) &~ r+e

by the theorem of the meam. Then C("=0 if
.fdr r Fl r, t(r) j(oe. On the other hand, if F(r,t)
=g(r)5(r t)—/r with Jdr'g(r)(~ and WO, then Ct '&0.

(b) The necessity of the frame-dependent cutoff for
constant norizero asymptotic 0. is striking. For from
(18) and its pp analog, if

l g (q) l

' were replaced by unity,
o. (7rp) 0(1/to') and o. (pp) 0(1/to) at most. However,
it may well be that the assumption of the analyticity
everywhere of f+($) is not justified in local QFT.
Models have been examined in another work, ' which
suggests that it is not, or perhaps better said, that the
question has not much meaning in local QFT because
of its divergent and ill-defined nature. Tanaka" gives
examples of light-cone behavior of source current com-
mutators [~ct"8(—x')/(ctt)", rtt=0, 1, 2, . . .] which
can yield ImT 0(to) or even a higher power and thus
constant asymptotic a..

(c) Recent Serpul~hov data" on total cross sections
for s p, K p, pp up to to = 65 Gev show some waveiness
at these very high energies. This behavior can be
fitted by power series in 1/to as given by this theory.

The theoretical values of the constants C~( ', in
particular, the values tt, (AF) of the asymptotic cross
sections, will have to await a reliable way to calculate
the current comutators on the light cone. But it is
seen from (19) and (23) that their scale is given by the
square of the cutoff length X.

"K.Tanaka, Phys. Rev. 164, 1800 (196l).
"Proceodimgs of the Iuttd Ittter~nationat Cortferertce ort Elewemtoi y

l'articles, 1969, edited by G. von Dardel (Berlingska, Lund,
Sweden, 1969).
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The scattering wave functions for quantum electrodynamics are exaniined in the Coulomb gauge, in the
conventional Lorentz gauge, and in a reformulated version of the I.orentz gauge. It is shown that when the
Lorentz gauge is formulated so that Maxwell's equations hold even when the Green's-function pole is dis-
placed of'f the real axis, Z2 is identical in the Coulomb gauge and in the Lorentz gauge. It is also shown that
the unrenormalized asymptotic states in the reformulated Lorentz gauge include a partial dressing of the
bare electrons by longitudinal and timelike photons sufhcient to generate the electron s static electric field.
It is proven that for true bound states the radiative energy shifts in the reformulated Lorentz gauge and in the
conventional formulation agree.

I. INTRODUCTION

N earlier work' ' we introduced a reformulation of
- quantum electrodynamics in the Lorentz gauge, in

* Supported in part by the University of Connecticut Research
Foundation.

which the physical states
l p) are defined by

Qt+&(x)
l g) =0, (1a)

~ K. Hailer and L. F. Landovitz, Phys. Rev. 1'71, 1749 (1.968).
~ K. Hailer and L. F. Landovitz, Phys Rev. Letters 22, 245

(1969).' K, Hailer and L. F. Landovitz, Phys. Rev. 182, 1922 (1969).
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where 0&+&(x) is given by

Q&+&(x) =i g k"'0&+&(k)e' '*, (lb)

and 0'+'(k) is given by'

fl&+&(k) =g&, oy(2ys~s) p(k) . (1c)

In this formulation of the Lorentz gauge, Eq. (1a) takes
the place of the subsidiary condition Xt+&(x)

I q) =0, on
which the usual formulation' of the Lorentz gauge is
based.

In Ref. 1 it, was demonstrated that Eq. (1a) is the
proper subsidiary condition to use in de6ning the
Lorentz gauge. This is because the scalar operator
Qt+&(x) represents the invariant positive-frequency part
of B„A~ in the presence of interactions; the equations
of motion therefore imply the continued validity of
Eq. (1a), once it is postulated to hold at any one time,
and the permanent validity of Maxwell's equations
(for the expectation va, lues of electromagnetic fields)
is guaranteed. The consequences of substituting
x&+&(x)

I p& =0 for Eq. (1a) are discussed in Refs. 1 and
2. One conclusion that was drawn in Ref. 1 was that the
form of the S matrix for quantum electrodynamics
(QED) rema, ins wholly unaltered when the proper
formulation of the Lorentz gauge is replaced by the
conventional one, in spite of the internal inconsistencies
of the latter. In Ref. 3 it was shown that the new,
proper formulation of the Lorentz gauge leads to a the-
ory identical to QED in the Coulomb gauge, except for
processes that involve unphysical photons.

These results make it particularly desirable to under-
stand why the reported values of the renormalization
constant Z2 differ in the Lorentz and Coulomb gauges. '
It is this question to which we address ourselves in
Sec. II and in Appendix 8 in this paper. The conclusion
that we draw is that the identity of the S matrix in the
two versions of the Lorentz gauge implies only that the
corresponding transition amplitudes are identical on
the energy shells and in the limit in which all Green's-
function poles have been taken on the real axis [i.e.,
lim&, s&(E—He+is) 'j. The definition of Zs, however,
involves the knowledge of the transition amplitudes with
the Green's-function poles away from the real axis.
Careful study of the transition amplitudes in this
latter case reveals that Z2 differs in the old and the new
formulation of the Lorentz gauge. In the new, correct
formulation, Z2 in the Lorentz gauge agrees with the
value obtained in the Coulomb gauge.

4Q(+) is the operator that appears in K. Bleuler, Helv. Phys.
Acta 23, 567 (1950); Gupta has recently commented (see S. N.
Gupta, Phys. Rev. 180, 1601 (1969l] to the effect that the operator
which defines the subsidiary condition in S. N. Gupta, Proc. Phys.
Soc. (London) 63, 681 (1950), is the same as the one in Bleuler's
later paper.

'See Ref. 1, footnote 1.
See, for example, K. Johnson and B. Zumino, Phys. Rev.

Letters 3, 351 (1959); B. Zumino, ibid. 3, 351 (1959); J. Math.
Phys. 1, 1 (1960); C. R. Hagen, Phys. Rev. 130, 813 (1963).

In Sec. III we note that the zero-time scattering wave
function for the electron-photon system in the old and.
the new formulations of the Lorentz gauge differ only
to order i e (the displacement of the Green's-function
poles off the real axis); and that these ie discrepancies,
though important in singular transition amplitudes,
such as are involved in wave-function renormalization
graphs, do not contribute in ordinary scattering ampli-
tudes. Nevertheless, the noninteracting electron-photon
states, which the wave function is assumed to approach
as t~&~, profoundly differ in the old and new
formulations of the Lorentz gauge, even though, in
both cases, the same Hamiltonian is invoked as the
time-displacement operator.

