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An example of an operator-product expansion is worked out for the Thirring model. The Thirring model
involves a two-dimensional zero-mass Dirac field P interacting via the Fermi interaction. The model is scale
invariant but the dimensions of local fields in the model vary with the coupling constant X. It is shown that
io has dimension —,+ (X'/4s') (1—X'/4s') ', while the composite fields it/ and pys|k, appropriately defined,
have the dimension (1—X/2ir) (1+X/2v) '.

I. INTRODUCTION

' 'N a recent paper' several new hypotheses were pro-
~ ~ posed concerning the short-distance behavior of
strong interactions. One of the hypotheses was that
products of currents (or other local fields) at short
distances would have "operator-product expansions"
of the form

space and one time dimension interacting via the Fermi
interaction, is a suitable example for this purpose. In
this paper an example of an operator-product expansion
in the Thirring model is worked out. Also, the dimen-
sions of the field P, the current j„, and the scalar and
pseudoscalar fields lb' and. pygmy are computed. These
dimensions indeed differ from free-6eld dimensions,
except for the current. A much more thorough discus-
sion of the operator-product expansion is given by
Lowenstein (Ref. 6, Sec. IV).

where the O„(y) are a complete, linearly independent set
of local fields, and the functions C„„„(x—y) are func-
tions that give the singularities of the current-current
product when x —+ y. Another hypothesis was that the
strong interactions would become scale invariant at
short distances, ' in particular, that the functions
C„„„(x—y) would reflect scale invariance when x—y is
small except for small 6nite-mass corrections. A third
hypothesis was that the dimensions of the 6elds 0„
would be different from the dimensions of fields in any
free-6eld model of current algebra. To be precise, the
dimension of the current j„would remain the same as
the free-field dimension (namely, 3 in mass units) be-
cause this dimension is fixed by Gell-Mann's current
algebra. However, the dimension 6 of the pion field
would differ from the dimension predicted by any free-
6eld model; this dimension was considered an arbitrary
parameter since there is at present no way to compute
it.

It should be helpful to see how these hypotheses work.
in a model 6eld theory which can be solved explicitly.
The Thirring model, ' ' namely, a Dirac field in one
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II. THIRRING MODEL

The Thirring model involves a Dirac field P(x) in one
space and one time dimension. The field is coupled to
itself by the current-current interaction Xj„(x)j&(x),
where X is the coupling constant and j„is the current
lb'„p. Provided that the mass of the field is zero, the
model can be exactly solved. A transparent method for
solving the theory is described by Johnson. ' He uses the
fact that in the zero-mass theory both the vector and
axial-vector currents are conserved. He also needs the
result (special to one space dimension) that the axial-
vector current is just e„„times the vector current, where
e„„ is the covariant antisyrnmetric tensor. From these
results Johnson is able to reconstruct the two- and four-
point Green's functions of the theory. Any 2e-point
function can be derived by Johnson's method. "

The Thirring model is clearly a special theory, de-
pending for its solution on special properties of two-
dimensional space-time. However, any general feature

wyler, Helv. Phys. Acta 38, 431 (1965); C. M. Sommerfield, Ann.
Phys. (N. Y.) 26, 1 (1963).' J. H. Lowenstein )Comm. Math. Phys. 16, 265 (1970)j
discusses operator-product expansions using Klaiber s solution
(Ref. 5). However, Lowenstein does not discuss scale invariance
as it is proposed here. What he refers to is an earlier unpublished
version of the author's formulation of scale invariance for opera-
tor-product expansions. In this earlier version, fields were assigned
their free-held dimensions, but the operator-product expansions
were allowed to violate scale invariance thr'ough logarithmic
terms. Lowenstein correctly points out that this hypothesis is
inadequate for the Thirring model in strong coupling. This is in
fact the reason the earlier version was not published. A summary of
the hypotheses of the earlier version appears in R. A. Brandt,
Ann. Phys. (N. Y.) 44, 221 (1967), Appendix C. The author
apologizes to those who have been inconvenienced by the unavail-
ability of the earlier work and the long delay in providing a
substitute.
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a= (1—X/20r) ',
a = (1+X/20r) —'.

