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The charged scalar theory of x mesons interacting with a fixed nucleon source is truncated as follows:
~ mesons are permitted to exist only in a set of discrete states P (k) such that k is of order A in the state

(4); A is an arbitrary constant above 4)&10'.Also, two mesons of the same charge cannot occupy the same
state. The resulting Hamiltonian can be solved by a perturbation expansion in h. ~ provided there are only
a finite number M of states P . When M' ~ ~, the renormalized coupling constant and ground-state energy
diverge in perturbation theory (in the coupling constant). If the unrenormalized coupling constant is allowed
to go to inhnity as M ~ ~, it is proven that the renormalized theory exists (without ghost states) for any
value of the renormalized coupling constant. The proof uses the perturbation analysis in A. i carried to all
orders. This analysis leads to the definition of a transformation T which eliminates one meson degree of free-
dom from any given Hamiltonian, replacing it by an effective Hamiltonian with one less degree of freedom.
The effective Hamiltonian gives exactly all energy levels of the original Hamiltonian except those with
mesons in the removed degree of freedom. The renormalizability of the theory is proven using topological
properties of T. In particular, there is a subtx;ansformation T~ with a nontrivial 6xed point P, whose prop-
erties determine the principal features of the renormalized theory. The idea of the 6xed point is a generalzia-
tion of the Gell-Mann —Low eigenvalue condition for the bare coupling constant of quantum electrodynamics.

I. INTRODUCTION

HE problem of renormalization has been remark-
ably unimportant in the study of pure strong

interactions (i.e., strong interactions without radiative
or weak corrections). The ideas developed since 1954—
dispersion relations, Regge poles, current algebra, and
pole dominanc- all can be formulated and applied
without encountering any of the divergences that occur
in unrenormalized perturbation theory. As a result one
gets the impression that renormalization is no more than
a technical modification which one makes on closed-
loop Feynman graphs when very accurate perturbation
formulas are needed, as for the electron magnetic
moment. This impression has encouraged the idea that
Lagrangian models of current algebra, such as field
algebra and the quark model, can be analyzed for their
equal-time commutators as if renormalization were
unnecessary. '

An entirely opposite picture results from exactly
soluble models of field theories with interaction. There
are two known Inodel theories which require wave-
function or charge renormalization, namely, the Lee
modep and the Thirring model. ' It is well. known that
the renormalized Lee model has a ghost state. The
Thirring model involves the Fermi interaction for a
zero-mass spinor field in one space and one time
dimension. The model has a solution after renormali-
zation, but the solution has radically different behavior

~ Work supported by the U. S. Atomic Energy Commission.
t Permanent address.
'This idea persists despite the rseults of S. Adler and Wu-Ki

Tung /Phys. Rev. Letters 22, 978 (1969)) and R. Jackiw and
G. Preparata /~bid 22, 975 (1969);.22, 1162 (1969)j, who show
that equal-time commutators are affected in perturbation theory
by renormalization.

'T. D. Lee, Phys. Rev. 95, 1329 (1954).
s W. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958); K. Johnson,

Nuovo Gmento 20, 775 (1961).
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at short distances from what one would expect from a
canonical Lagrangian picture. The renormalized spinor
field does not satisfy canonical commutation relations. 3

More generally, the renormalized theory is scale in-
variant, as one would have predicted from the La-
grangian (there are no dimensional parameters in the
Thirring model, the only parameter being a dimension-
less coupling constant). However, the renormalized
fields (but not the conserved currents) have different
scaling properties from those one predicts from the
canonical commutation rules. The dimension of the
spinor field (which determines its scaling properties)
depends on the coupling constant and can vary from
—,
' to ~.'

The only known relativistic theories where renormali-
zation does not affect the short-distance behavior
appreciably are the "superrenormalizable" theories
which may require mass renormalization but do not
require infinite coupling-constant or wave-function
renormalization in perturbation theory. ' In these
theories the short-distance behavior is close to the free-
field behavior. Vnfortunately, there are no acceptable
four-dimensional superrenormalizable theories.

In a recent paper, it was proposed that there would
be nontrivial renormalization effects in strong inter-
actions. ' It was postulated that these effects wouM
have the same form as in the Thirring model, namely,
scale invariance would be valid at short distances but
the dimensions of local fields would be different from
any free-field model (except for the currents of current
algebra whose dimensions are fixed by the algebra).

4The anomalous scaling properties of the Thirring model are
implicit in Johnson's solution (Ref. 3); see also Ref. 6.

5 The two-dimensional p4 theory analyzed by Jaffe and Glimm
is in this class. For references, see A. Jaffe, Rev. Mod. Phys. 41,
576 (1969).' K. Wilson, Phys. Rev. 179, 1499 (1969).
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It was shown that renormalization eRects could account
for a universal AI=2 rule in weak interactions and
could determine the convergence or divergence of some
of the steinberg sum rules.

The fact that the dZ=~ rule might be explained by
renormalization eGects means that renormalization can
be of great practical importance. One would like to
understand renormalization better. The Lee model and
the Thirring model fall far short of providing the depth
of understanding required. The reason is that both
models have very special features and the renormali-
zation of these models may simply reQect these special
features. The Lee model is special because of the
decoupling of the X-8 channel from the many-particle
channels. This decoupling is the simplification that
makes solution of the Lee model possible. The Thirring
model is special for many reasons, but in particular the
electromagnetic current of the Thirring model satisfies
a free-field equation which is the starting point for
solving the model. Also, there is no coupling-constant
renormalization in the Thirring model. If there had
been coupling-constant renormalization in the Thirring
model, it might have shown the same diseases as the
Lee model which does involve coupling-constant
renormalization.

The purpose of this paper is to define and solve a
new model of coupling-constant renormalization. The
new model is a cousin of the Lee model but its renormali-
zation is very different from that of the Lee model.
The new model is a derivative of the charged scalar
theory of pions coupled to a fixed nucleon source. The
model Hamiltonian is obtained essentially by projecting
the Hamiltonian of the charged scalar theory onto a
specially constructed subspace of the original Hilbert
space. The result of renormalizing the model is that the
renormalized theory exists without ghosts; the re-
normalized coupling constant is arbitrary but the
unrenormalized coupling constant is in6nite.

The model of this paper cannot be solved in closed
form. To make it soluble by series expansions, a large
parameter A is introduced artificially into the model;
the model is then solved by an expansion in A '. A is
introduced by restricting the ~ mesons of the model
to be in one of a discrete set of wave functions P (k),
where the mean momentum of P (k) is A~ (in units of
the pion mass). Thus instead of the pion energy being
continuously variable from 1 to ~, it is restricted to
the discrete values 1, A, A2, etc. This means the Hamil-
tonian has some terms of order 1, some terms of order
A, etc., so one can do perturbation theory when A is
large. This idea was explained in an earlier paper~
where a more complicated version of the model was
proposed.

Because the model cannot be solved in closed form,
the renormalization analysis is much more complex
than that for either the Lee model or the Thirring

7 K, Wilson, Phys. Rev. 140, 8445 (1965).

model. The analysis is further complicated because one
cannot simply study the lowest-order term in the A '
expansion. To prove the renormalizability of the
theory, one must show that the expansion in A ' of the
renormalized theory is finite to all orders and that the
sum of the series converges. To prove this, a rigorous
analysis of the model is given using formal techniques
of analysis in Hilbert space plus some topological
methods. The formal analysis is possible because the
model is specially constructed to involve only bounded
operators. To ensure that no unbounded operators
occur, the number of s. mesons per state P is limited
to one of each charge, and the total number of states

is cut off at m=M. One investigates the limit for
M —+~, but for any finite M one has bounded operators.

The author recommends that the papers of Lee'
(on the Lee model) and Johnson' (on the Thirring
model) be read before attacking the present paper.
They provide some background on exact solutions of
renormalizable theories and are very much simpler
to read.

There are three interesting features in the model
of this paper. The 6rst is simply that a finite renormal-
ized theory exists. Actually, all that is proved is that
the renormalized energy levels exists. Because there are
no continuum (momentum) states open to pions, there
is no scattering in the model; all energy levels are
discrete and hence calculating the energy levels is the
most important problem in the model. The theory is
found to be free of ghosts. No matrix elements of
operators other than the Hamiltonian are discussed.
In particular, the nucleon isospin operators are not
examined, which means we cannot compute the re-
normalized coupling constant as conventionally defined.
The reason these operators are not considered is that
the analysis that would be required exceeds the author' s
patience.

The second feature of the model is that scale in-
variance is preserved in the renormalized theory for
energies large compared to the pion mass. The un-
renormalized Hamiltonian of the full charged scalar
theory is scale invariant in the limit of zero pion mass.
This invariance is preserved in the unrenormalized
Hamiltonian of the model except that it is a discrete
invariance: Only scale transformations which take wave
functions P (k) into wave functions P~q(k) occur in
the model. The renormalized energy levels exhibit scale
invariance when the energies are large, but the scaling
law is different from what one predicts from the un-
renormalized Hamiltonian. To be precise, the un-
renormalized Hamiltonian Ho goes into A IIO when

—+f~q, apart from terms of order 1, but the re-
normalized Hamiltonian H~ goes into A 'PH~, where

p is a constant (about —,'). Thus the model of this paper
supports the hypothesis that renormalization can
preserve scale invariance at large energies but will
change the scaling laws of operators.
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The third feature of the model, and probably the
most important, is that in order to prove the re-
normalizability of the model, it is necessary to de6ne
and study a topological transformation T acting on a
space S of cutoff Hamiltonians. The space S contains
the unrenormalized cutoff Hamiltonians for any cutoff
3E. However, it also contains cutoff Hamiltonians
involving arbitrarily complicated interactions involving
products of arbitrarily many Ineson creation and
destruction operators. In other words, the space S
includes nonrenormalizable interactions of arbitrarily
complicated structure. The transformation T takes a
Hamiltonian with cutoff 3f into a Hamiltonian with
cutoff 3II—1 without changing the physics of these
Hamiltonians. To be precise, the original Hamiltonian
and the transformed Hamiltonian have exactly the
same energy levels except for those energy levels with
mesons explicitly present in the state /sr, such levels
are not present in the transformed Hamiltonian. The
transformation defines how the coupling constants of
all possible interactions must change as the cutoff 3II

changes in order to keep the energy levels of the theory
fixed. Having very many coupling constants all changing
as the cutoff changes is analogous to having an infinite
number of counter terms in a renormalization analysis
in ordinary perturbation theory. One has an infinite
number of counter terms when one tries to renormalize
a nonrenormalizable theory. This is customarily re-
garded as a disaster, for one presumes that for every
infinite counter term there is an arbitrary 6nite counter
term, leading to an infinite number of parameters.
This disaster does not occur in the model. The reason
is that strict bounds on the coupling constants will be
included in the de6nition of S, and one cannot introduce
extra free parameters without violating these bounds.
What actually happens is that the possible renormaliz-
able theories of the model are described by effective
cutoff Hamiltonians obtained by applying T an infinite
number of times to the original unrenormalized uncutoff
Hamiltonian. This means that the renorxnalized Hamil-
tonians must lie in a subspace R8 of S, where Eq is the
limit of the subspaces T (5) for nz —+~. The space Es
is found to be a three-dimensional space for given
cutoff 3f. Hence there are only three adjustable param-
eters in the renormalized Hamiltonian: a scale factor,
an additive constant, and the renormalized coupling
constant (suitably defined).

If one is interested only in the first two features of
the model one can probably skim the hard parts (Sec. V
and Appendix 8). One would rea, d these sections in
detail only to check for mistakes. However, to under-
stand the transformation T one must study the whole

paper in detail; it is hard to have a clear understanding
of the role of the transformation T without studying
the spaces T (5); one must see how these spaces shrink
with m to the limiting space Rg, and one must under-
stand in practice the relevance of these spaces to the
renormalization problem. At present the only way to

get the necessary practice is to work through the model
of this paper.

Gell-Mann and Low have given a general discussion
of nonperturbative renormalization theory, using quan-
tum electrodynamics as an example. ' The relation of
their work to the type of model considered here is
discussed in Sec. VII. The idea of a transformation T
in which an infinite set of coupling constants are trans-
formed as the cutoff M is reduced is a generalization of
Gell-Mann and Low's idea of a cutoff-dependent
electromagnetic coupling e(A).

In the author's previous paper on model Hamil-
tonians, 7 a more complicated model was discussed, in
which z mesons were allowed to have any momentum
in the intervals 0&k(ko, —,'A&k(A —'A'&k(A' etc. ,
where ko was a constant. This meant the meson creation
and destruction operators were continuum creation
and destruction operators, which are hardly suitable
for rigorous analyses. The A ' expansion was proposed
but only carried out in lowest order. Even the lowest-
order calculation was complicated by the fact that the
unperturbed Hamiltonians were themselves insoluble
field-theoretic Hamiltonians. One had to guess the
qualitative structure of their solution. Furthermore,
as the cutoff 3f went to infinity the coupling constant
in the unperturbed Hamiltonian had to become large,
resulting in closely spaced isobar states, which inter-
fered with the perturbation calculation in A. '. None of
these difhculties are present in the model of this paper.
The meson creation and destruction operators of this
paper are defined to be discrete and bounded. The
unperturbed Hamiltonians are 6nite dimensional and
diagonalizable in closed form (cf. Table I). The energy-
level spacing of the unperturbed Hamiltonian does not
become small for large coupling —the isobars in the
previous theory involved many mesons in a single
quantum state and this is forbidden in the present
model. This means the present model lacks much of the
physics of the full charged scalar theory, but it still
illustrates the renormalization problem, which is its
only purpose.

This paper divides into three stages. The first stage
consists of Secs. II—IV. In Sec. II, the Hamiltonian of
the model is defined. In Sec. III the perturbation
expansion in A ' is formulated for the cutoff Hamil-
tonian and some properties of the expansion are worked
out in low orders. In Sec. IV a perturbation formula is
defined which allows the A ' expansion to be de6ned to
all orders in a convenient form. The second stage
consists of Secs. V and VI. In Sec. V the transforma-
tion T is defined. Its principal properties are stated
(Theorems 1—4; the proofs of these theorems are in
Appendix 8). Then the topological analysis required
to prove renormalizability is carried through. Finally,
the renormalized Hamiltonian is defined for any given

s M. Gall-Mann and F. K. Low, Phys. Rev. 95, 1300 (1954l.
See also M. Baker and K. Johnson, ~bid. 183, 1292 (1969).
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renormalized coupling constant. In Sec. VI scale
transformations are de6ned, and the scaling properties
of the renormalized energy levels are computed. The
third stage consists of Sec. VII, where it is shown that
the transformation T is more than a technical device
to prove the existence of the renormalized theory.
Specifically it is shown that the renormalized theories
are not the unique solution of any uncutoff Hamil-
tonian; instead, the transformation T is involved in
the dehnition of the renormalized theory, and this
de6nition is most simply stated in terms of one of the
6xed points of the transformation. We also relate the
renormalization program of this paper to conventional
renormalization theory and especially to the Gell-
Mann —Low analysis.

5I. MODEL HAMILTONIAN

The unrenormalized Hamiltonian of the model is as
follows:

H= Q A"{(a ta +b tb —1)
m=o

+g.( -+b-') "+g.(."+b.) -}, (2.1)

where go and A are constants, r+ and v are the isospin
raising and lowering operators for the nucleon, and the
operators a ~ and b ~ are x+ and m creation operators,
respectively, for the state P . The subtraction —1 is
included for irrelevant reasons. The constant A must be
large ()4&(10' in the rigorous analysis). To prevent
two ~+ or two m from occupying the same state, the
operators a, a ~, b, and b ~ are assigned the commu-
tation relations of a set of Pauli spin operators:

bot —+ Q b tf„(k). (2.6)

After these substitutions are inserted in the full Hamil-
tonian, one must drop any off-diagonal products such as
a„ta (eAre) and replace integrals such asJ'oruo ~f~(k) ~'

or jo(2&os) '~'f (k) [where ~& js (1+ko)&lsj by order-of-
magnitude estimates, assuming that the functions

(k) are normalized to unity and vanish unless
k A . There is no need for the model Hamiltonian to
have any connection with the 6xed-source theory,
because the model will be studied on its own merits.
The connection with the 6xed-source theory is used
only to provide a language to describe the operators
a, etc. Likewise, the wave functions iP (k) play no
role in the analysis of the model; their only purpose is
to give an intuitive meaning to the operators u, etc.

One can cut off the Hamiltonian by restricting the
sum over m to a finite range, say 0&m& M. Then the
Hamiltonian becomes a finite bounded matrix; in this
case it is diagonalizable without renormalization. The
problem of renormalization arises when one tries to
let 3f~~. Then one has an in6nite number of degrees
of freedom, which is well known to be a source of
difFiculties. ' To compound the situation, the scale
of energy associated with the mth degree of freedom
increases as A, so that the most important degrees of
freedom are those with m 3f instead of small m.
Clearly one has difficulties in the limit 3E~~ regard-
less of what happens in perturbation theory, but it is
still worth showing that in perturbation theory one
has a problem specifically with coupling-constant re-
normalization. Let E) and ~1V) be the normalized
physical proton and neutron states, i.e., the ground
states of II. The renormalized coupling constant is

{a,a t}={b,b t}=1, (2.2) (2.7)

a '=(a t)'=b '=(b t)'=0, (2.3)

apt —+g a tP (k),

' The full Hsmiltonisn is given by Etl. (l) of Ref. 7.

La„,b j=fa,b„tj=La„,a„j=0, etc. (mme), (2.4)

where L j is a commutator and {} is an anticommu-
tator. The Hilbert space on which H acts is a product
space. The components of the product are, 6rst, the
two-dimensional nucleon space with the bare proton
state

~ p) and bare neutron state
~
m) as a basis. Second,

for each wave function P there is a component space
of four dimensions. A basis for each such component
consists of a vacuum state, a m+ state, a x state, and
a or+or state, each meson being in the state f .

The model Hamiltonian can be arrived at starting
from the full Hamiltonian of the charged scalar 6xed-
source theory' if one replaces the 6xed momentum
creation operators a~~ and bk~ of the mesons by

using the definition analogous to that used in the full
charged scalar theory. The matrix element (P~ r+~E)
can be computed to second order in go by straight-
forward perturbation theory. If the cutoff 3f is finite,
then

gz =go
—go'(~+ 1)+0(go') . (2 8)

The cutoff momentum k~ is of order A~ so 3f is
proportional to ink~, ' hence g& is logarithmically
divergent as in the full charged scalar theory. The
divergence for M —&~ is directly due to there being
an infinite number of degrees of freedom in the no-
cutoff limit.

The structure of the energy-level spectrum of the
cutoff Hamiltonian can be seen by a qualitative
analysis. It is convenient to call a meson in a state

(k) an "m-meson. " Let the cutoff Hamiltonian be

"Cf. the paper of A. Wightman, in High Energy Electromagnetic
Interactions and Field Theory, edited by M. Levy (Gordon and
Breach, New York, 1967), especially pp. 245—262 and references
cited therein.
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denoted B~. It has the structure

(2.9)

Urt r+ Ur (—r—+)*

Vp~H Up ——II*.
(2.17)

(2.18)

Q =Z (a-'a--b-'b-)+ l(r.+1), (2.10)

where str, is the s component of the nucleon isospin; Q
commutes with II. The charge conjugation trans-
formation interchanges 7r+ with or and p with n. Let
U, be the unitary transformation giving these inter-
changes; then

U~a U, =b

U ~b U, =a

U,tr+U, =r,
U,tIIU, =II.

(2.11)

(2.12)

(2 13)

(2 14)

The time-reversal transformation is an antilin ear
unitary transformation U~ with the properties

UT a Up=a

Uz~b Uz =b *,
(2.15)

(2.16)

where 0 is indt;pendent of A and involves only ns-

meson operators and the nucleon operators 7-+ and r .
The smallest part of II~ is 00. This is the only part of
H~ involving O-mesons, and for A large, 00 is a pertur-
bation on the rest of the Hamiltonian. The remainder
of the Hamiltonian has energies of order A or larger
and thus should have energy-level spacings of order A;
each level is four-fold degenerate (at least) because each
level is independent of the presence or absence of
0-mesons. Adding Oo splits these levels, with the split-
ting being of order 1. Next one can discuss the effect of
the term AO&, clearly this should lead to a gross spacing
of order A, neglecting fine structure due to 00. But
AO~ can itself be regarded as a perturbation; there
exists (neglecting AOt and Oo) a spacing of order A.',
then a spacing of order A', etc.

The problem of renormalization is the problem of
computing the ground state and those excited states
which have a Qnite energy above the ground state in the
limit 3f —+~. This means calculating states with an
energy of order A above the ground state, for any m,
but with m held when M —+~. In practice one calcu-
lates only energy differences between the ground state
and various excited states. The ground-state energy
itself diverges for M —&~. An energy difference of
order A is much smaller than the basic energy scale
A~, when M is large, so a very precise calculation is
required to give these energy differences accurately.
This fact plus the fact that the model cannot be solved
exactly, and must be solved as a perturbation expansion
in A ', is the reason this paper is so long.