In Sec. III we carefully examine all contributions
to the asymptotic wave function that arise when the
zero-time scattering wave function has the form
dictated by the conventional version of the Lorentz
gauge. We demonstrate that there are terms, which

superficially appear to vanish due to the operation of
the Riemann-Lebesgue lemma as t —+&~, which in
fact persist to form the asymptotic scattering states
assumed in the new, correct formulation of the Lorentz
gauge. In Sec. III we also show that the old formulation
Qf the I orentz gauge is not wholly consistent with
Maxwell's equations.

In Sec. IV we note that, unlike the case of the energy
continuun~, the bound-state wave functions are in no
way a6ected by the substitution of the old for the new
formulation of the Lorentz gauge. The energy shifts,
too, are identical for these two cases.

with'

lim (Hp'+Ht' —E;) IP, &'&) =0,
&~0

(2a)

I4 "»=
I ~*&+(E'—Ho'+re) 'Ht'Ik &&, (2b)

where
xt &(x)I&,&=0 and (H. -E,)I,,&=0.

Case II is the scattering problem in the reformulated
Lorentz gauge. In this case we have

lim (3Cp'+Xt' —E;) (P,&'» =0
e~0 (3a)

and
la"'& =

I ~')+(E'—~o'+&e) '~ 'Ill "), (»)
' The symbols denoting electrodynamic Hamiltonians are used

as defined in Refs. 1 and 3. The primed Hamiltonians refer to
the level-shifted forms that correspond to the respective un-
primed variety. Thus for example, Hp =Hp+5E HI =HI —AE,
BCp' ——Xp+LE, and 3'.I' ——3CI—5E, so that the continuum spectra
of Hp and H and of Kp and H coincide. Since the spectra of Hp
and Kp coincide, the level shift is identical in cases I-III.

II. COLLISION PROBLEM IN QED

A. Wave Functions and Transition Amplitudes

In this section we address ourselves to the scattering
problem for the following cases: Case I is the scattering
problem in the conventional Lorentz gauge. In this case
we have
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wh««(+)(x)! (-"&=0»d (~p' —E)I p'&=0; Ip'& is
given by ! p, &

=e D! (p,). Case III is obtained from case
II by a pseudounitary transformation; in case III we
have

(H, +H, —E,) I j,( » =0
e -&0

lp"') =
I v'&+(I- —Hp+ip) )H~14"(')) (4b)

II ~' is given by

jj, =H, +[a,H j=H, '+[~,jjj (~ )
I'i, , ('& = (~~+I ~~'!4 "&&, (11a)

and inversion of the Green's function in Eq. (9) allows
us to formally solve this equation, as follows:

!P, (~)
&
—

&
—)&!g (~)

&
—

!1t,, (~)
&

ip—(E, H—+ip) '(1 —e D)! y;&. (10)

'I'he transition amplitude between an initial state (i)
and a final state (f) in the new Lorentz gauge formu-
lation is given by 7'y, ;, where Ty, ;——liM, pV y,

' '
where

and also by
H&'=H), r+Hc+ jjq.a ~j'-',

where

= -Z (2&) '"L&), (*)J(—Ir) ' &(i)

()b)
or, equivalently,

7'&,."= (( &*Ijji'
I
P''&;

and, from Eq. (6), we have that

(11b)

+~",.(')J(lr) a(i)j,
Hc= dxdy p(x)p(y)(8ml x yl)

Hq. ~ = 2 —:(&)-'"(—~..qI »( —I )+I .J(—I )I I
I

I 3

+,t„„!-,(k)+I J(I)/!I!j).
The discrepancy between Eqs. (2a)»d (4a)»d

between (2b) and (4b), respectively, accounts for the
dynamical differences between the conventional and the
new formula, tion of QED in the Lorentz gauge. As was

previously pointed out, ' cases I and II are rot related
by a pseudounitary transformation, although cases
II and III are.

From H=Hp'+Hq'=eDHe c, we can show that

jj)' H)'e D+(1—e ——)H —Hp'(1 —e D). (6)

This, in turn, allows us to rewrite Eq. (4b),

Ik")&=
I (o*&+(E'—Hp'+ip) '

&& $H, 'e
—» —(II()' —E~) (1—e

—D)]!P;('&

+ip(E, —Hp'+ip) '(1—e ~)

X(E,—jj+i.) )H,'!&,&-

In the limit as p —+0, we know that Eq. (4a) holds,
but it is not convenient to consider Eq. (7) in that
limit yet. Rather we write Eq. (4b) as

I j ")=
I p')y(E' —jj'+ip) 'jj~'I p'& (4c)

and 6nd that

E')!0' '))= ip(E; —H+ip) —'H, '! (p,&. (8)

We note that in the derivation of Eq. (8) the use of the
level-shifted. Hamiltonian is essential, since only in
tha, t case are (Hp' —E;)!q;) =0 and lim, p(8 —E;)
!g, ('& =0 both correct.

Equations (7) and (8) lead to

s ~!)I,('))=!q&;)+(E; Hp'+ip) 'H—g'e D!g, (')&

—ip(Ep —Hp'+ip) '(1—e o)! (p;&, (9)
' Ref. 1, footnote 6.

"+(or"!(1—~ )!0"&(E—E )
+ip((p)y ! (1 —|: )(E;—H+ip) 'H)'! p;&

(q &—*!Hz'(E, H+—ip) '(1 e~—)!(p,&), (12)

where T~, , (') = (y&*!H~'! P;(')).The symbol (n*! denotes
the adjoint in the indehnite metric space, which is
discussed in Ref. 1, Sec. II.

Equation. (12) affords us substantial insights into the
relation between the old and the new formulations of
the Lorentz gauge. %hen the transition amplitude is
nonvanishing on the energy shell as p~0 (as, for
example, in a scattering transition amplitude involving
absorption and emission of photons by electrons as in
y, +e&,~ y;+e&, ), the quantity proportional to
vanishes with respect to T&,,&' in the limit e ~ 0, and
the transition amplitudes T~,; and 1 y, ; are identical on
the energy shell. QQ the energy shell they diGer by
((p&*!(1—e D)!g, '))(E,—E&); this latter quantity never
affects any adiabatic processes (like scattering phe-
nomena) but is involved in nonadiabatic events (see,
for example, Ref. 2).

When, on the other hand, Tr„and Tr, ; display (Oj0)
singularities on the energy shell, as in the case of wave-
function renormalization terms, then we need to con-
sider the coefficients of the i e terms carefully. %hen such
singularities occur, F~,; and T&,, will differ (as will also
Z2 for the two different formulations of the Lorentz
gauge). Since we have shown in Ref. 3 that the transition
amplitude 1'y„ is identical to the one that results from
the Coulomb gauge, on and o8 the energy shell and
independently of any restrictions on any limiting
processes, the renormalization constant Z2 in the re-
formulated Lorentz gauge and in the Coulomb gauge
must agree.