(2 3)

(2 4)

The spin matrix &0 multiplies G(x —y) and the spin
matrix yo, multiplies G(x' —y'). The exchange term in

Eq. (2.2) is sufhcient to make G(xx'yy') antisymmetric
to either x+-+x' or y&—+y', as is required by Fermi
statistics. Explicit formulas for the free propaga. tors a,re

Do(z) = (—i/41r) ln( —s'+io),

G, (s) =+ (1/2~)q„z~(s' —io)
—'.

(2.5)

(2.6)

The function G(x—y) has been norinalized arbitrarily.
Customarily, the normalization of G is fixed by the
canonical commutation rules, but in the Thirring model
with interaction, P does not satisfy canonical commuta-
tion rules4 and can be normalized arbitrarily. One can
also add an arbitrary constant to Do without affecting
anything except the normaliza, tion of f; this fact can be
used to replace ln( —s'+io) by in/( —s'+io)/xoo), where
xo is a constant length, thus making the argument of the
logarithm dimensionless. The constant xo is put equal to
1 here. Johnson also obtains matrix elements of the
current j„(x);in particular,

= (g""a+0""ago)

&« "&Do(y —x') —Do(y —y') jG(x' —y') (2.7)

Explicit forms of g&', e&", a,nd the y matrices used here
are as follows:

of quantum field theory, which one expects to hold for all
quantum field theories, must hold in particular for the
Thirring model. The operator-product expansion is a
property which one would like to hold generally, so it is
worth investigating whether operator-product expan-
sions exist in the Thirring model. Furthermore, working
with the explicit formulas of the Thirring model is one
way to get experience with operator-product expansions.
Finally, the Thirring model is one of the sources for the
idea that the dimension of a, 6eld is a dynamical.
quantity, i.e., dependent on the strength of the inter-
actions of the field.

The two- and four-point functions obtained by
Johnson are as follows:

G( —y) ='(1~l&~(*)~(y) l~)
=expL —iX(a—a)D0(x —y)]G0(x —y), (2.1)

G(**'yy')= —(&I&0( )0( ')4(y')P(y) l~l)

=ezp(iX(a —a&0,&o )LD0(X—X') —Do(X—y')

+Do(y —y') —Do(y —x')]}G(*—y)
XG(x' —y') —(term with x ~ x'), (2.2)

where ~Q) is the vacuum state, T is the time-ordering
symbol, Go(x —y) is the free Dirac propagator (zero
mass), and D, (x—y) is the free props, gator of a zero-
mass scalar field. Also,

(goo gll) (1 1)
~10

(yo ~1 ~0) (~0 1~1 ~R)

(2 g)

(2.9)

(2.10)

where 0-', 0-', and 0-' are the Pauli matrices.
From the Green's functions it can be seen that the

field P is scale invariant, and the dimension of f can be
determined. If P is a scale-invariant field, there exists a
unitary transformation U(s) with the property

Ui(s)P(x) U(s) =s"P(sx), (2.11)

where d is the dimension of P in mass units. By con-
jugation one gets also

U'(s)P(x) U(s) =s"P(sx) . (2.12)

Assuming the vacuum to be invariant to scale trans-
formations, one has

iG—(x y) =—(Q(TQ(x)P(y) ~Q)

=(fl
I
U'(~) 2'4(x)0(y) U(~) I

fl) (2 13)

Because U(s) is unitary LU(s) Ut(s) =1j, one has

U'(~) &0 (*)f(y) U(~) = U" (~)2'P(x) U(~)
X U'(.)y(y) U(s) ="'&P(sxg(sy). (2.14)

Hence scale invariance and an invariant vacuum imply

(2.15)
Similarly,

G(xx'yy') = s4 "G(sx,sx', sy, sy') . (2.16)

Both of these equations are satisfied by Johnson's
solution provided that

d = -', + (9/41r') (1—X'/40r') —'. (2.17)

