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The charged scalar theory of = mesons interacting with a fixed nucleon source is truncated as follows:
 mesons are permitted to exist only in a set of discrete states ¥, (k) such that % is of order A™ in the state
¥m (k) ; Ais an arbitrary constant above 4 X108, Also, two mesons of the same charge cannot occupy the same
state. The resulting Hamiltonian can be solved by a perturbation expansion in A~ provided there are only
a finite number M of states ym. When M — oo, the renormalized coupling constant and ground-state energy
diverge in perturbation theory (in the coupling constant). If the unrenormalized coupling constant is allowed
to go to infinity as M — o, it is proven that the renormalized theory exists (without ghost states) for any
value of the renormalized coupling constant. The proof uses the perturbation analysis in A~ carried to all
orders. This analysis leads to the definition of a transformation 7" which eliminates one meson degree of free-
dom from any given Hamiltonian, replacing it by an effective Hamiltonian with one less degree of freedom.
The effective Hamiltonian gives exactly all energy levels of the original Hamiltonian except those with
mesons in the removed degree of freedom. The renormalizability of the theory is proven using topological
properties of T. In particular, there is a subtransformation 74 with a nontrivial fixed point P, whose prop-
erties determine the principal features of the renormalized theory. The idea of the fixed point is a generalzia-
tion of the Gell-Mann-Low eigenvalue condition for the bare coupling constant of quantum electrodynamics.
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I. INTRODUCTION

HE problem of renormalization has been remark-
ably unimportant in the study of pure strong
interactions (i.e., strong interactions without radiative
or weak corrections). The ideas developed since 1954—
dispersion relations, Regge poles, current algebra, and
pole dominance—all can be formulated and applied
without encountering any of the divergences that occur
in unrenormalized perturbation theory. As a result one
gets the impression that renormalization is no more than
a technical modification which one makes on closed-
loop Feynman graphs when very accurate perturbation
formulas are needed, as for the electron magnetic
moment. This impression has encouraged the idea that
Lagrangian models of current algebra, such as field
algebra and the quark model, can be analyzed for their
equal-time commutators as if renormalization were
unnecessary.!

An entirely opposite picture results from exactly
soluble models of field theories with interaction. There
are two known model theories which require wave-
function or charge renormalization, namely, the Lee
model? and the Thirring model.? It is well known that
the renormalized Lee model has a ghost state. The
Thirring model involves the Fermi interaction for a
zero-mass spinor field in one space and one time
dimension. The model has a solution after renormali-
zation, but the solution has radically different behavior

* Work supported by the U. S. Atomic Energy Commission.
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1 This idea persists despite the rseults of S. Adler and Wu-Ki
Tung [Phys. Rev. Letters 22, 978 (1969)] and R. Jackiw and
G. Preparata [3bid. 22, 975 (1969); 22, 1162 (1969)7], who show
that equal-time commutators are affected in perturbation theory
by renormalization.

2T, D. Lee, Phys. Rev. 95, 1329 (1954).

3 W. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958); K. Johnson,
Nuovo Cimento 20, 773 (1961).
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at short distances from what one would expect from a
canonical Lagrangian picture. The renormalized spinor
field does not satisfy canonical commutation relations.?
More generally, the renormalized theory is scale in-
variant, as one would have predicted from the La-
grangian (there are no dimensional parameters in the
Thirring model, the only parameter being a dimension-
less coupling constant). However, the renormalized
fields (but not the conserved currents) have different
scaling properties from those one predicts from the
canonical commutation rules. The dimension of the
spinor field (which determines its scaling properties)
depends on the coupling constant and can vary from
2toowd

The only known relativistic theories where renormali-
zation does not affect the short-distance behavior
appreciably are the “superrenormalizable” theories
which may require mass renormalization but do not
require infinite coupling-constant or wave-function
renormalization in perturbation theory.> In these
theories the short-distance behavior is close to the free-
field behavior. Unfortunately, there are no acceptable
four-dimensional superrenormalizable theories.

In a recent paper, it was proposed that there would
be nontrivial renormalization effects in strong inter-
actions.® It was postulated that these effects would
have the same form as in the Thirring model, namely,
scale invariance would be valid at short distances but
the dimensions of local fields would be different from
any free-field model (except for the currents of current
algebra whose dimensions are fixed by the algebra).

4 The anomalous scaling properties of the Thirring model are
implicit in Johnson’s solution (Ref. 3); see also Ref. 6.

5 The two-dimensional ¢* theory analyzed by Jaffe and Glimm
is in this class. For references, see A. Jaffe, Rev. Mod. Phys. 41,
576 (1969).

¢ K. Wilson, Phys. Rev. 179, 1499 (1969).
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2 MODEL

It was shown that renormalization effects could account
for a universal AT=1 rule in weak interactions and
could determine the convergence or divergence of some
of the Weinberg sum rules.

The fact that the A7=4% rule might be explained by
renormalization effects means that renormalization can
be of great practical importance. One would like to
understand renormalization better. The Lee model and
the Thirring model fall far short of providing the depth
of understanding required. The reason is that both
models have very special features and the renormali-
zation of these models may simply reflect these special
features. The Lee model is special because of the
decoupling of the V-8 channel from the many-particle
channels. This decoupling is the simplification that
makes solution of the Lee model possible. The Thirring
model is special for many reasons, but in particular the
electromagnetic current of the Thirring model satisfies
a free-field equation which is the starting point for
solving the model. Also, there is no coupling-constant
renormalization in the Thirring model. If there had
been coupling-constant renormalization in the Thirring
model, it might have shown the same diseases as the
Lee model which does involve coupling-constant
renormalization.

The purpose of this paper is to define and solve a
new model of coupling-constant renormalization. The
new model is a cousin of the Lee model but its renormali-
zation is very different from that of the Lee model.
The new model is a derivative of the charged scalar
theory of pions coupled to a fixed nucleon source. The
model Hamiltonian is obtained essentially by projecting
the Hamiltonian of the charged scalar theory onto a
specially constructed subspace of the original Hilbert
space. The result of renormalizing the model is that the
renormalized theory exists without ghosts; the re-
normalized coupling constant is arbitrary but the
unrenormalized coupling constant is infinite.

The model of this paper cannot be solved in closed
form. To make it soluble by series expansions, a large
parameter A is introduced artificially into the model;
the model is then solved by an expansion in A7 A is
introduced by restricting the = mesons of the model
to be in one of a discrete set of wave functions ¥, (&),
where the mean momentum of ¥,,(k) is A™ (in units of
the pion mass). Thus instead of the pion energy being
continuously variable from 1 to o, it is restricted to
the discrete values 1, A, A?, etc. This means the Hamil-
tonian has some terms of order 1, some terms of order
A, etc., so one can do perturbation theory when A is
large. This idea was explained in an earlier paper?
where a more complicated version of the model was
proposed.

Because the model cannot be solved in closed form,
the renormalization analysis is much more complex
than that for either the Lee model or the Thirring

7K. Wilson, Phys. Rev. 140, B445 (1965).
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model. The analysis is further complicated because one
cannot simply study the lowest-order term in the A~1
expansion. To prove the renormalizability of the
theory, one must show that the expansion in A~ of the
renormalized theory is finite to all orders and that the
sum of the series converges. To prove this, a rigorous
analysis of the model is given using formal techniques
of analysis in Hilbert space plus some topological
methods. The formal analysis is possible because the
model is specially constructed to involve only bounded
operators. To ensure that no unbounded operators
occur, the number of = mesons per state ¥, is limited
to one of each charge, and the total number of states
¥m 1s cut off at m=M. One investigates the limit for
M — o but for any finite M one has bounded operators.

The author recommends that the papers of Lee?
(on the Lee model) and Johnson® (on the Thirring
model) be read before attacking the present paper.
They provide some background on exact solutions of
renormalizable theories and are very much simpler
to read.

There are three interesting features in the model
of this paper. The first is simply that a finite renormal-
ized theory exists. Actually, all that is proved is that
the renormalized energy levels exists. Because there are
no continuum (momentum) states open to pions, there
is no scattering in the model; all energy levels are
discrete and hence calculating the energy levels is the
most important problem in the model. The theory is
found to be free of ghosts. No matrix elements of
operators other than the Hamiltonian are discussed.
In particular, the nucleon isospin operators are not
examined, which means we cannot compute the re-
normalized coupling constant as conventionally defined.
The reason these operators are not considered is that
the analysis that would be required exceeds the author’s
patience.

The second feature of the model is that scale in-
variance is preserved in the renormalized theory for
energies large compared to the pion mass. The un-
renormalized Hamiltonian of the full charged scalar
theory is scale invariant in the limit of zero pion mass.
This invariance is preserved in the unrenormalized
Hamiltonian of the model except that it is a discrete
invariance: Only scale transformations which take wave
functions ¥,,(k) into wave functions ¥u,.;(k) occur in
the model. The renormalized energy levels exhibit scale
invariance when the energies are large, but the scaling
law is different from what one predicts from the un-
renormalized Hamiltonian. To be precise, the un-
renormalized Hamiltonian H, goes into A—1H, when
¥m— ¥mi1, apart from terms of order 1, but the re-
normalized Hamiltonian Hg goes into A—18Hp, where
B is a constant (about %). Thus the model of this paper
supports the hypothesis that renormalization can
preserve scale invariance at large energies but will
change the scaling laws of operators.
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The third feature of the model, and probably the
most important, is that in order to prove the re-
normalizability of the model, it is necessary to define
and study a topological transformation T acting on a
space S of cutoff Hamiltonians. The space S contains
the unrenormalized cutoff Hamiltonians for any cutoff
M. However, it also contains cutoff Hamiltonians
involving arbitrarily complicated interactions involving
products of arbitrarily many meson creation and
destruction operators. In other words, the space S
includes nonrenormalizable interactions of arbitrarily
complicated structure. The transformation 7' takes a
Hamiltonian with cutoff M into a Hamiltonian with
cutoff M —1 without changing the physics of these
Hamiltonians. To be precise, the original Hamiltonian
and the transformed Hamiltonian have exactly the
same energy levels except for those energy levels with
mesons explicitly present in the state ¢u; such levels
are not present in the transformed Hamiltonian. The
transformation defines how the coupling constants of
all possible interactions must change as the cutoff M
changes in order to keep the energy levels of the theory
fixed. Having very many coupling constants all changing
as the cutoff changes is analogous to having an infinite
number of counter terms in a renormalization analysis
in ordinary perturbation theory. One has an infinite
number of counter terms when one tries to renormalize
a nonrenormalizable theory. This is customarily re-
garded as a disaster, for one presumes that for every
infinite counter term there is an arbitrary finite counter
term, leading to an infinite number of parameters.
This disaster does not occur in the model. The reason
is that strict bounds on the coupling constants will be
included in the definition of .S, and one cannot introduce
extra free parameters without violating these bounds.
What actually happens is that the possible renormaliz-
able theories of the model are described by effective
cutoff Hamiltonians obtained by applying 7" an infinite
number of times to the original unrenormalized uncutoff
Hamiltonian. This means that the renormalized Hamil-
tonians must lie in a subspace Rg of S, where Rg is the
limit of the subspaces 7(S) for m— . The space Rg
is found to be a three-dimensional space for given
cutoff M. Hence there are only three adjustable param-
eters in the renormalized Hamiltonian: a scale factor,
an additive constant, and the renormalized coupling
constant (suitably defined).

If one is interested only in the first two features of
the model one can probably skim the hard parts (Sec. V
and Appendix B). One would read these sections in
detail only to check for mistakes. However, to under-
stand the transformation 7" one must study the whole
paper in detail; it is hard to have a clear understanding
of the role of the transformation T without studying
the spaces 77(S) ; one must see how these spaces shrink
with m to the limiting space Rg, and one must under-
stand in practice the relevance of these spaces to the
renormalization problem. At present the only way to
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get the necessary practice is to work through the model
of this paper.

Gell-Mann and Low have given a general discussion
of nonperturbative renormalization theory, using quan-
tum electrodynamics as an example.® The relation of
their work to the type of model considered here is
discussed in Sec. VII. The idea of a transformation 7'
in which an infinite set of coupling constants are trans-
formed as the cutoff M is reduced is a generalization of
Gell-Mann and Low’s idea of a cutoff-dependent
electromagnetic coupling e(A).

