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Canonical Geld theory predicts that a zero-mass scalar Geld theory with a )@4interaction is scale invariant.
It is shown here that the renormalized perturbation expansion of the X@4theory is not scale invariant in order
X'. Matrix elements of the divergence of the dilation current D„(x) are computed in order X' using Ward
identities; it is found that V'&D„(x) is proportional to ) '@4(x).It is also shown that the dimension of the Geld
@4 differs from the canonical value in order ), and that this result leads one to expect a X'@4 term in V'&D„.
It is also found that matrix elements of the composite field @4(x) in perturbation theory have troublesome
singularities at short distances which force one to give careful deGnitions for equal-time commutators and
Fourier transforms of T products in the Ward identities involving this Geld.

I. INTRODUCTION
' "N a previous paper a new theory of the short-distance
~ - behavior of strong interactions was proposed. ' The
theory involved several unfamiliar ideas, in particular,
the idea of an "operator-product expansion" and the
idea that the dimensions of quantum fields are changed
by interactions between the fields. The present paper
is one of a series' designed to make these ideas come
alive. These papers concern nontrivial problems in
perturbation theory or soluble models; they show how
operator-product expansions or dimensions changing
with the coupling constant are involved in the solution
of these problems.

The purpose of this paper is to study a puzzle in
renormalization theory. The puzzle is as follows. Nor-
mally, when the unrenormalized Lagrangian is in-
variant to a symmetry, the renormalized perturbation
expansion for the Lagrangian is also invariant to the
symmetry. This is true for internal symmetries such
as isotopic spin; it is also true of Lorentz invariance.
However, there is an exception, the exception being
scale invariance. ' For example, the unrenormalized
Lagrangian for the electrodynamics of zero-mass elec-
trons is scale invariant (because the only parameter in
the zero-mass Lagrangian is the bare coupling constant
eo, which is dimensionless). However, the renormalized
perturbation expansion for zero-mass electrodynamics
is not scale invariant. The renormalized zero-mass per-
turbation expansion was defined by Gell-Mann and
Low.4 The photon propagator in the zero-mass theory
has the approximate form~

D(P) = (P)—'(1—(e sj]2srs)ln(jP/x')) —i (1.1)
*Work supported by the U. S. Atomic. Energy Commission.
t Permanent address.' K. Wilson, Phys. Rev. 179, 1499 (1969).' The other paper in the series is K. Wilson, Phys. Rev. D 2,

1438 (1970).' For a discussion of scale invariance according to canonical
Geld theory, see G. Mack and A. Salam, Ann. Phys. (N.Y.) 53,
174 (1969).See also Ref. 6.

4 M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).
5N. N. Sogoliubov and D. V. Shirkov, Introduction to t1ze
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where a is a reference momentum that is introduced as
part of the Gell-Mann —Low renormalization procedure,
and e„ is a renormalized coupling constant defined rela-
tive to the reference momentum. The reference momen-
tum is necessary, for without it the renormalization
procedure would replace ultraviolet divergences by
infrared divergences. The form (1.1) is a sum of lead-
ing logarithms for each order in e„. In contrast, if the
renormalized perturbation expansion were scale in-
variant, the leading logarithms would be required to
sum to a power of k'.

A tentative explanation will be proposed here for this
puzzle. To simplify matters, the XP' interaction of a
scalar field itb with zero mass will be discussed instead of
zero-mass electrodynamics. At the heart of the explana-
tion is the result (to be derived in Sec. III) that when a
renormalized Heisenberg composite field is defined start-
ing from the product &4(x), the resulting field changes its
dimension in the presence of interaction. However, the
dimension of the Lagrangian cannot change, so X must
acquire compensating dimensions. Then X ceases to be
a dimensionless constant, and there is no longer any
reason to expect the theory to be scale invariant. This
is the essence of the explanation given in Sec. III. What
is meant by a change of dimension for ilb' will also be
explained precisely. The idea of the constant X changing
dimensions, however, will not be discussed in detail;
instead it will be argued that the change of dimension of
@' leads to a term proportional to X'g' appearing in the
divergence of the dilation current, thereby spoiling
scale invariance.

In this paper the scaling properties of the X/4 theory
will be inferred from Ward identities involving vacuum
expectation values of the fields P(x), p'(x), and the
divergence of the dilation current, called S(x). These
Ward identities will be used to calculate matrix elements
of the divergence S(x), given matrix elements involving
only P(x) and $4(x). It is possible to calculate matrix
elements of 5 directly without using the Ward identi-

T/zeory of Quantized Fields (Interscience, New York, 1959),
Chap. VIII.
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ties; doing so would provide a check on the calculations
of this paper. A start on such calculations has been
made by Callan, Coleman, and Jackiw. ' Direct calcula-
tions of the matrix elements of S are not made in this
paper because there are many problems involved with
such calculations which do not appear in the calculation
of matrix elements of p alone. Some of these problems do
appear in the calculation of matrix elements of P'(x)
and will be discussed later. But as far as possible this
paper relies on uncontroversial Feynman-diagram for-
mulas; this is for simplicity and to make clear that the
breakdown of scale invariance is an inevitable conse-
quence of these formulas.

In calculating matrix elements of the operator P'(x)
and in checking Ward identities involving these matrix
elements, problems arise which can be traced to an
age-old problem: What does a T product of operators
such as Tp(x)$4(y) mean when x=y? Axiomatic field
theorists answer that it is arbitrary in the sense that
one is free to add any term proportional to 8'(x —y) or
derivatives of 84(x —y) to the T product. ~ Other field
theorists take it for granted that the T product is
uniquely defined, without making clear what that defi-
nition is. In order to get consistent results in this paper,
it will be necessary to specify a definition of the T
product which eliminates the arbitrariness. There will

be a corresponding, precise definition of the equal-time
commutators which occur in Ward identities. It will
be shown that under normal circumstances the defini-
tion of equal-time commutators given in this paper
agrees with the customary one, but in abnormal cases
(one of which occurs later in this paper) the two defini-
tions do not agree. There will also be circumstances
where the definition of the T product given here has to
be modified to include subtractions; an example of this
also occurs later in this paper. The definition of the T
product given in this paper may or may not be one that
field theorists can agree upon; what is essential is that
in all future discussions of Ward identities the definition
of the T product be stated, so that one can handle more
easily the kind of problem that arises later in this paper.

In Sec. II the problem of defining T products is
analyzed, with examples showing the problems that
can arise. In Sec. III, which is the heart of this paper,
the Ward identities and explicit formulas for vacuum
expectation values of g and P' are written down. These
formulas are used to show that scale invariance holds
in order X and breaks down in order X', to compute the
dimension of g4 in order X, and to infer that S(x) in
order X' is proportional to g'. In Sec. IV the operator-
product expansion for P(x)g'(y) is discussed; also, the
dimensions of the composite field p, (x)p, (x) in an iso-
spin-1 P4 theory are computed and shown to be different
for the isospin-0 and isospin-2 components.

C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N. Y.)
59, 42 (1970).

An excellent discussion of the ambiguity in T products is
given in Ref. 5, pp. 144—145 and 168—191.

II. DEFINITIONS OF T PRODUCTS

The problem of defining T products will be discussed

primarily in terms of an example, the example being
the T product of two currents. ' Consider in particular
the propagator

D„„(p)= e' 'D„,(x), (2.1)

D"(*)= (fl
I &J.(*)i.(o) I ~~), (2.2)

,.(*)=(1~Ii,( )i.(o) If') (2.3)

8 The "noncovariance" of the propagator of a free vector-meson
Geld is discussed in Ref. 5, pp. 141-142. For.more general cur-
rents, the problem is discussed in K. Johnson, Nucl. Phys. 25,
431 (1961).For more recent discussions of the "noncovariance"
of T products, see R. F. Dashen and S. Y. Lee, Phys. Rev. 187,
2017 (1969},and references cited therein; D. Gross and R. Jackiw,
Xucl. Phys. B14, 269 (1969).

where j„is a conserved current in an unspeci6ed field

theory snd f means fd4x. The problem to be dis-

cussed here is this: How is the integral in Eq. (2.1) to
be calculated, assuming the function D„„(x) is known'?

This is a question which does not arise much in practice
since one is more likely to have an explicit formula for

D„„(p) (via Feynman graphs, or whatever) than for

D„„(x).However, Ward identities are derived in x space
and then Fourier-transformed to momentum space; if
one is deriving a Ward identity for D„„(p), then D„„(p)
is define by Eq. (2.1) and it becomes a legitimate ques-

tion to ask whether ambiguities arise in computing the

integral, and how to avoid them if they do occur.
The reason that the integral in Eq. (2.1) can cause

ditKculties is that D„„(x)is singular at x=o; the singu-

larity at @=0 is such that the integral may be condi-

tionally convergent or divergent at x =0. If the integral

is conditionally convergent, it can be de6ned by specify-

ing an order of irttegrationfor the four , integrations (over
the components of x), but the result may depend on
which order is chosen. If the integral is divergent then
it can only be defined by subtracting the divergent
terms.