The model Hamiltonian is invariant to three sym-
metries: charge conservation, charge conjugation, and
time reversaL The charge Q is

where

&sr =&oor+&r~,

+OM —A OM
&

3/I—1

arsr gX"0——„,
m=o

(3 1)

(3.2)

(3.3)

0 =a ta +b tb 1+go(a —+b t)7+

+go(a +b )r ~ (3A)

The operator O~ is easily diagonalized. One can ignore
the mesons in states other than f~, in which case 0~
acts on the eight-dimensional Hilbert space involving
the nucleon and mesons in the state 1bsr. Owing to
charge conservation, the matrix for O~ separates into
submatrices of size 3&3 at most. The eigenstates of
Osr are given in Table I Lthe variables (re,g) of Table I
must be replaced by (1,go)). It has two degenerate
ground states: a state

~
P) of charge 1 and a state

~N) of charge 0. The ground state becomes highly
degenerate when mesons in other states P are con-
sidered, since one can add such mesons to the states
~I') and ~N) without changing the eigenvalue of Oor.

The Hamiltonian Ho~ has an energy-level spacing of
order A~ (goA~ if go is large), while IIrsr is at most of
order A~ ' (gor1~ ' for go large). Hence one is allowed
to treat III~ as a perturbation when A is large, for any
value of go. However, one must carry the perturbation

TABLE I. Kigenstates of the Halniltonian nz (uta+btb —1)
+g (g+bt) v++g (a'f+b) r, where ut creates ~+, bt creates
e, IP) and (In) are nucleon states, and p=m(nz'+2g')»',
y=g{m'+2g') "'. The other four eigenstates are obtained by
charge conjugation (p~n, ~+~m ).

Eigenvalue

(gP +g g2) 1/2

0
0
(jr+ 2g2) 1/2

Kigenstate

k(1+I ) IP&
—v la~+&+2 (1—

I ) I
P~'r &

IP ')
vlP& +~lar'& ~IPSE"

l(1—&IPr&+el& &+rl(1+~) IP~+ &r

1' See also Sec. III of Ref. 7.

III. PRELIMINARY ANALYSIS OF
MODEL HAMILTONIAN

In order to solve the renormalization problem, one
must erst be able to solve the cutoff Hamiltonian for
arbitrarily large cutoff M. In this section, we give a
preliminary discussion of the solution of the cutoff
Hamiltonian for large 3E." The constant A is also
large, but held fixed, and M can be arbitrarily large
even compared to A. The cutoff Hamiltonian naturally
separates into an unperturbed Hamiltonian and a
perturbation:
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expansion out to order M at least, because one ulti-
mately is interested in energy-level spacings which may
be of order 1. In the lowest order of degenerate pertur-
bation theory, the ground state of H and excited states
at energy A~ ' or less above the ground state are given
by an eRective Harniltonian

Heff POM+PHIMP 1 (3.5)

where Eo~ is the ground-state energy of Ho~ and P is a
projection operator on the ground states of Ho~ H ff

acts on a product space whose components are the two-
dimensional space with basis ~P) and. ~N) and the
meson space for the states f, 0&m& M —1. One can
introduce isospin raising and lowering operators rg+
for ~P) and ~N); then H, ff involves a set of operators
)rff+, a (0&m&M —1), etc.$, which are equivalent to
the operators of H~ &. The only way P affects the
operator Hl~ is through the nucleon operators r+
and r, the meson operators in Hi~ are unaffected.
To express H, qg in terms of rg+, one must express
Pr+P and Pr P in terms of rg+ and the meson opera-
tors. The operator Pr+P affects only the states ~P)
and

~
N) not the meson states, and because it increases

the charge by one unit, Pr+P must be proportional to
r&+. The proportionality constant Z is found from
Table I to be (using the constants of Table I)

Order in A

gM

gM—1

pM—2

gM-3

gM—4

const

Types of operators

&M—17 R

xM erff, (xM f)'rff
&M-37 R &M—2&M—1&R

&ALII —47 Rp &M—3&3/I —17Ry (+M—2) 7 Rp &M 2 (&M—1) TR

product being projected with P. The results are shown
in Table II.

The formulas for the higher-order terms of the de-
generate perturbation calculation are too complicated
to quote explicitly. Fortunately they are not needed;
it is sufhcient to have upper bounds for each type of
term and these can be obtained. Table II gives the order
in A of each term and all that remains is to obtain
numerical upper bounds. This will be done in Sec. V.

The Hamiltonian H,«has a basic energy scale
~AM ' which is still much larger (for large iV) tha, n
the energy scales of interest. H,«can again be analyzed
by perturbation theory. One writes

Heff =HO eff+HI eff ~ (3.10)

TABLE Il. Breakdown of H, && by type of operator for each order
in A. The symbols x, rff, and (x~)' are explained in the text. Any
operator listed for a power A can occur for lower powers of A. also.

Z=(P~ r+~N) = (m'+g')(m'+2g') '

With m=1 and g=go this is

(3.6)
The unperturbed Hamiltonian is

Hpeff A OM —1(gM—1) p (3.11)

Z(go) = (1+go') (1+2go')-'. (3.7)

Likewise Pr P is Z(gp)rff . Hence PHIMP has the
same form as H~ itself except that M is replaced by
3E 1and gpr+ is rep—laced (in Eq. 3.4) by gM trff+,
with

gM 1=k(go),

h(g) =g(1+g') (1+2g') '.
(3.8)

(3.9)

When degenerate perturbation theory is carried to
higher orders, one still computes an eRective Hamil-
tonian H,«which acts on the space of ground states
of Ho~. The effective Harniltonian is no longer just
PHILIP but contains higher-order terms in Hq~,
for example, the second-order term is PHI~(1 P)—
X (POM HoM) 'HIMP. The t—erm of ffth order involves
products of e interaction Hamiltonians and e—1 energy
denominators. It is useful to discuss in a schematic way
the types of terms generated in the higher-order calcu-
lation. Let x stand for an operator of the form a ~a

+b tb 1, a +b t, or a—t+b . Let r stand for any
nucleon operator and r& for any operator acting on

~
P) and ~N). Let x ' stand for operators made of any

product of operators of type x . One can easily make a
table of the type of operators that can occur in H,«
for a given order in A, remembering that H,« involves
HfM times products of (EOM HpM) 'HIM, the whole— '

where OM 1(gM 1) is the same as OM 1, except that gp

is replaced by g~ &, and r+ by r&+. All other terms in
H ff form the perturbation Hl ff which is at most of
order A.M '. The eigenstates of OM 1(gM 1) can be
determined from Table I; like O~ it has two degenerate
ground states ~P') and ~1P) if mesons in states other
than fM 1 are ignored. One can use degenerate pertur-
bation theory starting from the states ~P') and ~N')
to determine the eigenstates of H,«of energy A ' or
less above the ground state. Again one must calculate
the perturbation analysis to many orders, in order to
keep terms with energies of order 1 or larger. The result
is a second eRective Hamiltonian H,« involving meson
operators a, etc. , for m&M —2 and isospin operators
rff+' connecting the states ~P') and ~1P).

One can determine the type of operators that occur
in H,«' for each order in A. The basic operators are
operators acting on ~P) and ~1P), denoted rff', and
meson operators of type x for m&3f —2. The results
are shown in Table III. In constructing Table III, one
uses the fact that operators of the form (xM 1)rff and
(xM t)srft in HI' ff are reduced to the form rff' in H, ff'.
Furthermore, the symmetries of the theory ensure that
an operator of the form r&' in H,«not multiplied by a
meson operator can only be a constant. The important
result illustrated by Table III is the following: To
compute H,«', one must compute many orders in a
perturbation treatment of Hg ff, Hl ff itself divides into
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TAaLE III. Breakdown of IX,gf' by type of operator for
each order in A. (cf. Table Il}.

Order in A,

gM gM-1

pe—2

gM—3

gM—4

Types of operators

const
1SM-27 R

XM—37R p (+M—2) 7R
I I

&M—47'R
p &M—3&M-27R

gN b(gN+1) . (3.12)

This is wha, t one gets if the unperturbed Hamiltonian
is defined as the term of order AN in HN(M). However,
to ensure that the perturbation is small even when
M —E is much larger than A, the unperturbed part of
HN (M) will be defined to include other terms of the forin
(aN+bNt)r+, Or (aNt+bN)r, regardleSS Of their Order

two parts. The simple part of Hl, «are the terms coming
from I'H~,~I'; these terms have the structure ~,~~ ~rg,
x~ 37~, etc., and depend only on the single constant
g~ &. The complex part of Hg ff comes from the higher-
order terms in H~~, and includes all terms of type
(s~ 2) rz~ (s~ 2) (sitr 3)rz, etc. Iil conlputllig Hpf f,
even the simple part of H~,«generates all types of
terms in H, «', through terms of order (Hr «)', (Hr «)',
etc. The important fact is for a given term in H, ff',
say (x~ 2)'r~', its coefficient comes predominately from
the simple part of HI,«, and hence the coefFicient is
primarily determined by the constant g~ &. Hl, ff also
has an (x~ 2)'rN, term but this affects the coefficient
of (xi' 2)'r~' only in order A~ 4, whereas the dominant
part of the coeKcient is of order A~ '. Because of this
result one can give bounds on the complex terms like
(x~ 2)'rz' in H,«' which depend on g,ir i only a,nd do
not involve the size of the corresponding term in H, ff.
These bounds are of crucial importance for the rigorous
analysis; they ensure that the complex interactions
cannot increase without bound as one repeats the
perturbation analysis many times. Furthermore, it
means tha, t Table III has the same form it would have
had if one had started with the cutoff M —1, and
obtained H,«' by solving H~ &. The only exception is
the constant in Table III of order A~.

One can repeat the perturbation analysis many times,
generating a sequence of Hamiltonians which will be
denoted HN(M). The Hamiltonian Hir i(M) is H,«,
H~ 2(M) is H,«'. In general, HN(M) is the effective
Hamiltonian after 3f—Ã perturbation calculations;
HN(M) involves the meson operators a, etc. , for
m&lV, and isospin operators analogous to g~+ or 7-~+'.

The operator HN(M) gives the energy levels of II with
energies of order A~ or less above the ground state.
For each operator HN(M) one can give a classification
table analogous to Tables II and III; the result is Table
II with M replaced by 2V, except for constant terms.
The unperturbed part of HN(M) would appear to be
just ANON(gN), where

in A. The unperturbed Harniltonian still has the foim.
A'"ON(gN), but gN differs from h(gN+i) in order A '.
Since one has to compute a whole sequence of constants
g (A'=M 1,—M —2, etc.), the small differences between
gN and h(gN+i) for each 1V can build up to a macroscopic
effect when M —E is large.

To compute an eigenstate of energy A. above the
ground state of H,~, one must ta,ke the effective Hamil-
tonian H (M) and solve for states corresponding to
excited states of the unperturbed part of II (M). One
could set up a perturbation method for computing these
states. It will not be necessary for the purposes of this
paper to discuss these states in detail, so the pertur-
bation method will not be developed here.

IV. PERTURBATION FORMULA

There are various standard formulas for the effective
Hamiltonian that results when a perturbation Hl is
treated to all orders. They all have drawbacks, so a,

suitable formula will be derived here. The formula
obtained below has two properties: The effective
Hamiltonian is Hermitian, and involves only un-
perturbed energies in energy denominators. The second
property is useful because the unperturbed energies are
known explicitly. The first property is obviously useful,
and is not true of many standard formulas. .

Let H=H, +Hr and let P be the projection operator
on the ground states of Ho. Let P& be any eigenstate
of H with an energy E close to the ground-state energy
Eo of Ho. It is convenient to have an operator R which
gives the pa, rt of lP& outside the space projected by P
in terms of the part of l|t& inside the space. That is,

I-'I'I 0& =I'IIr(1 I')
l
0&+PHP

l

0—
& (4 3)

If an operator R satisfying Eq. (4.1) exists, one can
multiply the second equation LEq. (4.3)j by R and
subtract from the first, giving

O= {(1—P)HR+(1 —P)H,
—RPHrR RPH) P

l
P&. (4.4)—

Equation (4.4) will certainly be satisfied if we demand
that

(1 P)HR+ (1 P)HrP RP—HrR RPHP—=0. (4—.5)—
This equation can be cast in a form suitable for iteration
in Hl. From the original definition of E, it should take
states within the subspace projected by I' into states
orthogonal to this subspace; we can also require that E
gives zero acting on states outside the subspace. This

Such an operator can be defined as follows. The eigen-
value equation has two parts:

&(1—P) lk&=(1—P)H(1 —P) lk&

+(1 P)H,P lP&, (4.2)—



MODEL OF COUPLING —CONSTANT RF NORMALIZATION 1445

means that
(4 6)

(4 7)

values of H near Eo, and. that eigenstates lg& of H,fr'
become eigenstates IP) of H through the formula

IP& = (P+R) (1+RtR) 'i'I @&. (4.18)

Assuming this, and using the fact that PHpE=EpI',
one can rewrite Eq. (4.5) as

(Eo—Ho)R= (1 P)—Hzp+(1 P)—HrR
RHr—p RHr—R, (48)

Assume that R is defined by Eq. (4.9) solved by
iteration assuming HI is small. It is shown in Appendix
A that the iteration converges if Hq is sufficiently small.
The solution satisfies Eqs. (4.6) and (4.7). From these
and Eq. (4.9) one obtains

ol
R=(E,—Ho)

—'(1—P—R)Hz(p+R). (4.9) (1 P R)—H(p—+R) =0, (4.19)

This equation can be solved iteratively to give R as a
power series in HI. It is easily seen that the expansion
satisfies the assumptions of Eqs. (4.6) and (4.7).

The argument so far does not prove that any operator
Rsatisfyi. ng Eq. (4.9) will also satisfy Eq. (4.1), but
this will be established later if II& is suKciently small.

One can now write Eq. (4.3) as

which is essentially Eq. (4.5). Also,

(1—P—R) (P+R) =0.
This is because

(4.20)

(1—P—R) (P+R) = (1—P) (1—R) (1+R)p
=(1—P)R'P (4.21)

EP ~lP& =(PHoP+PH P+PHzR)PI P&. (4.10) R'=Rp(1 —P)R=O. (4.22)

One could therefore define H, if to be Ho+PHzP
+PHzR, except that PHzR is not Hermitian. The
reason for this is that although two eigenstates lfi&
and Ifo& with distinct eigenvalues are orthogonal, the
corresPonding Projected states PI/i& and Pleo) will

probably not be orthogonal, and therefore cannot be
distinct eigenstates of a Hermitian operator. To remedy
the situation, one notes that

Bilbo&=Qil PIA&+QilR'RIA&. (4»)
This suggests replacing the projected states P Ig &i
and Plfo& by the states (1+RtR)"PI/i& and
(1 +RtR)'" Plfo), which are still states in the subspace
projected by P but have the same scalar product as
lfi) and lgo&. The oPerator (1+RtR)'io is well defined
as a power series in RtR when HI is small. To obtain
H,«, write the eigenvalue equation as

(E—H) (P+R)P lg &
=0

and multiply by (P+Rt):

E(P+Rt)(P+R)Ply&=(PyRt)H(P+R)PIP&. (4.13)

Now
(P+Rt)(P+R) =P+RtR=(1+R"R)P (4.14)

using Eqs. (4.6) and (4.7). Hence, multiplying Eq.
(4.13) by (1+RtR) '~' gives

Ely&=H.„ly&, (4.15)
where

I@&=(1 +Rt)R'~'P Ii//&1 (4.16)

H,ri=(1+RtR) "(P+Rt)
XH(P+R) (1+RtR) "'. (4.17)

The formula for H,« is evidently Hermitian.
The above argument is not rigorous, so it must now

be proven that the eigenvalues of B,«are the eigen-

Let I@& be an eigenstate of H, ii in the subspace pro-
jected by P, and let E be its eigenvalue. Define IP)
by Eq. (4.18).

One can write

(1+R R) (E—H.„)ply&=0. (4.23)

Using Eqs. (4.17), (4.18), and (4.14), Eq. (4.23) may
be rewritten

(P+R~) (E—H) I P& =0. (4.24)

Thisequationcannotbeusedtoinfer that (E H) IP&=0-
because P+R" projects onto a subspace and does not
have an inverse. However, from Eqs. (4.19) and (4.20)
one can obtain

(1—P—R) (E—H) lg& = (1—P—R) (E—H) (P+R)
&&((1+R'R) "'l0») =0 (4 25)

Adding Eqs. (4.24) and (4.25) gives

(1+Rt R) (E—H) IP&
=—0. (4.26)

It is shown in Appendix A that (1+R"—R) has an
inverse (for sufficiently small Hz) so this equation does

imply that IP& is an eigenstate of H with eigenvalue E.
The Hamiltonian H,«has matrix elements equal to
zero except within the subspace projected by I'.
Within this subspace H,«has d orthogonal eigenstates,
where d is the dimension of the subspace. These eigen-
states define Lthrough Eq. (4.18)] d orthogonal eigen-
states of H (orthogonality is easily verified). The
energies of these eigenstates are close to Ep because
H,« is approximately I'HI' when Hq is small so that R
is small.

An alternative form of H,« is obtained as follows.
Write

H, ii —Eop+(1+RtR) "(—P+Rt)
X(H.+H. E.)(P'+R)(1+R'R)—»'. -
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Using (H0 —Ep)P=O and Eq. (4.9), one can rewrite
this as

H, ii ED——P+ (1+RtR) "'(—P+Rt) {IIr(P+R)
—(1 P —R)—Hr (P+R) ) (1+RtR) '~'.—(4.28)

Using Eq. (4.14), this simplifies to

H, ii ZDP——+P (1+RtR)'"
XHr(P+R) (1+RtR) '" (4.29)

This formula is not manifestly Hermitian, but H, ff is
still Hennitian since it is still defined by Eq. (4.17).

V. EXACT PERTURBATION ANALYSIS
OF MODEL

The outline of a method of solving the cutoff-model
Hamiltonian H~ was given in Sec. III. One uses the
definition of H, ~g given in Sec. IV in each degenerate
perturbation calculation. The result is that starting
from H~, for any 3f, one defines a sequence of effective
Harniltonians denoted HN(M) involving meson opera-
tors u, u ~, 6, b ~ for 0&m&AT and isospin operators
which wiB be denoted ~+ regardless of what states they
a,ct on (I p), Im), or IP), IcV), or IP'), I1P), etc.). The
effective Hamiltonians involve very complicated inter-
actions, not just the 0 terms of the original model.
From the analysis of Sec. III, one can expect to get
upper bounds on these terms such that a A~0~ term
is the dominant term in IIN(M), provided that an
appropriate coupling constant replaces gp in 0~. The
Hamiltonians H~(M) give the energies of the ground.
state of H~ and the excited states of H~ in which only
the first E degrees of freedom are excited. If the energy
levels are counted from the lowest level up, the ground
state being number one, then H~(M) describes the
first 22~+' levels of H~.

The limit of no cutoff, that is, the M —+ limit, can
be studied by studying the limits of Hz(M) for axed
E, as M~~. This means one is studying a fixed
number of energy levels as M increases. It will be
proven in this section that the limit of H~(M) for
M —& exists provided that one makes the renormali-
zations one expects from ordinary perturbation theory.
This means that before letting M —&~ one must first
subtract a constant Eir from H~(M) and allow the
bare coupling constant gp~ to vary with 3f. The varia-
tion will be such that gp~ —&~ as 3f—+~, i.e., the
interaction term in H~ swamps the free meson energy
in the limit JI~~. The proof requires that A be
larger than 4&10 . The limit may exist for smaller A
but in this case the upper bounds used in the proof no
longer apply.

The Hamiltonians of this paper involve only bounded
operators: the operators a, u t, 7+, v. , etc. All have
operator bounds of order 1. Anyone with experience in
rigorous quantum mechanics knows the joys of having
only bounded. operators. This ensures that terms that

look small by a power of A will indeed be small if A is
large enough; for finite 3E the perturbation expansions
in A ' will be easily proven to converge and one can
concentrate on the problems of the M ~ limit.

The analysis of the limit for M —+~ is still very
complex; it will be presented here in a formal and not
well-motivated manner. Before presenting the proces-
sion of theorems and definitions, the basic problem
involved will be sketched briefly. The essential problem
is to have a bound on the difference II'(M, gait)

PM HN (L gOL) +Rr
I I

where
II I I

is the ordinary
operator bound, and the dependence of H~(M) on

gp~ has been noted explicitly. One must be able to
show that this bound goes to zero as 3f and J go to ~,
provided that the sequences {gair) and. {Zis) have been
chosen appropriately. The crucial step in establishing
such a bound will be to show that the difference
H~(M) H~(L)—E is arbit—rarily small when M and
L are large, provided that E is properly chosen and that
the terms of order Ai"0~ which dominate H~(M) and
H~(L) have identical effective coupling constants (see
Theorem 10). This condition will force one to have
diGerent bare coupling constants; gp~/gp~. As a pre-
liminary to proving this theorem it will be proved
(Theorem 1) that H~(M) is dominated by a term of
the structure A~0~ with an appropriate effective
coupling constant in Q~. This proof is necessary because
otherwise one might worry that terms nominally of
order A.+ ' or less would be multiplied by powers of M,
which would dominate the A~ term when M))A.