In the author’s previous paper on model Hamil-
tonians,” a more complicated model was discussed, in
which = mesons were allowed to have any momentum
in the intervals 0<k<ko, 2A<E<A, FA2<Ek<A? etc,,
where ko was a constant. This meant the meson creation
and destruction operators were continuum creation
and destruction operators, which are hardly suitable
for rigorous analyses. The A~ expansion was proposed
but only carried out in lowest order. Even the lowest-
order calculation was complicated by the fact that the
unperturbed Hamiltonians were themselves insoluble
field-theoretic Hamiltonians. One had to guess the
qualitative structure of their solution. Furthermore,
as the cutoff M went to infinity the coupling constant
in the unperturbed Hamiltonian had to become large,
resulting in closely spaced isobar states, which inter-
fered with the perturbation calculation in A~!. None of
these difficulties are present in the model of this paper.
The meson creation and destruction operators of this
paper are defined to be discrete and bounded. The
unperturbed Hamiltonians are finite dimensional and
diagonalizable in closed form (cf. Table I). The energy-
level spacing of the unperturbed Hamiltonian does not
become small for large coupling—the isobars in the
previous theory involved many mesons in a single
quantum state and this is forbidden in the present
model. This means the present model lacks much of the
physics of the full charged scalar theory, but it still
illustrates the renormalization problem, which is its
only purpose.

This paper divides into three stages. The first stage
consists of Secs. II-IV. In Sec. II, the Hamiltonian of
the model is defined. In Sec. III the perturbation
expansion in A~! is formulated for the cutoff Hamil-
tonian and some properties of the expansion are worked
out in low orders. In Sec. IV a perturbation formula is
defined which allows the A~ expansion to be defined to
all orders in a convenient form. The second stage
consists of Secs. V and VI. In Sec. V the transforma-
tion T is defined. Its principal properties are stated
(Theorems 1-4; the proofs of these theorems are in
Appendix B). Then the topological analysis required
to prove renormalizability is carried through. Finally,
the renormalized Hamiltonian is defined for any given

8 M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).
See also M. Baker and K. Johnson, 7bid. 183, 1292 (1969).
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renormalized coupling constant. In Sec. VI scale
transformations are defined, and the scaling properties
of the renormalized energy levels are computed. The
third stage consists of Sec. VII, where it is shown that
the transformation 7" is more than a technical device
to prove the existence of the renormalized theory.
Specifically it is shown that the renormalized theories
are not the unique solution of any uncutoff Hamil-
tonian; instead, the transformation 7" is involved in
the definition of the renormalized theory, and this
definition is most simply stated in terms of one of the
fixed points of the transformation. We also relate the
renormalization program of this paper to conventional
renormalization theory and especially to the Gell-
Mann-Low analysis.

II. MODEL HAMILTONIAN

The unrenormalized Hamiltonian of the model is as
follows:

H= i A™{(@ntCn+bnbm—1)

m=0

Fg0(@m+b0m) 1t 4-go(@n+bm) 7}, (2.1)

where go and A are constants, 7+ and 7~ are the isospin
raising and lowering operators for the nucleon, and the
operators a,,' and b, are 7+ and 7~ creation operators,
respectively, for the state y,. The subtraction —1 is
included for irrelevant reasons. The constant A must be
large (>4X10° in the rigorous analysis). To prevent
two #t or two 7~ from occupying the same state, the
operators Gm, @m', bm, and by, are assigned the commu-
tation relations of a set of Pauli spin operators:

{@n,0n'} ={0mbu'} =1, (2.2)
2= (an )2 =byt= (bn')?=0, (2.3)
[@mbm]=[Cmbm' 1=[am,a,]=0, etc. (m=n), (2.4)

where [ ] is a commutator and { } is an anticommu-
tator. The Hilbert space on which H acts is a product
space. The components of the product are, first, the
two-dimensional nucleon space with the bare proton
state | p) and bare neutron state |n) as a basis. Second,
for each wave function ¥, there is a component space
of four dimensions. A basis for each such component
consists of a vacuum state, a =+ state, a = state, and
a wtr— state, each meson being in the state .

The model Hamiltonian can be arrived at starting
from the full Hamiltonian of the charged scalar fixed-
source theory® if one replaces the fixed momentum
creation operators @' and by' of the mesons by

at— 3 amT‘/’M(k) ) (2.5)

9 The full Hamiltonian is given by Eq. (1) of Ref. 7.
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bt = Y bnYm(k). (2.6)

After these substitutions are inserted in the full Hamil-
tonian, one must drop any off-diagonal products such as
an'am (n7£m) and replace integrals such as / xwy | ¥m (K) |2
or fx(2wi) %, (k) [where wy is (1+k2)1/2] by order-of-
magnitude estimates, assuming that the functions
¥Ym(k) are normalized to unity and vanish unless
k~A™. There is no need for the model Hamiltonian to
have any connection with the fixed-source theory,
because the model will be studied on its own merits.
The connection with the fixed-source theory is used
only to provide a language to describe the operators
am, etc. Likewise, the wave functions ¢, (k) play no
role in the analysis of the model; their only purpose is
to give an intuitive meaning to the operators an., etc.
One can cut off the Hamiltonian by restricting the
sum over 7 to a finite range, say 0<m <M. Then the
Hamiltonian becomes a finite bounded matrix; in this
case it is diagonalizable without renormalization. The
problem of renormalization arises when one tries to
let M — . Then one has an infinite number of degrees
of freedom, which is well known to be a source of
difficulties.® To compound the situation, the scale
of energy associated with the mth degree of freedom
increases as A™, so that the most important degrees of
freedom are those with m~M instead of small m.
Clearly one has difficulties in the limit M — regard-
less of what happens in perturbation theory, but it is
still worth showing that in perturbation theory one
has a problem specifically with coupling-constant re-
normalization. Let |P) and |N) be the normalized
physical proton and neutron states, i.e., the ground
states of H. The renormalized coupling constant is

gr=gP|7|N), 2.7)

using the definition analogous to that used in the full
charged scalar theory. The matrix element (P|7+|N)
can be computed to second order in go by straight-
forward perturbation theory. If the cutoff M is finite,
then

gr=g0—g (M +1)+0(g?").

The cutoff momentum %y is of order A¥ so M is
proportional to Inks; hence gr is logarithmically
divergent as in the full charged scalar theory. The
divergence for M —o ‘is directly due to there being
an infinite number of degrees of freedom in the no-
cutoff limit.

The structure of the energy-level spectrum of the
cutoff Hamiltonian can be seen by a qualitative
analysis. It is convenient to call a meson in a state
Ym(k) an “m-meson.” Let the cutoff Hamiltonian be

(2.8)

10 Cf, the paper of A. Wightman, in High Energy Electromagnetic
Interactions and Field Theory, edited by M. Lévy (Gordon and
Breach, New York, 1967), especially pp. 245-262 and references
cited therein.
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denoted H ;. It has the structure

M
lI;‘I/[ = Z AmOm )

m=0

(2.9)

where O,, is independent of A and involves only -
meson operators and the nucleon operators 7+ and 7.
The smallest part of Hys is Oo. This is the only part of
H y; involving 0-mesons, and for A large, Oy is a pertur-
bation on the rest of the Hamiltonian. The remainder
of the Hamiltonian has energies of order A or larger
and thus should have energy-level spacings of order A;
each level is four-fold degenerate (at least) because each
level is independent of the presence or absence of
0-mesons. Adding Oy splits these levels, with the split-
ting being of order 1. Next one can discuss the effect of
the term AQj; clearly this should lead to a gross spacing
of order A, neglecting fine structure due to O, But
AO; can itself be regarded as a perturbation; there
exists (neglecting AO; and Qp) a spacing of order A?
then a spacing of order A3, etc.

The problem of renormalization is the problem of
computing the ground state and those excited states
which have a finite energy above the ground state in the
limit M — . This means calculating states with an
energy of order A™ above the ground state, for any m,
but with # held when M — . In practice one calcu-
lates only energy differences between the ground state
and various excited states. The ground-state energy
itself diverges for M —. An energy difference of
order A™ is much smaller than the basic energy scale
AM when M is large, so a very precise calculation is
required to give these energy differences accurately.
This fact plus the fact that the model cannot be solved
exactly, and must be solved as a perturbation expansion
in A7, is the reason this paper is so long.

The model Hamiltonian is invariant to three sym-
metries: charge conservation, charge conjugation, and
time reversal. The charge Q is

Q=% (an'an—bu'bn)+3(r.41),  (2.10)
where %7, is the z component of the nucleon isospin; Q
commutes with H. The charge conjugation trans-
formation interchanges = with #— and p with ». Let
U, be the unitary transformation giving these inter-
changes; then

UdanlU.=bu, (2.11)
UldbwUe=anm, (2.12)
UldrtU,=7, (2.13)
UlHU.=H. (2.14)

The time-reversal transformation is an antilinear
unitary transformation Ur with the properties

(2.15)
(2.16)

UTTdeT = am* )

UTTmeTme* 3
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UrtrtUp= (v+)*,

UrtHUr=H*.

(2.17)
(2.18)

III. PRELIMINARY ANALYSIS OF
MODEL HAMILTONIAN

In order to solve the renormalization problem, one
must first be able to solve the cutoff Hamiltonian for
arbitrarily large cutoff M. In this section, we give a
preliminary discussion of the solution of the cutoff
Hamiltonian for large M. The constant A is also
large, but held fixed, and M can be arbitrarily large
even compared to A. The cutoff Hamiltonian naturally
separates into an unperturbed Hamiltonian and a
perturbation:

Hy=Hoy+Hru, 3.1)
where
Hoy=AM0y, (3.2)
M—1
Hry=3, A"On, (3.3)
m=0
and
Om=0m OnF-0un'bm—14go(@n+bn") 7+
+go(an'+bm)r—. (3.4)

The operator Oy is easily diagonalized. One can ignore
the mesons in states other than ¥, in which case Oy
acts on the eight-dimensional Hilbert space involving
the nucleon and mesons in the state yj. Owing to
charge conservation, the matrix for Oy separates into
submatrices of size 3)X3 at most. The eigenstates of
Oy are given in Table I [the variables (,g) of Table I
must be replaced by (1,g0)]. It has two degenerate
ground states: a state |P) of charge 1 and a state
[N) of charge 0. The ground state becomes highly
degenerate when mesons in other states y,, are con-
sidered, since one can add such mesons to the states
| Py and |N) without changing the eigenvalue of Oy.

The Hamiltonian Hoy has an energy-level spacing of
order AM (goAM if go is large), while Hyy is at most of
order AM™ (goAM7 for g, large). Hence one is allowed
to treat Hyyr as a perturbation when A is large, for any
value of go. However, one must carry the perturbation

TasLe I. Eigenstates of the Hamiltonian m(afa+btb—1)
+gla+b)rr+g(at+b)7~, where af creates =%, bt creates
7«7, |p) and |n) are nucleon states, and w=m(m2+2g2)12
y=g(m?+2g2)~12, The other four eigenstates are obtained by
charge conjugation (p on, 7+ on™).

Eigenvalue Eigenstate
— (m24-2gH)1 (14w | )= [nrt)+3 A —p) | prFa™)
0 [ o)
0 v[p)  Aulnat) —y|pmtr)
(m24-2g5)v2 FA—p) | o)ty nrty+5Atw) [ prta)

11 See also Sec. III of Ref. 7.
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expansion out to order M at least, because one ulti-
mately is interested in energy-level spacings which may
be of order 1. In the lowest order of degenerate pertur-
bation theory, the ground state of H and excited states
at energy A= or less above the ground state are given
by an effective Hamiltonian

Het=Eoy+PHryuP, (3.5)

where Eqy is the ground-state energy of Hoy and Pis a
projection operator on the ground states of Hoar. Hess
acts on a product space whose components are the two-
dimensional space with basis |P) and [N) and the
meson space for the states ¥,, 0<m <M —1. One can
introduce isospin raising and lowering operators 7z*
for |P) and |N); then H: involves a set of operators
[7&%, @n (0<m< M —1), etc.], which are equivalent to
the operators of Hjy.i. The only way P affects the
operator Hyy is through the nucleon operators 7+
and 77; the meson operators in Hy, are unaffected.
To express He in terms of 7%, one must express
PrtP and Pr P in terms of 7z* and the meson opera-
tors. The operator PrtP affects only the states |P)
and |N) not the meson states, and because it increases
the charge by one unit, Pr+P must be proportional to
T7rT. The proportionality constant Z is found from
Table I to be (using the constants of Table I)

Z=(P|rt|N)=(m+g) (m+2¢).  (3.6)
With m=1 and g=g, this is
Z(g0) = (1+g0") (142g0") . 3.7

Likewise PrP is Z(go)7r~. Hence PHiyP has the
same form as Hj itself except that M is replaced by
M—1 and gor¥* is replaced (in Eq. 3.4) by gu—17r%,
with

(3.8)
(3.9)

gM—1=h(g0) )
h(g)=g(1+g¢") (1+2¢")".