An example of conditional convergence is provided

by a free vector-meson propagator. In this case it will

be shown below that the integral in Eq. (2.1) gives
different answers depending on whether the x integral
or the xo integral is solved first. It will also be shown.

that the usual noncovariant form of D„„(p) is obtained

by solving the x integral 6rst. These results will be shown

by using one of the standard derivations of the non-
covariant propagator and being careful when the order
of integration is changed. The standard derivation will

first be stated without being careful; the careful deriva-
tion will be given afterwards.

The non-time-ordered matrix element
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The x integrations can be done explicitly; it is easily
seen that terms depending on rp will not contribute in
the limit q~0. With such terms dropped, the inte-
grals have the explicit form=lim — Id4x e'& *D,(x)

i.e. , the region
I
xo—vxs

I (g(1—v')'~' is excluded from The regions Rt and Rs are now
the range of integration. Since the scale of g does not
matter one can also specify the excluded region as

I
xo —vxs

I
&ri. The difFerence between D„,(p, v) and R, :

I
x,

l
)ri lx, —vx,

l &g, I xol &to, and
I xl &ro.

D„„(p) must come from the difference in the excluded
regions. That is,

Do(x) = e
—'& *i(p' —m'+is) —'. (2.17)

For small x, one has

Dp(x) = —(4v') —'(x'-ie) '. (2 1g)

The most singular term in D„.(x) for small x is

D„„(x)~(2''m') '(—
g x'+4x x„)(x' is) ' —(2.1—9).

Without affecting the limit (2.15), the regions Rt and Rs
canbe redefined to lie within theregion Ixpl &ip, lxl &rp,
where tp and rp are small but held Axed as q —& 0. Within
this region, both D„„(x)and e'"'* can be approximated
by small-x expansions; as will be shown later, only the
leading terms from these expansions contribute to the
limit (2.15). Only the leading terms will be discussed
explicitly. Also, for simplicity only the 00 component
of D„„(0) will be discussed. Approximating Dpp(0) by
Eq. (2.19) gives

6 =Doo(O, v) —Doo(0)

d4x(2v'm') '( —x'+4x ')

X (*o'—x"-—is)—'. (2.20)
'o Equations {2.16) and {2.18) can be derived from formulas in

Appendix I of Ref. 5 (the equations at the top of p. 652 of Ref,. 5

where Rt is the region
I
xo

I
(&

I
xp vxs

I
)ri and Rs is

the region Ixpl)ri lxo vxsl (rl.
The regions R~ and R2 both collapse in the limit g ~ 0,

so for the limit g ~ 0 to be nonzero, D„„(x)has to be
singular within these regions. Both regions are spacelike
relative to the origin except for a region of linear size q.
The function D„„(x) is singular only on the light cone
and at x=0; these singularities lie in the region of linear
size g, and must be strong enough to overcome the
small volume of integration. It is worth showing ex-
plicitly how the singularity of D„„(x)at x=O results in
a nonzero limit, for in doing so one can deduce a general
rule for when the integral of a T product may be
noncovariant.

The explicit form of D„„(x)is known; it is"

D„„(x)=L
—g„„—(1/m') V„V„)Dp(x), (2.16)

where Dp(x) is the free propagator in x space for a, scalar
particle:

6= —(2vm') ' dxp
Sp

I

Ir. I
—xo+ie

1 1
+ + I+(27rm') —'

r o+xp ro xo+ie&—

to I

(dXp
~r+ xp

(2.21)
r, —xo+is rs+xp rs xo+—ie

where
r.= (xp-rl)/v,

rp = (xp+ti)/v

(2.22)

(2.23)

Lthe symmetry for xp ~ —xp of Eq. (2.20) was used to
eliminate integrals with xp&0$. The xp integrations can
also be done explicitly; the result is independent of tp

when g is small and gives

6= (—i/m')v'(1 —v') ', (2.24)

which agrees with Eq. (2.13).
The reason one can generalize the above calculation

easily is that its qualitative features can all be deter-
mined by scaling arguments. The terms in 6 which re-
main finite for g —+ 0 are unaffected by 3p and rp, and
in the leading approximation D„,(x) depends only on x
not on m', except as an over-all factor. Hence g becomes
the only dimensional parameter in the integrals. Thus
to get qualitatively the dependence of the integrals on

q, one can replace xp and x by the dimensionless vari-
a,bles yp=xp/g, y=x/g, and collect factors of g. When

yp and y are of order 1, the limits de6ning R& and R2 do
not depend on ti. So in Eq. (2.20) the substitution gives

g'd y(2v'm') 'rP( —y'+4yp')z '

&&(yp' —y' —is) '

are incorrect by a minus sign and there are factors of i relating
the propsgstors of this paper to those of Ref. 5),

d4y(2 prom')
—'(—y'+4yos)

1 2

X (yp' y' ie) '—, (—2.25—)

which is independent of g, the regions R~ and R2
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lyol &1 lyo —eysl)1
Iyo —vol &1

Thus from a scaling argument one sees that 6 will be a
constant for r) —+ 0 (however, only an explicit calculation
can show that the constant does not vanish). One might
worry about the eGects of the light-cone singularity

(yo
——

I yl but yo/0) on the scaling analysis, but one can
see by tracing through the detailed calculation that the
i~ in x' —i~ makes the light-cone singularity integrable
and does not destroy the scaling arguments (provided
one does not choose fo and ro so that fo' —ro' ——0).

The importance of the scaling argument is that if one
had extra powers of x or xo in the numerator of Eq.
(2.20), the scaling argument shows that 6 would vanish.
This can be verified by explicit calculation. This means
that 6 does not change i5 one puts e'&'* in the integral,
since the terms p x, (p x)', etc. in the expansion of
e'&' do not contribute in the limit g ~ 0. Likewise, less
singular terms in D„„(x)do not contribute to the limit.
Hence, the explicit calculation gives the more general
result,

D„„(x)= —Try„So(x)p,So(—x),
where

(2.29)

So(x) =i e '& *(y—l'p„'+m)(p' m'+—ie)

(2.30)

When x is small, the most singular term in So(x) is

S,(x) =i (2~')—'p~x„(x' —is)—'. (2.31)

vacuum polarization here, so the divergences cannot be
removed by a renormalization. The calculation here is
of the Fourier transform of the propagator of the cur-
rent; to remove these divergences, the Fourier trans-
form integral must be subtracted. As usual with sub-
tractions, there is some arbitrariness in the exact form
of the subtracted integral. The calculation will be de-
scribed briefly. The current j„(x) is

j.(x) = 4(x)VA(x): (2.28)

where P is a free Dirac field and:: denotes Wick
ordering. The propagator D„„(x)is now

Doo(p, &) —Doo(p) = (—i/m') v'/(1 —e'), (2.26) As a, result,

in agreement with Eq. (2.13).
Even more generally one deduces the following gen-

eral rule. Let TOt(x)Os(0) be a T product of two arbi-
trary local operators Oi(x) and Os(0). It does not matter
whether these operators are scalars, spinors, tensors, or
whatever. Let

(2.2'7)

D„„(x) e. 4(g„„x'—2x„x )(x'—ie) 4 (2.32)

for small x. The integral J'D„„(x)e'r *d'x diverg'es as
xp ~ 0' from a scaling argument the divergence should
be proportional to xo '. The divergence can come only
from Ixl xo in the integral, so it is legitimate to use
the approximation (2.32) in doing the calculation of the
divergence. The integration can now be done explicitly
and gives

be the Fourier transform of an arbitrary matrix element
of the T product. If the matrix element itself scales as
x +e as x —& 0, with d) 0, then M(P) is covariant and
independent of the order of integration. The hypothesis
of operator-product expansions' predicts that no matter
what matrix element is considered, the leading short-
distance behavior of the matrix element will be a func-
tion of x only, except for an over-all factor Las was the
case for D„„(x)),so that the scaling analysis applies.

The conventional integral for D„„(p)can be divergent.
The current of a free Dirac field gives a simple example
of this. The divergence is simply the well-known diver-
gence in the lowest-order vacuum polarization diagram
for electrodynamics. However, we are not calculating

"The original limits )xo) &to, )x[(ro become )yo( &/o/ri,
[y[ (ro/q In the integra. ls of Eq. (2.25) these upper limits can
be replaced by ~ without changing b, , when q is small. In scaling
analyses of more general problems t discussed after Eq. (2.26) j,
replacing to/q, rp/g by ~ may lead to divergent integrals. Then
one must make a more sophisticated analysis, using the scaling
argument only for values of y~i and computing explicitly the
integral for y large, i.e., for y&q '. However, the large-y region
will only give terms of order q since this region is away from the
singularity of D„„;hence the scaling analysis will still determine
whether 4 can be nonzero for g —+ 0.

"'x e'" 'D"(x)=(i/6~') I xol '(—g"+to~ o) (2 33)

There can also be terms of order lxol ', Ixol ', etc.
Thus computing the integral of Eq. (2.12) gives a diver-
gent result. The way to avoid this divergence is to sub-
tract the integral so that the scaling argument predicts
convergence. The simplest subtraction is to subtract a
Taylor's series expansion of e'&'; one defines"

D„„(p)= $e* ' 1 ip x+ ', (p x)—'$D—„.(x). (-2.34)

The leadipg singularity of the integrand now scales as
x ' instead of x '. As a result, the scaling arguments
show that D„„(p) is finite and covariant. The terms
subtracted are a quadratic polynomial in p. In effect,
one has subtracted infinite constants multiplying p', p,
and 1 from the old form of D„„(p). As usual, one is

"The subtraction ip x might seem unnecessary since the inte-
gral of xD„,(x) should vanish by Lorentz invariance. Unfortunately
one often has to use a noncovariant definition of the integral, as
in Kq. (2.12), in which case the integral of xD„„(x) might not
vanish.
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always free to add finite constants times p', p, or 1 to
D„„(p);to keep D„„(p)covariant, the added terms must
also be covariant.

