
A NO M ALOUS D I M ENS IONS AND TH F BREAKDOWN OF SCALE ~

When p' is small compared to A', the integrals can be
computed using the approximate form for p I Eq. (A2) 7
except in a constant term (the second integral with p
replaced by 0). The result ls Eq. (3.21) with P —Le'
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rt)0, p, , . . . , p, being the components of P. Then one
wl ltes

c = (8zr'A') —'
qp( —zI', A')dzi (A11)

After s!bstitutirtg this formula, in Eq. (A12), the p
irlteg; a,tion can be done explicitly, leaving

and cr ——3(1024zr') '. The constant c is independent, of
A because p depends only on the ratio (zl'/A').

In Fourier-transforming 8', (pr, ps), the only integral
which is not already known is an integral of the form

zz(x) =- (ij 16zr') co-' exp( —ix'/4co)dho. (A14)

tc(x) = e
—'z' ' 1nl (—p' —ze)/A'7. (A12)

For x=0 this is highly divergent, but for x&0 the ex-
ponent serves as a convergence factor. If one wishes to
be careful one can insert an explicit convergence factor,
fo««mple, exp( —

I pole —
I prl~ —

I psl~ —
I psl~), with

u(x) = (1/z~') (x' —te)-'. (A15)

The i~ is present because x' needs an imaginary part
—ie to ensure that the integral (A14) converges.

)If the convergence factor is inserted in Eq. (A12), the
result is to cutoff the integral (A14) for zo(rts. 7 One can
change variables to v=cv ' and then compute the inte-

gral, obtaining
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A method is presented for obtaining an asymptotic series, for large values of the energy, of a four-dimen-
sional Fourier transform, using only one analyticity assumption. It is shown that this method implies (1)
asymptotic constancy of hadron total cross sections, as an "upper bound, " and (2) the Pomeranchuk.
theorem. A consistency check, which lends some plausibility to our assumption, is made. The calculations
are done within the context of frame-dependent cutoff quantum Geld theory.

I. INTRODUCTION

Y using the I,ehmann-Symanzik-Zimmermann
(LSZ) reduction formalism, one can express a,

great many physically interesting quantities in terms of
a Fourier transform,

I= d'x e+*''*I'(x),

where F is typically a matrix element of a, (possibly
retarded) commutator or anticommutator, and the four-
momentum g is on some mass shell. We shall describe
herein a very simple method for obtaining an asymptotic
expansion of such a quantity, for large values (this
will be made more precise below) of the energy q4, and
shall apply this method to the problem of hadron total
cross sections.

*Present address: School of Theoretical Physics, Dublin
Institute for Advanced Studies, Dublin 2, Ireland.

The method requires only one assumption, which is,
however, rather strong': It is that certain "light-plane
integrals" f+($) admit power-series representations
about )=0 which are valid in the interval /= I 0, oo).
At present, we cannot either prove or disprove this
assumption on theoretical grounds, although some in-
dications of its plausibility are available (see helot).
Its implications are, however, in good agreement with
experiment, at least for the processes that we have
treated thus far.

Assuming that the leading term in our asymptotic
expansion is nonzero, we obtain, in a model-independent
fashion, asymptotic constancy of tota, l cross sections.

' The same asymptotic expansion can be obtained also from
the considerably weaker assumption that f+(() admit power series
in some interval h = [O,a), for some a) 0, and independent of how
small a may be, by the nse of Watson's lemma PE. T. Copson,
Theory of Fzznctions of a Complex Variabte (Oxford U. P., Oxford,
1935), p. 2181. However, if one uses this method, the physical
amplitudes must be deGned by a diGerent limit than the one used
in the present paper /see Eq. (fi)]. The limit defined by Eq. (5)
reduces to the conventional one for local Geld theory.
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In addition, our method implies the Pomeranchuk
theorem. These results are obtained in Sec. VI. Ex-
perimental predictions for elastic scattering and photo-
production differential cross sections, based on a
generalization of the present work, n T e also very
en coul aging.

These calculations are carried out in the context of
"stochastic" field theory, ' a frame-dependent cutoff
theory which is briefly discussed in Sec. II. Our method
can also be applied to local field theory, but the results
in that case contradict experiment. However, our
analyticity assumption is considerably less believable
for local field theory than it is for stochastic field theory,
on the basis of the theoretical work done thus far on
its validity.