In order to clarify the calculation of bounds, some
topological language will be used. A space S of Hamil-
tonians will be defined which includes the effective
Hamiltonians H~(M) as special cases. The perturbation
analysis which defines Hz i(M) given H&(M) defines a
transformation T on the space S. The space S will be
defined so that T(S) is contained in S. A metric will
be defined on S, and convergence questions discussed
in terms of this metric. The Hamiltonians HN(M),
considered for all possible values of gp, define "curves"
in S.

The exact and rigorous analysis of the renormali-
zation problem begins here. The first step is to define

the space 5 of Hamiltonians. It is convenient to adopt
a specific way of representing the Hamiltonians that
will be included in S. Let H be any Harniltonian

involving the meson degrees of freedom 0-S plus
nucleon opera, tors, for example, H~(M) for some M.
It will be convenient to renumber the meson operators,
making the switches ap, bp~G~ b~ cy Sy~cN
b~ ~, etc. In the new numbering, a ~ creates a meson in

the state P~ „.This is to be true for all E, so the state
associated with a is different for different E.It is also
convenient to separate an additive and a rnultiplicative
factor from B, writing

(5.1)
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where J and h are constants. A normalization condition
will be imposed on K, determining J, but the separation
of 8 from JK will be left indeterminate. (The trans-
formation T will be defined to determine J, GC, and
h separately. ) One now lets K have the following
structure:

K=m Voi+V2g Vo&r++v2g V»r

+Q ~o Ao i+& Cx, (5.2)

where Vo is a vector (Voi, Voo, Voo) and

(5.3)

T„i A™(a„t——a„+b„tb„—1),

T o (1/ 2v)h——(a +b .t),

T o (1/&2)A——"(a t+—.b ),

(5.4)

(5.5)

and A», A~2, AI, 3, and C~ are operators which depend
only on 7+ and the meson operators numbered from
0 to k. The vector notation Ajj„SI„etc. is used purely
for convenience. The constants ns and g will be required
to satisfy a normalization condition:

m +2g'= 1. (5./)

To ensure this normalization condition, m and g will

be represented as

(5.8)m= cos8,

g= (1/W2) sino. (5.9)

The set of parameters J, b, Ã, and 0, and the operators
AA, and Cy, will be called the decomposition" of H. The
representation is highly redundant; for example, C~
is by itself totally arbitrary. The reason for using this
redundant representation is the following. One can see
from Table II that the operators aj„bA, for large k

(new numbering) appear in any effective Hamiltonian
HN(M) predominantly in terms such as Vi.Ao or V& Ai.
Terms which must go into Co (the xo' terms of Table II)
have much smaller coeKcients. Hence, by making the
separation, one can put stringent upper bounds on the
operators CI,.

The space S will be defined in two steps, the first
step being to define a subsidiary space 5&.

Definition Apoint Pgg. Sg consists of an angle 8

and an infinite set of operators Ao and Co (0&4 & oo).
The angle 8 is restricted to the range 0&0&-,'x. The
operators AI, and C& can depend only on the nucleon
isospin operators z+ and the meson operators a, a "',

b, and b ~ for 0&m&k. The dependence on these
operators is arbitrary except as follows. The operators

AI, and CI, must satisfy the following operator bounds:

&2OO

jja „jj& 200&goA-k-'

jja „,jj & 200Vrgo~-i-i

jjc jj&2OO o~-»-i

(5.10)

(5.11)

(5.12)

(5.13)

The remaining terms in H form a perturbation Hz'.

Hl =H —Ho. (5.15)

From the definitions (5.1) and (5.2) and the bounds
(5.10)—(5.13), Hr is of order Jh ' or less and therefore
can be treated as a perturbation relative to Ho. In
particular, one can use the formulas of Sec. IV to de6ne
a new Hamiltonian H, qq whose eigenvalues are the
eigenvalues of H near the ground-state energy of Ho.

Suppose H has a decomposition (J,h, X,P~) (with
P~ in S~). The Hamiltonian H, ii can also be decorn-
posed in the form (J',8',X',Pg') with P~' in S~, that
is, H, ~~ can be written in the form defined in Kqs.
(5.1)—(5.9). [The resulting operators Ao', etc. satisfy
the bounds of Eqs. (5.10)—(5.13); see Theorem 1.J
Specific formulas for J', h', E', and P~' (i.e. , g', m',
Ao', and Co') are obtained in Appendix 3 Lcf. Eqs.

where m= cos0, g= (1/v2) sin8. Secondly, the operators
AA,. and CI, must satisfy symmetry requirements: A»
and C& must carry charge 0 while A» creates one unit
of charge and A» destroys a unit of charge. Under
chargeconjugation, A»~A», A» ~ A», and C&~C&.
Under time reversal, AA, —+A~* and CI, —+CA,*. Also
A» and CA, must be Hermitian, while A 1,3——A ~2+. These
requirements ensure that BC j defined by Eq. (5.2)j is
Hermitian and invariant to the symmetries. The
parameter 0 and the operators A~, and C~ will be called
the decomposition of P~.

The powers of A. in these bounds are wha, t one would
expect from Table II; the coefficients are hindsight
bounds. It is convenient for the following analysis to
insist that an infinite set of AI, and CA, be specified even
if a particular Hamiltonian involves only a finite
subset of them. The superAuous AA, and C~ can be
chosen arbitrarily subject to the restrictions of the
definition of S~.

The space S is defined as follows.
Definitio, . A point PQS consists of three constants

J, 8, and E, and a point P~+S~. The four objects J,
8, E, and Pg will be called the decomposition of P. E
must be an integer, J must be positive, but 8 is arbi-
trary. There are no upper bounds on I, j

8 j, or E.
Next the transformation T acting on S will be defined.

Many details of the definition are handled in Appendix
8 and only an outline is given here. Any Hamiltonian
H in S has a dominant term of the form

Ho= @+J(~(ao'ao+&o"bo —1)
+g(ao+bo")r++g(ao-+ho)r }. (5 1&)
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(B20)—(B24)].The general form of these formulas is as
follows:

and

N'= N —1,
J'=h'JT. ii (PA)

h'= 8+JTo(PA),

TA(PA) )

(5.16)

(5.17)

(5.18)

(5.19)

h=0,
8= tan '(v2gp),

"'=(1+Zg') "' g=gp(1+Zgp') '"
Ai, =C2=0 (all k).

(5»)
(5.22)

(5.24)

go must be positive so that 0 lies between 0 and -', m.

Note that m& 1 and g& (1/vZ); this is required by the
normalization condition (5.7).

In Appendix B several theorems about the trans-
formation T~ are proven. These theorems will be
quoted below and are the basis for the analysis in this
section.

Theorem 1.If PAQSA then TA(PA) is also in SA, i.e. ,

TA(SA)C 5A ~ (5.25)

Theorem Z. Let PAQSA have a decomposition
(8,Ai„Ci,), and let TA (PA) have the decomposition
8', Ai', and Ci'. Let m= cos8 and g= (1/W2) sin8. Then

where

Also,

ta,n8' =
&Zg

"/m",

Te (PA) = (m'"+ 2g'")'t',

~m" —m~ &O.O1mg,

lg" —g(1—g')
I
&o olg'.

~
T,(P„)+1~&O.O1,

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(1—0.51 sin'8) tan8& tan8'
& (1—0.48 sin'8) tan8. (5.31)

where Ta(PA) and To(PA) are functions depending
on I'@ but not on N, J, or 8, and T~ is a transformation
on the space S~, independent of lV, J, or b. It is clear
that J and 8 will be multiplicative and additive factors
in H, qq and thus do not affect T~, T~, or T~. It is less
obvious that T~, T~, and T~ can be defined to be
independent of N; this result is proven in Appendix B.
Equation (5.16)—(5.19) define the transformation T.

The reason for defining the subsidiary space S& is
that the transformation T~ acts on this space, and it is
convenient to do much of the topological analysis on
the transformation T~ rather than on T itself. The
space S~ is a continuous closed space; in particular, it
does not involve the discrete variable N.

The unrenormalized cutoff Hamiltonians II~ are all
in S. The decomposition of H~ can be defined to be

J AM(1+Zg 2)1/2 (5.20)

Theorem 3. Let PA and TA(PA) have the decomposi-
tions defined'in Theorem 2. I,et the component A~»
of Ay vanish for all k. Then

Al i,i' ——0 (all k),

BZ 8$ )

(5.32)

(5.33)

where m" is the constant in-Theorem 2.
The significance of these theorems is essentially as

follows. Theorem 1 ensures that if the decomposition
of PA satisfies the bounds (5.10)—(5.13), then so does
the decomposition of TA (PA). A consequence of
Theorem 1 is that the effective Hamiltonians Hii (M)
are in S for any N, any M, and any value of go. Theorem
2 gives limits on the values of Te(PA), To(PA), and 8'

which depend only on m and g, not on AJ, and Ck. The
constants m" and g" appear in an intermediate stage
in the calculation of II,qq. To lowest order in A ', g"
is equal to g(1—g'); this follows from Eq. (3.6) using
Eq. (5.'7). The bounds in Eqs. (5.28)—(5.30) were
originally of order A ', but were replaced by numerical
bounds (valid for A) 4&(10P) for convenience. Theorem
3 shows that AA, » will vanish for the effective Hamil-
tonians II~(M). It was n'ot obvious (to the author, a,t
least) that this would be so.

Before presenting Theorem 4, a metric must be
defined in the space SA. Let PA= (8,Ai, Ci,) and PA'
= (8',Ai', Ci,') be two points in SA. It is convenient to
define two distances in S~, one being a distance between
0 and 0', the other a distance between the operators
{AI„Cq} and the operators {Ai,',Ci,'}. It is also con-
venient to use the notation

~
PA PA'

~

for th—e pair of
distances (di, d,).

Definitio22. Let PA= (8,A|„Ci) and PA'= (8',Ai, ',Ca')
be in SA. Then

~
PA PA'

~

= (di,d2—) with

d, = 2
~

sin-', (8—8') ~, (5.34)

(5 35)

where the maximum is over all possible values of /~

and z.
The distance d» is more transparent if written in

terms of m, g, m', and g':

d, = I (m m')'+2—(g g') g&— (5.36)

d2'& 1100di+0.06d2. (5.38)

No a priori rationale for these definitions of di and d2

will be given. A certain amount of experimentation was
required to determine how to define these distances;
the above formulas turned out to be useful. It is clear
from Eqs. (5.35) and (5.36) that the metric satisfies
the triangle inequality and that

~
PA PA'

~

= (0,0) only—

Theorem 4. Let PA and PA' be in SA. Let
i
PA PA'~—

= (di, d2) and
~
TA(PA) TA(PA')

~

= (di', d2')—. Then

0.38di —10 'd2&di'&20di+10 'd2, (5.3'7)
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The coefficients j.0 5 and 0.06 are numerical upper
bounds to terms behaving as A '. These bounds are
valid for A&4&(10'. The first set of bounds force d»'

to be of order d» unless d2))d»,. d»' cannot be much less
or much greater than d» unless d2))d». The second
bound is a straight upper 'bound on d~'. In particular,
if d» ——0, then d~' is smaller than d~. Hence as long as
49=0', the transformation T~ brings the points I'~ and
P~' closer together.

The four theorems stated above are proved in Ap-
pendix B. The only assumption is A&4X10'. The
remainder of the analysis of this section is self-contained.
The next stage is a set of topological theorems and
definitions. First one defines a set of curves QL in the
space 5&. They are generated by the effective Hamil-
tonians Hzz(M) as a function of the coupling constant
go. The curves turn out to depend only on the difference
I-=M—S, not on M or S separately. It is convenient
to parametrize these curves by their 0 coordinate rather
than by the unrenormalized coupling constant. The
parameter in these curves will be denoted t. Let the
decomposition of Qz, (t) be written

(OL (t),ALL (t),CLi. (t)) .

Definition. Qp(t) is the curve

0,(t)=t, (5.39)

Apz(t) =Cpi, (t) =0. (5.40)

Definition. The curve QL is defined iteratively for
1.&0 by the relation

QL= TA (QL—1) ~ (5.41)

If one were parametrizing using the unrenormal-
ized coupling constant, one would have had Qz, (t)
=T~(QL i(t)). With the alternative parametrization,
Qz, (t) must still be the transform of some point on

QL, . This point can be denoted QL i(FL(t)):

Q.(t)=T (Q.—LF.(t)3) (542)

Theorem' 5.

(a) QL(t) is a single-valued function of t defined
for 0&3&~~~.

(b) fz(t) is a continuous single-valued function of
f defined for 0& t& ~w satisfying

fL(0) =0,
fL(2~) =5~

0&f,(t) &t for 0«&-',~.

(5.46)

(5 47)

(5.48)

(c) FL(t) is a continuous single-valued function
of t defined for 0&t&-.'x satisfying

FL(0)=0,
FL(-,'s.)= —,'m,

t&FL(t)&-,'~ for 0&t&-,'~.

(5.49)

(5.50)

(5.51)

(d) Consider any pair of numbers t and t' in the
range 0 to 2x. I.et IQL(t) Qz, (t')—

I

= (di, dp).
Then

d2& 4000d»,

If (t) —f,(t')1&40I t—t'I,

(t)—F,(t')
I
&40I t—t'I.

(5.52)

(5.53)

(5.54)

Part (a) is the crucial part of the theorem. It states
that the curve QL„projected on the 0 axis, covers the
full range 0&0& ~w once and only once. If, for example,
the curve Qz, covered only part of this range, the theory
would not be renormalizable. This point will be dis-
cussed later. "

Proof of Theorem 5. The property (a) and Eq. (5.52)
hold for L=O. That is, Qp(t) satisfies (a) from its
definition, and IQp(t) —Qp(t ) I

= (di, 0) for all t and t'

and thus it satisfies (5.52). Suppose property (a) and

Eq. (5.52) are true of Qz-i(t). We prove (a)—(d) for

QL, FL, and fL. Equations (5.46)—(5.48) are conse-
quences of the inequalities (5.31) Lremember that the 8

coordinate of QL i(t) is t$ Now let t" .and t"' be two
parameters in the range 0 to —,'~. Let

Definition The parame. trization QL(t) of QL is to be
chosen so that and let

I
QL-i(t") —QL- (t"')

I

=- (di, d ),

OL(t) =t (all L). (5.43)
I
T~(Q~i(t"))—T~(QL-i(t'"))

I

= (di' dp').

In practice this definition defines the function FL(t).
%e shall also be interested in the inverse function

fL(t) to FL(t). This function satisfies

QL(fL(t)) = T~(QL-i(t)) (5.44)

Since the 8 coordinate of QL(fL(t)) is fL(t), one has

fL(t) = 0 coordinate of T~(QL i(t)) . (5.45)

The next theorem gives several properties of QL(t),
fL(t), and FL(t). These properties will be established
simultaneously in a proof by induction.

Note that

0.34d»& d»'& 21d»,

d2'& &34od».

d i= 2
I
sin-,'(t"—t'") I,

di'=
2 l»npil fL(t")—fz-(t"') 3 I.

(5.55)

(5.56)

(5.57)

(5.58)

~' See Sec. VlI C of the present paper.

These distances must satisfy the inequalities of Theorem
4, and dp satisfies Eq. (5.52) by assumption. These
equations can be combined to give inequalities not
involving d2.
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Sz TA (SL—1) ~ (5.62)

Sl. consists of all points in S~ which can be obtained
by applying the transformation Tz I. times to some
point in S~. Evidently all points in Sl, also are in Sl. ~.

Theorem 6.
(5.63)

The following theorem gives an upper bound on the
"cross-sectional size" of Sl. for given angle 0.

Theorem 7. I.et P& and Pz' be any pair of points in

Sz,. Let IP~ P~'I = (di,d2). T—hen

dg&4000di+300X (0 2) (5.64)

The cross section is the maximum value of d~ for
d~ ——0. Theorem 7 states that the cross section goes to
zero as I.~~; the spaces S~, to a single curve as I.~~
(see below).

Proof of Theorem 7. The proof is by induction. For
I.=O the theorem is true simply because the bounds
(5.10)—(5.13) force d2 to be less than 300 for any
pair of points in Sg. Suppose the theorem is true for

Because t", P', fz, (t"), and fc(t"') all lie between 0
and —', x, the arguments of the sines lie between —4m

and 47r. For angles p in this range

(2~2/~)lyl&l»nel&lyl (559)

One deduces from Eqs. (5.55) and (5.57)—(5.59) that

I
f~(t")—f~(t ) I

& (»~/2v2)
I

t"—t"'I (5.60)

This proves that fz, (t) is continuous; it also proves
Eq. (5.53). Since fc(t) is continuous and satisfies Eqs.
(5.46) and (5.47), there must be at least one root t'

to the equation t= fz(t') for any t between 0 and -', ~.
This equation cannot have two roots t" and t'", for
if t= fz, (t")=fz,(t"') then di'=0; by Eq. (5.55), di
must also be zero which means that t"=t"'. Finally,
if t= fc(t") then t&t"&27r

I
using Eq. (5.48)$. Hence

Fz, (t) I the inverse function of fz, (t)] satisfies (c). Now
let t and t' be arbitrary parameters in the range 0
to 2~. Let t"=F (ct) and t"'=Fz, (t'). Then t= fz, (t"),
t'= fz(t"') Using Eq. s. (5.55) and (5.57)—(5.59) one gets

IF~(t) —F~(t')
I
&~(068~2) 'It —t'I (5 61)

which proves Eq. (5.54). Furthermore, the inequalities
(5.55) and (5.56) give d, '&4000di', which proves Eq.
(5.52). Finally, (a) is a consequence of (c), using

Eq. (5.42) and the continuity of Tz (Theorem 4).
The next problem is to discuss the limit of the curve

Qc for L~~. Determining the limit of Qz(t) for
I —+~ with t held fixed is equivalent to determining
the limit of the Hamiltonians Hzz(M) for M~~
holding the effective coupling constant in Hzz(M)
fixed. It is convenient to introduce subsets Sl, of Sg
which contain Qz. The set So is the set S~ itself; the
definition of S~ is as follows.

DePrzi, tiorz. Sc for L)0 is the set

Sz, i.Let P~ and P~' be two points in Sz..Let
I
P~ P—zz'

I

be (di', d2'). There must exist (by definition of Sz,) two
points Pzi and Pzz' in Sz, i with P~=T~(Pzz), P~'
= T~(Pzz') Let IPzz Pz—z'I be (di,d,). Then the dis-
tances di, d2, di', and d&' satisfy Eqs. (5.37) and (5.38).
Also d& satisfies the inequality (5.64) with L—1 substi-
tuted for I.. Combining these inequalities gives

0.34di —0 003X (0.2)~'& dr'

dz'& 1340di+18X (0.2)~'.
These inequalities can be combined to give"

(5.65)

(5.66)

(a) limy „Pz, exists (call this limit R);
(b) limz, „8z,'=8' exists;

(c) limp „Pz,'=Tg(R).

Proof of Theorem g. Let L be large and K be even
larger. Because Szc+Sc, both Pc and Pzr are in Sz,.
L« IPzr Pzl = (di, d&—). Then

di= 2I sin-', (8'—8z,) I

and by Theorem 7

(5.68)

d, &4000di+300X (0.2) ~. (5.69)

One can make both d& and d2 arbitrarily small by
choosing I and K large enough. This is true of d& by
the assumption that 0L, approaches a limit for I.—+~.
It is true of d& from Eq. (5.69). Hence by the Cauchy
criterion the sequence PL, has a limit R. That is, if
PJ. has a decomposition 0g, Al, ~, CI,I„ then 0~, AI.J„
and Cz, A, all have limits for I ~~, and the limits 0,
Al„and CA, define the point R.

To prove (b) and (c) consider the distances IPz, Rl-
= (di', d2') and IPz,

' T&(R) I

= (di",d2"—). Since Eqs.
(5.68) and (5.69) hold for any E, they hold for the limit
K —+~, giving

di' ——2
I
sin-,'(8c—8) I,

dz'& 4000di'+300X (0.2)i.
(5.70)

(5.71)

One can make d&' and d2' arbitrarily small by making
I. large enough. Therefore, because of the inequalities
of Theorem 4, one can also make d~" and d2" small

"Throughout this paper &means "not greater than"; there is
no implication that equality can be realized.

d2'& 4000di'+300X (0.2) i. Q.E.D. (5.67)

The next three theorems will be used to show that
the curves Qc(t) have a limit curve R(t) for L~~.
The curve R is the limit of the subsets Sl. for I ~~.
The curve R has the property T~(R)=R: It is an
invariant subspace of the transformation Tg.

Theorem S. Let (Pz,} be a sequence of points with

Pz, &Sz,. Denote the 8 coordinate of Pz, by 8z,. Assume
that 0L, approaches a limit 0 for I.—+~.Define PI.' to be
Pz,'= T&(Pc). Denote the 8 coordinate of Pz, ' by 8z,'.
Then
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enough by making L large enough. Hence (c) is true,
and (b) is a corollary of (c).