Even for cases like the free vector-meson propagator,
where the unsubtracted integral is finite, one is free to
use a subtracted integral to define D„„(p).One can make
as many subtractions as one likes, but one subtraction
is sufficient to define a covariant form for D„,(p).

Axiomatic field theorists have long asserted that the
Fourier transforms of T products are ambiguous. There
is an excellent discussion of the role of these ambiguities
in renormalization theory in Bogoliubov and Shirkov. '
Nevertheless the popular view is that a Fourier trans-
form such as D„„(p) is a unique and even physical
quantity, at least relative to a given Lorentz frame. The
axiomatic view must in the end replace the popular view,
since the ambiguity in D„„(p) in examples like the Dirac
current of a free fermion field is beyond question. Un-
fortunately, much experience has been acquired with
the unsubtracted form of the definition of D,„(p) and
more general transforms like M(p) in Eq. (2.27). One
must now distinguish two problems. The first is, given
that the standard definition of the I'ourier transform
exists, to show in practical situations that no physics
is changed by using a subtracted formula instead. This
may not be trivial to demonstrate but is not a very
rewarding subject to pursue. The second question is
what happens to the physics when subtractions are
necessary. There is already one example known where
the necessity for a subtraction changes a current-algebra
prediction, namely, the Adler-Bell-Jackiw-Schwinger
anomaly which changes the current-algebra prediction
of the z' lifetime. "One must be prepared to find other
applications where subtractions have nontrivial effects.
It is certainly worth looking for such effects, especially
when the use of conventional Ward identities gives un-
satisfactory results, as in p decay. "

» J. Schwinger, Phys. Rev. 82, 664 (1951); J. S. Bell and R.
Jackiw, Nuovo Cimento 60A, 47 (1969); S. L. Adler, Phys. Rev.
177, 2426 (1969).For a discussion explicitly in terms oi divergences
and subtractions in Fourier transforms of T products, see K. G.
Wilson, ibid. 181, 1909 (1969). For further references see R. W.
Brown, C-C. Shih, and B.L. Young, ibid. 186, 1491 (1969).

'4 See Ref. 1 for a possible resolution of the q-decay problem and
further references. The explanation of g decay offered in Ref. 1
fails if all nine pseudoscalar fields are divergences of currents, as
in the quark model. The reason is as follows: According to Ref. 1,
the q-decay amplitude when the mo four-momentum is zero is
given by a matrix element (g~Lfpp(0), Qzpj~x+x ), where f is a
coupling constant, g3 is the third component of the isovector 0.

field, and Qg3 is the third component of the axial charge. Since
the wo has zero four-momentum, the full four-momentum of the
q is carried by the ~+ and m. . Hence the commutator must not
equal a divergence, for any divergence has a zero matrix element
between states of the same four-momentum. But in conventional
SV(3))&SV(3) the commutator is one of the pseudoscalar 6elds.
One can arrange that the commutator is not a divergence by
assuming that there are only eight axial-vector currents instead
of nine (this was done in Ref. 1), or by assuming that the field m

introduced in Ref. 1 does not commute with the ninth axial charge.
See S. Glashow, in Hadrons and Their Interactions, edited by
A. Zichichi (Academic, New York, 1968); and M. Gell-Mann,
Hawaii Summer School lecture notes (Caltech report, 1970)
(unpublished). This difhculty in explaining ri decay was pointed

P D„„(P)=lim (—iV'&e' ')D„„(x)8(~xpj —il). (2.36)
1J~P

Integrating by parts, one gets

p D„„(p)=lirn e'i"[iV' D„„(x)j8(~ xp~ —rl)
il ~P

+i e'i'*Dp, (x)[8(xp—il) —&(xp+rl) j ~ (2 37)

Since j„is assumed to be conserved, V"j„(x)is zero, and
since xpis never zeroin the integral, V'&(Q~ Tj„(x)j„(0)

~
0)

=(Q~ TV'&g„(x)j.(0) ~Q) =0. So the first term vanishes,
and one is left with the surface terms. These terms may
be written as follows. Let

Q(p, xp) = d'x e
—'p *jp(xp,x). (2.38)

out by G. Preparata (private communication); see also R. Brandt
and G. Preparata (unpublished).

It may help in understanding the problem of the
a,mbiguity in D„„(p) if one can understand why it was
possible for nonaxiomaticists to conclude that D„,(p) is
unique. The reason lies, I believe, in a conscious or un-
conscious assumption that nonaxiomaticists make about
the nature of field theory. The assumption is this: Any
local operator, such as a current, becomes an observable
when averaged over a region of space, the time being
held fixed. By an "observable, " I mean an operator
which can be multiplied by itself or by other fields,
without producing singularities. The best way to show
that this assumption is made is to look at the popularly
accepted form for an equal-time commutator. The
equal-time commutator of two local fields Oi(x) and
Os (y) is expected to be a sum of 8 functions and deriva-
tives of 8 functions in the spatial variables x and y.
These h functions can be elimina, ted by avera, ging Oi (x),
say, over a region of space; if p(x) is an averaging func-
tion, then [J'p(x)Oi(xp, x)d'x, Os(xp, y)j is completely
free of singularities. Even more, one assumes that the
unequal-time commutator [J'p(x)Oi(xp, x)d'x Os(yp, y)]
is continuous and differentiable in yp for yp=xp. This
assumption is implicit in the equal-time commutator
formula

[Ot(xpx)&Os(xpy) j=i[Or(xpx), [HOs (xp~y) jj &
(2.35)

where H is the Hamiltonian and the double commutator
is again expected to be a sum of 6 functions. If the
unequal-time commutator were not differentiable in yp

at gp =xp, then the equal-time commutator with O~

would diverge.
Given the assumption that integration with x makes

operator products be smooth in time, it is easy to derive
the usual form of the Ward identity for D„„(p) from the
definition (2.12). One writes
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Then

P"D"(P)™(~ilute'""Q(p, ~)j (0)
q~o

—e '"o"j.(o)Q(p, —~)]l fi) (2 39)

According to the assumption stated above, the products

Q(p, ri) j„(0) and j„(0)Q(p, —p) should be free of any
singularity for q ~ 0, in which case the limit gives

P"D"(P) =i(~I
I LQ(p, 0),j.(o)] l

f)'), (2 4o)

which is the usual Ward identity relating pl"D„„(p) to an
equal-time commutator. If the assumption that Q(p, ii)
is an observable breaks down, " the limit (2.39) may
not behave like a commutator, since the expression for
finite g is not a commutator. An example of this occurs
in Sec. III.

The assumption that integrating an operator over
space only gives an observable is a basic tenet of
canonical field theory, since one builds the Hamiltonian
of a canonical theory out of space-averaged operators,
and the Hamiltonian has to be an observable. The as-
sumption has been rejected by axiomatic field theory
from the beginning since the currents and other local
products in free-field theories violate this assumption
(as is shown by the example of a divergent props, gator
discussed earlier). In a,xiornatic field theory one assumes
only that operators averaged over space md time give
observables; this hypothesis was formally stated by
Wightman, but the idea dates back to the discussion of
the measurability of fields by Bohr and Rosenfeld. "
Unfortunately the assumption that space-time averages
give observables is not very helpful in dealing with the
specific problems posed by the singularities of T
products.

Some general conclusions of this section are as
follows.

(1) The precise definition for the Fourier transform
of a T product in common usage is exemplified by Eq.
(2.12).

(2) T products in x space are covariant; any non-
covariance in their Fourier transforms are entirely due
to the noncovariant q limit chosen to define the Fourier
integral.

(3) The definition (2.12) is capable of giving diver-
gent results, in which case a subtracted definition, as in
Eq. (2.34), will have to be used instead.

(4) If the integral of a T product is defined as in Eq.
(2.12), then the equal-time commutators appearing in

rs The operator Q(0,xo) is independent oi xa because j„ is
conserved; therefore it automatically satisfies the smoothness
assumption. But Q(p, xo) need not be smooth in xo for nonzero
y. The problem of defining equal-time commutators within the
framework of axiomatic field theory is discussed in R. Schroer
and P. Stichel, Commun. Math. Phys. 3, 258 (1966);A. H. Volkel,
Phys. Rev. D 1, 3377 (1970); Free University of Berlin report
(unpublished).

~6See A. Wightman and L. Garding, Arkiv Fysik 28, 129
(1965), especially pp. 131—133 and 153—154, and references cited
gQerejn,

Ward identities must be defined as a limit as in Eq.
(2 39).