The scaling law for G(x —y) follows froin the fact that
Do(x —y) is a logarithm in (x—y)', so the exponential of
Do is a power of (x—y)'. The scaling law for G(xx'yy')
follows from the fact that. the exponential in Eq. (2.2) is
independent of scale transformations (since the expo-
nential involves differences of logarithms that can be
combined to involve only dimensionless ratios); one is
left with the product G(x —y)G(x' —y') which scales
as s

Sim.ilar arguments hold for the 2n-point functions.
Hence all the Green's functions are consistent with
scale invariance and an invariant vacuum. This means
that the theory is scale invariant and has an invariant
vacuum, unless there is some feature of the theory that
cannot be determined from the Green's functions and is
not invariant. I do not know of any such feature.

When X=O, the dimension d is 0.5, which is the
dimension of a free spinor field f in one space and one
time dimension. The dimension 0.5 is what one predicts
for f using the canonical commutation relations. For
nonzero X, d is greater than 0.5, which is inconsistent
with canonical commutation relations, but one already
knows that the canonical commutators do not hold for
) &0. As X —& 2x, d —&~, so the departure from the
free-field. dimension can be arbitrarily large. Further-
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uiore, d' need not be an integer or half-integer. Clearly
one has to Inodify one's usual understanding of what a
dimension is in order to accept the dimension that iP has
in the presence of interaction.

Using Johnson's solutions for the two- and four-point
Green's functions, one can construct the leading terms
in the expansion of Tf(x)P(y) for x near y. ' To be
complete, one must use all the 2e functions; this
problem will not be discussed.

Consider first the free-field limit P =0). In this limit
one can express the T product in terms of a Wick
product:

TlP (x)P(y) = —
&G& (x y)I+; P—(x) tP (y):, (2.18)

where I is the unit operator. To obtain an operator-
product expansion, one must express the Wick product
in terms of local operators of y. This is accomplished by
expanding:f(x)iP(y): in a Taylor's series in x—y:

:4(x)4(y): =:k(y)W(y):
+(x—y)":rrA (y)]k(y):+. (2 19)

This expansion is legitimate for any given matrix
element of the operator:P(x)iP(y): because the x
dependence of the matrix element depends only on the
momenta of the states in the matrix element and is
smooth as x —+ y. In contrast, one cannot expand

TP(x)P(y) in powers of x—y because of the Go term
which is singular when x=y. The operator-product
expansion for TP(x)g(y) is x =x'axo. (2.25)

where the "remainder" includes terms which are smaller
by at least one power of x—y than the terms C& C4.
The functions Ci(x—y) C4(x—y) are 2X2 matrices
labeled by the spin indices of f(x) and P(y). When this
expansion is sandwiched between the operators tP(x')
and P(y'), one obtains

—G (xx'yy')
= —G(x—y) G(x' —y')+Ci(x —y)

&(fI
I T&+(y)4 (*')0(y')

I
f~)

+C (x—y)«T4 (y)P(x')P(y') In)
+C (x—y)(Q I Tj (y)4'(x')P(y') IQ)

+C4(*—y)« I Tj-(y)4 (x')0(y') Ill)
+remainder. (2.24)

It is this formula that will actually be derived. It
implies that when x—

y is small, G(xx'yy') can be
written as a sum of products of functions of x—y
(Ci, etc.) times functions only of y, x', and y', apart
from a small remainder term.

The calculation which gives Eq. (2.24) will now be
laid out. It is simplest (in the author's experience) to
work with spin components in an explicit representation
of the y matrices, rather than writing formulas in
covariant form in terms of y matrices. The repre-
sentation has already been given [Eq. (2.10)j. It is
convenient to introduce the following definitions and
formulas. For any space-time variable x, let

T4 (*)0(y)= Go(* y)I—+:4 (y)—4(y):
+[terms of order (x—y) j. (2.20)

In studying the generalization of this expansion to
interacting fields, the terms of order x—y will be ignored,
to simplify the analysis. Also the operator:iP(y)g(y): is
actually four separate operators because P and tP both
have two components. It will be convenient to generalize
each component separately to the case of interacting
fields. A convenient separation of:f(y) P(y): into
components is to define

Then

where

Define

x' = (x')' —(x')' = —x+x,
x.y=x'y' —x'y'= ——,'[x~y +x y+g,

y„x&= i(o~x+—+a x ),

o ~=—,
' (oia io') .