Theorem 9.Let {Pz)and {Pz,")be any two sequences
satisfying Pz,&Sz and Pz,"QSz. Let the 8 coordinates
of PI. and PI," be 01, and 81.", respectively. Assume
that the sequences 8& and 81,

" approach the same limit
0 as 1.—+~. Then

be large. Then t= fz(tz) = fzz(tzr) T.herefore

o = fz(tz) fz—z(tx) = [fz-(tz) fx—(tz)]
+Lf (t.)—f (t )] (5.83)

Therefore

I fzz(tz) fzz(—tzr) I
=

I fz(tz) fzz—(tz) I
~

Iim P, =»m P,".
Q ~oo Q ~00

Proof of Theorem 9. The proof is simple. Let

IPz, Pz"
I

=—(di, d,).

(5.72) Now use Theorem 5(d):

I
tz tzr

I

=—
I Fzz(fzz(tz)) Fzr(f—zr(tzr)) I

&4o
I fx(tz) —fx(tx) I

= 4o
I fz(tz) fx(tz—) I (5 85)

Then since Pl, and PI," are in SL,

d, =2Is' -', (8,—8,")I,
d2&4000di+300X (0.2) z.

(5.73)

(5.74)

As L —+~, di ~ 0, and hence d..—+ 0 also. Q.E.D.
Theoretic 10.

(a) limz „Qz(t)=R(t) exists for all t in the range
0& t&-',x.

(b) limz, fz(t)= f(t) exists (0&t&-2ia).
(c) T&(R(t))=R(f(t)) (5 75)

(d) f(0)=o,

f(k~) ~2=

0(f(t)(t (0&t&-',a).

(e) limz~ Fz(t) =F(t), where F is the in-
verse function to f; also both F(t) and

f(t) are continuous single-valued func-
tions of t defined for 0(t( ~x.

(f) F(0)=0,

F(-,'s.) =-', m,

t&F(t) &-,'~ (0«&-',~).

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

Proof of Theorem 10. Part (a) is a, consequence of
Theorem 8(a). Now let Pz=Qz(t) be a sequence as in
Theorem 8; define Pz, '=T~(Pz) as in Theorem 8.
Then 81.' is

8L fL+1(t) (5.82)

By Theorem 8(b), 8z,
' has a limit; this is true for any t

so the function fz, (t) has a limit f(t) for L —+~. This
proves (b). To prove (c), compare the sequence {Pz')
with the sequence Pz"= Qz(f(t)). These two sequences
satisfy the assumptions of Theorem 9. Hence they have
the same limit point. By Theorem 8(c), Pz, ' has the
limit Tz(R(t)). By Theorem 10(a), P&" has the limit

R(f(t)). This proves (c). To prove (d) one uses (c)
and the inequality (5.31) [note that the 8 coordinate of
R(t) is t since the 8 coordinate of Qz, (t) is t for all L].

To prove (e), let t be arbitrary in the range 0&t&
and define the sequence tz, =Fr, (t). Let L and E(E)L)

The function fz(t) approaches f(t) for L-+~ on the
closed interval 0&t&-,x. Hence this limit is uniform
in t. Hence,

I
fz(tz) fir(tz)—I

is arbitrarily small for
sufBciently large I. and E irregardless of the value of
tz. This means that

I
tz tzr

I
~ 0—as L and E approach

00; hence the sequence tl, has a limit for I —+~. This
is true for any t so Fz(t) has a, limit F(t). Since Fz(t)
is the inverse to fz(t), and since both Fz and fz are
continuous uniformly in L by Theorem 5(d), F(t) is

the inverse to f(t) and both are continuous. Also, since

Fz and fz are single valued, so are F and f Finally. ,
(f) is a consequence of (d) and (e).

Armed with Theorems 1—10, one can now attack. the
renormalization problem. One starts with a sequence of
unrenormalized cutoff Hamiltonians Bq~. The bare
coupling constant gp is permitted to vary with 3f and
is denoted gp~. In addition, H~ is permitted to have
an additive constant Sp~ also varying with 3f. The
renormalization problem is to choose the sequences

gp~ and Sp~ so that H~ has a finite limit for M —&~.
Since the number of degrees of freedom changes as
3f~~, one has to specify what one means by the limit.
To be precise, we demand that each energy level,
counting in order of increasing energy, has a finite
limit. This is equivalent to demanding that the energy
levels of the effective Hamiltonians Hzr(M) have limits
as 3f~~ keeping E fixed, since the effective Hamil-
tonians H&(M) describe the first 2'ii'+' energy levels
of H~. The limit of HN(M) for X fixed is a simpler
limit since now the number of degrees of freedom is
fixed. It will be found that HN(M) has a limit as an
operator for M —+~ (the limit will be denoted Hzzzz),
which ensures that the eigenvalues of H~(M) have
limits. There are other parts to the renormalization
problem, namely, computing matrix elements of the
operators v-+,~, a, etc. between eigenstates of the
renormalized Hamiltonian. These other problems will
not be discussed.

The effective Hamiltonians Hzr(M) [with Hza(M)
defined to be H~] are all in the space S. Denote the de-
composition of H~(M) by (Jzz(M), S~(M),X,Pzr(M)),
where, in turn, P~(M) is a point in S~ with the de-
composition (8~(M),Ai, ~(M),Ci,zz(M)). Denote the
decomposition of the original cutoff Hamiltonians H,~
by (J0~,80ia, M,PO~); the decomposition of Poza is
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(gpiv 0 0) aild Jp~ and gppr are

Jp,v =A~(1+2gp v')"'

gp~ ——tan —
'(v2gpiv) .

(5.86)

(5.8/)

(c) Ho~= T(HeN~i), i.e.,

gax= f(gee+i),

JAN /i Jarr+1TB (PBir+1) &

(5.95)

(5.96)

(5.97)

Since H~(M) is defined as the transform by T of
Hip+i(M), one has

8Bir 8Bip'+1+JBX+1TC(PBX+i)

PRN —TA. (PBN+&)

(5.98)

(5.99)

Prr(M) = Tg (Pre~i(M) ) . (5.88)

Also, one has

P~(M) = Q~ ~(ger(M)—). (5.89)

J~ i(M) =A 'Jir(M)Tri(P~(M)) (5.90)

8ii i(M) = 8~(M)+J~(M) To(P~(M)) (5.91)

from Eqs. (5.17) and (5.18). Finally, one has from Eqs.
(5.89), (5.45), and (5.42)

4.(M)= fv ~(ging+i(M)), (5.92)

ger+, (M)=F~ ~(gip(M). (5.93)

The condition Hiv(M) =H~ means Jpl(M) = Jpi and
0~(M) = gp~.

One wants to choose the sequences eppes and 8~ so
that the Hamiltonians H~(M) have a limit for M ~pp.
Customarily one mould fix gp,~ and 8„~ by requiring
that the renormalized coupling constant and the
ground-state energy be 6xed independent of 3E. %e
cannot calculate the renormalized coupling constant
since this requires knowing the ground-state matrix
element of z+, and these matrix elements are not
discussed in this paper. So a more ad hoc procedure will

be used. Clearly if H&(M) is to approach a limit for
M~~, the sequences 8ip(M) and 0~(M) must ap-
proach limits as 3f—+~. The simplest way to ensure
this is for 8~(3f) and 8~(M) to be independent of M.
This cannot be true for all E, but it can be arranged
for one value of 1V, say /= 0. So let gp(M) be a, constant
gii (between 0 and —,'a-) and let 8p(M) be 0.

Given gp(M) =gii and 8p(M) =0, for all M, one can
reconstruct the complete double sequence H~(M). First,
one computes 8~(3II), for all 3II and 1&E&M, using Eq.
(5.93). Secondly, one computes gp~= (1/v2) tang~(M)
and Jpv from Eq. (5.86). Third, one computes all the
J&(M) (0&1V(M) from J pr(M) = Jpv and Eq. (5.90).
Finally, one computes 8ip(M) (1(X&M) from Eq.
(5.91).The points P~(M) are given by Eq. (5.89).

Now one can consider the limit for M —+~ of H~(M).
The results are stated in Theorem 11.

Theorem ll. Assume Og& ~~. Then

(a) limiv „H~(M)=Hair exists for all E.
Let Hri~ have the decomposition (J~~,8'~,Ã, P~ip)
and let the 0 coordinate of I'~g be eg~. Then

(b) Pi~~=&(gi~~); (5 94)

Since Pip(E) lies on the curve Qp, this means P~(M)
is on Qpr iv'—

T (Pip(M))= (m'+2g"')'"

tang' =
%2g "/m.

(5.101)

(5.102)

Note that 0' is g~ i(M), 0 (notation of Theorem 2) is

gip(M), and m=cosg. One can eliminate g" to obtain

To(P~(M)) = cosg~(M)/cosg~ i(iV) . (5.103)

Using Eqs. (5.86), (5.87), and (5.90), one obtains"

J~(M) =A~[cosg~(M)] ' (5.104)

Since 8~(M) has a limit g~a for M~pp, so does

J~(M), provided g~a is not —,'7r. But from (c) and
Theorem 10(f), one sees that 8~~(-',~ if ga&-', ~. So
J~(M) ha, s a limit Jii~.

Jail=/t (cos6ra) (5.105)

Using Eq. (5.91), one can now show that 8~(M) has

"Equation (5.104) means that the coeScient of (Qptgo+bot6p —1)
in H~(M') is simply h~ independently of the value of @(M'). This
is a].so an immediate consequence of Eq. (5.33) of Theorem 2.

Proof of Theorem 11. The first step uses induction
in X. For X=O, gp(M) has a limit gii for M~ pp by
definition. Hence the sequence Pp(M) satisfies the

assumptions of Theorem 8. Hence Pp(M) has a limit
for M ~pp; from Theorem 10, this limit is R(ga). Now
suppose that gip. (M) and P~(M) have limits ga~ and
Po&= R(0&~), respectively. Consider the sequence

0&+i(M) as a function of M. It is given by Eq. (5.93).
Since gip (3II) has a limit ga~, since the function F~ ~(8)
has a limit F(8), and since Fv N(0) is continuous in 0

uniformly in 3II Lsee Theorem 5(d)$, the sequence

0~+i(M) must have a limit go~+i Also .gati F(ga~)——.
Hence gii~ satisfies (c). Since 8~+i(M) has a limit,
P~+i(M) has a limit (Theorem 8); the limit is R(giiip~i)
(Theorems 9 and 10).Because gii~ is f(garr+i), one has

+(0RN) TA (+(0RN+1)) (5.1oo)

[Theorem 10(c)j. By induction, one has established
limits for 0~(M) and P~(M) for all X, as M ~pp. The
limit Pa~ satisfies (b) and (c) and ga~ satisfies (c).
The next step is to look at the scale factors J~(M). We
use Theorem 3. The points of the curve Qp satisfy the
prerequisites of Theorem 3; hence all the curves Qr,
have the property that A» vanishes for all k at any
point on the curve. In particular, Ai, ~i(M) vanishes
for all h. Look at Ta(P~(M)). Let P~(M) be the point
I'~ of Theorem 2. Using the notation of Theorem 2

and the result of Theorem 3,
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a limit 8R~ for 3f—+~. It is easily seen that J~~ and.

8grr satisfy (c).This completes the proof of Theorem 11.
The existence of the renormalized energies has now

been proved. The renormalized theory is defined by the
sequence of renormalized cutoff Hamiltonians. II&z.
Because of Theorem 11(c),this sequence has a common
set of eigenvalues: II~~ describes the first 2'~+' of these.
The coxnplete set of eigenvalues defines the complete
renormalized Hamiltonian IIg. Unlike the renormalized
J.ee model, the present renormalized theory has no
ghost states: The bare coupling constants go~ are real
for all M and all the Hamiltonians Hrr jand Hx(M)
and H~~7 are Hermitian. The limit of gp~ for M ~~
is ~; this is proven in Sec. VII.

To conclude this section, it will be shown that the
set of renormalized HaIniltonians H~~ is independent
of the choice of the unrenormalized cutoff Hamiltonians

H~, in the following sense.
Theorem IZ. Suppose that the cutoff Hamiltonians

Hrr have the decomposition (Jppr, 8ppr M'I'p~) where

Eprr lies on a one-parameter curve Qp'(t):

&prr =Qp'(gprr) . (5.106)

Suppose that the curve Q,'(t) is any curve in the space
5~ defined for 0&t&-,'w, such that f is the 8 coordinate
of Qp'(t) and the bound (5.52) of Theorem 5(d) is
satisfied by Qp'. Construct the sequence of effective
Hamiltonians H~(M) starting from H~, and let Hip (M)
have the decomposition ( Jip( M), 8~( M),E, J ip( M)).
The points P~(M) lie on curves Q~ &'(t) defined by
analogy with Qr, (t). Let Orr(M) be the 8 coordinate of
I'~(M). Let J~(M), 8~(M), and 8~(M) be determined

by the boundary conditions

Hp(M) =Or;,

8p(M) =0,

Jp(M) = (cos8~) '.

(5.107)

(5.108)

(5.109)

Then Theorem 11 holds for these Hip(M) and the
limiting Hamiltonians H~~ are independent of the
choice of the curve Qp'.

To prove Theorem 12 one first rederives Theorems
5—11 with Qi,

' replacing Qr, , the arguments are un-

changed except in Theorem 11 where the scale factors
J&(M) are computed using a different boundary
condition. To show that J~(M) has a limit as M —&~

one must show that Tri(I') is a continuous function
of P. This is true; the proof will be omitted.

To show that the limiting Harniltonians Ilg~ are
independent of the starting curve Qp', we show that the
limiting Hamiltonians Hz& are uniquely determined

by their properties, as specified in Theorem 11, plus
the boundary conditions. Using Theorem 11(c), one
finds

URN+1 ~(ttBX) (5.110)

Therefore one can compute gg~ for all E given Hgo ——Hg.

Then by 11(b), E~~ is determined. Then one can use

11(c) to determine Jii~ and 8ii~ starting, 'from the
boundary conditions (5.108) and (5.109).

The scale factors Jp(M) were specified in this dis-
cussion instead of Jrr(M) simply to ensure that H g~
would be independent of the choice of curve Qp'.

VI. APPROXIMATE SCALE INVARIANCE IN
RENORMALIZED THEORY

%hen a quantum theory is invariant to the orien-
tation of the coordinate systeIn, it must be rotationally
symmetric —that is, there must exist unitary operators
E. which generate rotations and which commute with
the Hamiltonian. One can then diagonalize the genera-
tors of infinitesimal rotations simultaneously with the
Hamiltonian; one can classify the resulting eigenstates

by angular momentum eigenvalues, etc.
I.ikewise, when a quantum theory contains no

parameters with the dimensions of energy, it must be
invariant to a choice of energy scale. This immediately
implies that the theory is invariant to a set of unitary
operators U(s) which change all energies by a, scale
factor s. The Hamiltonian H is not invariant to U(s),
since II is itself an energy; instead, one has

Ut (s)H U(s) =sH . (6.1)

There will be an infinitesimal generator D which
generates infinitesimal scale transformations (a trans-
formation with s = 1+e, where e is infinitesimal).
However, D does not commute with II and cannot be
simultaneously diagonalized with B. Instead, scale in-
variance is used to generate a set of energy levels with

any energy sE given a level with energy E.
In field-theoretic problems there are usually mass

parameters in the theory, but sometimes these param-
eters become negligible at high energies or short
distances. For example, the propagator of a free scalar
or spinor field at short distances is independent of the
free-field mass and is equal to the propagator of the
zero-mass theory. The free zero-mass scalar and spinor
field theories are scale invariant. "The standard inter-
acting field theories (quantum electrodynamics or
pseudoscalar-meson theory) have only masses as dimen-

sional parameters, but when solved in perturbation
theory they do not become scale invariant at short
distances (large momenta). The propagators of the
interacting theories involve logarithms of {q'/nz'), where
ns is a renormalized mass and q the argument of the
propagator. However, if one holds the renormalized
coupling constant e fixed, then at very large q2 the
logarithmic terms become so large that the terms of
order e'~ in~(q'/m') in the perturbation expansion are
much larger than the Born approximation. To determine
the propagator for this range of q', in particular, in the
limit g' —+~, one must sum the complete perturbation
expansion. There are presently no methods for doing

i' J. Wess, Nuovo Cimento 18, 1086 (1960}.
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this (see especially the remarks of Bogoliubov and
Shirkov"). There is then a question of whether the mass
dependence will disappear at values of q' so large that
the complete perturbation expansion has to be summed.
The best analysis of this problem in relativistic theory
is that of Gell-Mann and I.ow.

In the model, what happens is this. The energy levels
of order A" expanded in powers of the renormalized
coupling constant g~ have terms of order e~g~~ which
prevent any scaling laws from holding. But when m

is so large that eg~))1, the complete series in gg must
be summed, and then the theory becomes scale in-
variant, in a manner to be explained below. If g~ itself
is of order 1 rather than small, then scale invariance
sets in for much smaller m; the only requirement is e))1.

There is a feature of scale transformations which
distinguishes them in a very fundamental way from all
other symmetries of the theory. The other symmetries
(charge symmetries, etc.) are well defined in the
presence of the cutoff M of the model. The scale
transformations are not. The scale transforrnations of
the model are transformations U~ which take the crea-
tion and destruction operators a ~, a, 0 t, and b,
for any m, into the operators a~+~, u~+~, b~+~, and
b +t. (Because the momentum continuum has been
replaced by a discrete index m, the scale transforma-
tions are labeled by a discrete variable l instead of a
continuous variable s.) Since the creation and destruc-
tion operators satisfy the same corrnnutation relations
for any m, the transformation should exist and be
unitary, except for end point effects. That is, in the
cutoff theory there are no operators a, etc., with
nz&M, or m&0. Thus the operators a~, etc. cannot be
transformed. To have scale transformations well de-
fined, one must have operators a, etc. defined for
—~(re&~. But this raises a new problem: If there
are an infinite number of a, then they act in an infinite
product Hilbert space, which is inseparable and there-
fore hard to work with. "This problem has not been
mentioned up to now since it was evident once the
unrenormalized Hamiltonian was defined that one could
only solve it by introducing a cutoff 3f. Furthermore,
when the limit M ~~ was defined in Sec. V, it was
defined only for the effective Harniltonians Hz(M)
for fixed E, which act on Hilbert spaces with a fixed
and finite number of meson degrees of freedom.

The natural way to show that a theory has an ap-
proximate symmetry is to show that it departs only a
small amount from a theory with the exact symmetry.
In the present example of scale invariance, this would
require constructing a version of the model which is
exactly scale invariant. But this is very difficult pre-
cisely because of the problems of the infinite number of
degrees of freedom. The problem is not the problem of
keeping the pions with arbitrary large m. It was shown

' N. N. Bogoliubov and V. Shirkov, Introduction to the Theory
of QNantssed Fields (Interpcience, New York, 1959},pp. 528—529.

at the end of Sec. V that one could define a renormalized
Hamiltonian Hg which includes all the renormalized
energy levels including those involving m-mesons with
arbitrarily large m. The set of such energy levels can
be ordered by their energy and therefore form a
countable set of states, which one can think of as
defining a separable subspace of the original inseparable
space. The problem is that the exactly scale-invariant
theory would have to include degrees of freedom m
with m —+ —~. With such terms present there would
be on every gross energy level an infinite sequence of
fine structure, hyperfine structure, hyper-hyperfine
structure, etc. , with the net result that in a finite energy
interval there would be an uncountable number of
distinct energy levels. These would not form a contin-
uum because each energy must be the sum of terms of
order A ', h. ', A ', etc., with coeKcients of order 1.

Rather than try to develop a formalism for handling
the difficulties of the inseparable space of energy levels
of a scale-invariant theory, we will define approximate
scale invariance to mean simply that for each energy
level of H& of sufficiently large energy, there is another
energy level which is approximately a factor so larger
in energy. The factor so will be determined below; it
will be of order A. The correspondence will not be one
to one; for an energy level of energy I'i, there will be
four energy levels of approximately energy soJ due to
the fact that the energy levels of energy soB involve one
more meson degree of freedom.

One can try to predict the value of so by considering
the unrenormalized Hamiltonians H~. If one applies
the scaling operator U~ to H~ one gets

Ui Hsr(go) Ui=& 'Her+i(go) h'Op, (—6.2)

where U~ is the operator that takes a into a +~, and
00 is the term of order 1. in H~+~. Since the eigenvalues
of A 'H~~i(go) A'Op differ —in order h ' from the
eigenvalues of A 'H~+i(gp), it follows that H~(gp)
and A 'Hit~i(go) have the same eigenvalues except for
fine structure of order A '.

Suppose that Hpr(gp) had a well-defined limit as
M —+~ for fixed go. Then, in particular, the energy
levels of Hsr(go) and Her+i(g p) would be the same for
sufficiently large M (excluding energies of order of the
cutoff, that is, energies of order A~). But then a given
energy level of H~ would be A ' times the energy of a
level of H~+i, from Eq. (6.2). For sufficiently large M',

this level of H~+i is also a level of H~. Hence for every
energy level of H~ of energy E, there would be another
level with energy AE. Thus the factor so would be A.