Ut(s)g(x) U(s) =s"y(sx) . (3 1)

The constant d is called the dimension of P. The unitary
transformations U(s) can be written in terms of an
infinitesimal generator D:

U (s) —e—i(inc)D (3 2)

The logarithm of s appears in the exponent so that U(s)
will satisfy the composition law

U(s)U(si) =U(ssi) . (3.3)

Let s be 1+e with e small. Then from Eq. (3.1) one
derives

OLD, y(x)] = (d+x V„)y(x). (3.4)

For each composite field in the theory there will be a
corresponding commutator. In particular,

OLD,y4(x)] = (d, +x~V„)@4(x), (3.5)

where dr is the dimension of qV(x). The generator D is
expected to be the integral of a local "dilation current"
D„(x):

D = Ds(x) d'x. (3.6)

The current D„must be conserved if scale invariance
holds, in which case D is time independent.

Now consider the Ward identities. To allow for the
breakdown of scale invariance, let D„have a diver-
gence S,

V&D„(x)=S(x), (3.7)

"For more detailed discussions of scale invariance, see, for free-
field theories, J. Weiss, Nuovo Cinmnto 18, 1086 (1960); for
interacting-field theories (including Ward identities), G. Mack,
Nucl. Phys. BS, 499 (1968). See also Refs. 1, 3, and 6, and D.
Gross and J. Wess, Phys. Rev. D 2, 753 (1970). Some recent
papers are S. P. deAlwis and P. J. O'Donnell, Phys. Rev. D 2,
1023 (1970);L. N. Chang and P. G. O. Freund, Caltech report,
(1970) (unpublished); P. de Mottoni and H. Genz, Nuovo Ci-
mento 67'8, 1 (1970); K. G. Wilson, SLAC Report No. SLAQ-
I'Ug-7/7 (unpublished); M. Geli-Mann (Ref. g4),

III. SCALE INVARIANCE AND
PERTURBATION THEORY

To begin this section, the commutators of the gen-
erator of scale transformations will be derived. Ward
identities for the dilation current will then be written
for matrix elements involving the fields g and P' of the
Xg' theory. It will be assumed, to start with, that all
integrals of T products are conventionally defined and
all Ward identities have their customary form. The
exceptions will be discussed later.

If the field theory is scale invariant, "then there exists
a set of unitary transformations U(s) with the property
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and consider the matrix element

FIG. 1. (a) Feynman graph~(» "x-)= (Ql TO(»)" e(x-)&(y) I Q), (3 g) for self-energy function z; (b)
V Feynman graph for p.

where IQ) is the vacuum state. Substituting V&D„ for S
and integrating by parts, the conventional calculation
gives"

&(* *-)= ~.(QI T4(*) 0( -)D"(y) I Q)

+i(QIT[(d+xi V,)4(xi)j4(xs) 4(x„)IQ)+

+z(QI Ty(xi)y(xs) [(d+.x V„)y(x )jl Q). (3.9)

The integral of the gradient vanishes and one is left
with the commutators. It is convenient to bring the
derivatives V"~, etc., outside the T product, which results
in further equal-time commutator terms. However,
these further commutators cancel in pairs. " Consider
the case m=2, for example. Then the result of moving
the gradients is

(xi~xs) =z(2d+xi' ~i+xs' ~s) (Q!T&(xi)&(xz) I
Q)

—ix„S(x„—x„)(Ql [@(x,),y(x,)) I
Q)

—;»p~(»p—x„)(QI[q(x,),q(x,)jlQ. (3.10)

The two commutator terms cancel. This is true for all

n; thus

interaction representation, one defines (before re-
normalization)

N~(xi x„,y) =(Ql TPI(xi)rtr(xz) rtr(x. ):Pr'(y):

&(exp —iX: 14 z .' 0, 3.I3

where pr(x) is the scalar field in the interaction repre-
sentation. TV, is the connected part of tV. The matrix
elements E, will be quoted to order X', the matrix ele-
ments 8', to order A. only. The va, cuum expectation
value W, (y) will not be computed since it can be re-
normalized to zero by subtracting a c number from the
Heisenberg field:@4:. Ma, trix elements involving pro-
ducts of two or more Heisenberg fields:p'. will not be
discussed; hopefully the ana, lysis of the t~t/, functions is
sufficient to determine the properties of:@':.The non-
zero, unrenorrnalized graphs for E, and W, (to order
X' and X, respectively) are

M(xi x.) =z(«+xi Vi+ +*.&.)&(xi x~) )

(3.11)

Z, (x, x„)=
1 g2

~
—PI (~1—*zz). . .

where
I:(» . x.)=(QITy(xi). . y(x.)IQ). (3.12)

The Ward identity (3.11) is the starting point of the
analysis of this section. If scale invariance is exact, M
must vanish. Therefore, we shall try to make the func-
tions M(xi x„) vanish in perturbation theory. The
dimension d will be treated as a fudge factor chosen to
make M vanish if possible. This will be possible in order
A. but not in order X'. Having found that the functions M
cannot vanish in order X', they will be calculated ex-
plicitly and used to infer the form of V'I"D„.

Next some explicit perturbation formulas will

be written out for vacuum expectation values in-
volving @(x) and $4(x). Only connected graphs will

be considered (disconnected graphs will be discussed
later). Let X.(xi x„) be the connected part of
(QTP(xi) P(x„)IQ) and let W, (xz .x„,y) be the
connected part of the matrix element

&QI»(*)" ~( -):~'(y):IQ)

By:&4(y): is meant a Heisenberg field that reduces to
the Wick product:p'(x): in the free-field limit. In the

18 Surface terms at time y0~0 are neglected. In a zero-mass
theory this can be a mistake; it is assumed here that the neglect
is legitimate.

"D.Gross and J.Wess (Ref. 17).

e ipse i (—xa—i—xniE (pi. . .p i) (3 14)

&.(p) =D(p) =Do(p)

+9{jzyzDpz(p)&(ps As) (3 1$)

where D(p) is the interacting-meson propagator, Dp(p)
is the free meson propagator with zero mass, and
Z(p', A') is the Feynman graph shown in Fig. 1(a) com-

puted with a cutoff A. Formula, s are

Dp(p) =i(p'+is) (3.16)

Z(p', A') = p(q', A')Dp(q —p), (3.17)

p(q', h. ') =z Dp(k)Dp(q —k)Dp(k, A)Dp(q —k, A), (3.18)

D (k A) =A'(A' —k' —ie) i (3.19)

p(qz gz) = —(16irz) i lri[( —qs —ie)/Az] (3.20)

Z(q', A.') = —(512zr') 'q' In[( —q' —is)/A'j+cA'+ciq',
(3.21)

p(q', A') is the Feynman graph shown in Fig. 1(b), also
with a. cutoff. Calculation of p a,nd Z in the limit of
large cutoff gives (see the Appendix)
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where c and. cl are numerical constants; terms of order formulas are relatively simple because the mass of it
q2/A'"' or smaller for large A. have been dropped. These is zero. Further formulas are

(pl p2 p3) 24i~DO(pl)DO(P2)DO(P3)DO( pl p2 p3)

X{1—12Xp[(pl+p2)2, h2] —12hp[(pl+po)2, h2] —12Xp[(p2+P3)2,h2]}. (3.22)

It is a nuisance to write out terms which differ only by a permuta, tion of the momenta, so in the following for-
mulas only the number of such terms will be given:

E,(P, P,) = —576&2DO(Pi) Do(PO)Do( —Pl — —Po) {D,(P,+P,+P,)+(9 permutations) }, (3.23)

W, (xi x., y) = g
—~Pl ' (~& Jt) ~ ~ ~ tP &P24' ~+23 &)PI/ (A (3.24)

II c(plyp2) 96llDO(pl)DO(p2)[~(pl )~ )+~(P2 )~ )] y (3.25)

W (pl p2 p3 p4) = 24Do(pi)Do(p2)D0(p3)D0(p4) {1—12Xp[(pi+P2)'-, A']+(5 permuta tions of the X term)), (3 26)

W'. (pl .po) = —576i&DO(pi) Do(po){Do(pi+p2+p3)+(19 permutations)}. (3.27)

The renormalized formulas for E, and H/', are ob-
tained by modifying Z and p and redefining the coupling
constant but otherwise using the formulas given above.
The renormalized Z is obtained by dropping the con-
stants c and c& and replacing h.' by an arbitrarily chosen
but fixed "reference momentum" ~'. Likewise, the re-
normalized p is obtained by replacing A.' by ~'. The re-
norma, lized functions Z~ and p~ are

Za(qo) = —(5122r4) 'q' ln[( —q' —io)/i42] (3.28)

pa (q ) = —(162r ) ln[( —
q

—io)/ii ]. (3.29)

The rationalization of these modifications is as follows.
The function Z occurs in two different formulas; the

modifications have a different significance in the two
ca.ses. This is a,iso true of the function p. %hen Z is a
correction to the propagator, the modifications amount
to a mass and wave-function renormalization. In par-
ticular, replacing c by zero ensures that the renormalized
mass is zero through order A,'; repla, cing c& by 0 and A.'
by a' are both wave-function renormalizations. It is
necessary to introduce the arbitra. ry parameter ii (which
has the dimensions of a mass) into the theory because
there is no naturally occurring parameter with the
dimensions of a mass to replace the cutoff inside the
logarithm. The value of ~ is unimportant since changing
ii only changes the normaliza, tion of the field P, which is
arbitrary. Similarly, when p is a, correction to E,(P,Pl, P2)
the modification of p is a coupling-constant renormaliza-
tion; when p is replaced by p& one must also replace X

by a renormalized coupling constant X,. The renor-
malized coupling constant depends on ~ in the sense that
if ~ is changed to ~', one must change X, to X„, with