When degenerate perturbation theory is carried to
higher orders, one still computes an effective Hamil-
tonian Hes which acts on the space of ground states
of Hoy. The effective Hamiltonian is no longer just
PHiyP but contains higher-order terms in Hrpa,
for example, the second-order term is PHry(1—P)
X (Eosr—Hoar)"HryP. The term of n#th order involves
products of # interaction Hamiltonians and »—1 energy
denominators. It is useful to discuss in a schematic way
the types of terms generated in the higher-order calcu-
lation. Let x,, stand for an operator of the form @u'@m
F0m'bn—1, @nt+bn', or @n'+b,. Let 7 stand for any
nucleon operator and 7 for any operator acting on
| P) and |N). Let x,2 stand for operators made of any
product of operators of type «,.. One can easily make a
table of the type of operators that can occur in Heg
for a given order in A, remembering that Hes involves
Hjy times products of (Eoxr—Hom) Hiu, the whole
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. TaBiE II. Breakdown of Hess by type of operator for each order
in A. The symbols %, 7&, and (¥)? are explained in the text. Any
operator listed for a power A™ can occur for lower powers of A also.

Order in A Types of operators
AM const
AML EM_ITR
AM—2 Xp—aR, (X1-1)°TR
AM=3 XM—3TRy XM—2XM—1TR
AM—4 XM_aTRy XM—3XM—1TR, (X31—2)2TR, Xpr—2(Xp—1)27R

product being projected with P. The results are shown
in Table II.

The formulas for the higher-order terms of the de-
generate perturbation calculation are too complicated
to quote explicitly. Fortunately they are not needed;
it is sufficient to have upper bounds for each type of
term and these can be obtained. Table IT gives the order
in A of each term and all that remains is to obtain
numerical upper bounds. This will be done in Sec. V.

The Hamiltonian He; has a basic energy scale
~AM=L which is still much larger (for large M) than
the energy scales of interest. He¢ can again be analyzed
by perturbation theory. One writes

Hets=Hoots+Hrofs. (3.10)
The unperturbed Hamiltonian is
Hyese=A"0n-1(gn—1) (3.11)

where On—1(ga—1) is the same as Oy—1, except that go
is replaced by g1, and 7% by 7%, All other terms in
H ¢ form the perturbation Hyesr, which is at most of
order AM~2 The eigenstates of On1(gx—1) can be
determined from Table I; like Oy it has two degenerate
ground states |P’) and |N’) if mesons in states other
than ¢—; are ignored. One can use degenerate pertur-
bation theory starting from the states |P’) and |N)
to determine the eigenstates of Hs of energy A¥—2 or
less above the ground state. Again one must calculate
the perturbation analysis to many orders, in order to
keep terms with energies of order 1 or larger. The result
is a second effective Hamiltonian H.s  involving meson
operators @, etc., for m<M —2 and isospin operators
Trt’ connecting the states | P’) and |N').

One can determine the type of operators that occur
in Hey' for each order in A. The basic operators are
operators acting on |P’) and |N’), denoted 77/, and
meson operators of type x, for m< M —2. The results
are shown in Table ITI. In constructing Table III, one
uses the fact that operators of the form (x—1)7z and
(x2r—1)?7r in Hress are reduced to the form 7g" in Hegf'.
Furthermore, the symmetries of the theory ensure that
an operator of the form 7z’ in H; not multiplied by a
meson operator can only be a constant. The important
result illustrated by Table IIT is the following: To
compute H.s', one must compute many orders in a
perturbation treatment of Hyess. Hrets itself divides into
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TasrLE III. Breakdown of Hes’ by type of operator for
each order in A (cf. Table II).

Order in A Types of operators
AM | AM—1 const

AM2 XM—oTR

AM—E wu—37r’, (Xr—2)?TR
AM— M—aTR', X3 2TR

two parts. The simple part of H; .¢s are the terms coming
from PHpyP; these terms have the structure xy_o7g,
Xu—37r, etc., and depend only on the single constant
gu—1. The complex part of Hyes comes from the higher-
order terms in Hyyr, and includes all terms of type
(xM_z)ZTR,, (xM_g) (xM_3>TR, etc. In computing Heff/,
even the simple part of Hr.s generates all types of
terms in H', through terms of order (Hress)?, (Hretr)?,
etc. The important fact is for a given term in Hesy',
say (xar—2)?7r’, its coefficient comes predominately from
the simple part of Hyesr, and hence the coefficient is
primarily determined by the constant ga—i. Hye also
has an (xx—2)?rg term but this affects the coefficient
of (xar—2)?rr’ only in order A¥—4 whereas the dominant
part of the coefficient is of order A¥=3, Because of this
result one can give bounds on the complex terms like
(%a—2)?rg’ in He' which depend on gir—; only and do
not involve the size of the corresponding term in H .
These bounds are of crucial importance for the rigorous
analysis; they ensure that the complex interactions
cannot increase without bound as one repeats the
perturbation analysis many times. Furthermore, it
means that Table III has the same form it would have
had if one had started with the cutoff M —1, and
obtained H.s' by solving H 3. The only exception is
the constant in Table III of order A™.

One can repeat the perturbation analysis many times,
generating a sequence of Hamiltonians which will be
denoted Hy(M). The Hamiltonian Har 1(M) is Hes,
Hy (M) is Hets'. In general, Hy(M) is the effective
Hamiltonian after M —N perturbation calculations;
Hy(M) involves the meson operators am, etc., for
m< N, and isospin operators analogous to 7% or 7%,
The operator Hy (M) gives the energy levels of H with
energies of order AY or less above the ground state.
For each operator Hy(M) one can give a classification
table analogous to Tables II and III; the result is Table
II with M replaced by N, except for constant terms.
The unperturbed part of Hy (M) would appear to be
just A¥Oy(gw), where

gv=h(gn41). (3.12)

This is what one gets if the unperturbed Hamiltonian
is defined as the term of order AY in Hy(M). However,
to ensure that the perturbation is small even when
M —N is much larger than A, the unperturbed part of
H (M) will be defined to include other terms of the form
(an+bxt)7H, or (ex'+by)7, regardless of their order
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in A. The unperturbed Hamiltonian still has the form
AYOy(gn), but gy differs from A(gyy1) in order A~
Since one has to compute a whole sequence of constants
g (N=M—1, M —2, etc.), the small differences between
gw and k(gyy1) for each V can build up to a macroscopic
effect when M —N is large.

To compute an eigenstate of energy A™ above the
ground state of H s, one must take the effective Hamil-
tonian H,, (M) and solve for states corresponding to
excited states of the unperturbed part of H,,(M). One
could set up a perturbation method for computing these
states. It will not be necessary for the purposes of this
paper to discuss these states in detail, so the pertur-
bation method will not be developed here.

IV. PERTURBATION FORMULA

There are various standard formulas for the effective
Hamiltonian that results when a perturbation Hy is
treated to all orders. They all have drawbacks, so a
suitable formula will be derived here. The formula
obtained below has two properties: The effective
Hamiltonian is Hermitian, and involves only un-
perturbed energies in energy denominators. The second
property is useful because the unperturbed energies are
known explicitly. The first property is obviously useful,
and is not true of many standard formulas.

Let H=H,+H and let P be the projection operator
on the ground states of Ho. Let |¢) be any eigenstate
of H with an energy £ close to the ground-state energy
Ly of Hy. It is convenient to have an operator R which
gives the part of |¢) outside the space projected by P
in terms of the part of |¢) inside the space. That is,

(1-=P)[¢)=RP[y). (4.1)
Such an operator can be defined as follows. The eigen-
value equation has two parts:
L(A=P)[)=1—-P)H(1—-P)|y)
+QA=P)H Py,
EP|y)=PH(1—P)|¢)+PHP|y).
If an operator R satisfying Eq. (4.1) exists, one can
multiply the second equation [Eq. (4.3)] by R and
subtract from the first, giving
0={(1—P)HR+(1—P)H;
—RPHR—RPH}P|y).

(4.2)
(4.3)

(4.4)

Equation (4.4) will certainly be satisfied if we demand
that

(1—P)HR+(1—P)H;P—RPHR—RPHP=0. (4.5)

This equation can be cast in a form suitable for iteration
in H;. From the original definition of R, it should take
states within the subspace projected by P into states
orthogonal to this subspace; we can also require that R
gives zero acting on states outside the subspace. This
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means that
R=RP, (4.6)

R=(1—P)R. (4.7)

Assuming this, and using the fact that PH,P=E,P,
one can rewrite Eq. (4.5) as

(Eo—Ho)R=(1—P)H;P+(1—P)H:R
—RH;P—RH;R, (4.8)
or

R=(Ey—Hy)'(1—P—R)H{(P+R). (4.9)

This equation can be solved iteratively to give R as a
power series in Hy. It is easily seen that the expansion
satisfies the assumptions of Eqgs. (4.6) and (4.7).

The argument so far does not prove that any operator
R satisfying Eq. (4.9) will also satisfy Eq. (4.1), but
this will be established later if Hy is sufficiently small.

One can now write Eq. (4.3) as

EP|y)={PH,P+PH;P+PHR}P|y). (4.10)

One could therefore define Hes to be Hy+PHP
+PHR, except that PHiR is not Hermitian. The
reason for this is that although two eigenstates |¢1)
and |¢») with distinct eigenvalues are orthogonal, the
corresponding projected states P|¢1) and P|ys) will
probably not be orthogonal, and therefore cannot be
distinct eigenstates of a Hermitian operator. To remedy
the situation, one notes that

W1l¥e) =@ | P|2)+ 1| R'R [¢).

This suggests replacing the projected states Plyy)
and Plys) by the states (1+R'R)'2P|y1) and
(14RR)'2P|y), which are still states in the subspace
projected by P but have the same scalar product as
[¢1) and |¢2). The operator (14+RTR)V2 is well defined
as a power series in R'R when Hr is small. To obtain
H o1, write the eigenvalue equation as

(E—H)(P+R)P|¢)=0
and multiply by (P+R'):
E(P+R")(P+R)P|y)=(P+RNH(P+R)P|Y). (4.13)
Now

(4.11)

(4.12)

(P4+R"(P+R)=P+RR=(14+RR)P (4.14)

using Egs. (4.6) and (4.7). Hence, multiplying Eq.
(4.13) by (14R'R)™12 gives

E|¢p)=He|$), (4.15)
where
|¢)=(14+R'R)**P|y), (4.16)
Hes=(14-R'R)~12(P4RY)
XH(P4+-R)(1+RIR)-2.  (4.17)

The formula for He; is evidently Hermitian.
The above argument is not rigorous, so it must now
be proven that the eigenvalues of He are the eigen-

1445

values of H near F,, and that eigenstates |¢) of Hes
become eigenstates |¢) of H through the formula

[¥)=(P+R)(1+R'R)2|¢). (4.18)

Assume that R is defined by Eq. (4.9) solved by
iteration assuming Hy is small. It is shown in Appendix
A that the iteration converges if Hy is sufficiently small.
The solution satisfies Egs. (4.6) and (4.7). From these
and Eq. (4.9) one obtains

(1—P—R)H(P+R)=0, (4.19)
which is essentially Eq. (4.5). Also,
(1—P—R)(P+R)=0. (4.20)

This is because

(1—P—R)(P+R)=(1—P)(1—R)(1+R)P
=(1—P)RP (4.21)
and

R2=RP(1—P)R=0. (4.22)

Let |¢) be an eigenstate of He: in the subspace pro-
jected by P, and let E be its eigenvalue. Define |¢)
by Eq. (4.18).