Part of this work is described in Sec. V. It consists
of applying the method to an I [of the form of Eq. (1)]
which can actually be evaluated in terms of an equal-
time commutator. For stochastic field theory, no
contradiction ensures; for local fieM theory there is a
contradiction. Also, direct checks of our analyticity
assumption in terms of calculations with models in-
dicate that the assumption is plausible in stochastic
field theory, but not in local field theory. '

II. STOCHASTIC FIELD THEORY

Stochastic field theory —a cutoff quantum field theory
which is free of ultraviolet divergences and, indeed,
generally less "singular" than local field theory —has
been extensively discussed in the literature. ' 4Ve provide
here only a very brief sketch.

The basic observation is that the conventional view
of Lorentz invariance for quantum fields can be
generalized without violating the relativity principle,
as follows. 4 A local field p" (x) (ft representing some set
of indices) a.nd its Lorentz transformation law

U(L) ~"(*)U(L)-'=5"'~"'(L-"), Le~,

where (P=—Poincare group, is replaced by an emsembte

of fields p"(x; 2), one field for each equivalence class
2 of Lorentz observers (to be defined shortly) and the
transformation law

U(L)P"(x Z)U(I.) '=5"Il q" (I 'x. I '2) (2)

~ R. L. Ingraham {unpublished).' R. L. Ingraham, Nuovo Cimento 24, 1117 (1962); 27, 303
(1963); Reeor~rfalimtion Theory of Quantum Field Theory arith a
Cut-og (Gordon and Breach, London, 1967), and references
therein.

For a detailed discussion of this point, see R. L. Ingraham,
Int. J. Theoret. Phys. 2, 83 (1969);or Proceedings of the Sympo-
sium on Elementary Particles, Boulder, Colo. , 1968 (unpublished).
In this reference, the relativity principle is stated as follows:
"If two equivalent observers do the same (=—subjectively the
same) experiment, they must get identical numbers. "Essentially
the same statement of relativistic invariance can be found in
S. Gasiorowicz, Elementary Particle Physics (Wiley, New York,
1966), p. 9.

The equivalence classes 2 are taken to be the follow-
ing ones. For any Lorentz observer t, let rt(l) be the
unit four-vector oriented along 1's positive time axis.
)In t's own coordinates, II&(l) = (0,1).] Then for each
fixed timelike unit four-vector It(Z) with positive
fourth component, let g={l~II(l)=ri(Z)}. Thus, two
observers are in the same equivalence class if and only
if they are at rest with respect to one another. In order
to define the class L 'Z, for any Poincare transforma-
tloll L (coIlslstlllg of R tl RIlslatloll a and a llolilogelleolis
transformation A), we need only define n(L IA). This
is done just as one might expect:

ri~(L—Iz) = (11.
—') ~„rl"(z)

where (NB) ti and I are components referred to frame Z.
From Eq. (2) it follows thatif , CJ Rnd 4 are any two

states,

(C ~"(x Z)e) =50, (L;IC &'(L-Iz I-IZ)L-Ie)

which expresses the requirement of relativistic form
invariance in the extended set of variables x, rl(Z). By
I. %' we mean U(L)%: Note that for two observers
whose reference frames are connected by the Lorentz
transformation J, the states%' and L '0' are subjectively
identical. '

For the (divergence-free, unitary) scattering operator
5(Z), which now has a dependence on the equivalence
classes 2, one has

(C,5(Z)% )= (L—'4,5(I.—'Z)L—%),

which again expresses relativistic form invariance. The
physical meaning of this equation is that if two Lorentz
observers each perform the same (meaning subjectively
the same) sca,ttering experiment in their respective
frames, they each measure the same numbers.

A theory of this form can be obtained by postulating
that the space-time coordinates have an inherent
fluctuation, the dispersion of which is a fundamerltat
length X. All calculations done to date indicate that
X=10 "cm. This corresponds (see below) to an effective
cutoff in momentum space above about 2 GeV/c.