X„.=X„+(9X„2/42r2) ln (ii"/i42)+[order (X„3)], (3.30)

When Z is a first order contribution to W, (Pi,P2),
the modifications have a different interpretation. If the
unrenormalized formula for W, (pl, p2) is Fourier-trans-
formed to x space, one obtains (see the Appendix)

W. (»,xo,y) = (—,'0~ ')&{Do(xo—y)[(xi—y)' —io] '
+Do(xl —y) [(x2 y)2 —io] —2}—192K(cA2)

XDO(xl —y)Do(x2 —y) —96X2ci[DO(x2 —y) &'(xl —y)
+Do(xl y) 54(x2 y)—], (3.3—1)

where Do(x) is the Fourier transform of Do(p), and the
first term is correct only for x&—y and x&—y nonzero.
The term proportional to c can be rewritten —96Xch.'
X(Q~ Tgr(xi)gr(xo):Pro(y):~Q):. RePlacing c by 0 is
equivalent to subtracting —96cliA2:qP(x): from the un-
renormalized operator:&4(x):. This subtraction is one
of two needed to define a finite renormalized form of the
Heisenberg field:$4(x):. The other subtraction needed
to define the renormalized form of:$4(x): is a subtrac-
tion proportional to X, :Q:.This subtra, ction is generated
when one replaces A by ~ in the function p, p being con-
sidered as a correction to the function W, (pl, po, po, p4).
Replacing cl by 0 in W, (Pl,P2) is simply a redefinition
of the Fourier transform of W, (xl,xo,y). When
W, (xl,xo,y) is Fourier transformed, the cl term in
IV, (xl,xo,y) will not contribute because by definition
the points xy =y and x2 =y are excluded from the region
of integration (see Sec. II). However, the unsubtracted
Fourier transform of W, (xl,xo,y) diverges because of
the singularities [(xl—y)' —io] ' and [(x2—y)' —io] '
in the first term of Eq. (3.31)."This means that the
Fourier transform must be subtracted. The unsub-
tra, cted Fourier transform would be

in order that E', (Pi,P2, P3) be independent of the choice
of ~.20

W.(Pl P2) =
1 2

ciP1'xlciP2 z2W (x x 0) (3 32)

"For further discussion of the dependence of the coupling con-
stant on the parameter ~, see Ref. 4.

2'These singularities cause a logarithmic divergence; this can
be shown using the methods of Sec. II.
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The singular term for x~ —+ 0 in the integrand has the part of E by the same equation. One can also define
form

e'»'*2(—,6, )r
—6)) D6(x2) (x ' —ie)-2. V(xl x„,y)

The singular term in x~ is present for any x2 so one
cannot approximate the x2 dependence of the singular
term. One cannot subtract this term unchanged because
it does not go to zero fast enough when x~ ~~.To avoid
an infrared divergence, one subtracts

e'""le'»'*2(—'7r 6))(Do(X2) (g12 i6)—2

where ~„ is any four-vector with magnitude ~„~~= —~'.
Putting in the factor e'"'~1 does not change the depen-
dence of the subtraction on pl and p2, and so it is a
legitimate modification. The renormalized, subtracted
formula for W, (pl, p2) is

&V.(pi, p2) =
I
e'» "e'»' 'IV, (gl, x2,0)

( )r—6))( e)n n)e)))2 n)D6(g )(g 2 25)
—2

—(—2 6~-6)h.e'" n)e'&'n)D6(xl)(x22 —ie)-2j (3 33)

(25d+gl. Vl+. . .+g .V )e 4))1 (Ã)—. n—n). . . e—)))n—) (nn-1—nn)

=(25d+pi V„,+ +p. l V„„,)

with X replaced by l(, in W, (xl,x2,0) (and the e and ci
terms dropped). This formula reproduces the renor-
malized form of W, (Pl,P2) Lgiven by Eq. (3.25) with )(„
replacing )l and Z)2 replacing Zj.

The subtractions in Eq. (3.33) depend on Pl and P2
in the form LD6(P2)+D6(Pl) j; hence one is always free
to change the formula for W, (pl, p2) by adding a finite
constant times LD6(pl)+D6(P2) j. Changing &)6 back
towards Z by replacing z by A. and adding the c& term
is exactly a change in W, (Pl,P2) of this type. Hence cl
is a subtraction constant which one is free to set equal
to zero.

Now study the matrix elements of the divergence of
the dilation current, using the Ward identity (3.11).
First note that

(n~ Ty(g,)" y(x„):@4(y):S(z)le) (3.37)

and obtain

V(xl x„,y) =

with
e i))n—(&n—)J) V(pl. . .p ) (3 3g)

M, (p) =iL2d —2 —3) „2/8)r4$D(p),

Mn(pl)P2)PS) 2(4d 4 2)(n)+n(pl)P2)P3) )

M, (pl ' ' ' p5) =i(6d —6)E,(pi p,),

(3.42)

(3.43)

(3.44)

V, (pl, p2) =i (2d+dr 6)W, (pi,—p2)

+3) .(8~') 'LD6(P))+D6(P2) j (3 45)

V, (pl p4) =i (4d+dz 8 9X /vr2)— —
XW, (p, p4), (3.46)

V(pl p ) =i (nd+dz 4n p—i Vp,— —p—Vy„)

XW(pl p ). (3.39)

It is straightforward to obtain explicit formulas for the
connected parts of 3E to second order in X„and the
connected parts of V to first order in A.„.The dimensions
d and dI will be left as unknowns for the moment. For
example,

M, (p) =i (2d 4 pV„—)D(—p)
=i(2d —4—p V„)Xi(P2+ie) '

X(1+(3)( 2/16)r4) in/( p' —ie)/—)(25} (3 40)

Separating the term where V~ acts on (P2+ie) ' from
the term where V'„acts on the logarithm, this becomes

M, (p) =i(2d —2)D(p) —i(6)(„2/16)r4)D6(p) . (3.41)

But to order X„2, one can replace D6(p) by D(p) in the
second term. The resulting formula for M, (p) and
analogous formulas for other M, and U, functions are

&Pl' (&1 &n). . . —sun-1' (&n-1 +n)X V, (p, p,) =i (6d+dr 10)W, (pl—p6) . (3.47)(3.34)

M(xl x„)=
n-1

g
—2i1 ('u1—:un)

e ))))) )(nn —)—nn)M(p . . .p
—
)

—(3 35)

M (p, p„ l) =i (25d 4(25 1)——
—pl V~,— —p. l V~„,)E(p, .p„ l) (336)

The connected part of iV is related to the connected

Using Eqs. (3.11) and (3.14) and an integration by
parts, one gets

Fquation (3.45) for V, (pl, p2) is incorrect because its
derivation assumes that lV, (P),P2) is unsubtracted. The
correct formula will be derived later.

The first; application of Eqs. (3.42)—(3.47) is to show
that scale invariance breaks down in order A.„'.To deter-
mine the validity of scale invariance the equations for
M, will be discussed order by order (the equations for
V, will be discussed later). In the free-field limit, the
only nonzero M, is M, (p) and it too is zero if d =1.This
agrees with the known result that the free-field theory
is scale invariant and )t has dimension 1. To first order
in l(„M,(P) and M, (Pl,P2,P6) do not trivially vanish,
but by setting d=1, both are zero. So we infer that



KENNETH G. WILSON

scale invariance holds to order P „and d is 1 to this order.
In order Xp the situation is as follows. M, (pi pp)
vanishes because E,(pi pp) is already of order Xp and.
6d —6 is zero to order 1. The function M, (pi,pz, pp)
cannot vanish: E,(pi, pp, pp) is of order X„and d is al-
ready determined to be 1 through order X„so

Ma(plgp2)P3) z(p~r()Itc(P1ppzpp3) ~

The function M, (p) vanishes to order X„ if d is

d =1+3K '/(16zr4) .

(3.48)

(3.49)

The nonvanishing of M, (pi, pp, pp) in order X„' means
that S(x) is nonzero in order X,.P, so scale invariance
breaks down in this order. It does not help to change d
in order to make M, (pi, pz, pp) varush in order X„'; this
would require a change in d of order X„which would
make M, (p) nonzero in order X„, which would be even
worse. It will be assumed in what follows that d is
given by Eq. (3.49)."

It appears that scale invariance is exact through order
X„.If so, the quantities V, must vanish to order X„.Con-
sider first V.(pi,pp, pp, pp). Since W, (pi, pp, p„p,) is of
order I, V, vanishes only if

4d+dr =8+9K„/ '1r (3.50)

Since d is already known, this gives

dr =4+9K /zr'. (3.51)

Therefore, the dimension of:$6(x): changes in order
To order X„, V, (P1, Pp) vanishes [note that

W. (P1 Pp) is itself of order X„].
Before examining V, (pi,pp), the correct Ward iden-

tity for V, (P1,Pz) must be obtained. To do so requires
careful attention to the definition of Fourier trans-
forms. "For V, (pi, pp) we shall use the standard defini-
tion [V,(xi,xz,y) will turn out to be zero, so the standard
definition exists]. Thus

V,(pi,pz) =lim d'xi
q~o

l»ol&n

d4X gtgg ~ $1

I ~2o})y

&&
e'»' 'V, (xi,xp, O) . (3.52)

The region Ixip —xzpI &g is also excluded from the
integral. By analogy with Eq. (3.11).