One can write

(14-R'R)2(E—H o15) P | $) =0. (4.23)

Using Eqs. (4.17), (4.18), and (4.14), Eq. (4.23) may
be rewritten
(P+R")(E—H)[¢)=0. (4.24)

This equation cannot be used to infer that (E—H) |¢)=0
because P+R' projects onto a subspace and does not
have an inverse. However, from Eqs. (4.19) and (4.20)
one can obtain

(1—P—-R)(E—H)[¢)=(1—P—R)(E—H)(P+R)

X{(1+R'R)™2[¢)} =0. (4.25)
Adding Eqgs. (4.24) and (4.25) gives
(14+R'—R)(E—H) |¢)=0. (4.26)

It is shown in Appendix A that (14R'—R) has an
inverse (for sufficiently small Hr) so this equation does
imply that |¢) is an eigenstate of H with eigenvalue E.
The Hamiltonian Hes has matrix elements equal to
zero except within the subspace projected by P.
Within this subspace Hes: has d orthogonal eigenstates,
where d is the dimension of the subspace. These eigen-
states define [through Eq. (4.18)] d orthogonal eigen-
states of H (orthogonality is easily verified). The
energies of these eigenstates are close to E, because
H . is approximately PHP when Hy is small so that R
is small.

An alternative form of Hes is obtained as follows.
Write

Hos=EoP+4(1+RR)~12(P+R")

X (Hr+Ho—Eo) (P+R)(1+R'R)™2.  (4.27)
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Using (Hy—Ey)P=0 and Eq. (4.9), one can rewrite
this as

Hoit=EoP+(14+R'R)2(P+R"){H(P+R)

—(1—P—-R)H;(P4+R)}(1+R'R)™'2. (4.28)
Using Eq. (4.14), this simplifies to
Hy=E(P+P(1+R'R)\?
XH(P+R)(14+R'R)712, (4.29)

This formula is not manifestly Hermitian, but Heg is
still Hermitian since it is still defined by Eq. (4.17).

V. EXACT PERTURBATION ANALYSIS
OF MODEL

The outline of a method of solving the cutoff-model
Hamiltonian H ) was given in Sec. ITI. One uses the
definition of Hes given in Sec. IV in each degenerate
perturbation calculation. The result is that starting
from H y, for any M, one defines a sequence of effective
Hamiltonians denoted Hy (M) involving meson opera-
OIS @m, @m', bm, B! for 0<m< N and isospin operators
which will be denoted 7+ regardless of what states they
act on (|p), |n), or |P), |N), or |P'), |N'), etc.). The
effective Hamiltonians involve very complicated inter-
actions, not just the O, terms of the original model.
From the analysis of Sec. III, one can expect to get
upper bounds on these terms such that a AMOy term
is the dominant term in Hy(M), provided that an
appropriate coupling constant replaces go in Oy. The
Hamiltonians Hy (M) give the energies of the ground
state of 3, and the excited states of Hj in which only
the first V degrees of freedom are excited. If the energy
levels are counted from the lowest level up, the ground
state being number one, then Hy(M) describes the
first 22743 levels of H .

The limit of no cutoff, that is, the M — 0 limit, can
be studied by studying the limits of Hy (M) for fixed
N, as M —o. This means one is studying a fixed
number of energy levels as M increases. It will be
proven in this section that the limit of Hx(M) for
M — o exists provided that one makes the renormali-
zations one expects from ordinary perturbation theory.
This means that before letting M — o one must first
subtract a constant Ej from Hy(M) and allow the
bare coupling constant goar to vary with M. The varia-
tion will be such that gopr—c as M —eo, ie., the
interaction term in Hjr swamps the free meson energy
in the limit M —w. The proof requires that A be
larger than 4108, The limit may exist for smaller A
but in this case the upper bounds used in the proof no
longer apply.

The Hamiltonians of this paper involve only bounded
operators: the operators @m, aa', 7+, 7, etc. All have
operator bounds of order 1. Anyone with experience in
rigorous quantum mechanics knows the joys of having
only bounded operators. This ensures that terms that
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look small by a power of A will indeed be small if A is
large enough; for finite M the perturbation expansions
in A~* will be easily proven to converge and one can
concentrate on the problems of the M — o limit.

The analysis of the limit for M —o is still very
complex; it will be presented here in a formal and not
well-motivated manner. Before presenting the proces-
sion of theorems and definitions, the basic problem
involved will be sketched briefly. The essential problem
is to have a bound on the difference ||Hy(M,gor)
—Ex—Hy(L,gor)+Ez||, where || || is the ordinary
operator bound, and the dependence of Hy(M) on
gom has been noted explicitly. One must be able to
show that this bound goes to zero as M and L go to «,
provided that the sequences {gox} and { Ex} have been
chosen appropriately. The crucial step in establishing
such a bound will be to show that the difference
Hy(M)—Hy(L)—E is arbitrarily small when M and
L are large, provided that E is properly chosen and that
the terms of order A¥Oy which dominate Hy (M) and
Hy (L) have identical effective coupling constants (see
Theorem 10). This condition will force one to have
different bare coupling constants; gous%gor. As a pre-
liminary to proving this theorem it will be proved
(Theorem 1) that Hy(M) is dominated by a term of
the structure AYOy with an appropriate effective
coupling constant in Oy. This proof is necessary because
otherwise one might worry that terms nominally of
order A¥! or less would be multiplied by powers of M,
which would dominate the AV term when M>>A.

In order to clarify the calculation of bounds, some
topological language will be used. A space S of Hamil-
tonians will be defined which includes the effective
Hamiltonians H 5 (M) as special cases. The perturbation
analysis which defines Hy_1(M) given Hy(M) defines a
transformation 7" on the space .S. The space .S will be
defined so that 7°(S) is contained in .S. A metric will
be defined on S, and convergence questions discussed
in terms of this metric. The Hamiltonians H (M),
considered for all possible values of go, define “curves”
in S.

The exact and rigorous analysis of the renormali-
zation problem begins here. The first step is to define
the space .S of Hamiltonians. It is convenient to adopt
a specific way of representing the Hamiltonians that
will be included in S. Let H be any Hamiltonian
involving the meson degrees of freedom O0-N plus
nucleon operators, for example, Hy(M) for some M.
It will be convenient to renumber the meson operators,
making the switches ao, bo<> an, by, @1, b1 an_1,
bx_1, etc. In the new numbering, a..' creates a meson in
the state Y y—n. This is to be true for all IV, so the state
associated with a,,' is different for different V. It is also
convenient to separate an additive and a multiplicative
factor from H, writing

H=J5+8§, (5.1)
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where J and & are constants. A normalization condition
will be imposed on 3C, determining J, but the separation
of & from J3C will be left indeterminate. (The trans-
formation T will be defined to determine J, 3C, and
& separately.) One now lets 3¢ have the following
structure:

e=mVo+V2gVoert+V2gV s

N N
—l-kZ Vi-Ara+2, Cr, (5.2)
1

k=0

where Vy, is a vector (Vii,Vie,Vis) and

N
Vi= Z Tm:

m=k

(5.3)

Trmi=A"(an'Gn+bnbrn—1),
Tmz=(1/V2)A"™(@m+bm'),
Tmz=(1/VN2)A"™(am' +bn)

(5.4)
(5.5)
(5.6)

and A1, Ars, Ass, and Cj are operators which depend
only on 7% and the meson operators numbered from
0 to k. The vector notation Ay, Si, etc. is used purely
for convenience. The constants m and g will be required
to satisfy a normalization condition :

m?+2g2=1. (5.7
To ensure this normalization condition, 7 and g will
be represented as

m=cosf ,

(5.8)

g=(1/V2) sinf. (5.9)
The set of parameters J, §, N, and ¢, and the operators
A and Cr, will be called the “decomposition” of H. The
representation is highly redundant; for example, Cy
is by itself totally arbitrary. The reason for using this
redundant representation is the following. One can see
from Table II that the operators a, b for large &
(new numbering) appear in any effective Hamiltonian
H (M) predominantly in terms such as Vi-Agor Vo-Ay.
Terms which must go into Cy (the x;? terms of Table IT)
have much smaller coefficients. Hence, by making the
separation, one can put stringent upper bounds on the
operators Cy.

The space S will be defined in two steps, the first
step being to define a subsidiary space S 4.

Definition. A point P4&S4 consists of an angle ¢
and an infinite set of operators A, and Cy (0<k< ).
The angle 6 is restricted to the range 0<<iw. The
operators A and Cy can depend only on the nucleon
isospin operators 7+ and the meson operators @m, @',
bm, and b, for 0<m<k. The dependence on these
operators is arbitrary except as follows. The operators
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A, and Ck must satisfy the following operator bounds:

[| 44| < 200mg2A—+-1 (5.10)
|4 k]| < 200v2g°A (5.11)
[|41s]| < 200vZg2A %, (5.12)

[IC4l| < 20092421 (5.13)

where m=cosf, g= (1/V2) sinf. Secondly, the operators
A, and Ci must satisfy symmetry requirements: Az
and Cr must carry charge 0 while A4, creates one unit
of charge and Ag; destroys a unit of charge. Under
charge conjugation, 41— Ax1, A g <> Ars, and Cx— Cp.
Under time reversal, A;— A * and Cr— Ci*. Also
Ay and Cj, must be Hermitian, while 4 3= A,". These
requirements ensure that 3¢ [defined by Eq. (5.2)] is
Hermitian and invariant to the symmetries. The
parameter 6 and the operators A; and C; will be called
the decomposition of P4.

The powers of A in these bounds are what one would
expect from Table II; the coefficients are hindsight
bounds. It is convenient for the following analysis to
insist that an infinite set of A; and Cy be specified even
if a particular Hamiltonian involves only a finite
subset of them. The superfluous A, and Cj can be
chosen arbitrarily subject to the restrictions of the
definition of S4.

The space .S is defined as follows.

Definition. A point PES consists of three constants
J, &, and N, and a point P4&S4. The four objects J,
&, N, and P4 will be called the decomposition of P. N
must be an integer, J must be positive, but & is arbi-
trary. There are no upper bounds on J, | §|, or N.

Next the transformation 7" acting on S will be defined.
Many details of the definition are handled in Appendix
B and only an outline is given here. Any Hamiltonian
H in S has a dominant term of the form

Ho= 8+J{m(ao'as+bo'bo—1)
+g(aotbo)rH+g(ad’+bo)77} .

The remaining terms in H form a perturbation Hy:
Hy=H—H,. (5.15)

From the definitions (5.1) and (5.2) and the bounds
(5.10)-(5.13), H is of order JA™! or less and therefore
can be treated as a perturbation relative to Ho. In
particular, one can use the formulas of Sec. IV to define
a new Hamiltonian H.; whose eigenvalues are the
eigenvalues of H near the ground-state energy of Ho.
Suppose H has a decomposition (J,8,V,P,) (with
P4 in S4). The Hamiltonian H . can also be decom-
posed in the form (J/,&,N’,P4’) with P4’ in S4, that
is, Her can be written in the form defined in Eqgs.
(5.1)~(5.9). [The resulting operators A, etc. satisfy
the bounds of Egs. (5.10)-(5.13); see Theorem 1.]
Specific formulas for J’, &, N’, and P4’ (ie., g, m/,
A/, and Ci) are obtained in Appendix B [cf. Egs.

(5.14)
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(B20)-(B24)]. The general form of these formulas is as
follows:

N'=N-—1, (5.16)
J'=A"JTs(P4), (5.17)

and
E'=8+JTc(Pa), (5.18)
PA=T4s(P,), (5.19)

where T5(P4) and T¢(P4) are functions depending
on P4 butnoton NV, J, or §, and T4 is a transformation
on the space S4, independent of NV, J, or &. It is clear
that J and & will be multiplicative and additive factors
in Heg; and thus do not affect 74, T'p, or T¢. It is less
obvious that T4, T4, and T'¢ can be defined to be
independent of IV; this result is proven in Appendix B.
Equation (5.16)-(5.19) define the transformation 7.