$=x—y,
s=@'—y,

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

and
4+(x) =:4(y) (1~&5)4 (y): (2.21)

j+(x)=:4(y) (~'~y')4 (y): (2 22)
Define

s'=y' —y. (2.32)

The operators j~(x) are just the combinations j (x)
~j'(x) of components of the current j&(x); the gener-
alization to interacting fields is that j~(x) continue to be
j'(x) &j'(x). The fields P+(x) do not have an a Priori
generalization to the interacting case. The matrix
elements of p~ will have to be determined as part of the
calculation which determines the generalization of
Eq. (2.20).

The generalization of Eq. (2.20) which will be ob-
tained here for interacting fields has the form

T4 (*)0(y)= —iG(x —y)I+Ci(*—y)&+(y)
+C2(*—y)4-(y)+Ca(x —y) j+(*)

+C4(x—y) j (y)+remainder, (2.23)

P =X(a+a)/4ir = (X/2ir) (1—X'/4ir') —' (2.33)

y = P./47r) (a—a) = P '/4m') (1—X'/4s') '. (2.34)

Note that

Also,

y/P =P/(y+1) =X/2m,

d= 2+7.
(2.35)

(2.36)

G(k)=(/2 )(—8) ' '(5- -+4+) (237)

Now a whole sequence of formulas will be quoted
giving explicitly various components of G(xx'yy') and
other matrix elements. These formulas can all be
derived straightforwardly from Johnson's formulas
[Eqs. (2.1), (2.2), and (2.7)). The formulas are sepa-
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rated by components of P(x') and g(y'), since for each
component of f(x') and f(y') considered separately one
has a matrix element of TP(x)P(y) to study. In the
following, "remainder" means a term smaller by at
least one power of $ than any term given explicitly. The
matrix elements supplied besides G(xx'yy') are matrix
elements of j~(y), for all X, and matrix elements of

p~(y) for free fields. Only the nonzero matrix elements
of these operators are listed. Note that in Eq. (2.2) for

G(xx'yy'), the matrices y5, and p5 ~ are diagonal be-
cause of the representation (2.10); y5, and y5, will be
either +1 or —1 depending on what components of
P(x) and P(x') are being considered. The 6rst and
second terms in both Eqs. (2.44) and (2.48) below are
of order $ '& '. These terms are expanded to order
$ '&, i.e., terms of order f '& ' and g'& a. e kept in the
expansion, the remainder being of order $ '&+'. For all
other terms only the leading order in $ is kept.

(A) Matrix elements with Pi(x') and |ti(y'):

« I Tpi(x')p(x)p(y)pi(y') I &) = —(1/4ir') [s'(»' —5)'?' 'L(s —5)'(s')']'[(» —»')V] '(5—s')-»+X 2 (1—o') (2 38)

=+(1/4»')[s's"]» '[—(s—s')'] ~(s s ')[—P] »Xi»(1 —o')+remainder, (2.39)

«IT&.(")~ (y)~.(y') l~) = —(1/4-') (""')-'(2»+»-') (f- ~=0). (2.40)

(8) Matrix elements with P~(x') and $2(y'):

(nl T4 (x')4(x)4'(y)A(y')
I ~) = —(1/4~') Ls'("—&)']-~-'X[(s—g""]'I (s—")'P]-'(&—") ~ X-'(1+o') (2 41)

=+(1/47r')[s's"]s i' '[—(»—s')'] s(s+'» )(—p) »X2(1+oa)+remainder, (2.42)

(0I &6(&')4+(y)A(y')
I ~) = —(1/4ir') (s'»") '(2»-»+') (~ =0) . (2.43)

(C) Matrix elements with Pi(x') and Pg(y'):

(fl
I
Tfi(~')4 (*)4'(y)4'2(y')