The prediction is wrong; so is not A. The reason for the
failure is that the renormalized energy levels are ob-
tained by solving Hamiltonians Hir(gp~) where gpsr

changes with 3f. It will be shown later that go~I —&~ as

M —+~; therefore even for large M, go~ is not constant.
The idea that operators do not scale as predicted

from an unrenormalized theory was used in a recent
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discussion of approximate scale invariance in strong
interactions. ' However, the analogy to the model of this
paper is inexact since in the strong interaction problem,
the scaling law for the Hamiltonian is Axed by general
arguments; it is the other fields in the theory, such as
the pion field, whose scaling laws (dimensions) were
permitted to be arbitrary.

The remainder of this section is devoted to the
technical problem of computing the nature of the energy
levels with energies of order A" with e large, and
extracting the scale factor so. It will be shown not only
that these energies scale by a factor AP ', where P is
approximately —,', but also that the error to this scaling
law itself scales like A, as if the Hamiltonian consisted
of two terms, one scaling as AP ', the other as A under a
scale transformation Lcf. Eqs. (6.24) and (6.25)j.

In the following, it is assumed that the function
f(t) and the "curve" R(t) defined in Sec. V are differ-
entiable. I have not proved this.

The renormalized theory is defined by a sequence of
Hamiltonians Bg~. These Hamiltonians are determined
by the three parameters J&~, 8&~, and 0». We study
H~~ when Ã is large. This requires knowledge of
JgN, 8g~, and Og~ fol large lV.

First look at the sequence (OR&). Since ORR is the 8

coordinate of Pg~, and since P» is the transform T~
of PRR~i, one can apply the inequality (5.31) to obtain

(1—0.51 sin'OR~+i) tanOm+i( tanORR.

& (1—0.48 sin'OR~qi) tanOR~pi. (6.3)

First of all, this implies that

P =Lf'(-'m)1 ' =0.5.
One can rewrite Eq. (6.9) to read

4%+1~p4'%+0(4'N+i ) .
An analysis of this equation shows that

=ap +0(px'),

(6.11)

(6.12)

R(OR~) R(,'7r) y~R'(-27r)—. (6.14)

P, =R(-',~),
P.= —R'(l-)

(6.15)

(6.16)

PR~P, +ap Pg. (6.17)

Finally, from Theorem 11(c) one has

AX= —Q &R.&.(PR„) (6.18)

(using the definition SRp=0). The dominant terms in
this sum are for large m since Jg„A." and T, 1
LEq. (5.30)j.For large ri, PR P,. Let

where a is a constant (a will depend on ORo).
Now look at ERR., BR~, and PR~. From Eq. (5.105),

assuming X is large, one has

J =A'v(cos8R~) ' A~& 'A~a —'P ~. (—6.1—3)

To compute PRz, one must study the curve R(/).
One has

OR%+ URN+1+ g7i (6.4) v =2'.(P.) (6.19)

(we assume ORO&~~, which then forces ORR to be less
than 2m; see the proof of Theorem 11). Thus {ORii)
is an increasing and bounded sequence. Therefore it
has a limit for iV ~~. The limit must be ~~. The
reason is that since OR~ f(OR~+i), the ——limit 8 must
satisfy O=f(8). Also, 8«(8&-,'ir. But from Theorem
10(d), the only such 8 is 8= ~7r. Therefore, when 2U is
su%ciently large, 8&+ is approximately 2~. Write

Then for large 1V Lusing Eq. (6.13)),
BR~ —A~pa 'P ~A(A —P) '. (6.20)

A more careful calculation gives the first correction to
Eq. (6.20) as

hR~~ A~P vga 'A(A—P) '+A~'yiA(A—1) ', (6.21)—
where y~ is a constant; also,

Omr = 27r 4~— (6.5) ~a iP VAN+~ AN— — (6.22)

When P& is small, the inequality (6.3) is approximately

0.49(/~+i) '&QR' '&0.52(/~+i) —', (6.6)

where y2 is a constant.
With the above approximations for Pg~, Jg~, and

Bg~, one can write
e.g., 1

O'N+1 24'N ~ (6.7) HR~=a 'A p K ~+A 3C R. (6.23)
To be more precise, consider the formula OR~ f(OR~+i)——
and expand in powers of qb~+y.

err =f(k~ —4npi)—
=f(l~) @~+if'(l~)+0(4~—') (6 8)

Since f(2~) is —i2vr, one gets

~ =f'( ', )~ ~ +0(~ .')-, (6.9)

and Eq. (6.7) shows that f'(—',m.) is approximately 2.

where 3C,~ is a Hamiltonian with the decomposition
(J,B,1V,P) =(1, —yA(A —P) ', X, P.), and KdR is a
Hamiltonian with the decomposition (1, yiA(A —1) ',
X, &2P,+Pq). The only cV dependence of X,,~ and 3CdR

is in terms of how many degrees of freedom are kept in
Eq. (5.2), since neither the J, 8, nor P components of
K,~ or 3CdN depend on E.

Now compare Hg~ with Hg~+~. The difference be-
tween BC,~ and 3C,~+& is only in terms containing
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HBx HcK+HdK 1 (6.24)

with H,~=a 'A~P ~K,~, and Ilq~=A~'Xdg, ' then

~&zx+i AP 'H.~+—AH~a (6.25)

a~+~, b~+~, etc. , and such terms are of order A ~ ' or
less. So the energy levels of K,z are approximately the
same as the energy levels of BC,N+~, only each level of
BC,~ corresponds to four of BC,~+~ because of the extra
degrees of freedom in K,~+~. In Hg~, the K,~ term
dominates the K~~ term by a factor P~; neglecting the
BC&& term, the energy levels of P 'AHA+ and Hm+i
are approximately equal. This establishes the basic
claim of this section. The energy levels of H&z and
H~~+~ are both subsets of the energy levels of Hg.
So the energy levels of AP 'Hz are approximately equal
to the energy levels of H&. In scaling the Hamiltonian
an extra factor P has appeared.

I.et us consider the errors in approximate scale
invariance. One is comparing Ap H~N with H~N+i. The
basic energy scale for these Hamiltonians is A~+'p —~'—'.
Neglecting the Xd~ and K~~+~ terms in Hg~ and
H~~+j means that one has an error of order A . This
is small by a factor P~+' from the basic energy scale
but huge on an absolute scale (remember E must be
large for all our approximations to hold). There is also
an error which is of order A ~" ' in BC,~+~ when one
neglects the a~+i terms; this becomes an error of
order P ~ ' in H~~+i which is negligible compared to
A~ (p 2 while A) 4X10'). Owing to the error of order
A~, the matching between H~~+i and P 'AJi~~ is close
only for energy levels with energies large compared to
A~, i.e., only highly excited states.

One can now get a scaling law for the leading correc-
tion to scale invariance. That is, one can take K~~ into
account but still neglect the difference between BC,~
and BC,~+~ and the difference between Kd~ and 3C~~+~.
In this case one can write

when O~~ is small, the change from Og~ to Og~+j is
nonnegligible in order Oiio' (see Sec. VII for details).
Hence in third order or higher in Ogo, Hg does not show
scale invariance. It is only when E is so large that
Og~ -,'m that scale invariance becomes apparent; but
for these values of S an expansion in Ogo is absurd even
if Ogo is small: The true expansion parameter turns out
to be (/1V)g~o, which is huge, instead of Hgo.

VII. RENORMALIZATION AND ROLE OF
TRANSFORMATION T

The renormalization program carried out in this
paper followed the conventional pattern in that a
renormalized coupling constant was defined and held
fixed in the limit of infinite cutoG. The transformations
T and T& were introduced as part of the technique of
solving the cuto6 Hamiltonians; their properties were
useful in proving the existence of the renormalized
Hamiltonian. An analysis of the renormalization pro-
gram of Sec. V shows that the transformations T and
T& play a more fundamental role in the renormalization
than one might think. In Sec. VII A it is shown that
the renormalized Hamiltonian is determined more by
the properties of the transformation T~ than by
properties of the original unrenormalized Hamiltonian
of Sec. II.In Sec. VII 8, the problem of "why renormali-
zation&" is considered; it is shown that three features
of the model Hamiltonian cause the renormalization
program to be nontrivial. These three features are
(1) the model has an infinite number of degrees of
freedom, (2) the mth degree of freedom with nz large
dominates the degrees of freedom with m small, and (3)
scale invariance makes the behavior of the degrees of
freedom for large m similar for different m. In Sec.
VII C, the renormalization theory of this paper is com-
pared with the theory of Gell-Mann and I.ow for
quantum electrodynamics. '

Since H~~ is small compared to H,~, the energies of
Hc~+HqN consist, to a first approximation, of energies
of H,~ plus expectation values of H~~. The correction
therefore scales by a factor A when E—+ X+1 while
the dominant term in the energy scales by AP '.

The unrenormalized Hamiltonian had two parts, the
free meson energy term and the interaction term, but
both parts scaled by A when X —+ /+1. The renormal-
ized Harniltonian also has two parts to a first approxi-
mation but the two parts scale differently, the dominant
term scaling by AP ' while the leading correction
scales by A.

It was crucial for the proof of scale invariance that
the constants Og~ approach a limit —', x for E —+~. As
long as Ozz changes with 2V, the energy-level structure
of Hz on the scale A~ will differ by more than a scale
factor from the structure on the scale A.~+'. This is
due to the nontrivial dependence of the energy levels
of Hz& on Oz&. In particular, in perturbation theory,

A. Renoxmalization and Transformation T~

The analysis of the renormalization program to be
given here concerns very basic questions. To set the
stage for these questions, it is worth reviewing the role
of the Hamiltonian in ordinary quantum mechanics.
In nonrelativistic quantum mechanics, a system is
well defined once the Hamiltonian is specified. Any
Hermitian (self-adjoint) Hamiltonian defines a unique
and acceptable quantum mechanics. To specify the
Hamiltonian, one must first define the basic observables
of the system (e.g. , position, momentum, or spin
operators). Then one specifies the Hamiltonian as a
function of these observables. In principle one could
define the Hamiltonian in a different way, by giving
a list of its eigenvalues and eigenvectors. This is rarely
done in practice because the eigenvalues and eigen-
vectors are generally very complicated expressions,
often not expressible in closed form. In contrast, the
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Hamiltonian is often a simple function of the observ-
ables (for example, compare the Coulomb Hamil-
tonian of the helium atom with its eigenvalues and
eigenvectors).

In Sec. II we defined a model quantum theory in an
entirely conventional manner. The "observables" a,
a„t, b.„, b„~, and v.+ were defined, and the Hamiltonian
written as a simple function of these observables, with
one free parameter go. Then in Secs. IV and U the
techniques for solving the model were defined, and it
was shown that after renormalization the theory had
finite eigenvalues. The finite theory again depended
on one free parameter, which, however, was the re-
normalized constant 0~0 instead of go.

The construction of the renormalized Hamiltonian
in Sec. V was a complicated process. In summary, one
chose a renormalized coupling constant 8~0. One con-
structed a sequence of Hamiltonians Hz& by starting
with the point Pao ——R(8ao) and constructing the
sequence Pa~ through the relation Pii~=T~(Pair+i).
The full renormalized Hamiltonian consisted of a limit
of IIg~ for S—+~ suitably defined. This construction
leaves unclarified some fundamental questions. Does
the renormalized theory solve the unrenormalized
Hamiltonian of Sec. II? If not, what problem does it
solve? Is the renormalized coupling constant a funda-
mental parameter in the theory& If not, can it be re-
placed by one that is? Is the unrenormalized Hamil-
tonian the simple expression which underlie s and
defines the rather complicated spectrum of renormal-
ized energy levels; if not, where do we look for
simplicity?

It is difficult to answer these questions conclusively
because there are problems of interpretation. For
example, one must decide what is a "fundamental"
parameter, and what is "simple. " However, in trying
to answer the questions of the previous paragraph, two
results become clear. The first is that the relation of
the unrenormalized, uncutoR Hamiltonian to the re-
normalized energy levels is fundamentally diBerent
than the relation of a simple Coulomb Hamiltonian to
its eigenvalues. How to characterize the new relation-
ship can be debated, but certainly it is not the old and
comfortable relationship of elementary quantum me-
chanics. The second result is this: There is a key fact
which must figure in any discussion of the new relation-
ship of Hamiltonian to energy levels, a key idea which
must be used to obtain any fundamental understanding
of why we must introduce an essentially phenomeno-
logical parameter (the renormalized coupling constant)
in defining the renormalized theory. The crucial fact
is the existence of a fixed point of the transformation
Tz, namely, the point P,=R( ) ~irThe point P, ha. s

already been encountered in Sec. VI: It is the limit of
the points Pa~ (involved in the definition of Ha~)
as X —+~.The role of the fixed point cannot be summar-
ized in a few words; a detailed analysis of its function
wj.ll be given later in this sectiog. .

tan83r (M) =&2gpir . (7.3)

I et 8 be an upper bound. to 8ia. (M); since go,ir llas a
Quite limit, one can choose 0 to be less than ~sr. Define

The relation of the unrenormalized uncutoQ Hamil-
tonian to the renormalized theory can be summarized
in terms of the following two results which will be
proven later in this section.

(1) If {gzir} is a sequence of coupling constants
which approach a finite limit go as 3f~~, then the
energy levels of the unrenormalized cutoff Hamil-
tonians H~(goir) approach the energy levels of the
uncutoff free Hamiltonian LEq. (2.1) with go ——0] as
M —+~, except for an additive constant.

(2) If {goir} is a sequence of coupling constants
which approach ~ as M —+~, the energy levels of

Hir(goer) may or may not approach a limit as M —+~.
For any Hg(} with 0(8~0(-,'x, there exists a sequence

{gpia'} wi'tll gpir ~~ as M ~~, such that the energy
levels of Hir(g, ~) approach the energy levels of the
renormalized Hamiltonian Hg(0ao) as M —+ ~ (apart
from an additive constant).

The first result means that if the uncutoR unrenornial-
ized Hamiltonian with finite go is defined as a limit of
cutoff Hamiltonians, then its solution is the same as
the solution of the free uncutoff Hamiltonian and, in
particular, is not related to any of the renormalized
theories with interaction. The second result means that
a single uncutoR unrenormalized Hamiltonian, the one
with go= ~, has an infinite number of possible solutions
depending on what sequence {glair} is used in the
cutoff Hamiltonians. Therefore instead of each re-
normalized Hamiltonian corresponding to a separate
unrenormalized Hamiltonian, one finds that all the
renormalized Hamiltonians solve a single unrenormal-
ized Hamiltonian. The nonuniqueness of the solution
of the unrenormalized Hamiltonian with go = ~ is
discussed further below.

Now the results quoted above will be proven. It is

helpful to prove the following. If 8(ei and both lie

between 0 and ~7t. , then

fz, (8) & fz(0i) (for 8&0i) . (7.1)

The proof is based on Theorem 5. From 5(b), fz(0i)
—fz(0) is positive for 0i)0. From 5(d) LEq. (5.54))

~
fz(8i) fr, (8)

~

)0.025~8—i—8~ . (7.2)

From 5(b), Fz(0) is continuous in 8. Hence fz(0i) —fz(0)
cannot change sign anywhere in the range 0(0(0~.
Hence Eq. (7.1) holds. To prove the first result, consider
a sequence {goir} with a finite limit go as M —&~.
Consider the unrenormalized Hamiltonians H~(goir).
Using the transformation T one can generate eRective
Hamiltonians H~(M) with coupling constants 8~(M)
having the same energy levels as Hir(gait). The con-
stants 8&(M) satisfy Eqs. (5.92) and (5.93) and
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a sequence (Oi} to be Op=0, Or. =fr. (0r. i). Becau—se of
Eq. (7.1), Opr ~ is an upper bound for 0~(M). The
sequence (Or.) is a decreasing sequence with limit 0
as I.—+~; this follows from the inequality (5.31).
Hence 0~(M) —&0 as M —+pe for fixed X. Hence in
the limit M —+~, Hrr(M) becomes a free Harniltonian,
which is result (1).To prove the second result, consider
the sequence (gpsr), de6ned in Sec. V following Eq.
(5.93), corresponding to a given nonzero renormalized
constant Orlop. Again one has constants Orr(M) satisfying
Eqs. (5.92), (5.93), and (7.3), but now Op(M) is fixed to
be Oiip. From Eq. (5.31), Oi(M+1))Op(M+1) =Op(M);
using Eq. (7.1) repeatedly, one gets 0++i(M+1))Orr(M)
for all 1V, and hence gpir+i)gpir. Tllus (gpsr} is an.

increasing sequence. It cannot have a finite upper
bound, for if it did, e~p would have to be zero. Hence
gp~ ~ 'x) as M ~ co . By the analysis of Sec. V the
Hamiltonians Hrr (M) have well-defined limits as
M —+po. [In Sec. V the unrenormalized Hamiltonians
H~ have a ground-state energy subtraction; if this
subtraction is not made, then only the energy differ-
ences of levels of Hrr(M) have a limit as M —+~.]
Such a sequence {gp»} exists for any 0&p, so result (2)
is proved.

The fact that the uncutoR Hamiltonian with gp= ~
has an infinite number of solutions can be blamed on
the fixed point P, of Tg. This result can be seen by
studying the behavior of the double sequence Prr(M)
of points in S~ defined in Sec. V as part of the renormali-
zation analysis. The points Prr(M) have the following
properties.

(a) Pm(M) has the decomposition , (Osr(M), 0,0), i.e. ,
the components A~ and C~ are all zero. The point
Psr (M) corresponds to the unrenormalized Hamiltonian
Hpr(gppr) with 6nite cutoff M and gpii given by Eq.
(7.3).

(b) Pp(M) has 0 coordinate Orlop, by deiinition,
(c) Prr i(M) =T~[Prr(M) jt

I'rG. 1. Artist's conception of the trajectories C(3), C(7), Cg,
and Cz projected on a two-dimensional space. The renormalized
coupling constant is -', 7r. The curve R is also shown. The first few
points on Cg, Ce, C(3), and C(7) are labeled explicitly: EU is the
erst point on Cg,. Ego is the first point on Cg.

When M ~~, 0,&r(M) ~ ps-, so Pir(M) has a limit
(i2ir, 0,0) when M —+~. Denote this point by Prr. The
point P~ corresponds to the unrenormalized, uncutoff
Hamiltonian with gp

——~.
The point P, =R( s7r) (the fixed point of Tg) also

has 0 coordinate ~~, but it is easily seen that the
components A~ and CA, of P, cannot vanish. Hence P,
is distinct from P~.

One can think of the points Pii (M), for Axed M, as
defining a trajectory C(M). If one takes the limit of
the trajectories C(M) for M~~, one gets a double

trajectory Cz QC&. The trajectory C& goes from P'p to
P., i.e. , it connects the point PU representing the
unrenormalized Hamiltonian to the fixed point P,.
The trajectory C~ connects the renormalized point
Pzp to the fixed point P, . The first trajectory is an
infinite sequence of points (PrrPrri, PU2, . . .), all with
0= s7r, satisfying PUrr = Tz(Prrrr i), and with the limit
P, as iV —+~. The trajectory C& consists of the re-
normalized points P» lying on the curve E, again with
limit P, as rV —&~ . The trajectories C(M) with M large
lie close to the limiting trajectories: The first few points
on C(M) [e.g. , P~(M), Pir i(M), etc.j lie close to the
first few points on C~. The last few points on C(M)
[e.g. , Pi(M), Pp(M), etc.] lie close to the first few
points on C~. The points near the middle of the trajec-
tory C(M) [e.g. , P~r&(M)] all lie close to P, .

The trajectories C(M), Cz, and Cii are illustrated in
Fig. 1. Figure 1 is an artist's conception of what these
trajectories might look like if the space S~ was a two-
dimensional space instead of an infinite-dimensional
space. The two dimensions are 8 and a coordinate x
replacing the infinite-dimensional space defined by the
sequences (A&) and (C&}.One can see explicitly in Fig.
1 that the points Prr(M) ~ P~rr as M ~~ and
Psr rr(M) ~ Prrrr as M ~pe. One can also see the
clustering of points about P,.

Now return to the problem of the infinite number of
solutions of the unrenormalized Hamiltonian. The non-
uniqueness is connected with the fixed point P„because
the limiting trajectory C& C& is nonunique only on
the section C&. The trajectory Cz connecting PU to
P, is uniquely determined by P& and the recursion
formula Prrrr T~(Prrrr i). The traje——ctory Cri connect-
ing P, to Pgp is nonunique; it is a different tra&ectory
for each different value of Ogp. Thus the nonuniqueness
arises at the point P,.

The next question is: How is the nonuniqueness
related to the properties of the fixed point P, . In
order to discuss this question it is necessary to know
the behavior of the transformation T~ in the neighbor-
hood of P„' this behavior will now be investigated.