The reason for defining the subsidiary space S4 is
that the transformation 74 acts on this space, and it is
convenient to do much of the topological analysis on
the transformation 74 rather than on 7' itself. The
space S, is a continuous closed space; in particular, it
does not involve the discrete variable V.

The unrenormalized cutoff Hamiltonians H j are all
in S. The decomposition of Hjs can be defined to be

T=AM(14+2g2)12, (5.20)

8=0, (5.21)
6=tan='(vV2go), (5.22)
m=(142g) 77, g=go(1+2¢)712, (5.23)
Av=Cir=0 (all k). (5.24)

go must be positive so that 4 lies between 0 and 3.
Note that <1 and g< (1/V2); this is required by the
normalization condition (5.7).

In Appendix B several theorems about the trans-
formation T4 are proven. These theorems will be
quoted below and are the basis for the analysis in this
section.

Theorem 1.1f P4&S4 then T4(P4) is also in Sy, i.e.,
Ta(Sa)CTSa. (5.25)

Theorem 2. Let P,&S4 have a decomposition
(0,Ar,Cr), and let T4(P4) have the decomposition
0’, Ay, and Cy/. Let m=cosf and g= (1/V2) sinf. Then

tand’ =v2¢" /m"’ , (5.26)
Tp(Pa)= (m'2+2g"")12, (5.27)
where
|m'"—m| <0.01mg?, (5.28)
lg'—g(1—g%)| <0.01g%. (5.29)
Also,
|Te(Pa)+1]<0.01, (5.30)
(1—0.51 sin?) tanf<tan6’
< (1—0.48 sin%) tanf. (5.31)
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Theorem 3. Let P4 and T4 (P 4) have the decomposi-
tions defined¥in Theorem 2. Let the component Az
of Ay, vanish for all 2. Then

A/ =0 (all k), (5.32)

m''=m, (5.33)
where m'’ is the constant in Theorem 2.

The significance of these theorems is essentially as
follows. Theorem 1 ensures that if the decomposition
of P, satisfies the bounds (5.10)-(5.13), then so does
the decomposition of 7T4(P4). A consequence of
Theorem 1 is that the effective Hamiltonians H x (M)
are in S for any IV, any M, and any value of go. Theorem
2 gives limits on the values of T3(P4), Tc¢(P4), and ¢’
which depend only on m and g, not on A; and Ci. The
constants m’ and g’ appear in an intermediate stage
in the calculation of Hes. To lowest order in A7, g”’
is equal to g(1—g?); this follows from Eq. (3.6) using
Eq. (5.7). The bounds in Egs. (5.28)-(5.30) were
originally of order A=, but were replaced by numerical
bounds (valid for A>4X 10°) for convenience. Theorem
3 shows that Az will vanish for the effective Hamil-
tonians H y(M). It was not obvious (to the author, at
least) that this would be so.

Before presenting Theorem 4, a metric must be
defined in the space S4. Let Pa= (0,A,Cx) and P4’
= (¢',A¥,C’) be two points in S4. It is convenient to
define two distances in .S 4, one being a distance between
6 and ¢’, the other a distance between the operators
{Ar,Cr} and the operators {A:,Cix'}. It is also con-
venient to use the notation |P4—P4’| for the pair of
distances (d1,ds).

Definition. Let P,= (6,Ar,Cr) and P4 = (¢/,A',CY/)
be in SA. Then [PA""])AII = (dl,(ig) Wlth

dy=2]sink(6—0")]
do= nlELX{\/ZAk'H“A ri—A ki’”, AZH'l”Ck—Ck/H} ,

(5.34)
(5.35)

where the maximum is over all possible values of %
and 1.

The distance dy is more transparent if written in
terms of m, g, m’, and g’:

(111= [(m_ ml>2+ 2 (g__ gl)g:]llz .

No a priort rationale for these definitions of dy and d»
will be given. A certain amount of experimentation was
required to determine how to define these distances;
the above formulas turned out to be useful. It is clear
from Egs. (5.35) and (5.36) that the metric satisfies
the triangle inequality and that | P4— P4’| = (0,0) only
if Pa=P4.

Theorvem 4. Let P4 and P4’ bein Sa. Let |Pa—P4’|
= (dl,dg) and ITA(PA)vzﬁA(PA,) l = (dlljdgl). Then

0.38d1— 1075, < d1' < 20d,+1075ds , (5.37)
dy’ <£1100d1+0.06ds. (5.38)

(5.36)
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The coefficients 107> and 0.06 are numerical upper
bounds to terms behaving as A~ These bounds are
valid for A>4X10°. The first set of bounds force dy
to be of order dy unless do>>d1; di/ cannot be much less
or much greater than d; unless do>>d;. The second
bound is a straight upper bound on dy’. In particular,
if d1=0, then dy’ is smaller than ds. Hence as long as
6=46’, the transformation 74 brings the points P4 and
P4’ closer together.

The four theorems stated above are proved in Ap-
pendix B. The only assumption is A>4X10% The
remainder of the analysis of this section is self-contained.
The next stage is a set of topological theorems and
definitions. First one defines a set of curves Qy in the
space S4. They are generated by the effective Hamil-
tonians Hy (M) as a function of the coupling constant
go. The curves turn out to depend only on the difference
L=M—N, not on M or N separately. It is convenient
to parametrize these curves by their 6 coordinate rather
than by the unrenormalized coupling constant. The
parameter in these curves will be denoted ¢ Let the
decomposition of Qr(f) be written

02.(),ALr(0),Crr(®).
Definition. Qo(t) is the curve
0o(t)=t, (5.39)
Ay (t)=Cou(t)=0. (5.40)

Definition. The curve Qp is defined iteratively for
L>0 by the relation

Qr=T4(Qr).

If one were parametrizing using the unrenormal-
ized coupling constant, one would have had Q(f)
=T 4(Qr-1(?)). With the alternative parametrization,
Qr(t) must still be the transform of some point on
Qr.—1. This point can be denoted Qr—1(Fr(¥)):

Qrt)=T4Qra[Fr(®)]).

Definition. The parametrization Qz(#) of Qr is to be
chosen so that

(5.41)

(5.42)

0.()=t (all L). (5.43)

In practice this definition defines the function Fu().
We shall also be interested in the inverse function
F2(?) to Fr(?). This function satisfies

Q(fe())=T4(Qr-1(1). (5.44)
Since the 6 coordinate of Qr(fL(f)) is fr(¢), one has
fr()=0 coordinate of T4(Qr-1(f)).  (5.45)

The next theorem gives several properties of Qz(Z),
fr(#), and Fr(f). These properties will be established
simultaneously in a proof by induction.
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Theorem 5.

(a) Qr(?) is a single-valued function of ¢ defined
for 0<i< 3.

(b) f1(t) is a continuous single-valued function of
¢ defined for 0<i<ir satisfying

f1(0)=0, (5.46)
fL(Gm)=3m, (5.47)
0< ()<t for 0<i<im. (5.48)

(c) Fr(t) is a continuous single-valued function
of ¢ defined for 0<¢< i satisfying

Fr(0)=0, (5.49)
Fp(3m)=43m, (5.50)
IKFL()<ir for 0<i<jw. (5.51)

(d) Consider any pair of numbers ¢ and ¢ in the
range 0 to iw. Let |Qr()— Q)| = (d1,d).

Then
d,<4000d,, (5.52)
[ fu()—fr()| <40[t—1], (5.53)
|Fo(t)—FL(¢)| <40[1—1]. (5.54)

Part (a) is the crucial part of the theorem. It states
that the curve Qy, projected on the 6 axis, covers the
full range 0< A< %7 once and only once. If, for example,
the curve Qr, covered only part of this range, the theory
would not be renormalizable. This point will be dis-
cussed later.!?

Proof of Theorem 5. The property (a) and Eq. (5.52)
hold for L=0. That is, Qo(f) satisfies (a) from its
definition, and |Qo({)—Qo(’)| = (d1,0) for all ¢ and ¢
and thus it satisfies (5.52). Suppose property (a) and
Eq. (5.52) are true of Qr—1(f). We prove (a)-(d) for
Qr, F1, and fr. Equations (5.46)-(5.48) are conse-
quences of the inequalities (5.31) [remember that the 6
coordinate of Qr—1(¢) is £]. Now let #/ and ¢'”” be two
parameters in the range 0 to 3. Let

[Qra(t’")—Qra(t")| = (dr,ds),

and let
| T4 Qra(t")) =T a(Qr1(")) | = (d1,d5").

These distances must satisfy the inequalities of Theorem
4, and d, satisfies Eq. (5.52) by assumption. These
equations can be combined to give inequalities not
involving d»:

034d1§ d1,_<_ 21(131 5 (555)
dy/<1340d;. (5.56)

Note that
d1=2]|sink (?'—1¢"")|, (5.57)
dy'=2[sing[fr(t")— f.(*"")]] - (5.58)

12 See Sec. VII C of the present paper.
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Because ¢/, ¢, fr(¢"), and fr(¢'"") all lie between 0O
and im, the arguments of the sines lie between —%r
and ir. For angles ¢ in this range

(2V2/m)|¢| < |sing| < [g]. (5.59)
One deduces from Egs. (5.55) and (5.57)-(5.59) that
[FL()— f@")| < 2lr/2V2)["=¢""| . (5.60)

This proves that fr(f) is continuous; it also proves
Eq. (5.53). Since f1(¢) is continuous and satisfies Eqgs.
(5.46) and (5.47), there must be at least one root ¢
to the equation t= f1(#') for any ¢ between O and 3.
This equation cannot have two roots ¢’ and ¢, for
if t=fL("")=fr({’"") then di'=0; by Eq. (5.55), d1
must also be zero which means that ¢/=¢"'. Finally,
if t=fr(¢") then (<{"<ir [using Eq. (5.48)]. Hence
F1(¢) [the inverse function of f1(¢)] satisfies (c). Now
let ¢ and ¢ be arbitrary parameters in the range 0
to iw. Let ¢/=F1(t) and ¢//=F(). Then {= f1("'),
= fr.(#"""). Using Eqgs. (5.55) and (5.57)-(5.59), one gets

\FL(l)—Fo(t)| <m(0.68V2)1|t—¢'|, (5.61)

which proves Eq. (5.54). Furthermore, the inequalities
(5.55) and (5.56) give ds’<4000dy’, which proves Eq.
(5.52). Finally, (a) is a consequence of (c), using
Eq. (5.42) and the continuity of 74 (Theorem 4).

The next problem is to discuss the limit of the curve
Qr for L —w. Determining the limit of Qp(#) for
L —oo with ¢ held fixed is equivalent to determining
the limit of the Hamiltonians Hy(M) for M —w
holding the effective coupling constant in Hy(M)
fixed. It is convenient to introduce subsets Sz of Su
which contain Qr. The set Sy is the set Sy itself; the
definition of .Sz, is as follows.

Definition. St for L>0 is the set

Sp=Ta(Sr_1). (5.62)

St consists of all points in S4 which can be obtained
by applying the transformation 74 L times to some
point in S4. Evidently all points in .Sy also are in Sz_i:

Theorem ©.

SrCSr (5.63)

The following theorem gives an upper bound on the
“cross-sectional size”” of Sz, for given angle 6.

Theorem 7. Let P4 and P4’ be any pair of points in
SL. Let |PA—PAII = (dl,dg). Then

d><4000d:4-300X (0.2) . (5.64)

The cross section is the maximum value of d, for
d1=0. Theorem 7 states that the cross section goes to
zero as L — o ; the spaces Sz, to a single curve as L — o
(see below).