The stochastic fields p"(x; 2) are obtained by R

certain averaging procedure from local fields. For the
details of this procedure, see Refs. 3 and 5. For the
purposes of the present work, it suKces to point out that
the averaging gives rise to kI'IIerrlatical form factors
g(k; 2) in the Fourier decomposition of quantum
fields. The possible forms for g(k; Z) are severely
limited bv theoretical arguments. ' " The presently
favored form has absolute square'

Ig(k; &) ~'=
I (k /2k )[exp(—lk '~')+i~(k+~/~~)]
+(k /2k, )[exp(—-', k 9.') —iZ(k X/V2)]~',

5 R. L. Ingraham, Nuovo Cimento 34, 182 (1964).
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where

k+—=k,&(k,'+ii')"', p—=mass of the field,

k 2=k2+(k ~ ti)2 k =+(k 2)ll2

matical form fa.ctor will be written g(k) instead of
g(k; ~).

IV. ASYMPTOTIC EXPANSION

Z(x)=—2~ '"e " dye~ .
Let I be defined by Eq. (1), with q on some mass

shell, and suppose for the moment that the sign in the
exponent is negative. Since we shall be interested only
in very large values of co=—q4, we may write

It has the asymptotic form, valid for k&'&)X',

i g(k; z) i -1/(2 X k,')
q x=(j x—x4)oo, j=q/~q~.

(3) Let (=—x4—j x. Then
Indeed, the results of Sec. VI, which depend critically
upon Eq. (3), strongly indicate that this form factor,
which was originally obtained from purely theoretical
considerations, ' is the correct one.

The LSZ reduction formalism goes through in
stochastic field theory, with the following changes to
the contraction formulas of local field theory: (a) For
each particle which has been contracted from an out-
state, multiply the local formula by a factor g(k; 2) ',
where k is the momentum of the particle. (b) For each
particle which has been contracted from an in-state,

multiply the local formula by a factor g*(k; 2) ' (*
denotes complex conjugate), where k is the momentum
of the particle. (c) Replace the Dyson T product of the
local formula by the stochastic T product Tz, which
orders the operators relative to the time of the class Z
of observers. For instance,

I(oo) = d'xd& e'"&F(x P+j x)

=I~(cu)+I (~),

I~((u) —= (4)

I(co) = lim LI~(o~+ie)+I (~o —ie)j.

We shall treat co as a complex variable, and define the
physical amplitude, for real co, as

T&(A(x; Z)Il(y; Z))
=S(—n(Z). (x—y))A(x; Z)B(y; Z)

f~(f) admit power series P b„&+i(" which converge in

for boson fields A a.nd B. If one uses coordinates in.

which e&(Z) = (0,1), this looks the same as the Dyson
pl oduct.

n=o

It then follows that, for ~ real, positive, and large,

III. CONVENTIONS AND NOTATION

Our space-time metric has signature +2, and we set
x4=—time. We use the summation convention for re-
peated indices, Greek indices running from 1 to 4,
Latin ones from 1 to 3. The symbol

e(q~iti)
—+ (q2+. ~o)il2

occurs often; when there is no danger of confusion it
will be written e,. By * we denote complex conjugation
on c numbers and Hermitian conjugation on q numbers,
and by we denote Dirac adjoint on spinors. Our con-
ventions on spinors are the same as those of Iauch and
Rohrlich. ' The symbol X will always mean the fun-
damental length, and g(k) the kinematical form factor.
In the remainder of this paper, we shall not write out
the 2 dependences: for example, a stochastic field
p"(x; Z) will simply be written oo"(x), and the kine-

6 J. Jauch and I".Rohrlich, The Theory of I'hotons cnsc/ l';lectrons
(Addison-Wesley, Reading, Mass. , 1955).

g ) tS

I(~)-- 2
M=o Qpf

d
-f(0+)— f(o—)

d~m d$te

With the obvious changes in Eqs. (4) and (6) and hy-
pothesis (1), one ha, s also

Z ~& ( i tPL

d4x e+'&'Ii(x) g ~

— C&"&.
oo m=o & oi

By "large ~" we mean co)&m, where q'= —m'.
The proof runs as follows. %'e insert the power series

for f+ into Eq. (4), and integrate term by term, r which

7%e can do this for Qnite upper limits of integration because
the series in the integrand converges uniformly. In a rigorous proof,
we would need also some uniform convergence hypothesis for the
approach of the upper limit to inanity, and also as Imu —& 0 in
the two series in Eq. (10).
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yields

Noting that

Z oo &Z
I~(co)——P»!b.'~&.

~ n=0 Q)

b."'=(»!) '—f+(0)
d$

the Tg product, and inserting a sum over a complete
set of intermediate states into one term to show that
it, is zero„' we f!nally obtain from (11) and (12)

and using Eq. (5), we immediately get Eqs. (7) and (8).
Equation (9) is obtained in the same manner.