B. Gauge Invariance of S2

In this section we compare Z2 in the two formulations
of the Lorentz gauge. %e 6rst define the operators

T(')(E,) =H)'+H&'(E, —H+ip) 'H)',
T('&(Eg) =K)'+Kg'(E; —H+~p) 'K '
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Ti'i(E;) =Bi'+Hi'(E, 8—+is) 'Hi'.

We then use Eq. (12) to write

&ep I
T"(En) I e.&

= &e. I
2'"(E.) I e.&

+ieL(e, I (1—e—D) (E„—H+ie)-'Hi'
I es)

—&e, IH, '(E„—H+ze)-'(1 —e-~) Ig,&g, (»)
with (Hs' Ei,) Ies—& =0. The level shift for this case is
DE= 0E„, the self-energy of the electron' of momentum

P
It is possible to relate'" Z. to the expectation values

of the T" operators defined above; in the case of the
old formulation of the Lorentz gauge this leads to"

&g. I
T'"(E.) I e.&

= zeL(Z ) —17

for the case of the new formulation we have

&8, I
T"(E„)IB,&=zeL(Z2)L

For the case of computational simplicity, we make use of

&esIT"(E.)Ies&=& sI "(E.)I .&.

Equation (15a) demonstrates that the expression for
(Zz) I, is entirely independent of whether it is evaluated
in the formalism of case II or III. We can define (Zz)r. by

this is a corroboration of the result that the electron
self-energy is identical in cases I—III.

To lowest order, Eq. (16) yields

(Ss),=(F,),+rim &e, I LH, '(E„—H, '+re)- D
e~o

(Ss)r, ——(P,)r,—limp
I &esl p(lt) lzz& I'(2kz)

e~o n, k

X (Ez —E~+k) (Eg—E~—k+ze) i (17b)

where g„signifies summation over the eigenstates of
the noninteracting fermion Hamiltonian.

For corroboration we relate this result to the dis-
crepancy between (Zz)g (in the Coulomb gauge) and
(Zs)r, (as evaluated in the old Lorentz gauge formula-
tion), remembering that (Zs)g and (Zz)r, are identical.

From

(Z2)li » mze&esI( E, H+—ie) 'Ie,), (15d)

we obtain, in lowest order,

—D(Ei —Ho'+is) 'Hi'jIes), (17a)

which can be rewritten as

(bz)r, =1+»m (ze) 'Lo&'&(E ) —6E &zij
&~0

or, equivalently, by

»m L&esI (E~—~+ze) 'Ies&

—(Zs)~&col(E.—Hp'+is) 'les&)=0 (15b) where gt'(En)=&- I& elsHlie&I'(En E„+ie) '. Hi
can be written"

lim L&esI(E,—H+ie) 'Ies&

-(Zz).&e, I(E.-~o'+ze)-'I")j=o (»c)

using the representations of cases III and II,
respectively.

Equations (14) and (15a.) lead to

(Zz)z =(Zz)r+»m &"ILHi'(E~ —H+ze) '(1 —e )

—(1 eD)(E„—H+i—e) 'Hi'jIes). (16)

Note that there are no further (ie) ' singularities in
the expectation value on the right-hand side of Eq. (16);

'Since the Coulomb gauge is not manifestly covariant, we
have had recourse to a noncovariant formulation of the sub-
traction procedure in order to give a united treatment of the
renormalization problem for cases I—III. The values of the re-
normalization constants may depend on the details of the sub-
traction and limiting procedures that are adopted. However,
gauge invariance of the renormalization constants is true, in-
dependently of these procedures, provided that the same pro-
cedures are invoked in the diferent gauges.' B. S. DeWitt, UCRL Report No. UCRL-2884, 1955, Eq.
(10.84) (unpublished).

"(Z2)L, will be used to designate the electron wave-function
renormalization constant in the conventional Lorentz gauge,
(Z2)L, in the reformulated Lorentz gauge, and (Z~) g in the Coulomb
gauge. (szlr„(Szlr„and (szlg will be used to denote the iterative
series of the corresponding electron wave-function renormali-
zation constant up to 6rst order in n.

Hi=& (2k'") '{-ZL~. .(')J(—It) a(z)

+iz'a. t &J(lr) a(z)jv2

+uzi, izI p( —Ir) —J(—k) 1~/IkI )
—",oI p(-I)+J(-I) 1/Ii I~

rz'i, r/—p(lr)+, J(lr) lr/I kI 1

+&'".QEp(lr) —J(lt) Ir/I Ir
I j), (19)

and it is convenient to write

i(~i(E ) = I&gulp(lr)l ~&I

n, k

(E„—E„+k)(E„—E„+k)
X (20a)E„—E„—k+ie

» Equation (19) incorporates correction of a sign error in Eq.
(7) of Ref. 1.

g i&)(E ) =g (&)(E )+g, i~i(E )

wh. ere 0& and r„& are the parts of 0. that originate from
transverse photons and from nontransverse (longi-
tudinal and time1ike) photons, respectively.

We find that g„,"(E„)is given by
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and we can iepresent this by

, (e)(E ) —o. , (oi(E )+j~r, (~i(E )

o,&@=+ l(e lp(k) Ie)l'(E„—E„+k)(2k')—';

since LHo, p7 and p commute, o.„, can be shown to be
given by

by H =Ho+Hi, where IIO and Hi are both strictly time
independent. %e will study the behavior of a wave
function lib(t)) which obeys

(H +H ) lk(&)& ='(&/&&) lib(~)&, (21)

and, in particular, we wiH examine the asymptotic
limits to which such a wave function can tend. "

Let us consider a set of states Iu(E„b)) and I~(E„,n)&
so that

~- "'=2 l(e. l~(k)l~~)l'(»') '
n, h

(20b) (Ho —E,) I
u(E„b))=0

(H —F.) I ~(E.,~)&
=o; (22b)

r„&&'i(E~) is given by

T,~'&(E ) = —P I (e I p(k) I n& I
'(2k')

&&(E„E„+k)(—E„F.„/~+—ie) —'. (20c)

Up to second order in the electric charge, we therefore
find that"

b»d o refer to eigenvalues (discrete or continuous) of
operators F and Q, respectively, for which

I HO, 87=0
and I H, Q7=0, although [HO, Q7 need not vanish. We
assume that F and Q remove all degeneracy left by IIO
H, respectively. Ke moreover assume that the energy
continua of IIO and H coincide.

We can represent the wave function P(0) by

In the Coulomb gauge, (b,)o to the same order is given

by

(b~)c=lim L1+r,&'&(E„)7,

since there are no nontransverse photons in that gauge,
and since Hz can only contribute to bE„but not to
(52)o to second order in the electric charge.

Ke therefore find that

(b,)~——(b)c—»mZ l&e, l~(k)lu)l'(2b') '

14(0)&=2 dF, f(&„b) I u(E„b)) (23a)

and, at all other times, lg(/)& by

I~b(&)&=K dE. f(E.,b; ~) Iu(E„b',). (23b)

Similarly, since the co and the I span the same space,
we can also represent ib(0) by

I y(O) & =2 dE, g(E„~) I ~(E„~)& (24a)

~&+&&)
—i and

I lP(t)& by

which verifies Eq. (17b).