Proof of Theorem 7. The proof is by induction. For
L=0 the theorem is true simply because the bounds
(5.10)-(5.13) force d» to be less than 300 for any
pair of points in S4. Suppose the theorem is true for

for L>1.
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Sr_1.Let Pgand P4’ betwopointsin Sz. Let | P4—P4’|
be (di,ds"). There must exist (by definition of Sz) two
points PB and PB, in SL._l Wlth PA=TA(PB), PAI
=TA(PB/>. Let IPB—PBII be (dl,dz). Then the dis-
tances dy, ds, di/, and dy’ satisfy Egs. (5.37) and (5.38).
Also d, satisfies the inequality (5.64) with LZ—1 substi-
tuted for L. Combining these inequalities gives

0.34d,—0.003X (0.2)L1<dy’, (5.65)
dy’ <1340d:+18X (0.2) L1, (5.66)

These inequalities can be combined to give'®
dy’ <4000d,/+300X (0.2)L. Q.E.D.  (5.67)

The next three theorems will be used to show that
the curves Q(f) have a limit curve R(f) for L —o.
The curve R is the limit of the subsets S for L —co.
The curve R has the property T4(R)=R: It is an
invariant subspace of the transformation T 4.

Theorem 8. Let {Pr} be a sequence of points with
PrESL. Denote the 6 coordinate of Py, by 6. Assume
that 81, approaches a limit 6 for L — . Define Pz’ to be
P;/'=T,(Pr). Denote the 8 coordinate of P’ by 61,
Then

(a) limze, Pr exists (call this limit R);
(b) limz., 07/=0" exists;
(¢) limzse Pr'=T4(R).

Proof of Theorem §. Let L be large and K be even
larger. Because Sx CSy, both Py and Pk are in Si.
Let IPK—PLI = (dl,d2). Then

d1=2|sin%(0K—0L)| (568)
and by Theorem 7
d2<4000d:+300X (0.2) -, (5.69)

One can make both di and d arbitrarily small by
choosing L and K large enough. This is true of di by
the assumption that 67, approaches a limit for L —o.
It is true of d; from Eq. (5.69). Hence by the Cauchy
criterion the sequence P has a limit R. That is, if
P;, has a decomposition 0z, Ark, Crx, then 6z, Ap,
and Crx all have limits for L —c, and the limits 6,
A,, and Cy define the point R.

To prove (b) and (c) consider the distances | Pr.—R|
=(dy,dy) and |Py/—Ta(R)|=(d{',d"). Since Egs.
(5.68) and (5.69) hold for any K, they hold for the limit
K —o, giving

di'=2]sing (0—0)],
dy <4000dy'+300X (0.2) .

(5.70)
(5.71)

One can make di’ and d,’ arbitrarily small by making
L large enough. Therefore, because of the inequalities
of Theorem 4, one can also make dy" and dy”’ small

13 Throughout this paper <means “not greater than”; there is
no implication that equality can be realized.
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enough by making L large enough. Hence (c) is true,
and (b) is a corollary of (c).

Theorem 9. Let {Pr} and { P’} be any two sequences
satisfying P,&Sy, and P."&SL. Let the 6 coordinates
of Py, and P;” be 0, and 6", respectively. Assume
that the sequences 6, and 61" approach the same limit
6 as L —, Then

/lz,l_rfa PL=I{i_£1; P, (5.72)
Proof of Theorem 9. The proof is simple. Let
| Pr—PL" | = (d1,ds).
Then since Py, and P;” are in Sy,
d1=2|sin3(6.—0.")|, (5.73)
d,<4000d:4-300X (0.2) L. (5.74)

As L —», di— 0, and hence d; — 0 also. Q.E.D.
Theorem 10.

(a) limzoe Qrn(f)=R(!) exists for all £ in the range
0<i<ir.
(b) limzoe, f2(f)=f(t) exists (0<t<3m).

() Ta(R®)=R(f(©®). (575)
(d) f(0)=0, (5.76)
JGm)=43m, (8.77)
0<f)<t (0<i<im). (5.78)
(e) limz Fr({)=F(t), where F is the in-
verse function to f; also both F(¢) and
f(t) are continuous single-valued func-
tions of ¢ defined for 0< < 3.
(f) F(0)=0, (5.79)
F(3m)=3m, (5.80)
IKF(H)<3m (0<t<im). (5.81)

Proof of Theorem 10. Part (a) is a consequence of
Theorem 8(a). Now let Pr,=Q(f) be a sequence as in
Theorem 8; define Pr/'=T4(Pr) as in Theorem 8.
Then 61 is

0= fr1(0).

By Theorem 8(b), 61/ has a limit; this is true for any ¢
so the function fz(¢) has a limit f(f) for L —o. This
proves (b). To prove (c), compare the sequence {Pr'}
with the sequence Pr/’=Qr(f(¢)). These two sequences
satisfy the assumptions of Theorem 9. Hence they have
the same limit point. By Theorem 8(c), P’ has the
limit 74(R(?)). By Theorem 10(a), P;'” has the limit
R(f(?)). This proves (c). To prove (d) one uses (c)
and the inequality (5.31) [note that the 6 coordinate of
R(¢) is t since the 6 coordinate of Q(f) is ¢ for all L].

To prove (e), let ¢ be arbitrary in the range 0<¢< 3w
and define the sequence {,=F(t). Let L and K (K> L)

(5.82)
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be large. Then {= f.(i1)= fx (k). Therefore
0=fr(tr)— fx(x)=[f(tr)— fx(tz)]

+ ()~ fx(x)]. (5.83)
Therefore
| Fx(tn)— fx(tx) | = | fe(t)— fx ()| .  (5.84)
Now use Theorem 5(d):
|tr—tx| = |Fx(fx(iz))—Fx (fx (tx)) |
<40 fx(tn)— fx(tx) | =40] fr(tn)— fx(tr)|.  (5.85)

The function f7(¢) approaches f(¢) for L—c on the
closed interval 0<i<iwx. Hence this limit is uniform
in £. Hence, |fu(fz)— fx(#z)| is arbitrarily small for
sufficiently large L and K irregardless of the value of
tr. This means that |¢,—f{x|— 0 as L and K approach
« ; hence the sequence {7, has a limit for L —o. This
is true for any ¢ so Fr(¢) has a limit F(f). Since Fr(Z)
is the inverse to f.(f), and since both Fr and fr are
continuous uniformly in L by Theorem 5(d), F(t) is
the inverse to f(¢) and both are continuous. Also, since
Fr and fi, are single valued, so are F and f. Finally,
(f) is a consequence of (d) and (e).

Armed with Theorems 1-10, one can now attack the
renormalization problem. One starts with a sequence of
unrenormalized cutoff Hamiltonians Hj,.. The bare
coupling constant go is permitted to vary with M and
is denoted goar. In addition, Hj, is permitted to have
an additive constant &y also varying with M. The
renormalization problem is to choose the sequences
gour and 8oy so that Hy has a finite limit for M —.,
Since the number of degrees of freedom changes as
M — o, one has to specify what one means by the limit.
To be precise, we demand that each energy level,
counting in order of increasing energy, has a finite
limit. This is equivalent to demanding that the energy
levels of the effective Hamiltonians Hy (M) have limits
as M — o keeping N fixed, since the effective Hamil-
tonians Hy (M) describe the first 22¥+3 energy levels
of Hy. The limit of Hy(M) for N fixed is a simpler
limit since now the number of degrees of freedom is
fixed. It will be found that Hyx(M) has a limit as an
operator for M — (the limit will be denoted H gn),
which ensures that the eigenvalues of Hy(M) have
limits. There are other parts to the renormalization
problem, namely, computing matrix elements of the
operators 7t,77, am, etc. between eigenstates of the
renormalized Hamiltonian. These other problems will
not be discussed.

The effective Hamiltonians Hy(M) [with H (M)
defined to be H ;] are all in the space S. Denote the de-
composition of Hx(M) by (Jx(M),Ex(M),N,Px(M)),
where, in turn, Py(M) is a point in S, with the de-
composition (Ox(M),Arv(M),Cry(M)). Denote the
decomposition of the original cutoff Hamiltonians H s
by (Joar,8osr,M,Posr); the decomposition of Poyr is
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(6021,0,0) and Joar and fon are

Joar=AY(1+2gon>'2, (5.86)
Bosr = tan=(V2gour) . (5.87)

Since Hy(M) is defined as the transform by 7' of
H . 1(M), one has

Py(M)=Ta(Pns1(M)). (5.88)

Since Py(N) lies on the curve Qy, this means Py (M)
is on Qu—n:

PN(M> = QM—N(oN(M>) .
Also, one has

Tnva(M)=A"Ty(M)Ts(Pn(M))

(5.89)

(5.90)
and

Exa(M)=Ex(M)+Tn(M)Tc(Pn(M)) (5.91)

from Egs. (5.17) and (5.18). Finally, one has from Eqgs.
(5.89), (5.45), and (5.42)

On(M)= farn(On+1(M)), (5.92)
On1(M)=Fs_nOnx(M). (5.93)

The condition H(M)=Hy means Jy(M)=Jy and
02 (M) =001

One wants to choose the sequences 8oy and & so
that the Hamiltonians H (M) have a limit for M — .
Customarily one would fix 6oy and &y by requiring
that the renormalized coupling constant and the
ground-state energy be fixed independent of M. We
cannot calculate the renormalized coupling constant
since this requires knowing the ground-state matrix
element of 7% and these matrix elements are not
discussed in this paper. So a more ad hoc procedure will
be used. Clearly if Hy(M) is to approach a limit for
M —w, the sequences Ex(M) and Ox(M) must ap-
proach limits as M —oo. The simplest way to ensure
this is for §x(M) and 85(M) to be independent of M.
This cannot be true for all NV, but it can be arranged
for one value of NV, say N=0. So let 6,(}M) be a constant
0r (between 0 and 37) and let 8o(M) be 0.

Given 0y(M)=06p and 8o(M)=0, for all M, one can
reconstruct the complete double sequence H y (M). First,
one computes Oy (M), for all M and 1< N< M, using Eq.
(5.93). Secondly, one computes gos= (1/V2) tan (M)
and Joyr from Eq. (5.86). Third, one computes all the
In(M) (0SN<M) from J i (M)=J oy and Eq. (5.90).
Finally, one computes Exy(M) (1ISKNZM) from Eq.
(5.91). The points Py (M) are given by Eq. (5.89).

Now one can consider the limit for M —w of Hy(M).
The results are stated in Theorem 11.

Theorem 11. Assume 6r5~3w. Then

(a) limre Hy(M)=H gy exists for all N.
Let Hgy have the decomposition (Jgw,8rw,N,Prw)
and let the 6 coordinate of Pry be 6gx. Then

(b) Pry=R(0rx); (5.94)
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(c) Hry=T(Hgy+), ie., (5.95)
Ory=f(0rN+1), (5.96)
Jen=A""Trn1T 5(Pry+1), (5.97)
8= Bawii+T rweiTo(Prwi), (5.98)
Pry=T4(Pryt1). (5.99)

Proof of Theorem 11. The first step uses induction
in N. For N=0, 6o(M) has a limit 8 for M —w by
definition. Hence the sequence Po(M) satisfies the
assumptions of Theorem 8. Hence Po(M) has a limit
for M — oo ; from Theorem 10, this limit is R(z). Now
suppose that 85(M) and Py(M) have limits §ry and
Pry=R(0rn), respectively. Consider the sequence
Onx41(M) as a function of M. It is given by Eq. (5.93).
Since 8y (M) has a limit 8y, since the function F—x(6)
has a limit F(6), and since Fa—y(0) is continuous in 4
uniformly in M [see Theorem 5(d)], the sequence
0N+1(M) must have a limit Ogxy1. Also Opni1= F(@RN>.
Hence Ory satisfies (c). Since 6y41() has a limit,
Py1(M) has alimit (Theorem 8); the limit is R(6zn+1)
(Theorems 9 and 10). Because 0ry is f(0rn+1), one has

R(0rn)=Ta(R(0rn+1)). (5.100)

[Theorem 10(c)]. By induction, one has established
limits for 85 (M) and Py (M) for all N, as M — . The
limit Pgy satisfies (b) and (c) and 6ry satisfies (c).
The next step is to look at the scale factors Jx(M). We
use Theorem 3. The points of the curve Qo satisfy the
prerequisites of Theorem 3; hence all the curves Qr
have the property that Ay vanishes for all £ at any
point on the curve. In particular, 4,y1(3) vanishes
for all k. Look at Tp(Px(M)). Let Py(M) be the point
P4 of Theorem 2. Using the notation of Theorem 2
and the result of Theorem 3,

Ts(Py(M))=(m42g"2%,  (5.101)
tané’=v2g" /m. (5.102)

Note that ¢’ is 6xy_1(M), 6 (notation of Theorem 2) is
On (M), and m=cosf. One can eliminate g’ to obtain

TB(PN(M))=COSGN(M)/COSGN_l(M). (5103)
Using Egs. (5.86), (5.87), and (5.90), one obtains'
]N(M)=AN[COSHN(M)]_1. (5104)

Since Ox(M) has a limit yg for M —oo, so does
JIn(M), provided 6yg is not $w. But from (c¢) and
Theorem 10(f), one sees that Oxp<iw if fr<3w. So
Jn (M) has a limit Jey:

]RNZAN(COS0NR)_1. (5105)
Using Eq. (5.91), one can now show that §x(M) has

14 Equation (5.104) means that the coefficient of (a¢'ao+botbo—1)
in Hy (M) is simply A¥ independently of the value of 5 (3). This
is also an immediate consequence of Eq. (5.33) of Theorem 2.
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a limit gy for M — . It is easily seen that Jgx and
&g satisfy (c). This completes the proof of Theorem 11.