V.(xi,xp,0) =z(2d+dr+xi Vi+xp. Vp)W. (xi,xp, O) .
(3.53)

grate by parts, getting

V,(pi,pp) =hm z(2d+dr —8—pi V —pp V'„,,)
zf ~0

E(rj,pi, pp) =i X106(xlp 'g)+Xlp~(xlp+ 9)

x208 (x20 g) +x20~ (x20+ g)]6

XW.(x„x„o), (3.55)

regions
I
xip I &YI& etc.

&
still exclllded. Because

of the 6 functions, the factors x~o and x20 are of order

q, so only the singular part of W, (xi,xz,0) is impor-
tant in the integral; for example, the integrals with

x&0 ——~q come predominately from small x&. Hence, 8
is approximately

E(g,P1,Pz) = ig— [~(xao—g)+ &(Xip+g)]e' "'
X1 $2

X (3X„/16zr')Dp(xp) (xi' —«) '

[~(»0—V)+~(»0+V))6'""'

&& (3X„/167r6)Do(xi) (Xz' —i ) '. (3.56)

These integrals can be performed explicitly, giving

&(n,pi, pp) = —(3~./8~') [Dp(pi)+Dp(pp)) (3 5&)

To complete the construction of the Ward identity one
must replace the unsubtracted Fourier transform of I/V,

in Eq. (3.54) by its subtracted form. The result is

V, (P1,Pz) =i(2d+dr 8 Pi V» —Pp—V»—)W.0(Pa&Pz)
—(3"./8zr') [Dp(pi)+Dp(pp)]+™(&ip4pp) )

(3.58)
with

e'» "e'"'*'W,(xi xp 0)

+lim z(g, pi, pz), (3.54)
rI-+0

where the integral over xi and xz still excludes IxipI

Ixppl &g and Ixip —xppI &'g. The term E(g,pi, pp) is
the sum of surface terms. It turns out that the surface
terms at Ixip —xzpI =q are negligible but the surface
terms at x~o=~q or x~0 ——~g have to be computed
giving

When this is substituted in Eq. (3.52), one can inte- p(& p, p, ) =z(21f+1ir 8 p, . V„, p, .V„,)

"It was suggested by S. Coleman (private communication via
R. Jackiw) that @ has a dimension in second order despite the
breakdown of scale invariance. See the end of Sec. III for further
dzscussron."There are many aspects of the derivation of the %'ard identity
for V, (p&,p2) that should be examined carefully. In practice, only
one problem seems to cause difhculties, namely, the singularity
in the product T@(x):@4(y):for x —& y, and only this problem will
be discussed.

(3$ /16zr6) f &ix ~ xteip0'z0D0(xz) (x12 zp)
2—

+ei. ~,e', .D (xi)(x,' —ip)
—'} (3 59)

with
I xip I &g, etc., omitted from the integral. The inte-

grals give p-dependent constants multiplying the func-
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tions Do(p2) and Do(pi). Using the values d=i and
dr=4 to lowest order, one finds that F(g,Pi,Pg)=0.
Using these values for d and dz in Eq. (3.58), one has
(correct through order X„)

The operator D must contain an explicit time depen-
dence proportional to xoH, where H is the Hamil-
tonian"; this is necessary to give the xpVOP(x) term in
the commutator of D with P. Therefore, let

1.(p P)= ( 2 —P—V,—p V,)W.(p,p)
(31' /8& )F'0(pi)+Do(p2)]. (3.60)

D=x0H+D~.

The formula for dD/dxo is

(3.64)

This Ward identity has an extra term which does not
appear in the conventional form LEq. (3.39)]. It
is not caused by the subtractions in W, (pi,p2). It came
from the surface terms E(it,pi, pm), arising when

xi V'W, (xi,x2,0) and x2 VW, (xi,x2,0) were integrated
by parts in the integral of Eq. (3.52). According to the
conventional analysis given earlier $cf. Eq. (3.10)],
these surface terms should have canceled. They would
have vanished had the assumption underlying the
conventional analysis been correct. Namely, iffd'xiW, (xi,x2,0) were a smooth function of xip at
xio=0 Land likewise for fd'x2W. (xi, xa, 0) at x2o=O],
then the integral (3.55) for Z(q, pi, p2) would have been
of order g. In practice, the integral J'd'xiW, (xi,x2,0) is
of order

~
xio

~

' for xi, ~ 0 and cancels the explicit
factor xio in Eq. (3.55); hence, E(g,pi, p&) has a finite,
nonzero limit for q —& 0.

Using the explicit renormalized formula for W, (pi, p2)
to order X„,one finds that Eq. (3.60) gives V, (pi, p2) =0.
Thus all the functions t/", vanish to order X„,as expected,
and the field:@4(x): has a dimension dz given by
Eq. (3.51).

Since M, (pi,p4, P3) does not vanish, the operator S(x)
)the divergence of D„(x)] is nonzero. Can it be identi-
fied' It has been shown that all connected matrix ele-
ments of S(x) vanish in order X„' except for M, (pi, p~,p4),
and M, (pi, p2, P4) is proportional to E', (pi, pm, p4), or, to
be precise, M, in order X„ is proportional to EC, in order
X„.Transforming to x space, and using the perturbation
formula which defines E, in order 'A„Eq. (3.48)
becomes

ill, (xl)x2)x8)x4) = —(-', X.') (11
~

Tyz(xi))Q)z(xm)

d'x S(x)= dD/dx()). (3.63)

X@z(x4)4tiz(x ):yz'(s):
i
0). (3.61)

A comparison of this formula with Eq. (3.8) suggests
tha, t

S(x)= —(9X '/2):)t)4(x):. (3.62)

This hypothesis gives back Eq. (3.61) and also makes
all other connected matrix elements M, vanish to
order X„2.

Can one understand how a term proportional to
:&4(x):appears in the divergence of D? It will be shown
that this is to be expected, given that the operator
:p (x): changes its dimension in order X„. To simplify
matters, consider not S(x) but rather the integral

dD BD —i(D,H] =H —
4t D~,H].

dÃ0 ~&o
(3.65)

The Hamiltonian contains the interaction term

d'x: @4(x): . (3.66)

The contribution of Hz to dD/dxo is Hz i[D~,H—z]. The
commutator of D~ with:)QF)4(x): is

[Dg .@4(x):]= i(d—z+x V):@4(x):. (3.67)

Integrating over x, and using an integration by parts on
the gradient term, one obtains

)D~,Hz] = 4(dz 3)—Hz— (3.68)

Thus the contribution of the interaction to dD/dxp is
—(dz 4)Hz, wh—ich is X.(dz —4)fd'x—:&4(x): . Using
Eq. (3.51), this is (—9XP/4r') fd' x: )t(4)x: . According to
Eq. (3.62), the total dD/dxo is half of this, so there must
also be a contribution to dD/dxo from the unperturbed
part of the Hamiltonian. This analysis shows that a
term of order X„':))F)4(x): is to be expected in V)'D„(x),
given that:@ (x): changes its dimension in order 'A„.

To conclude this section, the various assumptions and
undiscussed problems will be listed. The above dis-

cussion concerned only connected graphs but it can
be shown that the conclusions are unchanged by the dis-

connected graphs (such as the products of two propa-
gators in the four-point function). The inatrix elements
of two or more:&4(x): fields were not computed (thus
avoiding the problems associated with the product
2':@4(x)::)II)4(y):when x=y). In deriving Ward identities,
the surface terms at time ~ 00 were assumed to vanish;
this should be checked by explicit calculation of the
matrix elements of D„(x), since one is dealing with a
zero-mass theory. In second order in ) „, for which D„ is
not conserved, it was assumed that the equal-time corn-
mutator of D(xo) with @ could still be computed from
the matrix element M, (p) as if D were conserved; this
will have to be checked by explicit calculation. "How-

ever, even if this assumption were incorrect it will -not

change the calculation of M, (pi,p~, p4) to order X„', since
this calculation involves the commutator of D with p
only to order X„. Thus whatever the. commutator of D
with Q is in order X„2, there will still be a X,2:&4(x): term
in S(x); there may be other terms also. The presence of
the X,2:4t)4(x): term in S(x) makes it likely that the
equal-time commutator of D(xo) with P(x) will diverge
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in order 'A, . This is because the integral (3.8) which
defines M(xi, xp) diverges in order X„' if S(x) is XP:g'(g):;
this in turn is a consequence of the nonintegrable sin-
gularity of W(xi, x&,y) for y ~ xi or x& in order X„.

Given that the interaction:p'(x): changes its dimen-
sion in order 3 „, why does not the free part of the
Hamiltonian also change its dimension in order X„'? If
this were to happen, then scale invariance would break
down in order X„ instead of X„.This is another question
that will not be discussed here.