III. ASYMPTOTIC BEHAVIOR OF SCATTERING
WAVE FUNCTIONS

A. General Kinematics

In this section we review a scattering formalism that
allows us to identify the asymptotic forms of scattering
wave functions from the Hamiltonian governing the
behavior of the colliding system. For this purpose it is
important to allow the dynamics of the system to de-

termine the temporal evolution of the wave functions
without dictating the explicit forms of the asymptotic
states by adiabatically switching the interaction terms
or by imposing artificial temporal limits on wave
functions.

The treatment to which we have recourse, and which
for completeness we review here, is due to Moses. '4

I"ollowing Moses, we will treat a Hamiltonian Ij given

"See Ref. 11.
"H. E. Moses, Nuavo Ciiiieiito 1, 103 (1955),

I
4'(t)) =2 dE„g(E,,n)

I
co(EI,o)& exp( —jEi )); (24b)

in Eqs. (23a) and. (24a), f(E„b) and g(Ei,n) are smooth
and reasonably narrow spectral packet functions.

We can expand Ice(Ek,n)& in terms of the eigenstates
of IIp and I' according to

l~(E~,~)&=Z dE, x(I-'q, b; Ei:,~) Iu(E„b)) (25).
Equations (22a) alld (22b) then lead to

(EI, E,)x(E„b;E„,o)—
dE; U(E„b; E;,b')x(E, ,',b'; E„)

15The Hamilt. onians H, Ho, and II'1, the wave functions p(/)
and u(E,i), and the amplitudes T&')(a, b) and g(a, b) refer to a
general scattering problem here. These symbols, as used in Sec.
III A, have no relation to the quantities represented by the same
symbols in the rest of the paper, where they refer to electro-
dynarnjc quantities,
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where

V(E, . E, b ) =(~(E„b)I&.l~( 'E,y) ~ (26b)

f26 ) x(E O' Ek&)According to q i
h ht hand side of Eq.singular; if the i g, h pole at

inte ral on the rig
(26a) is boilii 4 ' .

1 d f (E„—E )We therefore take the multiple-va ue ness
b Ez n) into account by defining

T('i(Eq, b; E(„n)= (E(,—Eq)x( Eq, b; E(„e,
where T'&(F-„b; E(.-,(q) obeys

T('&(L&" b E(„n)=Q dEq V, q, , q,
',E b Eqb').

X{T '(i( F, O'; E), n) $E(,—E; s q

(t) f—(Eq b) exp( sEq ) &

) p f(E g)T('&(Eq)b) Eq, (s)II

—E +iqj ' (29b)X dE(, exp( iE—(,t) ((E(, —, i q

which may be rewritten as

t = —2~sZf(Eq, ~)T"(Eqb E.&)S

Xexp( —iE,t)0(t) (29c)

8 t =effort&0, e(t) —0where g(t) is the step function
for t(0j, and

nvoked the wisdom of hindsight to choose

f- lane; theh(Eq; ',n b

te for the ar i raria e oco pe sa
placement of the po e in

We can now write Eq. (24b) as

,()=2 U(E, ) "( .» "
f(Eq, (s) T(—'& (E„b;E„(s)jexp( —sEpt

XLE„—F,+iq j—'. (29d

of X(Eq; b, (s) we have made,Note that for the choice o
Eq. (27b) becomes

T(~)(E b ~ E~ (s)

I (t)) =& dEq«~r(E«, ~)tTT(') E b' Ek ~)
b, ot = V(Eq,b; E(„.,u)+Q dE; V E b E, ,b')

b1
E . b n)b(E(, —Eq)) ass(E„b))

sq '. 27c)XT"(E, ,b'; E~,(s) LE~ —E, +sq

=Q f(E(„(s)T"(E„b;E(„(s).

I'P(t)) =Z q q~))=2 « f(& ~) l~(E.,~))

LE, E +„$ +g(X~ ~—

ex —iE(,t); (28a) ' EI„a is bounded and has a
Xexp( —s at;

bounded derivative on

b&~in order to speci y

p(t) then arewave packet in terms o gs of ei enstates o

t describes sca er' ~
to the various

'
ed re uirements, however,

Ke also let

z (E )T('i(Eq, b; Ei,u)

d, that the eigenstates of Hq

e) r' )

visional surmise thatwema e, a
stem was mistaken.totic states of t e sys em,

Q
form the asymp o ic s em

}1 t}1
e a lication o ar iE ation (28a,) then re ads o, om el the system o

qua

ldb t tas m totically, wou
b the time- nd pen-

h h f 1

col laws as g1ven
'an. It is simple to s ow

Q

well-behaved s or -raten g om
go 4.

(~) b E~ (s)

fi ld theories the transition amp i u
a, b

violate the conditions re vanis
the wave function ~f(t)) ev

wish to eva ua e t
ther than the inci ent par t 3

se components augm~~~t)) in the state
t the amp}itud(.

1 articles generate y e) =. ( (E b)
~
P(t)). We can represe

0(t) =& (t)+&.(t)+4.(t),



K. HAI LER AND I. . I" . I ANDOVITZ

will illustrate this eQect in detail. In the following,
Sec. III 8, we will discuss the application of this
procedure to QED.

B. Asyrnytotic States in QHD in Different Gauges

In QED the complication inherent in disconnected
vacuum-polarization bubbles prevents us from simply
collecting the renormalized "incident wave" components
from the time-dependent wave function (as can be done
in the case of a static model). Nevertheless, we can
invoke this procedure to clarify the relation between the
asymptotic states of QED in the conventional formu-
lation of the Lorentz gauge on one hand, and the
reformulated Lorentz gauge on the other.

The interaction Hamiltonian Hi in the conventional
formulation of the Lorentz gauge may be written IIi
=Hr, r+Ho, a+[HO, D]

If we consider a collision, for example, one between
an electron and a photon, then among other Inatrix
elements in the transition amplitude we Gnd a sequence
of terms in which EHo, D] is always the operative part
of the interaction Hamiltonian. This sequence of terms
gives rise to a contribution to the wave function which
is given by

I P~(t)) = dE; f(E,) exp( —iEit) g I n)(E, —E„+i~)-'

~&( I
[Ho'»]I &+( I[Ho',D]EE'—Ho'+ ] '

X[Ho', D]li&+ +(n I EH'»]EE' Ho'+ ] '—
[E'—Ho'+ie] 'EHo'»] li&) (3o)

Since [Ho', D] and D commute, and ignoring all terms
proportional to (ie)", the transition amplitude to a,

state
I l) is given by

&f ~(t) = dE, f(K) exp( —iE;t)(i+I [—D+(2!)