The existence of the renormalized energies has now
been proved. The renormalized theory is defined by the
sequence of renormalized cutoff Hamiltonians Hgy.
Because of Theorem 11(c), this sequence has a common
set of eigenvalues: H gy describes the first 22743 of these.
The complete set of eigenvalues defines the complete
renormalized Hamiltonian H g. Unlike the renormalized
Lee model, the present renormalized theory has no
ghost states: The bare coupling constants gor are real
for all M and all the Hamiltonians H [and Hy(M)
and H gy | are Hermitian. The limit of gos for M — 0
is oo ; this is proven in Sec. VII.

To conclude this section, it will be shown that the
set of renormalized Hamiltonians H gy is independent
of the choice of the unrenormalized cutoff Hamiltonians
H y, in the following sense.

Theorem 12. Suppose that the cutoff Hamiltonians
H s have the decomposition (Joar,8osr,M,Poar), where
Poxr lies on a one-parameter curve Qo' (¢):

Posr=0Q0 (Boxr) . (5.106)

Suppose that the curve Q¢ () is any curve in the space
S defined for 0<¢<im, such that ¢ is the 6 coordinate
of Qu'(f) and the bound (5.52) of Theorem 5(d) is
satisfied by Qo. Construct the sequence of effective
Hamiltonians H (M) starting from H y, and let H 5 (M)
have the decomposition (Jn(M),Ex(M),N,Py(M)).
The points Py (M) lie on curves Qu—n’(f) defined by
analogy with Q(¢). Let 6x(M) be the 6 coordinate of
Py(M). Let Tn(M), §x(M), and 05 (M) be determined
by the boundary conditions

0o(M)=6g, (5.107)
8o(M)=0, (5.108)
Jo(M)= (cosbr)™". (5.109)

Then Theorem 11 holds for these Hy(M) and the
limiting Hamiltonians Hgry are independent of the
choice of the curve Qy'.

To prove Theorem 12 one first rederives Theorems
5-11 with Q;’ replacing Qr; the arguments are un-
changed except in Theorem 11 where the scale factors
Jn(M) are computed using a different boundary
condition. To show that Jx(M) has a limit as M —
one must show that Tp(P) is a continuous function
of P. This is true; the proof will be omitted.

To show that the limiting Hamiltonians Hry are
independent of the starting curve Q¢, we show that the
limiting Hamiltonians H gy are uniquely determined
by their properties, as specified in Theorem 11, plus
the boundary conditions. Using Theorem 11(c), one

find
e Orn+1=F(Orw). (5.110)

Therefore one can compute fgy for all V given fgo=0r.
Then by 11(b), Prxy is determined. Then one can use
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11(c) to determine Jzy and &gy starting” from the
boundary conditions (5.108) and (5.109).

The scale factors Jo(M) were specified in this dis-
cussion instead of Jy (M) simply to ensure that Hgy
would be independent of the choice of curve Q¢'.

VI. APPROXIMATE SCALE INVARIANCE IN
RENORMALIZED THEORY

When a quantum theory is invariant to the orien-
tation of the coordinate system, it must be rotationally
symmetric—that is, there must exist unitary operators
R which generate rotations and which commute with
the Hamiltonian. One can then diagonalize the genera-
tors of infinitesimal rotations simultaneously with the
Hamiltonian; one can classify the resulting eigenstates
by angular momentum eigenvalues, etc.

Likewise, when a quantum theory contains no
parameters with the dimensions of energy, it must be
invariant to a choice of energy scale. This immediately
implies that the theory is invariant to a set of unitary
operators U(s) which change all energies by a scale
factor s. The Hamiltonian H is not invariant to U(s),
since H is itself an energy ; instead, one has

Ut(s)HU (s)=sH. (6.1)

There will be an infinitesimal generator D which
generates infinitesimal scale transformations (a trans-
formation with s=1+¢ where e is infinitesimal).
However, D does not commute with H and cannot be
simultaneously diagonalized with H. Instead, scale in-
variance is used to generate a set of energy levels with
any energy sE given a level with energy E.

In field-theoretic problems there are usually mass
parameters in the theory, but sometimes these param-
eters become negligible at high energies or short
distances. For example, the propagator of a free scalar
or spinor field at short distances is independent of the
free-field mass and is equal to the propagator of the
zero-mass theory. The free zero-mass scalar and spinor
field theories are scale invariant.! The standard inter-
acting field theories (quantum electrodynamics or
pseudoscalar-meson theory) have only masses as dimen-
sional parameters, but when solved in perturbation
theory they do not become scale invariant at short
distances (large momenta). The propagators of the
interacting theories involve logarithms of (¢*/m?), where
m is a renormalized mass and ¢ the argument of the
propagator. However, if one holds the renormalized
coupling constant ¢ fixed, then at very large ¢* the
logarithmic terms become so large that the terms of
order e?* In*(q%/m?) in the perturbation expansion are
much larger than the Born approximation. To determine
the propagator for this range of ¢2 in particular, in the
limit ¢ — o0, one must sum the complete perturbation
expansion. There are presently no methods for doing

15 J. Wess, Nuovo Cimento 18, 1086 (1960).
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this (see especially the remarks of Bogoliubov and
Shirkov?6). There is then a question of whether the mass
dependence will disappear at values of ¢? so large that
the complete perturbation expansion has to be summed.
The best analysis of this problem in relativistic theory
is that of Gell-Mann and Low.3

In the model, what happens is this. The energy levels
of order A® expanded in powers of the renormalized
coupling constant gz have terms of order n”gg* which
prevent any scaling laws from holding. But when #»
is so large that ngz>>1, the complete series in gz must
be summed, and then the theory becomes scale in-
variant, in a manner to be explained below. If gp itself
is of order 1 rather than small, then scale invariance
sets in for much smaller 7 ; the only requirement is 7z>>1.

There is a feature of scale transformations which
distinguishes them in a very fundamental way from all
other symmetries of the theory. The other symmetries
(charge symmetries, etc.) are well defined in the
presence of the cutoff M of the model. The scale
transformations are not. The scale transformations of
the model are transformations U; which take the crea-
tion and destruction operators am!, @m, bm', and b,
for any m, into the operators amii', @mii, bmii’, and
bmti1. (Because the momentum continuum has been
replaced by a discrete index m, the scale transforma-
tions are labeled by a discrete variable / instead of a
continuous variable s.) Since the creation and destruc-
tion operators satisfy the same commutation relations
for any m, the transformation should exist and be
unitary, except for end point effects. That is, in the
cutoff theory there are no operators a., etc., with
m>M, or m<0. Thus the operators ayy, etc. cannot be
transformed. To have scale transformations well de-
fined, one must have operators a,, etc. defined for
— o <m< . But this raises a new problem: If there
are an infinite number of a,, then they act in an infinite
product Hilbert space, which is inseparable and there-
fore hard to work with.!® This problem has not been
mentioned up to now since it was evident once the
unrenormalized Hamiltonian was defined that one could
only solve it by introducing a cutoff M. Furthermore,
when the limit M — o was defined in Sec. V, it was
defined only for the effective Hamiltonians Hy (M)
for fixed NV, which act on Hilbert spaces with a fixed
and finite number of meson degrees of freedom.

The natural way to show that a theory has an ap-
proximate symmetry is to show that it departs only a
small amount from a theory with the exact symmetry.
In the present example of scale invariance, this would
require constructing a version of the model which is
exactly scale invariant. But this is very difficult pre-
cisely because of the problems of the infinite number of
degrees of freedom. The problem is not the problem of
keeping the pions with arbitrary large m. It was shown

16 N.'N. Bogoliubov and V. Shirkov, Introduction to the Theory
of Quantized Fields (Interscience, New York, 1959), pp. 528-529.
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at the end of Sec. V that one could define a renormalized
Hamiltonian Hr which includes all the renormalized
energy levels including those involving m-mesons with
arbitrarily large m. The set of such energy levels can
be ordered by their energy and therefore form a
countable set of states, which one can think of as
defining a separable subspace of the original inseparable
space. The problem is that the exactly scale-invariant
theory would have to include degrees of freedom m
with m — — 0. With such terms present there would
be on every gross energy level an infinite sequence of
fine structure, hyperfine structure, hyper-hyperfine
structure, etc., with the net result that in a finite energy
interval there would be an uncountable number of
distinct energy levels. These would not form a contin-
uum because each energy must be the sum of terms of
order A7, A=) A3, etc., with coefficients of order 1.

Rather than try to develop a formalism for handling
the difficulties of the inseparable space of energy levels
of a scale-invariant theory, we will define approximate
scale invariance to mean simply that for each energy
level of Hp, of sufficiently large energy, there is another
energy level which is approximately a factor so larger
in energy. The factor so will be determined below; it
will be of order A. The correspondence will not be one
to one; for an energy level of energy E, there will be
four energy levels of approximately energy sof due to
the fact that the energy levels of energy soF involve one
more meson degree of freedom.

One can try to predict the value of so by considering
the unrenormalized Hamiltonians Hj. If one applies
the scaling operator Uy to H s one gets

UrH 3 (go) Ur=A"H p141(go) — A0y, (6.2)

where Uy is the operator that takes ¢, into @m41, and
Oy is the term of order 1 in H 5ry1. Since the eigenvalues
of A7'H yry1(go)—A7'0, differ in order A~' from the
eigenvalues of A—'Hai1(go), it follows that Ha(go)
and A7'H 3r41(go) have the same eigenvalues except for
fine structure of order A—%.

Suppose that H(go) had a well-defined limit as
M —o for fixed go. Then, in particular, the energy
levels of H (go) and H ary1(go) would be the same for
sufficiently large M (excluding energies of order of the
cutoff, that is, energies of order A¥). But then a given
energy level of Hj would be A~ times the energy of a
level of H jr41, from Eq. (6.2). For sufficiently large M,
this level of H 711 is also a level of H y. Hence for every
energy level of Hy of energy E, there would be another
level with energy AE. Thus the factor so would be A.

The prediction is wrong ; so is not A. The reason for the
failure is that the renormalized energy levels are ob-
tained by solving Hamiltonians H i (goy) where gou
changes with M. It will be shown later that goy — as
M — o ; therefore even for large M, gox is not constant.

The idea that operators do not scale as predicted
from an unrenormalized theory was used in a recent
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discussion of approximate scale invariance in strong
interactions.® However, the analogy to the model of this
paper is inexact since in the strong interaction problem,
the scaling law for the Hamiltonian is fixed by general
arguments; it is the other fields in the theory, such as
the pion field, whose scaling laws (dimensions) were
permitted to be arbitrary.

The remainder of this section is devoted to the
technical problem of computing the nature of the energy
levels with energies of order A™ with 7 large, and
extracting the scale factor so. It will be shown not only
that these energies scale by a factor AB~, where 8 is
approximately 3, but also that the error to this scaling
law itself scales like A, as if the Hamiltonian consisted
of two terms, one scaling as A3~ the other as A under a
scale transformation [cf. Egs. (6.24) and (6.25)].

In the following, it is assumed that the function
f(¢) and the “curve” R(¢) defined in Sec. V are differ-
entiable. I have not proved this.