Assume that the transformation T~ is differentiable
in the vicinity of P„, so that if P is any point near I, ,
one can write

Trt(P) =P,+Uri(P P,)+order (P—P,)'—, (7.4)
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where U~ is a lirjear transformation. Now consider a
trajectory of points Pz, namely, a sequence of points
satisfying

~ N+1 IA(PN) y (7.~)

and suppose that the trajectory lies in the vicinity
of P, . Then approximately,

Pe+i P.= &—~ (PN —P.) . (7 6)

Consider therefore the trajectories dehned by Uz, that
is, sequences of points Q~ satisfying

QN+1 f A(QN) ~ (7.7)

Since this is a linear equation, an arbitrary solution
can be written as a linear combination of a set of
linearly independent "basic" solutions Q~ (n=1, 2,
3, . . . labels different linearly independent trajectories).
The simplest type of solution is of the form

Qx. =go. (r.)", (7.8)

where Qo is a point (determined up to a scale factor)
and r is a constant. Qp is an eigenvector of the trans-
formation U~,

r.Qo =&~(go ), (7 9)

and r is an eigenvalue. Since Ug does not have to be
a. self-adjoint transformation, the eigenvalues r need
not be real; also, there may be trajectories QN behaving
as N(r )~, N'(r )~, etc. , under special circumstances.
Since U~ is a transformation on a space with an
infinite number of dimensions, there will be an infinite
set of basic solutions g~ . These solutions divide into
three possible categories. Those with

~
r

~
)1 are

called "unstable" trajectories; these trajectories move
away from P, as one keeps applying the transformation
Tz. Those with ~r

~

(1 are stable trajectories; the
stable trajectories approach P, as one keeps applying
T&. For example, the trajectory C& connecting P&
with P, is a stable trajectory; the trajectory C& is an
unstable trajectory. There can also be "neutral"
trajectories with

~

r
~

= 1, in special cases.
A crucial question is that of how many linearly

independent unstable trajectories Ug has. The answer
is one; the proof is as follows. There must be at least
one basic unstable trajectory, for if all the basic trajec-
tories were stable then all linear combinations of the
basic trajectories would also be stable, i.e., all solutions
of Eq. (7.6) would be stable. But we know there are
unstable solutions, namely, the trajectories Cz for any
8gp (to be precise, the parts of these trajectories lying
near P,). On the other hand, there cannot be more
than one basic unstable trajectory. For if there were
two linearly independent unstable trajectories, say Qz&
and Q~o, then one could form a linear combination of
these, say P&g~&+P2Q~2, such that the 8 coordinate of
p&g»+pogqo is 0. This means the 8 coordinate of
(P.+p&g»+p2g~o) is —,'7r. But now the 8 coordinate of
Pc+Pigm+Pog~2 will be 2~ for all N because T~ does

not change 8 if 0= ~7t.. But then the sequence of points
P,+pjg~r+p2Q~2 must approach P, as N ~op, using
Theorems 8—10 of Sec. V. This means Pqg~q+P2g~o is
a stable trajectory. Then we could use P&g~&+P,g~&
as a basic trajectory instead of Q~2, for example, which
leaves only one unstable trajectory. The trajectories
C~ for different Hgo must all be multiples of the single
unstable trajectory. This result has already been
demonstrated in Sec. VI Lsee Eqs. (6.12) and (6.17)$.

It will now be shown that the number of linearly
independent unstable trajectories of Ug determines
the number of free parameters in the renormalized
Hamiltonian. In other words, the degree of non-
uniqueness of the solution of the unrenormalized
Hamiltonian is determined by the number of unstable
solutions of the linearized transformation U~.

To show this, we must discuss what would have
happened if U~ had two or more linearly independent
unstable trajectories. It will be shown that in this
case the nonuniqueness of the solution of the un-
renormalized Hamiltonian involves two or more free
parameters. To be precise, we show that one can
construct sequences P~(M) such that

(1) lirn P~(M) =P~,

(2) hm P~(M) =Pg~(ag ao) )

(3) P~ g(M) =Tg(P„(M)),

(2') lim Pr, (M) =Pgr, (ag aI„-),

one can reconstruct the remainders of the sequences
using T& or 1'& ' and satisfy the original requirements.
If I. is large enough, P~I. and Pgl, will be near P, and
we can assume that

(3') P~ g(M) =P,+U~(PN(M) —P,).

where the point Pg~ depends on k phenomenological
parameters ai. al„k being the number of linearly
independent unstable solutions of U~. Having shown
that such sequences exist for any choice of the param-
eters a~ ~ a~, it is clear that there is a k-parameter
family of renormalized Hamiltonians, defined by the
points P~~(aq aq) for all N, all of which can be
considered solutions of the single unrenormalized
Hamiltonian P~.

To prove the existence of the sequences P~(M), it is
sufficient to- consider the part of the sequence lying
near P„say, the points P&(M) with

I.&E&3f—1.,

where 1. is large but held fixed as M —+~. So long as

(1') lim Por I.(M) =Ppr,

(Pzr, is the I-th point on the trajectory C&),
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Since P&(M) P,—satisfies the linearized equation, it
must be a linear combination of the basic solutions
for each M:

(7.10)

(Q depends on M —X rather than X so that the index
of Q increases as one applies U~.) The sequence P~~
must a,iso be a linear combination of the basic solutions:

PUN =Q "YaQxa+Pc ~ (7.11)

Furthermore, since Pp~ —+P, as S—+~, the coe%-
cients y must be zero for all unstable trajectories.
Suppose, to be specific, that the unstable trajectories
correspond to 1&n&k and that the trajectories for
o.)k are stable. Then y =0 for o.&k. The requirement
that P~ r.(M) ~P~r, as M —+~ means that P (M)
must satisfy

(7.12)

The requirement that Pz, (M) have a limi't as M —+~
means that P P (M)Qir r, must have a limit for
M~~. For the stable trajectories, Q~-r, ~0 as
M ~~ and since P (M) —+ y, which is finite, the stable
trajectories drop out in this limit. Assume that the
unstable trajectories have pure exponential form pEq.
(7.8); the author has not examined alternative forms in
detail]. Then the limit is P i~ P (M) (r„)~—

~Qp . Fol
this to have a limit, it is sufficient to have

P (M) =a (r ) ~ (1&n&k), (7.13)

(7.15)

which hn, s k arbitra, ry constn, nts, a,s was sta, ted n,t the
beginning. In fact the renormalized points PRI, (for
suRiciently large L) are just a, linea, r combination of
the k unstable trajectories of U~, with the coefficients
representing free parameters in the renormalized
Hamiltonian.

-In fact, the transformation U& has only one unstable
trajectory, the renorrnalized Hamiltonian has only one
free parameter, and Eq. (7.15) reduces to Eq. (6.1/),
where the free parameter is a (which depends on O~o).
It was also shown in Sec. VI that the eigenvalue of
Uz Lri in Eq. (7.15) or P ' in Eq. (6.17)j determines

where the constants a are arbitrary. Since ~r
~
)1

for n&k, the constants P (M) for n& k have the limit 0
as M —+~, as required by Eq. (7.12). To complete the
specification of p (M), put

(7.14)

With this specification of P (M), the points Pii (M)
satisfy the requirements 1'-3'. The limit P&z, has
the form

the scaling properties of the renormalized Hamiltonian
at small distances.

As a final comment, one notes that the unrenormal-
ized Hamiltonian could be chosen to be any point P
with 0=&m,' the renormalized Hamiltonians are in-
dependent of the choice of the unrenormalized Hamil-
tonian since the sequences Pz(M) will in the limit of
large M go from the unrenormalized point to P, and
then along the unstable trajectory to a renormalized
point Pgo.

In summary, the renormalized Hamiltonian is
determined by properties of the fixed point P, rather
than those of a particular unrenormalized Hamiltonian.
The sequence of renormalized Hamiltonians P~~ ap-
proaches P, as X—+~; for large S, P~~ —P, must be a
linear combination of the unstable trajectories leaving
P„and the different renormalized theories can be
labeled by the coefficients a relating P» —P, to
unstable trajectories. I think it is this relation of the
renormalized theory to unstable trajectories leaving a
fixed point, which is simple, to answer the question
rn, ised earlier. The coefficients u are, I think, as close
as one can get to being fundamental parameters in the
theory.

B. Why Renormalization)'

In this part we shall try to understand what features
of the model Hamiltonian make re normalization
necessary. The first step in the analysis will be to show
that the transformation T is divergence free. Then the
reason for the appearance of divergences in perturbation
theory will be examined.

The statement that the transformation T is diver-
gence free means the following. I et H be a Hamiltonian
in S. Let H' be T(H). Let H have a decomposition
(J,b,X,O,Ai„C&,) a,nd H' have a decomposition (J', 8',
1V—1, O', Ai, ', Ci, '). Then, as discussed in Sec. V, if J,
8, 0, Ak, and CI, are held fixed while E varies, the
quantities J', b', O', A~', and Cp' are independent of E
and cannot diverge for E—+~. Furthermore, the trans-
formation is continuous, that is, if H and H" are two
Hamiltonians with transforms H' and H"', then
H' —+ H'" when H~H". This continuity is uniform
in E.

To understand the significance of T being divergence
free, one can study the divergences that appear in
ordinary perturbation theory and see that they arise
despite the finiteness of T. Consider the unrenormalized
cutoff Hamiltonian H~ with a small, bare coupling
constant go and large cutoff M. Consider also the
effective Hamiltonian Ho(M) which describes the
ground state and first few excited states of H~. That go
is small means the angle 8~(M) Lalso called O, ia, as in
Eq. (5.87)] is small, and an expansion in go can easily
be converted into an expansion in Oia (M). The eRective
Hamiltonian Ho(M) is known if one knows the three
parameters Jo(M), 80(M), and Oo(M) and the curve
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80(M) =8~—(p g.)6~'. (7.18)

For large M this becomes

8p(M) Hgr MgHir', — (7.19)

and one has a divergence linear in 3f. This corresponds
to a logarithmic divergence in the cutoff momentum
(since the cutoff momentum is AM). The energy
hp(M) is dominated by a contribution from Jir (M):

h, (M) ~A~ (cosHir) 'T,(P (iMr) . (7.20)

Since T —1 for any argument, ho(M) is linearly
divergent in the cutoff momentum. These are the
divergences one expects.

The divergence in 80(M) is easy to understand. The
ground-state energy of H~ gets contributions from each
meson degree of freedom represented in H~. The degree
of freedom nz contributes an energy of order A, for
that is the energy scale for mesons in state f„.The
dominant energy is A~ associated with mesons having
the cutoff momentum. Therefore ho(M) is of order
A~. In any case the divergence in h, (M) as M~~
arises because the scale factor Sir(M) —+~ as M —+~.
This type of divergence occurs also in relativistic theories
as mass renormalization. In some field theories the mass
is linearly divergent. The cause of this is that when the
cutoff is large the natural energy scale for self-mass
effects is the cutoff. Then one must let the bare mass

Q~(&) in S~. The curve Q~(t) is well behaved for large
M: As 3/I~~ it approaches the limit curve R(/).
From Eq. (5.104), Jo(M) is a simple function of 80(M).
Thus any divergences in the low-lying energy levels
of Hiir as M +~—must be due to divergences in hp(3/I)
or 80(M) as M' —&~. A divergence in ho(M) affects
only the ground-state energy but not energy differences
between the ground state and excited states. A diver-
gence in 80(M) means a divergence in differences of
energy levels at least through the scale factor Jo(M).
The divergence in 80(M) can be identified as a coupling-
constant divergence while a divergence in hg(M) is a
ground-state energy divergence.

To study the divergen. ces in Sp(M) and Ho(iV) one
uses Eqs. (5.91) and (5.92) of Sec. V. Let 8~(M) be
denoted 8~, hier(M) is zero (we do not make an energy
subtraction in Hier). From the inequality (5.31), one
Gnds that for 0 small,

(7.16)

with g~~—,. For L~~, g~ approaches a limit q since
fr, (8) has a limit. To a first approximation one neglects
the 8' term in Eq. (7.16); then one gets Ho(M) Hir.

To a second approximation one replaces 0' by 0~3;
then Eq. (5.92) becomes

8~(M) =8~~i(M) —qi, ~8~', (7.17)

which gives

in the Lagrangian be of the order of the cutoff and
chosen very carefully so that all cutoff-dependent
self-masses cancel and the physical mass is much
smaller than the cutoff.

The coupling-constant divergence in 80(M) is .more
subtle. There is no question of a cutoff-dependent
scale here; 8 is a dimensionless variable. The divergence
is proportional to the number of degrees of freedom.
It arises because the transformation T must be iterated
M times to give Ho(3/I) starting from Hir. These
iterations define a sequence of constants 8/v(M). The
difference between 8~(M) and 8~~i(M) is finite for all
N and small in perturbation theory. However, these
differences add in going from 8~ to 80(M); hence the
divergence.

One sees from the above discussion that the diver-
gences of perturbation theory derive from two causes.
The linear divergence is due to the energy scale of the
cutoff Hamiltonian H~ being A~ instead of the pion
mass. The logarithmic divergence arises because the
transformation T is iterated M times in going from 0~
to Hp(M) ~ The cause of the logarithmic divergence must
be pursued further. Why was it necessary to compute
8O(M) by an iterative process? Will an iterative method
in which 80(M) is calculated in M steps always make
Hq(M) divergent when M-+~ '?

To set up the discussion, pretend that the details
of the analysis of the model had been different from
what was reported in Sec. V. Suppose that the cutoff
energy A~ had not been crucial for the discussion of
the model, but that still one defined a sequence of
constants 8~(M) in going from Hy to Ho(M). What
might one expect in this case& Then, when M and E
are large, one would expect that there could be no
appreciable difference between 8~(M) and 8~~i(M),
for in both cases the effective cutoff (h~ or A~+') is

large compared to the only important length. Most of
the difference between 8O(M) and Hir would be due to
the difference 80(M) —Hi(M) or 8i(M) 82(M); t—he
differences Hii(M) —8~+i(M) for large 1V would go to
zero and could not accumulate to make 80(M) diverge
for 3f—+~.

Thus the essential question is why the difference

Hii (M) —Hii/+i(M) does not go to zero for large E, at
least in perturbation theory. The answer lies in two
features of the cutoff Hamiltonian H~ and the effective
Hanultonians H~(M). The first is that meson degrees
of freedom of order Ã dominate the Hamiltonian
Hw(M) rather than meson degrees of freedom of order
1. As a result, the change from H~(M) to Hii i(M),
which means eliminating the Eth degree of freedom,
is a nontrivial change. Thus one can hardly expect
8~ i(M) to be the same as Hii (M) no matter how large
E is. If by contrast the meson degrees of freedom of
order 1 had been the dominant degrees of freedom in
HN(3/I) for large E, then dropping the Xth degree
of freedom would have been a negligible change and
8N i(M) would probably have been equal to Hii (M).
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The second important feature is scale invariance. Scale
invariance means that if the degrees of freedom of
order 1 can be neglected (which is true for large X),
then the process of going from Hz(M) to HN —i(M)
is indistinguishable from the process of going from
H~ i(M) to HN ~(M). In particular, if HN i(M)
differs from H&(M) only by a scale factor and an
additive constant, then H~ 2(M) differs from H~ i(M)
only by the same scale factor and another additive
constant. Now if 8~(M) is small, E is large and. M&) V,
H~ i(M) does differ from H~(M) by little more than
a scale factor and an additive consta, nt. This is because
Hz-(M) is defined by the constants J~(M), 8~(M),
8~(M), and the point Qir ~(8~(M)), while H~ i(M)
is defined by J~ i(M), h~, (M), 8~,(M), and

Qir ~+i(8~ i(M)). If 8~(M) is small then 8~ i(M)
8~(M—); since Qr, (t) =E(t) when L is large,

QM N(8N (M)—) QM—N+1(—8% 1(M—)) ~

Thus only the scale factor J~(M) and constant hx(M)
can difFer appreciably from J~ i(M) and B~ i(M).
But under these circumstances the effect of the trans-
formation T on H&(M) and H& i(M) is essentially
the same, except for the e6ect on the scale factors J
and the constants 8. This is scale invariance, and
it means in particular that the difference 8~ 2(M)

8~ i(M) is—thesameasthedifference8~ i(M) —4 (M)
when 8~(M) is small; hence the divergence in 8o(M)
in perturbation theory is proportional to M rather
than some other function of M.

In conclusion, the fact that meson degrees of freedom
of the order of the cutoff dominate the cutoKHamil-
tonians makes renormalization inevitable. The diver-

gence problem is not just an artifact of perturbation
theory. Since the dominance of the degrees of freedom
of order of the cutoff is due to the energy of a meson
increasing as its momentum increases, which is also
true in relativistic theories, one expects that renormali-
zation will also be inevitable for strongly coupled
relativistic theories. %e note also that not only does
the transformation T determine basic properties of the
renormalized theory, as shown in Sec. VII A, it is also
divergence free. Clearly one will want to define an
analogous transformation for relativistic theories.

&. Analogy to Renormalization Theory
of Gell-Mann and Low

Gell-Mann and Low, in 1954, presented an analysis
of the renormalization of quantum electrodynamics,
and predicted that there would be an "eigenvalue
condition" for the bare coupling constant. ' That is,
the bare coupling constant, eo would have to have a
fixed value independent of the value of the renormalized
coupling constant. To be precise, they predicted that
there would be a function f(x) with the property that
if eo is finite, then eo is a root of the equation f(&0 ) =0.
To show this, Gell-Mann and Low of necessity had to

obtain ideas from perturbation theory and then

extrapolate to the region of strong bare coupling

constant. This involves severa, l speculations, some of

which will be criticized below. Nevertheless, the analysis

of Gell-Mann and Low remains after 16 years the most

sensible discussion in the literature of nonperturbative
renormalization theory for relativistic field theory.

Here is a brief review of the Gell-Mann —Low theory.
Let e be the physical (renormalized) electron charge

and let m be the physical electron mass. Let d. (k'/m', e')

be the renormalized photon propagator apart from a
factor k '. The customary normalization requirement

for d, is assumed:
d..(0,e') =1. (7.21)

Gell-Mann and Low define a generalization of the
usual renormalization procedure for electrodynamics,
with a different definition of the renormalized charge.
In the Gell-Mann —Low program, the renormalized

charge is a quantity e), depending on a subtraction

point X. The photon propagator is (apart from the
factor k ') a function d (k'/X', m'/X' eq') with the normali-

zation condition

d (1,m'/X', e)P) = 1. (7.22)

In particular, putting k'=X' gives

eiP = e'd (X'/m' e') (7.24)

which gives the definition of e), in. terms of e. In the
Gell-Mann —Low program, all other amplitudes (elec-

tron propagator, vertex function, etc.) are functions of

e)„and all depend on the reference momentum X as well

as nz and various momenta. The subtraction procedure

of Gell-Mann and Low is defined so that the bare

coupling const, ant eo is the hmit of e), as X —+~.
Gell-Mann and Low then argue that the function

d(k'/X', m'/X', ex') has a firute limit when m —+ 0 holding

and e), fixed. This should also be true of other

amplitudes. They give an example of this from fourth-

order perturbation theory, and then argue that it is

true in general because the momentum k provides an

infrared cutoff. Whether the finiteness assumption is

true is still an open question; the author knows of no

reason to doubt it, and it will be assumed to be correct
in the following.

If d (k'/m. ',e') is expanded in powers of e' for k'

large, the coefficients involve logarithms of k'/m', so

that the effective expansion parameter is e' In(k'/m')

and not e'; this means that radiative corrections

become important when In(k'/m') is sufficiently large,

no matter how small e is. In contrast, as Gell-Mann

and Low make clear, the fact that d is independent

of m'/X' when m'/X' is small mea, ns that the expansion

The propagator d is related to the usual propagator d,
through the relation

e'd (k'/m' e') =ei,'d(k'/V m'/X' ei,') . (7.23)
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of d(k'/X', m'/X', ei') in powers of ei' involves no large
logarithms if k and X are simultaneously large so that
k'/X' is of order 1. In fact, in this case the coefHcients
of eq', eq4, etc. are of order 1 no matter how large k
and X are.

To compute eo from Eq. (7.24) directly would be
difFicult since for any e the radiative corrections to
d (X'/m', e') are infinite in the limit X-+~. Therefore
Gell-Mann and Low develop an indirect procedure
which requires knowing only d(k'/X', Oe &2) for k' near
X2. The radiative corrections to d will be important
because, as will be seen, one will have to consider
coupling constants eq of order 1. But unless one must
consider the limit eq —+~, the radiative corrections will

be finite. The trick of Gell-Mann and Low is to observe
that one can use the function d to set up an equation
for de&/dX. From Eq. (7.23) one finds that, for any
X and ~',

Putting k =X' gives

(7.26)

Bd(y, O, x)
P(x) =yx—

By
(7.28)

The function f(x) has a power-series expansion in x
for small x with finite coefficients; Gell-Mann and Low
assume it has a well-defined extrapolation to values
of x of oi'der 1. To compute the limit of e), for A —+~,
one must solve the differential equation (7.27). If
de&/dX does not go to zero for finite ei, then necessarily
an infinite increase in X will give an infinite increase
in ez. Thus the only way ez can stay finite as X —+~ is
for P(ei') to have a zero. If P(x) has a zero at x=xo
and is positive for x(xo (P is positive for small x from
perturbation theory), then the solution ei,' of Eq.
(7.27) will be an increasing function of X with the
limit xo as X —+~ (assuming ei'(xo when X is of order
m, as it will be if e is small).