—(3~) 'D'+ +(—1)"(n!) 'D"]li). (31)

Her, the various matrix elements (1+I Dli), (i*ID"
I i)

contain a sufhcient number of 8 functions in momenta
to eliminate the integration over the energy variable. "
For example, if li) is a state of an electron and a trans-
verse photon leky1, , ~), and

I l) is a state of an electron,
a transverse and an "R"-type photon

I
ek y, , ,y, , r1&, then

(l*IDli) is given by

(MIDI i) =~k'74&k~(k —k'), ,&, .,(2q"') ';

the g&k k.1~8~., ~ term absorbs the integration jdE, ,
and there is no further integration to which the Rie-
mann-Lebesque lemma can apply. A similar condition
obtains in the case of (i*ID"Ii& The effec.t of these 8

'"' See Appendix A.

that tile amplitude @1(t) persists at all
times; in particular, it does not disappear even at
t~ —~, and it combines with the original incident
state to give the state

I y;(t)) =Z e-'I j&f(E,) exp( —iE,t) . (32)

"We mill use the term wave-function renormalization to
include all the multiparticle components of. the incident state of
the system.

There are, of course, many other contributions to the
transition amplitude, among them many additional
terms contributing to wave-function renormalization'"
(i.e., those terms which do not vanish as t~ —~).
Among them a,re terms containing transverse photons,
and other terms in which the Q photons produced by the
[Hp, D] pR1't of H1 Rle annlhllated by Hq, s 'to give 11se
to wave-function renormalization terms which contri-
bute Dalitz pairs to the dressed electron wave function;
in a,ddition, there are terms in which disconnected
vacuum-polarization bubbles accompany other dia-
grams, and there are the previously ignored 0((ie)"")
terms.

All these contributions are dictated by the form of the
Hamiltonian which is in this way "correcting" or
renormalizing the assumed incident (asymptotic) wave
function.

In the new formulation of the Lorentz gauge, that
subset of terms contributing to the renormaliza, tion of
the incident wave, in which [He,D] is the only operative
part of the Hamiltonian, has been collected in closed
form at the very outset of the formulation of the scat-
tering problem; the asymptotic states thus are e D li)

It is important to understand that the form of the
asymptotic states of the scattering system is not arbi-
trary. The Hamiltonian unambiguously determines it
once the wave function at t=o is known. If a wrong
choice of a,symptotic wave functions is made at the
outset of a problem, the dynamical laws "notify" us
of that fact by generating terms in the wave function
which fail to vanish in the limit t —& —~ and augment,
or renormalize, the "incident" wave by the so-called
wave-function renormalization terms. The wave func-
tion

I y„& can therefore be understood in the following
way: In the conventional formulation of the Lorentz
gauge, the initially assumed form of asymptotic elec-
tron wave functions (i.e., eigenstates of H, ) are un-
accompanied by any electromagnetic field. In the
reformulated version of the Lorentz gauge, the assumed
as)mrptotic electron wave functions (i.e. , eigenstates of
BCO) are "dressed" in a cloud of longitudinal and time-
like photons. This cloud does not, of course, represent
the complete renormalized asymptotic electron state,
since all transverse photons and the contributions of
B~ are omitted from it. However, the wave functions

I p„& which satisfy Eq. (1a) do include a sum over a
subset of "bare" electron and longitudinal and timelike
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photon states which form apart of the complete asymp=
totic electron states.

For example, &f
I q, ) is a, one-electron state

I
e,& then, if

we de6ne &, =Q'+)(x)
I e~), we have that

p(k)
~ih xl e )

k
(33b)

and if we let $b be given by

(~=K Q'+'(x)
I ~~)&~~l&~~'I~&)(E —E+i~) ',

then we have that

E~= -i(2k) '2
I ~~&&~~I~(lr) icy&

J

X((u„—E,—k)((o,—E,—k+ic) '.
We see then that Q&+)(x) If,~') "' is given by

I ~)&~ I) (lr)l~. &
Q&+) (x) I P, &'& &') = —-', e Q —— — e'" *, (33c)

k ik(c,)„—E, k+. 'is)—
which, to 0(e), does not vanish.

More generally, since we have shown that e ~I) ))
=

I P ~')) and Q'+) (x) I P &')) =0, we have, from Eq. (10),
that

Q&+)(x) IP &') =ieQ&+)(x)(E,—H+ie) —'.

X(1—e ) I v *), (34a)

which in general does not vanish to O(e).
The physical significance of the nonvanishing of

Q&+)(x) IP )) can be understood in the following way:

C. Scattering States and Maxwe11's Equations

The Hamiltonian H, which generates the equations
of motion of QED in the Lorentz gauge, gives rise to
the wave equation Q A„=—j„.The subsidiary con-
dition B„A„=0makes this wave equation equivalent
to the full set of Maxwell's equations. In Ref. 1 it was
shown how the reformulated version of the Lorentz
gauge guarantees the permanent vs, lidity of &P«&*i B„A„
X

I f«&) =0, whereas this latter equation does not hold
for

I 1t (/)) in the conventional formulation of the
I.orentz gauge. In the latter case the expectation values
of the electromagnetic fields may not obey Maxwell's
equations.

If we examine a scattering wave function lf, &')) up
to first order in electric charge, we find that, to this
ordel )

ill""&"'=
I ~')+(E —IIo'+i~) '&)'I ~'),

and Q'+'(x)
I P ")&" is given by

Q(+)(x) lp. (~)&()) —Q(+)(x)
I ~,)

+P Q'+)(x)
I
q, &&p, III)'I p, )gl , J;,+i'eg—' (33a—).

The validity of the subsidiary condition Q„A„=O at
7=0 implies

(35a)

where Ii) is any state vector that satis6es Eq. (1a);
this is equivalent to

i p j')'(t*l(Q~+)(lr) —Q&+)( —Ir)+) f&e''"'*=0. (35b)

Similarly, the equation

&l*l(v E—c) If&=o

is equivalent to

Zk"'&i*I(Q"'(1 )+Q'"(—I )') f&~*" "=o (34b)

Equa, tion (35b) must be true for both lg, "& and
IP, &')), since either subsidiary condition x'+)(x)

I q) =0
or Q&+)(x)

I p) =0 guarantees it. The failure of
Q~+)(x)lp, ~')) =0, to O(e), implies that, to that order,
the expectation value of V E—p=0 does not hold.
Although in many cases (such as in the calculation of
6nite cross sections) such discrepancies to O(~) will
vanish in the limit e ~ 0, this need not be the case for
quantities for which the first order in ~ is the leading
term (as, for example, in the case of Z2). In contrast to
this, &p+

I
(v E—p) I p) =0 is always exactly obeyed by

scattering states in the reformulated Lorentz gauge,
even when the energy pole of the Green's function is
displaced from the real axis,

It is of interest to compare the states
I p,) and

I p, &,

the initially assumed asymptotic states (before wave-
function renorrnalization) for the two versions of the
I.orentz gauge, with respect to the expectation values
of the electromagnetic fields which they imply. In the
case of

I p,) states, we have that

E k"'&~~*Ix"'(Ir)+x'+'( —I )*I ~'& =o,

i.e. , that

&v.*lv El~.)=0.
In the case of

I g,) states, we have that

&p'"Iv E—pi p')=o.