The analysis of this section has been carried through
for the zero-mass XP' theory. One may ask: Why not
work with the G.nite-mass theory instead' The reason
for not using the nonzero-mass theory is that when the
mass is nonzero the divergence 5(x) contains a term
proportional to:qP(g):, which is nonzero in the free-
6eld limit. This means that the matrix elements
M(gi x„) will be nonzero in the free-field limit. To
show that 5(x) contains a term proportional to XP:g'(x):
in addition, one must calculate matrix elements of
:Q'(x): to order XP; one must also argue that terms
proportional to:&4(x): are not permitted to occur as
part of the renormalization of:p'(x):. The a,rgument
cannot be rigorous, for if one is Aexible enough about
how one renormalizes, there is no argument that forbids
the use of finite:$4(x): counterterins in renormalizing
:g'(x):. Furthermore, the zero-mass case is discussed
because it is only for the zero-mass case that the can-
onical Lagrangian formulation of the X&4 theory predicts
scale invariance, and, therefore, it is only for the zero-
mass case that there is a contradiction between the pre-
diction and perturbation-theory calculations.

In the renormalization of W, (pi, pp), the constant ci
was interpreted as a subtraction constant. It is possible
to give the constant c~ a different interpretation. If one
defines the renormalized form of:@'(x): to include a.

subtraction proportional to ci.@V'„V„P:, this will also
eliminate the ci term from W, (pi, pp). This is because
the matrix element

e*» "e'» "(f'l
I Tgz(gi)gr(xp)

given by the Feynman rules is a term which in x space
involves 8 functions of x& or x&, which one is always
allowed to add to a T product, even if one of the opera-
tors in the 1" product vanishes. While there is nothing
wrong with adding 5 functions to the T product, it is
not a sensible thing to do. In any case, c& is a subtraction
constant in a Fourier integral. It does not matter
whether it is recognized as such or sneaked in by the
device of subtracting:PV'„V"P: from:&4(x): and using
the Feynman rules to introduce a subtraction in the
definition of integrals of T products involving:PV„V'P:.

IV. MISCELLANY

In Sec. III, it was necessary to know the behavior of
the matrix element (0

~
Tp(xi)@(g&):Q'(y):

~
0) for xi ~ y

or x2~ y. This behavior was determined by explicit
calculation. This is a problem which can be understood
in general in terms of operator-product expansions. '
In this section, the operator-product expansion for.

T@(x):$4(y):will be discussed through order X„using
the matrix element W(xi, x,y) of:p'(y):. At the end of
this section, the dimension of the fiel:g'(g): will be
calculated through order X, for the case of an isospin-1
field g: it will be shown that the isospin-2 component
of:P': has a different dimension (in order X„) than the
isospin-0 component of:p'(g):. A similar isospin split-
ting was postulated in a previous paper' to explain the
AI =—,

' rule in weak interactions.
In the free-field theory the operator-product expan-

sion for the product Tg(x):&4(y): is derived from the
YVick expansion of this product:

Tl(g):4'(y): =4D (*—y):4'(y):+:4(x)0'(y):
=4Dp(*—y):4'(y):+:4'(y):+(*"—y")

&&:~'(y)~.~(y):+ . (4 1)

In the final form of this formula, functions of (x—y)
multiply local operators at the point y; any such for-
mula is called an operator-product expansion. The ex-
pansion is an expansion in terms of x—y and makes
sense when x—y is small. In perturbation theory, one
looks for a generalization of Eq. (4.1) in the form

)&:Qz(0) VpV "Pz(0):
~ 0), (3.69)

computed by Feynman rules, is (—pi' —pp')Dp(pi)
&(Dp(pp). This is proportional to LDp(pi)+Dp(pp) j,
which is exactly the form of the ci term in Eq. (3.25)
t using Eq. (3.21) for Z). This procedure for eliminating
the c» term is more conventional than to interpret c~ as a
subtraction in a Fourier integral. Unfortunately, the
procedure is nonsensical. The field:PzV„V'I"Pz. vanishes
because @z(x) satisfies the free-field equation V„V'&pz(x)
=0. This means that:pV'„V'"p: also vanishes in lowest
order, so subtracting it from:g'(x): does not change
:@4(x): in order X„. Furthermore, the integral in Eq.
(3.69) should vanish since the integrand vanishes. How-
ever, the Feynman rules give a nonzero result for this
integral. There is nothing wrong with this; the term

T4(x):4'(y): =Z C.(g —y)o-b), (4 2)

where the C„(x—y) are functions of x—y and 0„(y) are
local fields at y. The functions C„(x—y) may be sin-
gular as x —+y. The operators O„(y) are Heisenberg
operators whose matrix elements will be functions of
X„; the functions C„(x—y) can also change with X„.One
can separate the two dependencies because only
C„(x—y) can depend on x and because the same func-
tions C„(x—y) must occur no matter which matrix

'4I'or background, see Refs. 1 and 2, and references cited
therein. Ideas completely analogous to operator-product expan-
sions and scale invariance have been developed independently
for'classical statistical mechanics by L. KadanoK, Phys. Rev.
Letters 23, 1430 {1969),and references cited therein.
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element of Tg(x):P'(y): one studies. To Grst order in
A.„perturbation theory is scale invariant, which restricts
the behavior of the functions C„(x—y). As shown in a
previous paper, ' Ce(x) must scale as

C„(sx)=s'—'—«C„(x), (4.3)

where d„ is the dimension of the operator 0 (x). If

dn ~np+~g~nl (4.4)

W(xi, x,y) =P C„(z)(BITP(xi)0„(y) I
0). (4.10)

From the scaling law (4.6) the tenn proportional to
(s' —ie) ' must involve an operator O„of dimension
d p=1, while the term proportional to (s' —ie) ' must
involve an operator O„of dimension 3. There is only
one operator of dimension 1, namely, g itself. The co-
eflicient (»' —ie) ' is a Lorentz scalar so it must in-
volve a scalar field 0„.O„must be odd in P since P:P4:
is odd. The only possibilities are V'„V'&P(x) and:P (x):.
These are not linearly independent because they are
related by the Geld equation of the Pe theory; it is con-
venient to regard 7'„7'&P as the dependent Geld, so the
only field left is:@':. Therefore, the expansion for
W(xi, x,y) should be"

C„(x)=C„p(x)+X„C„i(x), (4.5)

then the expansion of Eq. (4.2) to order X„gives

C.o(sx) =s""' 'C o(x), (4.6)

C i(sx) =s""' 'L(d„,—W„/or)C„o(x) lns+C„i(x)]. (4.7)

I The dimensions d and dr are taken from Eqs. (3.49)
a.nd (3.51).]

To learn something about the functions C (x—y) and
the operators 0„(y) in order X„, we study the matrix
element W(xi, x,y) for x near y. The function W(xi, x,y)
has no disconnected diagrams Lgiven that the vacuum
expectation value (0 I:p'(y): I 0) is renormalized to
zero], so W(xi, x,y) =W, (xi,x,y) which is given bv the
renormalized form of Eq. (3.31):

W(xi, x,y) = (ipse ')X„{Dp(xi—y)I (x—y)' —ie]
+Dp(x —y)L(xi —y)' —ie] '}. (4.8)

In terms of s=x—y, this is"

W(xi x y) = ( P /or')X ((s' —ie) 'Do(xi —y)
—(4~') '(z' — ) 'L(» —y)' —] '} (4 )

There are only two terms when W(xi, x,y) is expanded
in s. Comparing with the operator-product expansion,
one should have

N;;, i(x,y,s) = e-'& &*—'&e—*p ~& '&N;, H(p, q), (4.15)—

The first matrix element is in lowest order the free
propagator; comparing with Eq. (4.9) gives

Ci(s) = (—'or-o)X (s' —ie)-' (4 12)

The matrix element (QI T&(xi):qP(y):IQ) vanishes in
order 1 and has not been computed here to order X„
the function Cp(s) is known in order 1 from Eq. (4.1)
to be 4Do(s). Comparison, of Eqs. (4.8) and (4.11) gives

(&I &~(*):~'(y):I~)
= (3/64oro)X„L(x, —y)' —ze]—'. (4.13)

The most singular term in the operator-product ex-
pansion of Tp(x):g'(y): is the term Ci(x —y)P(y) be-
cause @(y) is the Geld of lowest dimension in the expan-
sion. It is this term that has caused all the troubles with
subtractions and brea. kdown of conventional Ward
identities in Sec. III. To order A.„ this term does not
affect the other connected functions W. (xi,xp, x,,x,y),
etc. , because Ci(s) is of order X„and the connected parts
of (QI Tg(xi)@(xp)@(xp)g(y) IQ), etc., vanish in order 1.

The analysis of the other connected matrix elements
Wg(xi xg xp, x,y), etc. , for small x—y is complicated and
will not be given.