If f(x) has a zero at x~ then the function eq' will
have the limit xo as X —+~ for any value of e su%ciently
small. This demonstrates the main result of Gell-Mann
and Low: The bare coupling constant eo is independent
of the physical coupling constant e, at least over some
finite range for e. Even if P(x) does not have a zero, the
solution eq mill have the limit ~ for X —+~ independ-
ently of the value of e; the bare coupling constant is
again independent of the physical coupling constant.
LThis is true only for certain forms of the function

If X and X' are both much larger than m one can neglect
the m dependence. Differentiating with respect to X'

and then putting X'=X and approximating m/X by 0
gives

2ei (dei/dX) =2/(ei2)/X,
where

f(x). If the integral Ji" dx/P(x) is finite, then e&, ~~
for some finite value of X and the theory becomes
nonsense for larger values of X. This leads to contradic-
tions discussed below. ]

Thus Gell-Mann and Low predicted .for electro-
dynamics the result that ore unrenormalized Lagrangian
would have an infinite number of solutions. This is
exactly the result that was proved for the model in
Sec. VII A.

The differential equation (7.27) can be regarded as
analogous to the transformation equation

+RE 7 A (IRN+1) (7.29)

that is involved in the definition of the renormalized
Hamiltonian of the model. Equation (7.27) tells how a
coupling constant e~ chariges as X changes, while Eq.
(7.29) tells how an infinite set of coupling constants
change as X changes. One can think of the function f
as defining an infinitesimal transformation on a one-
dimensional coupling-constant space. In the limit
) —+~, e~ goes to a fixed point of the transformation
defined by P )if f(eo') =0, then for ei ——eo, dei/D. =O:
thus eo is a fixed point]. This is analogous to the result
that the limit of I'g~ as E ~~ is a fixed point of T~.
Thus Gell-Mann and Low discovered the idea that a
fixed point of a transformation is important in re-
normalization. There are di6erences between Gell-Mann
and Low's fixed point eo and the fixed point I'. ; these
differences will be emphasized below. These di6erences
do not alter the fact that Gell-Mann and Low discovered
the essential idea of a fixed point. Since they discovered
the idea in the context of relativistic field theory, there
is encouragement to believe that the analysis of the
fixed point in the model is relevant to relativistic field
theory and not just a consequence of the many simplifi-
cations which were made in defining the model.

There are two basic differences between the trans-
formation T~ defined for the model and the trans-
formation P of electrodynamics. First, the function P
can only be computed after electrodynamics has been
solved, whether by a perturbation expansion or what-
ever. This is because |t is defined in terms of the
renormalized propagator which is itself part of the
solution of electrodynamics. In particular, if electro-
dynamics does not have a solution except as a pertur-
bation expansion, then the P function will not exist
for strong coupling. In contrast, the transformation
T~ is defined before one knows whether the model has
a solution. In the model of this paper the renormalized
theory exists, but there are other models for which
there is no renormalized theory (except one with no
coupling). A particular example is a derivative of the
Lee model constructed by analogy with the model of
this paper. An earlier version of such a model was
described in a previous paper~ and from the analysis
given there it is easy to see what happens in the trun-
cated Lee model. One defines a transformation analo-
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gous to T~ and uses it to construct curves analogous to
Qr, (t). However these curves do not exist over the full
range 0& t&-,'x, but rather over a range 0& t& tl, , where
the constants tl, form a decreasing sequence with the
limit 0 as I, —+~.The reason for this is that if a Hamil-
tonian has component 0, the Lee model transformation
tak'es 0 into 0', where 0'&0 for any 0)0 including
0=~~. This means also that the Lee model T~ has no
fixed point analogous to I', . This analysis assumes that
one does not permit complex coupling constants, as
would be necessary if one wants to obtain nontrivial
renormalized solutions. Since every time one considers
a new theory the existence of a fixed point of the corre-
sponding transformation T~ is in doubt, and since
renormalizability depends on there being such a fixed
point (at least for the two examples considered; a
general analysis of renormalization theory indicates
renormalization could be possible for some types of
transformations without fixed points), it is important
that T~ be defined without reference to the renormal-
ized theory.

The second difference between P and T~ is that P
acts on a one-dimensional space, while T~ acts on an
infinite-dimensional space. In order to formulate the
transformation P as a transformation on one variable,
one has to know that the renormalized theory. depends
on only one phenomenological parameter. For example,
in pseudoscalar-meson theory where there are two
phenomenological parameters, one must replace P by a
transformation on a two-dimensional space. But the
lesson of the model of this paper is that the number of
phenomenological parameters is not known until one
has found the fixed point of T~ and determined the
number of unstable solutions of T~ near the fixed point.
The fact that T~ is a transformation on an infinite
set of coupling constants means one is not committed
in advance to a particular number of phenomenological
constants. Furthermore, one is not restricted to theories
with interactions which are renormalizable. As long
as T~ is a transformation on the space of all possible
couplings, renormalizable or not, the customary reason
for considering only renormalizable interactions be-
comes irrelevant. The customary reason is that re-
normalizable interactions require an infinite set of non-
counter terms to be renormalized; but now these counter
terms are all present in the phenomenological Hamil-
tonians (or Lagrangians, perhaps). Thus if the re-
normalization theory of the model can be generalized
to relativistic field theory, there is hope that pure
quark models or the Fermi interaction can be studied,
although there is no guarantee that the corresponding
transformations will have fixed points.
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p=o (A2)

R„=(1—P) (Ep —Hp) '(1—P—R„ i)
XH.(P+R„,) (~&O). (A3)

Then
(A4)

To prove the existence of the limit, the following
equation is useful:

R„+i—R„=(1—P)(Ep —Hp) '

x
f (1—P —R„)H,(R„—R„,)

—(R„—R„ i)Hr (P+R„,)) . (AS)

Now it is shown that

Proof This is t.rue for e=o. Suppose it is true for
n —1. Now

(A'I)

(AS)

(A9)

and R„ i=(1—P)R„ i from Eq. (A3). Thus

IIR-II & ~E-i(1.4) (0.25E) (1.4) &0.4. Q.E.D. (A10)

Likewise one can show that

IIR-+ —R-II &0.4x (o.56)..
Hence from the Cauchy criterion, E. exists. It is easily
shown that R satisfies Eq. (4.9). The bound (A6)
implies that

R' —Rll &o.s, (A12)

which means that the inverse of 1+Rt—R exists as a
power series in Rt —E.

APPENDIX 8
In this appendix the transformation T will be defined

in detail. It will be shown that T has the form of Kqs.
(5.16)—(5.19). Then Theorems 1—4 of Sec. V will be
proven. The only assumption made in this appendix is
that h.&4X10'.

The first problem is to define T. Let H be a Hamil-
tonian in 5. Let H have the decomposition (J,B,X,P~)
where E~gS~.Let P~ have the decomposition (H,A~,C~).
Let H=Hp+Hr with Hp given by Eq. (5.14). Define

APPENDIX A

It is proven here that an iterative solution to Eq.
(4.9) exists and tha, t 1+Rt—R has an inverse provided
that

ffH. ff&0.2aE, (A1)

where AE is the energy difference between the ground
states and first excited state of Hp. Define a sequence
of operators (R„) by
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H,«using Eq. (4.29). To define T, we inust specify the
decomposition of H,«. The decomposition of H,ff must
be defined because it is not unique, as was pointed out
in Sec. V. This nonuniqueness means that one must
often prove properties for the decomposition of an
operator which are obvious or already established for
the operator itself. To define this decomposition, we
will write out in detail the steps leading to H, qq, and
specify the decomposition of each of the operators
arising in the calculation. The operator Hq has the form
Hg ——J3'.z, with

N

&r= Q &~.Ba i++ Ca,

where

Go=FoAo+DoCo, (814)

For k&1,
Lp=FpCp.

composition (Di„Fi) is that D~ and Fi, do not involve
meson operators numbered above k (no upper bounds
on Di, and Fi, will be imposed now). Since P and
(Eo—Hp) ' act in the space of nucleons and 0-mesons
(meson operators numbered 0), this restriction is
satisfied by PDi, and PF~, or (Eo Hp) 'Di and.

(Eo—Hp) 'Fi, . Now let Y be another operator with
decoinposition (Ai„Ci,). One must define a decomposi-
tion (Gi„Li,) for the product XY. The decomposition
is as follows:

Bo——(rw,v2gr+, v2gr )+Ao,

Bi,——Ai, (k) 0),

(82)

(83)

k k—1

G~= P (F„A~+D~C )+ P (F,A +D C,)
m=p m=o

Eo ——0, (84)

R.„=(Eo—IIo)—'(1 P R„ i)Hr(—P+—R„ i), (85)

(86)

and m=cose and g= (1/V2) sino. The equations which
define H,«are as follows Lincluding the iterative
definitions of R and (1+RtR)+'~'$ .

+P P LDi(T„A„)+(T„D )Ai,]
n=1 m=p

k—1 k—I

+Q P LD„(Tg A )+(Ti, D„)A„j, (816)
n=o m=o

k—1 k—1

La=+ P (Ta D.)(T~ A )
~=o m=o

p=o,

Q. = o (R'R —Q--i')

Q=lim Q,

o=o,

0.= —Q
—QQ--i,

Q=lim Q„,

II,« (P+Q)Hr(P+R) (P——+Q)+1 Eo.

(87)

(Bg)

(89)

(810)

(811)

(812)

(813)

+Q P L(T. D )Ci.+F&(T„A„)j
n=l m=p

+ Q Fi,C + Q F Ck. (817)
m=o

T„ is defined by Eqs. (5.4)—(5.6). It is clear from these
formulas that Gk and Lk do not involve meson operators
numbered above k. With some straightforward algebra,
one can verify that the operator product XY is given by

In these formulas E is the projection operator onto
the two ground states of Ho, (P+Q) is (1+RtR)"'P
and" (P+Q) is P(1+RtR) 'i' and Eo is the ground-
state energy of Hp.

A particular form for Kz has been given in Eq. (81).
The operators Bk and Ck will be called the decomposi-
tion of BC~. Analogous decompositions will now be
defined for R„, etc. The equations (84)—(813) involve
three basic operations: multiplication of H~, E„, etc.
with themselves, multiplication with E, or multipli-
cation with (Eo—H'o) . Thus it is suQicient to define
the decomposition of any of these products. Let X be
an operator with decomposition (Di„Fi,), for example.
Then PX has the obvious decoinposition (PDi„PFi,),
and analogously for (Eo—H,) 'X. This is a legitimate
decomposition since the only requirement on a de-

«7 Q is a symbol completely independent of Q.

XY= Q Vi Gi, i++ Li. (818)

It can be shown that the decomposition is associative,
i.e., a triple product (XY)Z has the same decomposition
as X(YZ).

With the rules specified above and Eqs. (81)—(813),
the decomposition of H,«—EpP is uniquely defined.
Note that the number of degrees of freedom 37 nowhere
enters into the calculation of Gk and Lk. Therefore
if the operators Bk and Ck in the decomposition of 3'.~
are de6ned for all k and are independent of X, then
the decompositions of R„, etc. (including H, ff) will
also be defined for all k and independent of X. It will
be presumed from now on that decompositions are
de6ned and computed for all k. Note also that Hg Hp,
and Eo are all proportional to J.This makes R„,Q„, etc.
independent of J and B,~q proportional to J. To be
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specific) H «has the form by Eq. (5.14)] is

(828)
iV N

JJ.n=P&o+J(g &p Gp i++ Lp), (819)
Ic= 1 A=0

where Gl, and L~ depend on r~ and meson operators
numbered 0 to k.

Since H,«acts within the subspace projected by P,
the dependence of H,«on the 0-meson operators
(ap, etc.) and r+ can be reduced to a dependence on
r~+, the. raising and lowering operators for the ground
states of Hp. %hen this is done, 6~ and LI, depend only
on rg+ and meson operators numbered 1 to k. To put
II ff in a form in which it can be contained in the space
5, one must renumber the meson operators 1—S to
run from 0 to A —1, e.g., al —+ up, u2~ al, etc. Also
one replaces rz~ by r~. Under this renumbering, VI,
becomes 3 'VI, l, H,« is

&ai=&o+JA '(Q Vp. Gp+& Q Lp), (82o)

where GA, and LI, depend on r+ and meson operators
numbered 0 to k —1. PEp is replced by Ep because
there is no longer any possible reference to states
outside the subspace projected by P.

Now consider Gp and Lp. They involve no meson
operators; they can be expressed purely in terms of
r+. Furthermore Gp and Lp satisfy the appropriate
Hermiticity, charge conservation, charge conjugation,
and time-reversal requirements, because these require-
ments are preserved by the equations defining the
decomposition of II,«These requirements force Lp
to be a real constant and Gp to have the form

Go = (m",%2g
"r+,%2g"r ), (821)

where m" and g" are real constants.
It is now easy to define a decomposition of Lt,« in

the space 5. Denote the decomposition (J',8',X',P~')
with P~' having the decomposition (O',Ap', Cp'). Com-
parison of Eq. (820) with Eqs. (5.1), (5.2), (5.8),
and (5.9) leads to the following formulas:

(of Table I). Hence 6' has the form of Eq. (5.18) with

(829)l'„.(P~) = —1+Lp.

The next problem is to prove Theorems 1—4 of Sec. V.
The proofs involve a very large number of upper
bounds and are quite complex. To guard against
subtle errors, all bounds have been obtained as explicit
numbers multiplying powers of A. In principle, it
would have been sufficient to know that bounds existed
in the form of unknown sufficiently large numbers
multiplying known powers of A.. In addition, the use of
numbers saves symbols. In the following, & Tneans

only & (the equality need not be realized). These
proofs are crucial to the renormalization of the model
of this paper; they are condemned to an appendix be-
cause they are special to the model, whereas the analysis
of Sec. V is of more general interest.

To start with, one needs an upper bound for the
decomposition of the product XI' given bounds on X
and I'. Let X and F have decompositions (Di,Fp) and
(Ap, Cp) as before. It is convenient to define an abstract
bound for X. This bound will consist of three numbers
(d, e,f). By definition, X has a bound (d, e,f) if

(» 1),
llano I&A ' IIPoil&« '" (» 1)

830

g =A'(a f+d-c), (831)

h=5ad+h'$bf+ec+. (+70) (ae +bd)j-
+A. '(14be), (832)

f=cd'. (833)

where
I Doll is a, vector with components IIDoill) IIDopll)

IDoill being the ordinary operator bound. Also,
m is the vector (m, V2g,v2g), and m and g are as defined
before.

Suppose X has a bound (d,e,f) and F' has a bound
(a,b,c). Then it. can be shown that Xl' has a bound

(g,h, /) "with

J'=A-'J(m'"y2g'")'t',

h'=&o+ JLo,

X'=E—1,
0'= tan —'(kg"/m"),

Ap' ——(m'"+2g'") "Gp i

Cp'=h. (m'"+2g'") '"Lp+i

(822)

(823)

(824)

(825)

(826)

(827)

(These bounds were computed assuming only that
h.&21.) A brief summary of the proof of these bounds
is as follows. The operators TI,; have bounds

(834)

(This is proved by a straightforward calculation. ) Next
one puts bounds on the sums P„=i" IIT II, P p=p" IIA„II,
etc. (which are also bounds for finite sums such as

The quantities m", g", Lp, Gl„and LI, depend only on
P&, not on J, 8, or X. Hence, Eq. (822) has the form
of Eq. (5.17) with T&(P&) = (m'"+2g'")'". Also, Eqs.
(825) (827) def—ine the transformation Tz(Pz) of Eq.
(5.19). Finally, the ground-state energy of Hp Ldefined

P IIT„II = 1A-i(1 —A-i)-i&1.05'-i1,
n=l

(835)

's The symbol g here has a diBerent meaning from elsewhere in
the paper.
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where 1 is the vector (1,1,1).Also,

n—1

IIX 2 DpT- A-Il&IIDpIIZ IIT-II 2 IfA-II
n=» m=0 n=l

&meA —'(1.053.—') 1 m(a+1.05K 'b) . (-837)

Now 1 m=m+2&2g. An upper bound on m+2v2g
results from

(rip+2~2g)' —5(~'+2g') = —(2~—~2g)'&0 (838)

Because m'+2g'= 1 (normalization condition), one
gets the bound

Hence
1 m(+5. (839)

g IIA„II
(ma+mba-'(1 —&-')—'

n=0

&m(a+1.053—'b), (836)

using the definition of the bound (a,b,c). Similar
formulas can be obtained for sums of IIC„II, IID„II, and
IIF„II. Now one constructs upper bounds for all the
terms in Eqs. (814)—(817) for Gp, Lp, Gp arid Lp. For
example, one term in GI, is

TABLE IV. Operator bounds obtained in the proofs of
Theorems 1 and 2, assuming A)4)&10'.

Operator

XJ
XJ'
Rn, R
R„—Rn 1

On, Q

Bound

(1.5,0.5, 100)
200g2(h-1, h-1, 1)
g(2, 65, 160)
16g X10~ "(1h 1)

g2 X10'(

Operator

Qn-Qn 1

Q». Q

Qe —Qn 1

II

Bound

13g~X104 n(h, 1,h ')
14g&X103(h ' 1 h 1)

14g2 X104—n (h-1, 1,h —1)

g2(25 X103h 1,40,210)

Hp ——Ep+JX„
Now write the equation for R„as

(845)

The proofs of the bounds of Table IV are mostly
straightforward and only examples of the proofs will
be given here. In some cases the bounds of Table IV
are gross overestimates of the bounds one calculates
in the proofs quoted below.

The bounds on KJ and Xl are simple consequences
of the definition of the space 5, in particular, the
bounds (5.10)—(5.13). In computing the bound on
Kl, one also uses the inequality g'(-,' which follows
from the definition (5.9) of g (also one uses A.)200).

In proving the bound on R„, it is convenient to
eliminate the factor J by defining

k n—»

n=» m=o

&mA " '(1 05+5)(ac+1 05A'be) .. (8.40)

R =(—Kp) '(1—P)M. V,P
+ ( ~p) '(1 P) (RzP —R. PerP+—SCrR„,

—R„PCrR„ i) . (846)

M = (m,&2gr+,&2gr ). —

The operator KJ in Table IV is defined by

(842)

so that

Xg —P Vp'Ak —i+ P Ck q

Kr=M Vi+Kg.

(843)

(844)

Similarly one finds bounds for all terms in Eqs. (814)—
(817); the result is that (g,h, /) given by Eqs. (831)—
(833) is an upper bound for the product XI'. It is
convenient to introduce a shorthand for Eqs. (831)—
(833):We define the "product" (a,b,c) (d, e,f) to be the
quantities (g,h, /) given by Eqs. (831)—(833). This
product can be shown to be associative and colr~mu-
tative and thus algebraic expressions involving these
products can be manipulated using ordinary algebra.
This simplifies the calculations.

Using the bound quoted above for products, one can
construct a set of upper bounds for the operators R„,
Q, etc. These bounds are listed in Table IV. They are
not least upper bounds. The operator II in Table IV is
defined in terms of H,«by

H.ii PEp+ JPM V iP——+JH, (841)

where H,« is the effective Hamiltonian, as of Eqs.
(813) and (819), before renumbering the meson
operators, and M is

The proof of the bound on R„ is by induction. It is true
of R0. Assume that it is true of R„».To bound the first
term of Eq. (846), one needs the following bounds:

(847)

ff(1—P)r'Pff=lf(1 —P)r Pff=g. (84&)

These bounds can be obtained by explicit calculation
using Table I. With this information, one Ands that
(—Kp) '(1—P)M ViP has a bound (g,0,0). The second
term in Eq. (846) can be bounded using the bound
IIPII=1, Eq. (847), and the bounds of Table IV for

J R» and Kl Schematically one has

IR-I & (g,0,0)+ I&~l+2IR--if &.
I

+ fee, j IR„,fp, (849)

where IBCq
I

means 200g'(A. ',A ', 1), etc. After calcu-
lating the products explicitly using Eqs. (831)—(833),
one finds that this expression is less than the bound
of Table IV for IR„I. Hence the bound of Table IV
for Rn holds for all m, by induction. The same bound
holds for R because R is the limit of R„ for e —& ~.

The bound on R„—R„» is also proven by induction.
The bound on R» —R0 is true because it is larger than
the bound of Table IV for R». Then one computes a
bound on R„+»—R„, given the bound for R„—R„»
and using Eq. (A5) of Appendix A. Since the bound
for

I
R„—R„ i I

goes to zero as n ~ pp, the decomposi-
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Gp ——PMP+D p,

Gk ——Dk (k) 0),
Lk ——Fk (all k).