In other words, in the conventional formulation of the
Lorentz gauge, the

I y, ) electron states consist of elec-
trons unaccompanied by their static field; in the new
formulation, the

I g,) electron states consist of electrons
that do carry their static electric field with them.
Neither the

I p;) nor the
I p, ) electron states are ac-

companied by any magnetic fields, since in both, HD
and BCO, the photons are decoupled from the transverse
currents. In both these cases the magnetic field
"dressing" is left to subsequent wave-function renormal-
ization by H~ and X~, respectively.
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Jn this section we will demonstrate that the radiative
corrections to bound states in an external potential V
are identical in the new formulation of the Lorentz
gauge, and in the procedure that is invoked in making
such calculations in the usual formulation of the Lorentz
gauge, " provided that

I V,p(x)(=0; this condition on
U is in fact satisfied for large classes of potentials,
including those equivalent to c-number potentials
LV= j'dx P+(x)lf(x) V(x), as for. example, a Coulomb

potential j.
The bound-state problem in the reformulated Lorentz

gauge can be specified by the equation

(Seo+ V+X,—E„)I e„&=0 (37)

subject to the constraint 0&+i(x)
I
+„&=0. If we consider

I+„) to be genera. ted iteratively, starting with IC„),
where the latter obey (Ko'+V —E„"')IC„&=0, then
it is clear that the constraint imposed by the subsi-
diary condition Q&+'(x)

I C) =0 never needs to be
applied, since BC&' never connects states that satisfy
it with states that do not.

The bound-state problem in the conventional Lorentz
gauge can be specified by (Ii+V E„)

I
4„&=—0, subject

to the constraint x&+i
I
4„)=0. In this case, if we solve

the problem iteratively, starting with IC„) given by
(Ho'+V E&")

I

C'„)=0,—we would quickly find tha, t
the higher-order corrections fail to obey the constraint
imposed by this subsidiary condition. If we were to
take this constraint seriously, we would have to project
out the part of the iterated wave function that violates
it.

%e might do this by defining a projection operator
n in the Fock space of noninteracting photons and
electrons (moving in the external potential V) so that
o. projects out those e-particle states that include un-

physical photons. "Ke would then solve the eigenvalue
problem

(H, 'yv+ H, —(E.).) I
~.&&.l =0 (38)

by an iteration procedure, and if we start with
I

4' )a,s

before, we would be assured that the constraint
x&+'I+„&& i ——0 would be obeyed. The question could
then be raised whether Eqs. (37) and (38) give identical
solutions; and because of the fact that I+„) and

I Q„)
are constrained to occupy different parts of the indefinite

'8 This result supercedes an earlier report on this topic by the
authors.

'9Because the space underlying this theory is an indefinit
metric space, care must be taken not to misunderstand the termi-
nology describing the zero-norm particle states. The subsidiary
condition x&+i lx)

~
y) =0 is equivalent to aq o ~

v) =0. State vectors
violate this condition when they include any atp q operators
operating to their right, as for example atx, o ~ a) with

~
sr) consist-

ing of bare electrons and transverse photons. Such "forbidden"
state vectors, however, correspond to a probability amplitude for
observing R-type rather than Q-type photons, since (v,*~ so) =1
if

~ v o) =atx,
&& ~ v ) and

~
v, ) =at&r, n

~
q). The convention we adopt

is that we refer to the forbidden photon as Q type, referring to the
operator structure of the ket vector, rather than to the designation
of the nonvanishing amplitude in the inde6nite metric space.

metric space, we might discover that indeed they do
not. Equation (38) is not, however, the one which has
been used to evaluate radiative corrections to bound
states in QED.so In actual practice, the constraint.
imposed by a subsidiary condition has always been
ignored in these calculations, so that the wave func-
tion has always been allowed to spread into any
part of the space that the dynamics of the problem
(Ho+ V+Hi E) I—%'„)=0 dictated. The usual compu-
tational practice can be illustrated by choosing the un-
perturbed state vector to be a one-electron state

I h&oi&,
which solves the problem (Ho'+ V —Eo"')

I
h &o&) =0;

then the first-order correction to
I h&oi) is given by

I&&i)&=2' I@&&(C'&IHi'I@&ol)(E&"' Eo—"') ' (39)

(where p&' indicates summation over all t except t =0)
and the set IC'i) consists of states containing some
Q-type photons which violate x&+i(x)IC,)=0. These
are not, however, projected out, but are admitted as
basis vectors for the exact solution to the problem.

The consequence of the aforegoing circumstances is
that we must compare the bound-state problem in the
two versions of the Lorentz gauge when eo subsidiary
constraints are imposed on the wave functions: in the
case of the reformulated version because the theory
implies independence of the computational procedure
from the constraints, and in the case of the traditional
formulation because the actual practice has been to
ignore them.

The expression for the iterative expansion of the
bound-state wave function I+„& in the usual formu-
lation of the Lorentz gauge can be written"

I
~.&=

I
~-&+(I- l~-&(~-I)

&&(Ho'+V —E-'"') '(~.—Hi') I+-), («)
where

~.=E,.-E. =(~-IH 'i~-&((~-l~-&)-',
(Ho+ V+Hi —E.) I +.) =0~

(H.'+ V-E."') l~-&=0

In the reformulated Lorentz gauge, the corresponding
wave function can be written.

I+.&
=

I

c'.&+(I—I
c'-&«'- I)

)&(H,'+ V—E„o )-'(3,~—H, ')
I e„), (4Ia)

where
(0)

The use of Eq. (6) leads to

I+.&
=

I ~-&+(I—
I ~-&(~-I)

&&,'(Ho'+V —E„&oi) '(5„—Hi')e —DI4„)
+(I- l~-&(~-i)(I- —

) I+.&. (4»)
"See, for example, R. W. Mills and N. M. Kroll, Phys. Rev.