The equation )=0 defines a plane in space-time
which is tangent to the light cone; as ( varies in a,

ne ghborhood of zero, this plane moves from intersect-
ing to nonintersecting the forward light cone. Accord-
ing to Eq. (8), the high-energy behavior is governe«l

by the discontinuities of f and its derivatives across the
plane )=0. These discontinuities are in turn governed
by the behavior of Ii near the light cone. Indeed, for
the case where F(x) has no angular dependence,
F(x) =-F(r,t), and it is easy to show that C&"' depends
only on the jump of «} 'FjBt. ' across the forward
light cone Lsee Eq. (21)$.

That high-energy behavior is related to the behavior
of source current commutators near the light cone is,
of course, nothing new'; what is new is the sharpening
of this notion that follows from our analyticity
8 ssuMptIQIj.

V. CONSISTENCY CHECK

Let. f be an interacting Dirac fMld, with source
CllrreIl t.

DA (~)==(V ~+»s)W(~) = f('~)

where ms is the renormalized mass. In this section, we
shall applh" oui ITlethod to the quantity

d'& e "*V'(+s (4(&) i(0)) I
"=o+ ),

where here equality means that both sides give the
same result when acting on the spinor u(p).

The left-hand side of this equation is just I. The
right-hand side can be evaluated for model interactions,
and typically is found to behave like co ' for large a.
This result depends upon the fact that in the canonical
equal-time commutation relations for stochastic fields
one has, in place of the Dirac 8 distribution of local
fieM theory, the stochastic 5 function

b„„(x)= (2n) ' dsk
~ g(k) ~

'e'" *,

where the kinematical form factor g has the asymptotic
behavior (3).

Thus, in this case I verifiably has an asymptotic
behavior of the form predicted by our method, with
C( ) =0, and C('~ &0. A similar verification can be done
for an interacting K.lein-Gordon Geld.

This result could, of course, be mere coincidence.
Nevertheless, it is probably the only nontrivial matrix
element for which one can explicitly check a predic-
tion of our method. It is encouraging that no contradic-
tion ensues.

VI. TOTAL CROSS SECTIONS

d'x e—""0(x)(es,( j(x),j(v0)) +s),

where p'=- —r»' and 0 s is the vacuum, and checl« the
resulting prediction. Since the source current j is bui1t
of interacting fields, this is a nontrivial check.

%e can actually establish the asymptotic behavior
of this I as follows. Let @(p) be a, one-particle state
with momentum p, the one particle being of the type
described by!P. Then the mass renormalization condi-
t10n Is

(+(P) 2((!0)+o)=o.

("ontrn, cting out the particle,

(+(P),i(0)+o)=s(2 ) "'g(P;~) '

Working in coordinates in which»&= (0,1), expanding

' See, e.g. , K. Symanzik, Phys. B.ev. 105, (43 (1957).

(~&)- (~Il)+ 'b(~Il)+O(1/ ') (13)

as the lab momentum co —+ ~. The constants have the
syiTIns etry

a(AB) =-a(AB), b(AB) =- b(AB), —(14)

where A means antiparticle of A. The fIrst equation of
(14) is just the Porneranchuk theorem. We treat
AE~ =~p and pp here, but the method should be general.

The coefhcients a and b in (13) are given by certain
integrals which depend only on the integrated behavior
of source current cornmutators infinitesimally near the
light cone. These result from going to co= ~ through
mass-shell values, unlike the more tractable equal-
time commutators which would be yielded by the un-
physical Bjorken-type limit&a~ ac, ~q~ Axed.

"Essentially the same calculation is carrieR out in (3. KK116n,
Helv. Phys. Acta 25, 417 (1952}.