(851)

(852)

(853)

Explicit calculation using Table I gives

PMP = (2zz, V2g(1 g') rz2+,—V2g(1 —g') rz2 ) . (854)

From Table IV, Dp has the bound (remember h.&4X10')

~~Dp~~ &mg'X25 oooh.—'&0.01mg'. (855)

The bound on Do is a bound on the difference Go —EMP.
Gp can be exPressed in terms of 222" and g"

t Eq. (821);
for r~ in Eq. (821), read rz2+, since in the present
analysis we have not yet substituted r~ for rz2~j.
Using Eqs. (821), (854), (851), and (855), one gets
the bounds

~

222" —222
~

&0.01222g2, (856)

I

g"-g(1-g2)
I
&o.olg (857)

From these bounds, one gets bounds on tan8' PEq.
(825)j:
(&2g/zz2) (1—1.01g') (1+0.01g') '( tano'( (%2g/2z2) (1—0.99g') (1—0.01g') '. (858)

Using the bound g'& ~», one can simplify these bounds;
inserting &2g=sine and m=coso, one gets

tang(1 —0.51 sin20)( tang'& tan8(1 —0.48 sin29) . (859)

To complete the proof of Theorem 2, one notes that
Lsee Eq. (829)j

T, (Pg) = —1+Lp —1+8p. (860——)
From the bound on H, Ii o is less than 210g'h. ' which is
less than 0.01. Hence one obtains Eq. (5.30).

To prove Theorem 1, one must have bounds for
Ak'

~

and Ck' in terms of m' and g'. One has bounds for

Gk[ and [(Lk (
in terms of m and g Drom Table IV

and Eqs. (852) and (853)$:

~~Gkll &mg'X40~ ' V~& 1) (861)

)(Lk)( &g'X40A '" (k& 1) . (862)

From Eq. (859) one has 0' &e, and therefore 222 = 2N'.

To get a, bound. on g in terms of g', one uses Eq. (859).
Let

(1—0.51 sin28)2 = 1—P. (863)

tion of R„approaches a limit for n —+~; the limit
deines a decomposition for R.

To get a bound for H, one writes

H =PM V, (1 P)—R+PXz(P+R)
+Quiz(P+R)(P+Q)+PBCz(P+R)Q (850)

and sums the bounds of each term.
Now one can get bounds on m" and g". Let H have a

decomposition (Dk,Fk). Comparing Eq. (841) with
Eq. (819), one gets

Hence
m& (1.8)'~'m'

(865)

(866)

(the inequality is true for each component of
two vectors). Also, from Eqs. (856) and. (857) and
2222+2g2=1, one gets' a minimum value for 222'"+2g'",
which in turn gives a bound

(m'"+2g'") '"(2 03 (867)

The bounds (861), (862), (866), and (867), substi-
tuted in Eqs. (826) and (827), lead. to the bounds

~
A, '

~

(200m'g'2A-k-l

~

( „~
t
(200 ~2+—2k—1

(868)

(869)

To complete the proof of Theorem 1, one must show
that A~' and CI,

' satisfy Hermiticity requirements and
symmetry requirements with respect to charge conser-
vation, charge conjugation, and time reversal. The
symmetry requirements are easily established since all
the intermediate operators R„etc., have the same
symmetries as H. One easily verifies that if X and V
are operators whose decompositions obey the syinlnetry
requirements, then the product XI' has a decomposition
obeying the symmetry requirements. The rest of the
proof of symmetry is omitted. Hermiticity is more

complicated because R„and R are not Hermitian, and
one must use Eq. (4.3) instead of Eq. (4.19) to show
that H, fq is Hermitian. However, a proof showing that
31,' and C&,

' satisfy the Hermiticity requirements of 5&
can still be constructed. The basic result needed for
the proof is that if XI' has a decomposition (Gk,Lk),
then I'tXt has the Hermitian conjugate decomposition
(Gkl ~ +kl 'R2 ~ Gkp Gkp + Gk2 Lk ~ Lk ). The
proof is omitted.

Now Theorem 3 will be proven. If an operator X has
a, decomposition (Ak, Ck), we will call the Akl the
"1-components" of X.

Note the following. Let operators X and P have the
decompositions (Dk,Fk) and (Ak, Ck), respectively. Let
AI, » vanish for all k and DI,» vanish for k&0, and let
Do» be a c number. Let the product XV have de-
composition (Gk, Lk). Then from Eqs. (814) and (816),

o» =Do»co,

Ic—»

Gkl=&pl(Ck+ Q Tk A ) (k)0). (871)
m=o

g'/g" = sin2%in'0' = sin'OL1+ (tan29') 'j
& sin28$1+cos28(1 —P) '(sin'0) '$

= 1+(1—sin'e)P(1 —P)-l. (864)

The maximum value of p occurs for sin8=1 and is less
than 0.8. Except for very small 8, 1—P is larger than
1—sin'0, making g'/g" less than 1+P. Hence
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Hg has no 1-components by assumption and

(1—P)MxP = (1—P)mP

vanishes. The product R„~HIR„~ can be written
R„xPHz(1 —P)R„x a,nd so is a, product of terms none
of which contain a 1-component. So this product has
no 1-components. The remaining term in R„can be
written (Ep—Hp) '(1 P)/Hz, R—„x]P. The operators
X=IIq and I'=R„~satisfy the conditions noted above,
so the coxxunutator LHz, R„xf has no 1-components.
Hence R„has no 1-components. It follows that R has
no 1-components, nor do Q and Q. Now consider H, fx

LEq. (813)j. Using the fact that Q=QP, Q=PQ,
R = (1—P)R, and that PHz(1 P) has n—o 1-com-
ponents, one sees that the 1-components of H, ff are
contained in (P+Q)PHz(P+Q). This can be written

PH (P+Q)+PH Q(P+Q)+[Q,PH ](P+Q).

The commutator has no 1-components by the argument
noted above. The other terms can be written

PHz(P+Q) (P'+Q) =PHzP, (873)

since (P+Q)(P+Q) is P. This means that the only
1-component in H, ff comes from I'M V~I'. This means
that in Eq. (320) Gpx is m and Gqx vanishes for k&1.
This means/that m" =m and A x,

x' ——0, which is
Theorem 3.

Finally Theorem 4 will be proven. This requires
that two Hamiltonians, say, H and II&, be compared.
Let H and II~ both be elements of S. Then for each of
the operators X~, KJ-, R„, etc., associated with H,
there is a corresponding operator Rg~, Kq~, R~„, etc.,
associated with II~. The decomposition of 3'.J- is
(Ax,Cx); the decomposition of Rz~ is (A»,C»).
One has

where

snd

Kz=M Vx+Kz,

+zA MA Vl++JA y

M = (m,v2g p+,%2gr ), —

Mg = (mg)v2gg~+)VZg~7 ), —

m'+2g'=m~'+2g '=1

(375)

(376)

(877)

Exactly the same formulas for Gp~ and GI, ~ result from
decomposing the commuted product I'X. This means
that the conrmutator [X,Fj has no 1-components in
its decomposition.

If Dp~ is zero also then XY has no 1-components.
Now consider Theorem 3. Let the 1-components of
Hg vanish. Ke prove by induction that R„has no
1-components. This is obviously true of Rp. Assume it
is true of R„x. Consider Eq. (85). The operator
(1 P)II—zP has no 1-components because

(1 P)HzP —= (1—P)M VxP+(1 P)HzP—; (872)

The assumptions of Theorem 4 are that

(m —mg)'+2 (g —g&)'& dx',

[[A» Ax[[ &d2« ' ' (»1 &),

(879)

(380)

Then one replaces G» by U&tG» U& before comparing
with GI„and likewise for L~~.

One can take Eqs. (84)—(813), replace R„by R~„,
etc. , and then transform them all by U&t U&. Note
that 3'.p~ and 3'.p Lcf. Eq. (345)j have the saxne eigen-
values (0, 1, and 2) (cf. Table I), so U~ BCp~U~=Kp.
From now on, let R~„stand for what was U~tR~ U~,
and likewise for R~, Qz, Q&, Qz, Qz, Hz Lcf. Eq.
(841)), and Hzx. xx. However, Xz~ and Kz~ will still
be the untransformed operators; denote U~~KygU~ by
SC~~'" and. U~~KJ~U~ by 3'.J~'". The equations for
R~„, Q~„, etc. are now obtained from Eqs. (84)—(313)
by replacing Hz by X»'" and by inserting an over-all
scale factor Jg in the formula for II+ gff.

[[C»—C,[[&d2A-»-x (ail ~), (881)

where u is the vector (1/K2) (1,1,1). The objective is to
obtain bounds on m~' —m', gg' —g', A~~' —Al, ', and
C~g' —C~', all in terms of d~ and d2. The bounds will
be computed by the same techniques as in the proofs
of Theorems 1 and 2. One change is that in defining
the bound (a,b,c) of an operator X, the vector u is
substituted in Eq. (830) for m. From Eq. (378) it
follows that m(&2u, and m~&&2u, which means that
a bound (a,b,c) from Table IU (which implies the use
of the vector m) can be changed into a bound using the
vector u simply by the replacement a~&2a, b —+%2b,
c —+ c. The bounds for K~, etc. , expressed in terms of u,
also bound BC~~, etc.

A problem arises in comparing A~~' with AI, '. As
part of the definition of AI, ', one took GI,+~ and replaced
rg+ by r+. The operator r~+ is an operator in the full
Hilbert space of mesons labeled 0—E and the nucleons,
although it is nonzero only in the subspace of the ground
states [P) and [xV) of H, plus mesons labeled 1 IV. —

The operator r+ acts in a separate space isomorphic
to this subspace. Now when the operators AI,~ are
calculated, one starts from 6~~~ expressed in terms of
operators rzx~+ which are digerexzt froxn rzx+. This is
because rg~+ are raising and lowering operators for a
different pair of states [PA) and [QUA), namely, the
ground states of Hp/. However, in A ~' and A ~~' the
same operators r+ appear. Thus it will simplify matters
to make a unitary transformation on Gjb+» which
takes rg~+ into rg+,' after this has been done, one can
make comparisons in the full space of 0—E mesons
plus nucleons instead of the separate space involving
r+ plus 1—X mesons. Let the unitary transformation
be U&. One wants U&~ to take eigenstates of Hpg into
eigenstates of H&. In particular, if I'& projects the
ground states of Hp~, one wants
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TAnLE V. Bounds on operators needed in the proof of Theorem 4. The bound (d, e,f) is defmed by
Eq. (B30) except that the vector u = (1jv2) (1,1,1) replaces the vector m.

Operator

M, V1

KJ'a

R,„,R,
Qan, Qa

Q,Q.
II.
H,HA

BOQllcl

d1(5.5,0,0)
V2dI

d1 (450+ 1 450& 1 300)+d, (P-1 g-1 1)
d1(8,800,1600)+d2(30K 1,22003 i 1 3)
d1(3.25)(105'. 1 245,3.25&(105'. 1)1d2(7.9A 1 1100k. )2200'. )
d1 (3,3X 105k. 250, 3.3)(10 A ) +d2 (Sh. , 1200k. ,2400A )
d1(7200K ',230,310)+d2(16K ' 27 000K ' 1.1)
(20 0003. ',40, 120)

Now define the following diQerences:

Xga —X/A Xg )

XJa —XJA XJ )

M =MA"' —M,
R,„=RA —R„, etc. ,

MA —UA MA UA ~

are the eigenstates of II0A. These are known explicitly
from Table I. An upper bound for

f f
VA

f
f' is obtained by

computing the trace of VA~VA. The trace is

(883) Tr VAt VA ——Tr(2 —UA —UA")

(2 (I
f
'+A) ('+A l rr)) . (893)

One can write equations for the differences R,n, etc.,
as follows:

In fact, one can compute the trace separately for states
of a given charge; the maximum of these traces is still
greater than

f f
VA

f
f'. The traces are as follows:

R,O=Q, (885) charge=2 or —1: TrVAtVA=O, (894)
R.n= (—Xs) '(1—P) [(1—RAn i)00ra(P+RAn-1)

—R.„10{'r(P+RA i)+(1—R -1)00zR. -i]
(s)0), (886)

Qa. =-', (RA Ra+Ra R QAn —1Qan-1 Qan —1Qn—1)

(~)0), (887)

an a A an —1 a n—1)

H =PKr P+QAXz. (P+RA) (P+QA)
+Q.xz(P+RA) (P+QA)+Q0czR. (P+QA)
+Qd{'z(P+R)Q.+P'd('z. (RA+QA+RAQA)

+Pxr (R.+Q.+R.QA+RQ. ). (889)

Knowing upper bounds for II, one easily obtains upper
bounds for VAtG~AUA —GI, and UA L~AUA —L~.

The 6rst step in deriving upper bounds is to get

upper bounds for XJ, and M, . One has

M, = (mA m, V2gA—UAtr+UA &2gr+, —
%2gA UA" r UA %2gr ). (890)— —

Write UA ——1+VA, then

charge=Q or 1: TrVAtVA
=2[(m —mA)'+2 (g —gA)']. (895)

The latter result was obtained using Table I and Eq.
(878). From this it follows that

(896)

A»o lm —mAI and v2fg —
gA f

are less than di [from
Eq. (879)];v2g and v2gA are less than 1; and

ll UA ll
= 1.

Using these results in Eq. (890) gives

ffM. ff &5.5d,u. (897)

A similar calculation for XJ, using the bound of Table
IV for Xr and KrA, plus the bounds m&&2u and
mA &&2u, gives the bound shown in Table V. One can
now obtain bounds on R „,R„etc., using Eqs. (885)—
(889). One uses Eqs. (831)—(833) to obtain bounds on
products [with u replacing m in the definition of the
bound (a,b,c)].The results are shown in Table V.

%rite the decomposition of II as

gAUA r UA gr =(gA g)UA r UA

+gVA'r+UA+gr+VA (891)
ZVka& 1++PL~—(898)

The bound of Table V for II gives the following
Thus one needs a bound for VA. The operator UA is

bounds:

(892)

I

where fw) (1(n(8) are the eigenstates of IIo and fm)A

ffD ff&(7200~-d +16'-d )u

f fD.sf f
& (230di+27000A 'ds)uh. —' (k)0), (899)

fly. sff & (230&i+27000A-'&s)A —'" (k)O)
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Consider the significance of D,o. It is a difference and~A is f(8A). The derivative f (8) has the form
DAO —Do. From Eqs. (851), (854), and (821) [one
must substitute rR+ for r+ in Eq. (821)], Do itself is f'(8) =&(&}/D(r)

w ere
(8116)

(8117)

(8118)

(3119)

D o
——(m" —m, v2[g" g(1—g')—)rR+,

~2[g"—g(1—g')] R ) (31oo}
y =sin'0,

&(r) =1—ly —X(1—X)

D(X) =1—y'+Ay'.
Correspondingly,

DAO (mA. mA) ~~[gA. gA(1 gA )]rR
v2[gA" —gA(1 —gA')] R ) Analyzing the form for f'(8) one sees that the numerator

X decreases for 0(y(~ and increases for 4(y; the
denominator D decreases over the whole range 0(y(1.
Therefore one has the following bounds:

(8101)

Thus D, o involves differences such as

(mA" —mA) —(m" —m) .

We can use the bound. on D, D to prove the inequalities
of Eq. (5.37) (the first inequality of Theorem 4). In &max {1V(0)/D(0.75),1'�(1)/D(1) ) . (8120)
the»tatio of t»»ppendi«he quantity dl is Evaluat
defined as

where
(d,')'= (mA' m')'+—2(gA' g')', — (8102)

0 4375&. f'(8) &2

Hence by the mean-value theorem,

(8121)

m'= cos8'= m"/(m'"+2g'")" (8103) 043618A —8l& I~A —~l &2I8A —8I (»22)
g'= sin8'=v2g"/~m'" 2g'"~'~' (8104) Now the definitions of di and P are equivalent to

and analogous formulas hold for m~' and g~', 8' is the
angle in the decomposition of T(H) [cf. Eq. (325)].

To get bounds on d~' requires some further manipu-
lations which are most conveniently done with another
set of vectors. Dehne the following two-dimensional
vectors:

di —
I
2 sin& (8A —8) I,

P =
I
2 sin-', ((uA —co)

I
.

One can show that

(sinus) )a sins

(8123)

(3124)

(8125)
x= (m, v2g(1 —g')),

x"= (m",&2g"),

x' = (m', v2g'),

and analogously for x&, x&", and x&'. Define

x= Ixl-'x, etc.

(8105)

(8106)

(8107)

(8108)

when 0&s&i2vr and 0&a&1.The result of Eqs. (8124),
(8122), (8125), and then (8123) is

P)
I
2 sin0. 218(8A —8)

I
)0.436di

[s=0.5(8A —8)), (8126)

P&
I
2 sin(8A —8) I

&2di [as=0.5(8A —8)). (8127)
Then

Now one has

/ &// / & //X=X ) X~ =Xg
(8128)

The next step is to bound qk It is convenient to define
(8109)

g(x) =x

XA"—X
Then

(8110) (8129}

&i= I
g(»")—g(xA+») I

(»30)
&
——

I g (xA+8x) —g(x+bx) —g (xA)+g (x) I, (3131)(8111)

(8112) and

y= I*A" *" xAyx I,— —

(3132)bx =x// —x.
3113 N'ow by the mean-value theorem

Then
P—y& di' &P+P.

To compute f, it is convenient to let

x = (costs, sin&a),

xA = (cosMA, slnG0A),

&i&max(0(X&1)
I
Sx. V'g(xA" —)8x }I, (8133)

(8114) where
(8134)—XA+X,

The bound d&' will be comp&&ted in two parts, first
relating i~"—i// to i~—i and then bounding i~ —i.
Write

and m=cos8, V2g=sin8, mA =cos8A, kg= sin8A. Then"
and by a second-order mean-value theorem

&v =tan '[tan8(1 —
~~ sin'8)]= f(8)

"The function f is not the function defined in Sec. V.
P &max(0&ii&1 0&p&1)(8115

&& I (8x V)(x, .V)g(x+Xlx+px, ) I, (8135)
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To get a bound for p2, one uses Eq. (8145) with y being
(1—y)»+@»~+X». Since x x~&0 and since p, and
1—p are non-negative,

where
X~ =X~—X (8136)

(and 8» V acts on g, not onx, V). From Eqs. (856),
(857), (878), (8105), and (8106),

[»[&0.005, (8137)
I
(1—p)x+qx~ I'& (1—q)'[x['+p'[x~[' (8150)

But [»
I

and [», [, and (1—p)'+ p', are all larger than
or equal to ~~. Soand from Eq. (899),

[».[((72003. 'dg+16A. 'd2). I (1—p)»ye»,
I
& 1/~8. (8151)(8138)

Hence

$2&643[5»l lx, l
&0.052dg. (8153)

(8140)
From Eqs. (8113), (8126), (8127), (8129), (8149),

(8141) a,nd (8153),
Therefore

[x.['(d '.

Furthermore, lyl & (1/v'8) —0.005)-', . (8152)

~) +2(&" &) (1 &~ &"& g) (8139) Hence from Eqs. (8135), (8145), (8152), (8137), and

and since g~ and g are less than 1/v2, one has (8141),

——:&(1—a~' —a~a —a') &1.

Now let y be an arbitrary vector; one can most easily
compute», 7'g(y) and (» V')(x, V)g(y) using a co-
ordinate system with the first parallel to y. If 6xfl and
bx& are the components of 6x parallel and perpendicular
to y (and likewise for x, ~~, etc.), one has

t'», Vg(y) = (0,5x„[y[ ') (8142)

(sx. v) (x. v)g(y) =(—sx,x., Iyl-,
—(8x~~x.,+bx,x.») lyl

—'). (8143)
In absolute value

I(»- ~)g(y) I
& I|x.

l lyl ', (»44)

[(» V)(x. V)g(y) I
&(2/V3) [Qt[[», [[y[ '. (8145)

The second inequality is proved using the relation

2x, ~~x.,lxii8x. (43 (8x„x.ii)'
+-,'L(bx„x.,)'+(8x,x.„)'+(hx,x.,)'$. (8146)

0.38dg —10 "d2&A'&20dg+10 'd2, (8154)

which is the first inequality of Theorem 4.
To obtain the second inequality of Theorem 4, one

starts from Eqs. (826), (827), (852), (853), (8106),
and the corresponding equations for A~~', etc. , from
which one can obtain

A.~ —A~ —([»~ I

—I» I )D~~i
+ I"'I-'D ", (»55)

C„'—C,'=z([x„"[-~—I»" [-')p,~,
—A. [x"[-'P.~~. (8156)

Now, from Eqs. (867), (8134), (8136), (8138),
and (8141),

/t —] X/I

& I»"—x"
I
I»"

I
'I»"

I

'« o7 I».+».
I

&4.07(dr+72003. 'dg+ 164 'd2). (8157)
To use the bound (8144) to obtain a bound for P~

Lcf. Eq. (8133)j, one puts y=x~"—Ã8», ; hence

lyl-'&(I»"
I

—I». l)
'

Now Lfrom Eq. (8137) and the analogous bound for

From Table V, D~~~ and Fg~~ have bounds

f [D~~,[f
&40u~-&-& (8158)

(8159)

From Eqs. (8155)—(8159), (867), and (899), one gets

[[A&~'—A~'[[& (1100d&+0.06d2)uh. ~ ', (8160)

IIC»' —C,'[[ —(1100dg+0.06d, )A
—'~ ' (8161)

[»„[&[»[+ I»,"—», [&0.01 (8148)

and [x~"[&0A9 from Eq. (867) (which holds for [x~"
[

as well as lx" I). Thus (remember that A) 4X 10')

pr&2. 1(7200'. 'd&+16k. 'd2) &0,004d~+10 'd2. (8149) which proves the second inequality of Theorem 4.