98, 1489 (1955); G. W. Erickson and D. R. Yennie, Ann. Phys.
(N.Y.) 35, 271 (1965)."K. Gottfried, in Qzsazztgnz Mechanics (Benjamin, New York,
1966), Chap. 45.
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(C'„I(1—(: D)lq'„&=0 for I+„& in the physical
space, Eq. (41b) can be rewritten

'- Iq-&= IC-&+(1—I~.&(C-I)
&&(H,'+V E—o)- (Z, —H, ')e- iq„&. (42)

A„can be shown to be

plopagators (ill tl'1e OM Lolelltz-gauge folIIlulRtlon) Rl. e
displaced into a region in which the theory develops
inconsistencies and in which Maxwell's equations do not
hold. If the Lorentz-gauge problem is properly treated,
Z2 is identical in the T.orentz and Coulomb gauges.
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~

q „)=
~

q „& and that Z„=Z„.
APPENDIX A

V. DISCUSSION

One conclusion that we may draw is that the subsi-
diary condition x'+'(x)

~
22&=0 leads to inconsistencies,

and from the logical point of view is entirely unsuitable
as a basis for QED in the Lorentz gauge. Nevertheless,
the theory is remarkably resistant to mistakes that
might stem from the substitution of x(+) (x)

~
(p) =0 for

the correct 0(+)(x)
~

&p&=0. In Sec. IV we have shown
that bound-state wave functions, which are iterated
from an unperturbed state vector obeying x '+'(x)

~

C ) =0,
develop corrections that violate this subsidiary con-
dition. Within the context of the "old" Lorentz-gauge
theory this would of course be a paradox, and if the
subsidiary condition were taken seriously, one would be
obliged to project the offending terms out of the solu-
tion in each order. When this is not done (it is, in fact,
not done in actual practice) the itera, tive solution
"repairs" itself, and instead of obeying x(+)(x) q') =0,
it obeys the new subsidiary condition 0(+)(x) 4') =0.
Thus, the dynamics forces the wave function and the
energy shift to obey the correct subsidiary condition
even in spite of our failure to compel it to do so.

The resistance of QED to mistakes resulting from the
use of the wrong subsidiary condition X(+)(x)

~

pp&=0 is

not, however, absolute. In the case of the energy con-
tinuum the situation is somewhat similar to the bound-
state problem, but with the important exception that in
this case there are discrepancies between

~

P(')(I.',)& and
~P(')(E,)) of order ip Here, too, .the scattering wave
function repairs itself to an extent after the wrong
subsidiary condition. X(+)(x)

~
p2) =0 has been. used; but

the repair is not complete and the remaining discrep-
ancy between ~P"(I-';)& and ~P')(E~)& accounts for the
fact that the former of these wave functions leads to an
electron wave-function renormalization constant (Z2) r,
different from (Z2)(;. We believe that this discrepancy
can be understood as a consequence of the fact that in
the definition of (Z2)z, the Green's-function poles of

"Strictly speaking, the proof is valid for a true bound state,
in which the eGect of the perturbation is to displace an energy
pole on the left-hand energy axis. In QEB, the stable 1s hydrogenic
state marks the onset of a cut and the 2s and 2p states are reso-
nances in the energy continuum. We therefore must understand
the perturbative procedure in the sense of F. K. :l.ow, Phys. Rev.
88, 53 (1952), and the theorem proven by Eq. (42) is not, strictly
speaking, applicable to QED. The discrepancy between (Z2)g
and (Z2)l„should persist, for example.

In the appendix we will clarify the procedure (used in
Sec. III) by which we identified the wave-function
renormalization terms from the persistent asymptotic
parts of the scattering wave function; we will do this
first by using a static model as an illustrative example,
and then by applying the method directly to the wave
functions described in Sec. III.

In the static model we will couple an isovector boson
to an isospinor static source; we have that

where
H =Hp+Hl IIp+Hl, ——

II2 2 (I k, a(2k, a(d A;+imp,
it, n

I Q ((Ik, a Vk, a+(I k, a l k, a) )

k, a

(A1)

I@(&)&= dpf(p, po) «p( —2 .&)III;I('&

+ dk f(k, y, ) T"(0;k)(,+i ) 'jE&

+ dq T('(q; k)(p)k —p),+ip) I~q; IV&

+ dqldq2 T (ql q2 k) ((dk (pp(1) (dp(2) +2&)

&&
~ qi, q, ;iV&+ + dq, ( q, dq„T( )(q„q, ,q. ;k)

+((dk ~p(l) (Pp(2) ' ' ~p( )+22)

X
I ql,q„,q„; 2V) exp( i(pk&) (A—2).

where Vk a ——gp(2(pk) 'r U(k) and n designat, es the
isospin. Hp and IIl are given by Hp=Hp+8M and
II~——Hj —8M, where 6M is the self-mass of the static
source. The spectrum of eigenstates of IIO consists of
the bare source itself, and of superpositions of free
bosons and the static source; we will designate these
states as [.:V& and [k.. . .k;; 2V) =(i!) Itp&&(lk(I)t

(I k(, ) ~A&, respectively; we will consistently suppress
the isospin index in our notation.

For the case of boson scattering by the static source
in this model, we evaluate the wave function ~P(t)&,
given by
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and
T(,)(&(0; k)=(»lH, k; iV)=V, (A3)

y(i)(0; t) = dk f(k, po) Vo(orr+io) 'e"p( —mr)«).

In the limit t —r;L ~, g(i& (0; t) vanishes by the Rien). ann-
Lebesgue lemma, since the coe%cient of exp( iorit) in-
the integrand is bounded.

In the case of Q(q; t), we can express T')(q; k) by
separating it into a part [T('&(q; k)j, which describes
scattering and a part [T'&(q; k) j, which represents a,

renormalization effect by writing

Here f(q,po) is a spectral wave packet (for example,

f(q,po) =exp[( —
l q —pol ')2'j, where I. is the coherence

length of the projectile particle); T"(j;k) is given
by T('&(jk) =(jlT"(Eo) lk), where T')(Eo) =Hi+Hi
X(E), H+—ic) 'Hi. The ket lP(t)) is a special case of
the wave function appearing in Eq. (2Sb) and is used
to represent scattering from the initial state lpo, »)
[suitably smeared out with the packet function

f(q,po) j to the set of final states
I

~~ ), , I k» ' ' ',k„P).
The probability amplitude for finding the system in a,

state at time t is given by

4(q . q «)=(» q . q I4'(t)).

We can now systematically examine the various

$(q» .
,q„; t) (characteristic of th: various multiboson

states) to establish what their asymptotic temporal
limits are.

In the case of $(0; t) =(»lP(t)) we ha, ve that
T(i)(')(0;k), the first-order contribution to T"(0;k),
is given by

assumed incident wave at t —+ —~ to form an incident
wave for which the lim, „„p(q;t), up to this order, is
given by

lim 0 (op.) (q; t) = dp f(p, po)

1 —(27r)
—

dh
l
v,

l

'-((o„) ' e~p( —ior„«) . (A6)

In the case of g(qi, qo, t), we have that T"(q»qo, k) to
1&west (first) order is (»; qi qol Hil k; ») = ( i«)i), ) V, (o)

+()&(»,gV&(i))v2 r arid 'this lea(ls to

~(i)(q»q» t) = —~~ 'Lf(q»po)Vo(o)((oo(o) to)

Xexp( —i(oo(i)t)+f(qo, po) Vo(i)((oo(i) —i.)-'
Xexp( —i&o, (,) t)7, (A7)

which also persists at all times and augments the
incident wave by contributing to the one-boson coIn-
ponent of the "virtual boson cloud" of the physical
(dressed) source.