In this section we shall apply the lemma of Sec. IV
to show that total cross section of hadron A on target
hadron 8 behaves asymptotically like
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Treat first prp. The standard amplitude, " after re-
ducing the two pions, spin-averaging, and specializing
to the forward direction, is"

z

T(o&,c4) = — —
~ g(q) ~

' d4x e 'p "0(x)F (x)+ETC,
(2~)'

F-(x)=—l 2 (+.,Li-.(x),i-.*(0)j+.)
Spill

Here 0 ~ is a one-proton state at rest in the lab frame,

j ~ is the source current of the incident x of mom. entum
q»= (q,o&) and isotopic index n. ETC means a term
involMg an equal-time commutator which can be
shown to be real. In the local quantum-field-theory
(OFT) case

~ g(g) ~'-+ 1. The optical theorem reads"

~(o&,4r) = —L(2&r)'/~ q ~ j ImT(o&, n) (lab) . (16)

We get ImT(o&, n) by deleting (&(x) in (15) and dividing

by 2i.
Thus —2(2&r)'

~ g(q) ~

s ImT(o&, n) is given by an
integral of precisely the form (1) with a minus sign and

F-(x)=--: 2 (+.,Lf-"(x),f..*(0)3+.)
spin

Thus specifically making our analyticity assumption at
this point, we can apply the lemma and get (7). Via
the optical theorem (16), this gives"

—(2~)' t-

0 CO)A
-- Imc. ()

2 'lg(q) I'-

+ —ReC &'&+0 — . (18)
GO

But now the kinematical form factor has exactly the
right asymptotic behavior to cancel the energy de-

pendence of the leading term in (18), since according
to (3) and q4s=—q' o&',

~ g (q) ~

s 1/(2&russo&s) o&s&,s))1

Therefore, we get Eq. (13) with

a(&r p) = —8&r4X' ImC ~p&,

b(rr p) = —8&r4) '-' ReC "'.
It will be proved below that ImC ('~ &0.

Since we are dealing with elastic scattering and the
forward direction, the matrix elements F (x), Eq. (17),
have a high degree of symmetry, namely, (a) F (x) is
a function of r and i only, (b) F *(x)=F (—x), and

(c) F *(x)= Fa(x), where n m—eans the antiparticle
of o..

"See Eq. (21.5) of Gasiorowicz (Ref. 4).
"See the end of Sec. II.
"The optical theorem has the same form as in local QI T, since

S(2) is unitary and we are (provisionally) de6ning the cross
section in terms oi ) T ~' just as in local QFT.

"Keareusinghere Rec &~) =0 (@seven), ImC ( ) =0 (m odd),
to be proved below.

Using (c), we derive immediately

Imc & & =yImC-' &, ReC i '= —ReC- . (20)

This proves Eq. (14), in particular, the Pomeranchuk
theorem for prp.

Finally, by using the symmetries (a) and (b) of
F& (x), one can ca,st the C ' & into a, form which shows
that they depend only on the value of F„(x) or of its
time derivatives in an in6nitesimally thin region
around the forward light cone, namely,

(qn. ) di F (r, t) &"&, e —+ 0+. (21)

where f„ is the proton source current. This depends on
energy through the spinors; thus'4 F„=F„p(x)+o&F„&(x)
and let the corresponding constant Cyo, ]' ' be formed
from the F&p t. The F„p,t have' the symmetries (a)
a,nd (b) above, while symmetry (c) reads F„p*(x)
=- —F„p(x), F„t*(x)=+F„t(x)

Hence, following the same'"' procedure as for 4rp, we

,.;et Eq. (13) with

a(PP) = —(2pr) 4) sM (Imc„pcs&+ Rec„t"&),

~(pp) = —( -)' '~( ~ ."'— C. "'), (23)

if we assume

Irnc„, ( ) =O. (24)

If this method is valid, (24) must be true; otherwise by
(7) and (16), for sufi'ciently large o&, one of o. (pp) or

~(PP) would be negative, contradicting unitarity. Thus
we expect that (24) will follow from some symmetry
not yet utilized.

Using symmetry (c), we get an equation lilce (20)
for C„o( ', while for C~~' ' the signs are reversed. I'hus

a(pp) and b(pp) satisfy Eq. (14), in particular, the
Pomeranchuk theorem for pp. From symmetries (a)
and (b) we get Eq. (21) for each of C~p, t& &.

To check the reality and sign properties assumed
above )namely, Ref. 13 and the positivity of a(prp)
and a(pp) j, insert a sum of intermediate states into
the F„(x) (A= po , or p) and evaluate the spatial
integral in f~((), Eq. (5). If it is legitimate to inter-

"F» 4(SM) r trtp=4+, p;, (%„,(f„(x),f„(0))%'„)g and F„p is
given by letting iy4 j3E~ 1 in this formula.

"Use f„44(q) = e(q) fr-„where N(p) and —p(p) are the standard
particle and antiparticle 4-spinors.