I
~)

= (1/4 )[e(s—")']- -'[(»—~)'(")']»[("—«)'"]-'&-(»—") .—
+(1/4 ')[P( —')'] ' 'C( —5)' "1'[( ' —5)' '] '4( —')

-(1/4-')I "("-~)']--'[(s-&)""1[(s-")V]- (~—") ~ - (244)

=+(1/4~')[ —(s—s')'] ' '(s —»')+( —P) ' '[&-o-+&+o+1+(1/4~')[—(»—s')'] " '(s'»") '

X{p(»—"),(.—"); (—8)- -'[~ ' +(~+1)p-'~ & ]
+y(s —s')+'s s '( —P) ~ '[Py '$+$ o. +(~'o+])+remainder, (2.45)

«IT4i(*') j+(y)A(y') I&)= —i(~&) 'pL —(s—s')'] ' '[s's"] '(s —»')+(» —s')»+s+', (2.46)

«I 2'& ( ') j-(y)& (y')
I
~1) = —( &)-'v[—( —")']--'["."]-'(.—') ' (2.47)

(D) Matrix elements with $2(x') and pi(y'):

«l~~. (")~(*)~(y)~ (y) I»
= (1/4~') IP(» —")']-"-'L(»—&)'(')']»[("—p)'»2]-&~ (s-")

+(1/47l2)[$2(s s~)2]—7—i[(s $)2»/2]p[(s/ ~)2»2]
—

&~ (s»l)
—(1/4ir')[»'(»' —$)2]

—~—i[(s—()&s'2]v[(»»')2p] —
&(( s~) s o (2 48)

+(1/4s )L (» s ) ] ~ (s s )—[ p] & i[) o' +)~0'y]+(1/4». 2)[ (s»i)2]—y—1[»2»~2]—i

X(&(s—') 's, ,'(—p)- -'[~ +p&- ( 5, ,]+p(,
X(s s )—»—s—(—P) ~ '[(7+1)p '$~$ o +)~'o+])+remainder, (2.49)

(~ I
TA(*') j+(y)4i(y') I &) = —i(~&) 'q[ —(» —s')']——'[s'»"]—'(s —s') '»+»+', (2.50)

(~1l T&2(*')j-(y)&i(y') l~)= —i(~~) 'PL —(» —»')') ' 'Ls's"] '(» —s') (s—s')»» ' (2.51)

Given Eqs. (2.38)—(2.51),it is straightforward to verify
the expansion (2.24). The first term G(x —y)G(x' —y')
is known explicitly and becomes the first term in the
expansions (2.45) and (2.49). In the free-field limit

@+(y) has a nonzero matrix element only between $2(x')
and Ps(y'). Furthermore, in the free-field limit the
matrix elements of the other three operators (P, j+,

and j ) with $2(x') and $2(y') a.ll vanish. This turns out
not to be an accident; it is a consequence of the con-
servation of axial charge, namely, the charge whose
current is the axial-vector current e&"j„. From the
commutation rules given by Johnson, 4 Pi and Pi have
axial charge a while f2 and f2 have axial charge —a.
Hence, from Eqs. (2.21) and (2.22), j+ have axial
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charge 0, tt+ has axial charge 2a, and p has axial charge
—2a. The total axial charge of all 6elds in a nonzero
vacuum expectation value must add to 0. Thus P+ has
nonzero matrix elements only with f2/~, p with fiPi,
and j~ with Pi/2 and $2/i. Let us assume that @+and P
continue to have axial charge 2a and —2u, respectively,
for nonzero X. Then only the Ci term in Kq. (2.24) will
occur in the expansion of the $2(x') P&(y') matrix
element of Tf(x)P(y). Comparing Eqs. (2.24) and
(2.42), we see that they agree provided that

(2.52)

(fl
I T42(*')&+b)&~(y')

I
~l)

(4~2) )
—1Lz2z&2)P—i—ll (z z~)2)—Pz lz (2 53)

where bj is an arbitrary constant. The value of bj is
unimportant since it can always be changed by changing
the normalization of P+. Since Ci and the matrix
element depend on different variables, both are de-
termined from the single equation (2.42) except for the
scale factor bi Apart. from the scale factor, Eq. (2.53)
reduces to the known free-field matrix element of
@+ LEq. (2.43)) when ii~0.