It is easy to reconstruct the entire renormalized
incident state by systematically collecting all the parts
of the wave function P(t) which, in the limit as t r —~,
are not forced to vanish by the Riemann-Lebesgue
lemma. These parts all originate from components of
the amplitude (i l

T"(M+(oo) lk; ») in which ao'
commutes past T(')(M+(oi) and acts on (il to give
«I, , ),(yl, where (il =(jlao. Since we have tha, t

[Hi+Hi(M+oro H+ic) 'Hi—jar,
=()r,t[Hi+Hi(M H+io) 'Hij-

+(terms in which atk no longer appears),
T"(q; k) =[T"(q; k)j.+LT"(q; k)j' we can write that the limiting value of the one-boson

amplitude p(q; t) is given byTo lowest (second) order in go, the two separa, te pa, rts
are given by

lim P(q; t) =f(q, po)(io) '(»l T"(M) l»)
(A4)

Xexp( mrot) .—(AS)
LT(.)()(q; k) j.=(V.V,-VoV.)(-.)-

[T(o) "(q;k)j.

lim Q(q». . . ,q„,t)

Similarly, one can compute the probability amplitude
of finding e bosons and the bare source in the scattering
wave function f(t) as t —+—~. In that case one has

(2m.) ' dh
l
v„l'( oo„+io) ' —t')M(" t) ),—(As)

We note that the contribution of';[T(» "(qr k) j, to
$(»(q; t) vanishes as t ~—~ due to the operation of
the Riemann-Lebesgue lemma; [T(»(')(q; k) j„how-
ever, contributes a part

io()(q; t)j.= —f(q, po)(2~)-' dh
I
v. l'[~.(~.—io) j-'

alld
Xexp( —i(oot),

dk (»; qi, . . . ,q„ l

T('& (M+(op)
l
k; »)

X(orr (oo(a) ' ' (do( )+io) f(krpo)

Xexp( —i(o),t) (A9)

wlllcll pelslsts as t ~ oo sirlce tile 8o,g lil Eq. (AS)
eliminates the integration in which the Riemann-
Iebesgue lemma would force the integral to vanish.

[p(»(q; t)j„therefore augments, or "renormalizes", the

=2f(q, po)(rr) "-(» qi . ,q -il(M —Ho+io) '

XT'&(M) l») exp( —i(oot), (A10)
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where g indicates summation over the n terms in
which q s are permuted with q.

Summing the contributions to I(p(t)) as f —)—~ over
the entire spectrum of boson states yields the following
expression for I)p, (t)), the scattered wave:

lirn l)p, (/))

I'eynman graphs, and the resulting b functions obliterate
integrations in which the Riemann-Lebesgue lemma
might operate. For example, for pg(t) =(ek yo, ~go, ~*
X l)p(t)) =(pk y . , I

ao. ql)p(t)), where (p(t) originates
from Compton scattering, we have for lowest (second)
order

f(q-, po) ~'«-) I q~, ,q.-~; »)
&=~ gl~ ' ' ' ~tin

X(»;q, . . . ,q„ I (M —H +' )-'T')(M) I»)

Xexp( —
igloo( )t) (A11a)

=Q f(q, po)at&(M —Ho+io) 'T(')(M)
I
J)'&

Xexp( —i(oo/) .

The "dressed" source state IX), for which (H jf)—
X

I
Ft& =0, can be represented by"

4 (o),a(&) = dqdlr (ek Vo, (. l ao, q[Ho, D]l y, ~ek)

X(~k+g ~k g' p—'+~—o) 'f(&,lro)

F(q,qo) exp[ —i((ok+ad)t], (A14)

where f(k,ko) and F(q,qo) are spectral packets for the
incident electron and the incident transverse photon,
respectively. It is easy to see that

l&m (ak p, , ~I qo, q[Ho)DJ p, ,ek&
e~0

X((de+(i (ok —
Ii

—p—+&&)

l&&&=»m I&; o&,
e~0

where

I x; .&
=[s(.)]-')'[I+ (m —H pi.)-'H, ]I»)

(A11a')
so that

+k'74@(k'+o') (2p ) (1(k—k'), p()q, q' ~

0'(o), B(~) +k' Y4+(k'+p')(2p ) f(lt'+q', Iro)

X~(q' qo) eXP[—i((oik'+P (+((")n (A13)

lim 8(o) =Z, .
e~0

(A11c)

From Eq. (A11b) it follows that

(M —Ho+io) 'T(')(M) I»&

This result establishes that the residual "scattered"
wave which persists as t —+—~ is given by

I& (&)&=& f(q, po) ' [(~ )"'I&)—I»&],

and combining this with the originally assumed incident
wave leads us to the expression for the limiting form for
the entire wave function,

li)n l(p(t)&

=(~o)'"Z f(q po)~'ol~) exp( —~ .&). (A»)

In Sec. III, Eqs. (30) and (31) show the wave func-
tion generated from the assumed incident state of elec-
trons and transverse photons by the interaction term
[Ho,D]. [Ho,D] can only connect a state ((oz*l ak, q with
a state

I pz) since [Ho,D] can create a Q-type photon or
annihilate an 8-type photon. However, E;type photons
can never occur when [Ho,D]'s operate on electron—
transverse-photon states, so that only the oak atk, q
Xp(k) k '" part of D ever operates. The incident
transverse photons therefore emerge unscattered in such

23 B. S. DeWitt, in Quggtlvg 3Eechggjgs (Benjamin, New York,
1966), Chap. 10.

Here again, the 8 functions have absorbed all inte-
grations leaving an oscillatory time dependence which
does not vanish at t~ —~; the corresponding state
vector augments or renormalizes the assumed incident
wave as in the previous example and as discussed in
Sec. III. Ke note that the identical effect occurs for
[Ho,D]" for arbitrary n.

APPENDIX 8
In this appendix we will evaluate the lowest-order

contributions to Z2 in various gauges to illustrate the
validity of the results presented in Sec. II C. For this
purpose we will here use the usual covariant definition
of the self-energy terms and the covariant definition of
Z2, although we will integrate the infinite integrals to
noninvariant cutoffs.

The second-order self-energy in the Coulomb gauge
includes contributions from transverse photons and
from the Ht; interaction Hamiltonian. The lowest-order
Z2 stems from transverse photons entirely and the con-
tribution to Zr(')(p„) from transverse photons is given
by

M d4k
~r")(p ) = — V'

(2or)' k'

iy (p —k) —m

X y o —(&m~(2), (81a)
m'+(p —k)'

where Zl(') is the second-order self-energy correction to
an electron of momentum p„due to transverse photons,
and where bm, is the part of the self-energy due to trans-
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