In a previous paper' it was postula, ted that there
would be specific local fields of isospin —,

' and —,
' involved

in nonleptonic weak interactions, and that these fields
have different dimensions, the isospin--, 6eld being of
lower dimension than the isospin-~ Geld. If this is true,
it was shown that the AI=~ rule is universal, with all
DI= 2 decays being suppressed by a power of (m/m~),
where re is a strong interaction mass ( 1 BeV) and
m~ is the weak boson mass or the equivalent. The
assumption is not true of the free-quark model. In the
free-quark model, the relevant local fields are the iso-
spin-ipand po parts of the Wick product: j„(x)j„st(x):
with j„(x) being the chiral SU(3) currents of the
model; both AI =

~ and hI =—,'components of the Wick
product have dimension 6. So it is worthwhile to con-
sider how perturbation theory changes the dimensions
of such a Wick product. To simplify the calculation, a
simple Wick product:P;(x)qh;(x): is discussed, where

@,(x) (i =1, 2, or 3) are the components of an isospin-1
scalar field. The interaction Lagrangian density will be
—XI P;PP(x)]'. Consider the matrix element

N';. (*,y, ) =(f11&~,(*)~;(y):~.()~ ():I» (4.14)

To order X, this matrix element (before renormalization)
is given by

yC, (z) (n I
2 y(x,):y'(y): Iu). (4.11)

"The zero-mass propagator Do(s) behaves as (s') ' for all z."It seems a bit strange that other local fields such as V'~V'&:qP (y):
do not occur in this expansion; presumably they will be involved
in higher orders in X„.

-&';,oi(p, q) =Do(p)Do(q) f &e&;i+&;8;i+(~/2~')

X(&;,4i+&a &, i+&a&~a)np(p+q)', Ii']}, (4 16)

where p is defined by Eq. (3.18). The Geld:p;(x)p, (x):
ha, s isospin-0 and isospin-2 components. The isospin-0
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component is P;:@;:;the isospin-2 components can be tained exactly in closed form, the result being
written as the traceless tensor:@,@;—z38,,+i.p/, '..
There is a corresponding decomposition of E;;i/(p, q):

p(qz A2) (1/16~2) (2 2A2/q2) ln(1 q2/A2)

&,;//(p, q) =&,;&/9 o(p, q)+ (&'/&pi+&'/&)/
—a~' ~~/)&z(p, q) (417)

where A"p is the isospin-0 component of X,,A, ~, and E2 the
isospin-2 component. Using Eq. (4.16) and using the
renormalized form of p [Eq. (3.29)], one gets

ln( q2/A2) + (1 4+2 &q2) 1/2

-(1 F2/q2) 1/2

Xln
(1—4A'/q') "'+1 (A1)

with q' being replaced by q'+is if necessary. For q'((A',
X(1+(5&./4zr')»[( —(p+q)' —z&)/&']& (4 18) this reduces to

&'(P,q) =Do(P) Do(q)

&&(1+(~./2~') lnL( —(P+q) =z~)/' )) .

do ——2+2.5 P,„/m'),

dz ——2+X„/zr',

(4.22)

(4.23)

so in order X„ the dimensions dp and d2 indeed differ.
Vote added i/z pro/f Other dis.cussions of the break-

down of scale invariance in perturbation theory have
been given by Callenz' Coleman and Jackiw, " and
Symanzik. '9

The rerlormalizatlorl is a wave-function renormalization
(with different renormalization constants for the iso-
spin-0 and isospin-2 components of:P,g;:).Let do and
d2 be the dimensions of the isospin-0 and isospin-2 com-
ponents, respectively, of:@„@;:.The Ward identities
which scale invariance imposes on Ep and E2 are

z(2d+do —8—p 7' —
q V )Xo(p q) =0 (4.20)

z(2d+dz —8—p V' —q. V',)Nz(p, q) =0. (4.21)

As in the case of the neutral held theory of Sec. III,
d is 1 through order A.„.Explicit calculation using Eqs.
(4.18) and (4.19) gives

p(q', A') —(—,', zr ') ln( —q'/A'), (A2)

giving Eq. (3.20). For q'))A. ', p is proportional to
/14(q2)

—2 ln(qz//12) The formula for y(p2 A2) js

~(p', A') = z / (q', A')((q —P)'+z~] '. (A3)

~(—P'A') =
/ (—q'A')L(q —P')] ', (A4)

where q is the four-vector (qi, q2, q&, q4) (and sim.'larly for

P) and q' is qi2+qzz+qz2+q42 (and similarly for q P and
p'). The integral over q can be performed in hyper-
spherical coordinates:

The function p drops off rapidly enough at large q' so
that the integral for Z converges (for finite A). The
function Z will be calculated first for spacelike p, and
then determined for timelike p through analytic con-
tinuation. For spacelike p, one can choose a Lorentz
frame in which po is 0. In this frame the integral over qo

can be rotated from the real axis to the imaginary axis
(counterclockwise). The result can be written in terms
of Euclidean four-vectors:
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qq=q cosO,

qz =
q s1110 cosp ~

qz ——q sino sing cosP,

/J4 ——q sino sing sing,

(A6)

(A7)

(A8)

APPENMX = (2zr)- ' q'dq sin 0 (Io sing dQ d1/l. (A9)

In this appendix the calcula, tion of //(p', A.') and
Z(p', A') LEqs. (3.17) and (3.18)] will be described
brieRy. Then the calculation of the Fourier transforn~
of W, (pi, p2) $Eqs. (3.25) and (3.21)] will be discussed.
The calculation of p(p', A') is a standard Feynman-
diagram calculation. The answer for finite A can be ob-

'.7 C, Callen, Phys. Rev. D 2, 1541 (j.970).
"- S. Coleman and R. Jackie, MIT report (uIIpublishe&3).

K. SQIQSIIzlk DKSV Report 70/20 (uQpublishcd).

Performing the angular integrations gives

~(—P',A') =-(8~'p') ' q"/( q' A')dq—

//p( /j', A')dq. (A10)—



A NO M ALOUS D I M ENS IONS AND TH F BREAKDOWN OF SCALE ~

When p' is small compared to A', the integrals can be
computed using the approximate form for p I Eq. (A2) 7
except in a constant term (the second integral with p
replaced by 0). The result ls Eq. (3.21) with P —Le'

lr) ———
A"-

0

zo
—1(e—/MA 'e'kf (o +2z))(jzo (A l 3)

rt)0, p, , . . . , p, being the components of P. Then one
wl ltes

c = (8zr'A') —'
qp( —zI', A')dzi (A11)

After s!bstitutirtg this formula, in Eq. (A12), the p
irlteg; a,tion can be done explicitly, leaving

and cr ——3(1024zr') '. The constant c is independent, of
A because p depends only on the ratio (zl'/A').

In Fourier-transforming 8', (pr, ps), the only integral
which is not already known is an integral of the form

zz(x) =- (ij 16zr') co-' exp( —ix'/4co)dho. (A14)

tc(x) = e
—'z' ' 1nl (—p' —ze)/A'7. (A12)

For x=0 this is highly divergent, but for x&0 the ex-
ponent serves as a convergence factor. If one wishes to
be careful one can insert an explicit convergence factor,
fo««mple, exp( —

I pole —
I prl~ —

I psl~ —
I psl~), with

u(x) = (1/z~') (x' —te)-'. (A15)

The i~ is present because x' needs an imaginary part
—ie to ensure that the integral (A14) converges.

)If the convergence factor is inserted in Eq. (A12), the
result is to cutoff the integral (A14) for zo(rts. 7 One can
change variables to v=cv ' and then compute the inte-

gral, obtaining
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A method is presented for obtaining an asymptotic series, for large values of the energy, of a four-dimen-
sional Fourier transform, using only one analyticity assumption. It is shown that this method implies (1)
asymptotic constancy of hadron total cross sections, as an "upper bound, " and (2) the Pomeranchuk.
theorem. A consistency check, which lends some plausibility to our assumption, is made. The calculations
are done within the context of frame-dependent cutoff quantum Geld theory.

I. INTRODUCTION

Y using the I,ehmann-Symanzik-Zimmermann
(LSZ) reduction formalism, one can express a,

great many physically interesting quantities in terms of
a Fourier transform,

I= d'x e+*''*I'(x),

where F is typically a matrix element of a, (possibly
retarded) commutator or anticommutator, and the four-
momentum g is on some mass shell. We shall describe
herein a very simple method for obtaining an asymptotic
expansion of such a quantity, for large values (this
will be made more precise below) of the energy q4, and
shall apply this method to the problem of hadron total
cross sections.

*Present address: School of Theoretical Physics, Dublin
Institute for Advanced Studies, Dublin 2, Ireland.

The method requires only one assumption, which is,
however, rather strong': It is that certain "light-plane
integrals" f+($) admit power-series representations
about )=0 which are valid in the interval /= I 0, oo).
At present, we cannot either prove or disprove this
assumption on theoretical grounds, although some in-
dications of its plausibility are available (see helot).
Its implications are, however, in good agreement with
experiment, at least for the processes that we have
treated thus far.

Assuming that the leading term in our asymptotic
expansion is nonzero, we obtain, in a model-independent
fashion, asymptotic constancy of tota, l cross sections.

' The same asymptotic expansion can be obtained also from
the considerably weaker assumption that f+(() admit power series
in some interval h = [O,a), for some a) 0, and independent of how
small a may be, by the nse of Watson's lemma PE. T. Copson,
Theory of Fzznctions of a Complex Variabte (Oxford U. P., Oxford,
1935), p. 2181. However, if one uses this method, the physical
amplitudes must be deGned by a diGerent limit than the one used
in the present paper /see Eq. (fi)]. The limit defined by Eq. (5)
reduces to the conventional one for local Geld theory.