An analogous argument gives

from Eq. (2.39).
To determine the C3 and C4 terms in the expansion,

one can look at either the fi(x'). $2(y') or the
$2(x') Pi(y') matrix elements. Consider first the
Pi(x') $2(y') matrix element LEq. (2.45)). The first
term in its expansion matches the G(x—y)G(x' —y')
term in Eq. (2.24). The other term in Kq. (2.45) is a
linear combination of j+ and j matrix elements. This
is easily seen since the matrix elements of j+ and j are
known explicitly. Comparing Eq. (2.24) with Eqs.
(2.45)—(2.47), and using Eq. (2.35), one gets

C, (~) =(+a~/4~)( —p)- '
XL~ '~ +(2~/X)~, [ ~,), (2.56)

C4(P) =(+i)/4m)( —P) & '

X((2~/X)$ $ o +$„' ). (2.57)

The coefFicients of these functions in Eq. (2.45) are
precisely the matrix elements of j+ and j given by
Kqs. (2.46) and (2.47).

One can also determine C3(g) and C4($) from the
$2(x'). .fi(y') matrix element. Using the identity
(2.35), the result is again Eqs. (2.56) and (2.57).

With Ci ~ C4 given by Eqs. (2.52), (2.54), (2.56), and
(2.57), and the nonzero matrix elements of p+ and. j~
given by Eqs. (2.53), (2.55), (2.46), (2.47), (2.50), and
(2.51), it is now seen that the expansion (2.24) holds
with the remainder being smaller by one power of $

than the terms kept for each axial-charge component of
k(*)Wb).

Given the matrix elements of p+ and j+ one can
determine the dimensions of these fields. Using the
same type of analysis as was used earlier for G(z —y),
one finds that scale invariance implies that

de = (1—X/2ir) (1+X/2n. ) '. (2.59)

The same analysis for j+ gives its dimension as
always. This is required in any case if the equal-time
commutation rule for f with j' is scale invariant. '

While the dimension of P increases with li, going to
~ when X —+ 2ir, the dimension of the composite field @
decreases with X and goes to zero as X —+ 2x. In the free-
field limit @+ has the same dimension as the product
PP; but this is no longer true in the presence of inter-
action. The current j+ also does not have the dimension
of fp„f in the presence of interaction, nor do @+ and j~
have the same dimension in the presence of interaction.
So the dimensions of the fields f, @~, and j~ get almost
totally scrambled by the interaction.

Scale invariance requires that the f dependence of
Ci($) . C4(g) be such as to make dimensions rnatch in
all terms of the expansion (2.24).' For example, from the
dimensions of P, P, and P~, one deduces that Ci must
obey

C (k)=~'" "«(~k). (2.60)

This formula is easily verified using Eqs. (2.52), (2.36),
and (2.59). C2, C,, and C4 also can be shown to scale
according to the analogous rules.

Thus we have the beginnings of an operator-product
expansion for TP(x)P(y) in the Thirring model. A
complete analysis would require studying matrix ele-
ments of Tf(x)f(y) with arbitrarily many other fields„
and expanding to all orders in x—y. But such an
analysis would be more than an exercise. The above
analysis should be sufhcient to clarify somewhat the
nature of an operator-product expansion and to empha-
size the dynamical character of dimensions of fields in
the Thirring model.

iVote added irt proof. 'For recent work related to this
paper, see H. Giorgi, Phys. Rev. D (to be published),
and B. Schroer, University of Pittsburgh Report No.
NYO-3829-56 (revised version) (unpublished).
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=~'"+'"'(~~I T0(»')0+(e)4(e") I fl) i (2 58)

where dq is the dimension of P+, and d the dimension of
P Lgiven by Eq. (2.36)). Comparing this requirement
with the explicit formulas (2.53) and (2.55), one gets