"The optical theorem (16) has an extra factor 2M' in the right
member for pp.

Note that for m~& 1, the time integral is just the jump
of F (r, t) & " across the light cone at i=r.

We treat next pp. This is typical of the cases in which
the projectile has spin and nonzero mass. T(o&, A = p) is

given by Eq. (15), with

F.(x C)=—4 2 (+.,f~(q)f.(x),f.(0)N(q))+.) (22)
spins
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change j'd'-o; and P„,we get after some algebra

C. - =(2-) (-»)(-')-& ~( --( -- )@

&&(E„—M) sine(E„—M)

xl IM",~ I'+(—)"IM.'~ I'&

A=
fei mlon

where the
l M„„,~ l' and lM», ~ l' are spin-averaged

absolute squares of matrix elements of source currents

Lj e(0) for A=n, tt(tI) f„(0) for A =P] between%„and
intermediate state N„, N„and 4„, respectively.

We find immediately that C&' ) is pure imaginary
for m even, pure real for hatt odd, as used in (18) and (23).

Note that, F.„M&~0 for—d =boson, while (E„—M)
&& sine(E„—M) is even in F.„Mfor t—rt odd. Thus every
summand of g„ is positive for A =boson, ttt even, or
A = fermion, M odd. Putting I=0, A =boson, m = 1,
A =proton, this proves that ImC "'&0 and also
ReC„()&O.

VII. REMARKS

(a) Equation (21) shows tha, t the asymptotic be-
havior depends critically on the smoothness of the
relevant current commutator across the light cone. For
example, if F(r, t) is continuous in t,

I~'(r, t) =2eI'(r, t(r)), r —e&~t(r) &~ r+e

by the theorem of the meam. Then C("=0 if
.fdr r Fl r, t(r) j(oe. On the other hand, if F(r,t)
=g(r)5(r t)—/r with Jdr'g(r)(~ and WO, then Ct '&0.

(b) The necessity of the frame-dependent cutoff for
constant norizero asymptotic 0. is striking. For from
(18) and its pp analog, if

l g (q) l

' were replaced by unity,
o. (7rp) 0(1/to') and o. (pp) 0(1/to) at most. However,
it may well be that the assumption of the analyticity
everywhere of f+($) is not justified in local QFT.
Models have been examined in another work, ' which
suggests that it is not, or perhaps better said, that the
question has not much meaning in local QFT because
of its divergent and ill-defined nature. Tanaka" gives
examples of light-cone behavior of source current com-
mutators [~ct"8(—x')/(ctt)", rtt=0, 1, 2, . . .] which
can yield ImT 0(to) or even a higher power and thus
constant asymptotic a..

(c) Recent Serpul~hov data" on total cross sections
for s p, K p, pp up to to = 65 Gev show some waveiness
at these very high energies. This behavior can be
fitted by power series in 1/to as given by this theory.

The theoretical values of the constants C~( ', in
particular, the values tt, (AF) of the asymptotic cross
sections, will have to await a reliable way to calculate
the current comutators on the light cone. But it is
seen from (19) and (23) that their scale is given by the
square of the cutoff length X.

"K.Tanaka, Phys. Rev. 164, 1800 (196l).
"Proceodimgs of the Iuttd Ittter~nationat Cortferertce ort Elewemtoi y

l'articles, 1969, edited by G. von Dardel (Berlingska, Lund,
Sweden, 1969).
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The scattering wave functions for quantum electrodynamics are exaniined in the Coulomb gauge, in the
conventional Lorentz gauge, and in a reformulated version of the I.orentz gauge. It is shown that when the
Lorentz gauge is formulated so that Maxwell's equations hold even when the Green's-function pole is dis-
placed of'f the real axis, Z2 is identical in the Coulomb gauge and in the Lorentz gauge. It is also shown that
the unrenormalized asymptotic states in the reformulated Lorentz gauge include a partial dressing of the
bare electrons by longitudinal and timelike photons sufhcient to generate the electron s static electric field.
It is proven that for true bound states the radiative energy shifts in the reformulated Lorentz gauge and in the
conventional formulation agree.

I. INTRODUCTION

N earlier work' ' we introduced a reformulation of
- quantum electrodynamics in the Lorentz gauge, in
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which the physical states
l p) are defined by

Qt+&(x)
l g) =0, (1a)
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