The renormalized theory is defined by a sequence of
Hamiltonians H zy. These Hamiltonians are determined
by the three parameters J gy, Srw, and 8ry. We study
Hgzy when N is large. This requires knowledge of
J rw, 8rw, and Ogy for large V.

First look at the sequence {fzn}. Since Oz is the 6
coordinate of Pry, and since Pgy is the transform 7’4
of Pryy1, one can apply the inequality (5.31) to obtain

(1—0.51 SinZBRN+1) tanfpyr1<tanfry

S (1 —0.48 sin2BRN+1) tan()RN+1. (63)
First of all, this implies that
Orn<Opni1<im (6.4)

(we assume 0zo< 3w, which then forces fgx to be less
than #7; see the proof of Theorem 11). Thus {frn}
is an increasing and bounded sequence. Therefore it
has a limit for N —c. The limit must be 3w. The
reason is that since Opy=f(0rn+1), the limit § must
satisfy 6= f(6). Also, 6ro<0<3m. But from Theorem
10(d), the only such 8 is §=4%=. Therefore, when N is
sufficiently large, 8z is approximately 3. Write

(6.5)
When ¢y is small, the inequality (6.3) is approximately
0.49(¢n 1) ' <px<0.52(pw 1), (6.6)

PN11~ 50N (6.7)

To be more precise, consider the formula 0gy = f(0rn+1)
and expand in powers of ¢ny1:

sTr—on=f(GT—dni1)

1
Ory=3T—¢nN.

e.g.,

=fGm) —ons1f Gm)+0(pni®). (6.8)
Since f(37) is 3, one gets
on=f (Gm)ons1+0(dny1?), (6.9)

and Eq. (6.7) shows that f/(3w) is approximately 2.
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Let
B=[f"(§m)]>0.5. (6.10)
One can rewrite Eq. (6.9) to read
on1=Pdx+O0(pn+1%) - (6.11)
An analysis of this equation shows that
v =ap¥+0(¢n?), (6.12)

where a is a constant (a will depend on 0go).

Now look at Jgy, gy, and Pry. From Eq. (5.105),
assuming NN is large, one has

Jrv=AY(cosOpn) AN yTIA NGB,

(6.13)

To compute Pgry, one must study the curve R(?).
One has

R(0rn)~R(3m) —¢nR'(37). (6.14)
Let

Po=R(r), (6.15)
Pa=—R (37). (6.16)

Then
Pry=~P,+aB P,. (6.17)

Finally, from Theorem 11(c) one has
N

Ern=—2_ JraTo(Prn) (6.18)

n=1

(using the definition 8zo=0). The dominant terms in
this sum are for large # since Jg,~A" and T,~1
[Eq. (5.30)]. For large 7, Pr.~~P,. Let

Then for large N [using Eq. (6.13)7],
gRNE “—AN’Y(J«_'IﬁgNA (A “‘ﬂ>_l. (6.20)

A more careful calculation gives the first correction to
Eq. (6.20) as

Ern>~—AVENyaA(A—B) T +AVA(A—=1)7, (6.21)
where v; is a constant; also,
Jrv>=a""B" VAN F,AY (6.22)

where 7, 1s a constant.
With the above approximations for Pry, Jry, and
8rn, Oone can write

HRN=(L’1ANﬂ*N5CcN+ANJCdN, (6.23)

where 3C.x is a Hamiltonian with the decomposition
J,8,N,P)=1, —yA(A—B)", N, P;), and 3Cay is a
Hamiltonian with the decomposition (1, yiA(A—1)"1,
N, v2Po+Pg). The only N dependence of 3C.x and JCan
is in terms of how many degrees of freedom are kept in
Eq. (5.2), since neither the J, &, nor P components of
3Con or 3Can depend on NN.

Now compare Hry with Hgy1. The difference be-
tween JC,y and JCoyy1 is only in terms containing
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ant1, by, etc., and such terms are of order A=¥1 or
less. So the energy levels of 3C.x are approximately the
same as the energy levels of 3C.y.1, only each level of
JCen corresponds to four of JC.y41 because of the extra
degrees of freedom in 3Cony1. In Hpgy, the 3Cox term
dominates the JCqx term by a factor 87 ; neglecting the
JCany term, the energy levels of B'AH gy and Hpgyi1
are approximately equal. This establishes the basic
claim of this section. The energy levels of Hgy and
Hpgyy1 are both subsets of the energy levels of Hg.
So the energy levels of AB—1H y are approximately equal
to the energy levels of Hg. In scaling the Hamiltonian
an extra factor 8 has appeared.

Let us consider the errors in approximate scale
invariance. One is comparing AB~'H gy with H gn.1. The
basic energy scale for these Hamiltonians is ANV+3—N-1,
Neglecting the 3Cay and 3Civy1 terms in Hpry and
H g1 means that one has an error of order AY. This
is small by a factor f¥*! from the basic energy scale
but huge on an absolute scale (remember N must be
large for all our approximations to hold). There is also
an error which is of order A== in 3C,y41 when one
neglects the any; terms; this becomes an error of
order 37" in Hgy41 which is negligible compared to
A¥N (B~% while A>4X10°). Owing to the error of order
A¥ the matching between Hpgyt1 and B~ 'Aygy is close
only for energy levels with energies large compared to
A™, i.e., only highly excited states.

One can now get a scaling law for the leading correc-
tion to scale invariance. That is, one can take 3Cqy into
account but still neglect the difference between 3Con
and JC.y+1 and the difference between 3Caxy and 3Cany1-
In this case one can write

Hry=H.x+Hain,
with H.y= (lilAN,Bf‘Vgch, and H sy =A"3C4x; then

(6.24)

I{RN+1_’>’Aﬁ"1H¢;N+AHdN. (625)

Since Hgy is small compared to H.y, the cnergies of
H . x+H iy consist, to a first approximation, of energies
of H.y plus expectation values of Hgy. The correction
therefore scales by a factor A when N — N1 while
the dominant term in the energy scales by A~

The unrenormalized Hamiltonian had two parts, the
free meson energy term and the interaction term, but
both parts scaled by A when N'— N4-1. The renormal-
ized Hamiltonian also has two parts to a first approxi-
mation but the two parts scale differently, the dominant
term scaling by AB™! while the leading correction
scales by A.

It was crucial for the proof of scale invariance that
the constants 0gzx approach a limit 37 for N —. As
long as fzy changes with XV, the energy-level structure
of Hg on the scale AV will differ by more than a scale
factor from the structure on the scale A¥*.. This is
due to the nontrivial dependence of the energy levels
of Hgy on Ogy. In particular, in perturbation theory,
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when Ogy is small, the change from fgy to Oryi1 is
nonnegligible in order 6rs® (see Sec. VII for details).
Hence in third order or higher in 8z, H g does not show
scale invariance. It is only when N is so large that
Ory=~3m that scale invariance becomes apparent; but
for these values of N an expansion in fgg is absurd even
if Ogo is small: The true expansion parameter turns out
to be (/N)6ro, which is huge, instead of 6ro.

VII. RENORMALIZATION AND ROLE OF
TRANSFORMATION T

The renormalization program carried out in this
paper followed the conventional pattern in that a
renormalized coupling constant was defined and held
fixed in the limit of infinite cutoff. The transformations
T and T'4 were introduced as part of the technique of
solving the cutoff Hamiltonians; their properties were
useful in proving the existence of the renormalized
Hamiltonian. An analysis of the renormalization pro-
gram of Sec. V shows that the transformations 7" and
T 4 play a more fundamental role in the renormalization
than one might think. In Sec. VII A it is shown that
the renormalized Hamiltonian is determined more by
the properties of the transformation 7'4 than by
properties of the original unrenormalized Hamiltonian
of Sec. IT. In Sec. VII B, the problem of ‘“‘why renormali-
zation?” is considered; it is shown that three features
of the model Hamiltonian cause the renormalization
program to be nontrivial. These three features are
(1) the model has an infinite number of degrees of
freedom, (2) the mth degree of freedom with m large
dominates the degrees of freedom with # small, and (3)
scale invariance makes the behavior of the degrees of
freedom for large m similar for different m. In Sec.
VII C, the renormalization theory of this paper is com-
pared with the theory of Gell-lMann and Low for
quantum electrodynamics.’

A. Renormalization and Transformation T4

The analysis of the renormalization program to be
given here concerns very basic questions. To set the
stage for these questions, it is worth reviewing the role
of the Hamiltonian in ordinary quantum mechanics.
In nonrelativistic quantum mechanics, a system is
well defined once the Hamiltonian is specified. Any
Hermitian (self-adjoint) Hamiltonian defines a unique
and acceptable quantum mechanics. To specify the
Hamiltonian, one must first define the basic observables
of the system (e.g., position, momentum, or spin
operators). Then one specifies the Hamiltonian as a
function of these observables. In principle one could
define the Hamiltonian in a different way, by giving
a list of its eigenvalues and eigenvectors. This is rarely
done in practice because the eigenvalues and eigen-
vectors are generally very complicated expressions,
often not expressible in closed form. In contrast, the
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Hamiltonian is often a simple function of the observ-
ables (for example, compare the Coulomb Hamil-
tonian of the helium atom with its eigenvalues and
eigenvectors).

In Sec. IT we defined a model quantum theory in an
entirely conventional manner. The ‘“observables” a.,,
a,', ba, b7, and 7% were defined, and the Hamiltonian
written as a simple function of these observables, with
one free parameter go. Then in Secs. IV and V the
techniques for solving the model were defined, and it
was shown that after renormalization the theory had
finite eigenvalues. The finite theory again depended
on one free parameter, which, however, was the re-
normalized constant 6g, instead of go.

The construction of the renormalized Hamiltonian
in Sec. V was a complicated process. In summary, one
chose a renormalized coupling constant fze. One con-
structed a sequence of Hamiltonians Hgy by starting
with the point Pgro=R(fro) and constructing the
sequence Py through the relation Pry=74(Pry+1).
The full renormalized Hamiltonian consisted of a limit
of Hgy for N — o suitably defined. This construction
leaves unclarified some fundamental questions. Does
the renormalized theory solve the unrenormalized
Hamiltonian of Sec. II? If not, what problem does it
solve? Is the renormalized coupling constant a funda-
mental parameter in the theory? If not, can it be re-
placed by one that is? Is the unrenormalized Hamil-
tonian the simple expression which underlies and
defines the rather complicated spectrum of renormal-
ized energy levels; if not, where do we look for
simplicity?

It is difficult to answer these questions conclusively
because there are problems of interpretation. For
example, one must decide what is a ‘“fundamental”
parameter, and what is “simple.” However, in trying
to answer the questions of the previous paragraph, two
results become clear. The first is that the relation of
the unrenormalized, uncutoff Hamiltonian to the re-
normalized energy levels is fundamentally different
than the relation of a simple Coulomb Hamiltonian to
its eigenvalues. How to characterize the new relation-
ship can be debated, but certainly it is not the old and
comfortable relationship of elementary quantum me-
chanics. The second result is this: There is a key fact
which must figure in any discussion of the new relation-
ship of Hamiltonian to energy levels, a key idea which
must be used to obtain any fundamental understanding
of why we must introduce an essentially phenomeno-
logical parameter (the renormalized coupling constant)
in defining the renormalized theory. The crucial fact
is the existence of a fixed point of the transformation
T4, namely, the point P,=R(3m). The point P, has
already been encountered in Sec. VI: It is the limit of
the points Pry (involved in the definition of Hgw)
as V — . The role of the fixed point cannot be summar-
ized in a few words; a detailed analysis of its function
will be given later in this section.
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The relation of the unrenormalized uncutoff Hamil-
tonian to the renormalized theory can be summarized
in terms of the following two results which will be
proven later in this section.

(1) If {gonr} is a sequence of coupling constants
which approach a finite limit go as M — oo, then the
energy levels of the unrenormalized cutoff Hamil-
tonians H s (goar) approach the energy levels of the
uncutoff free Hamiltonian [Eq. (2.1) with go=0] as
M — o | except for an additive constant.

(2) If {gom} is a sequence of coupling constants
which approach « as M —cw, the energy levels of
H y(gowr) may or may not approach a limit as M —o.
For any 0z with 0<@ro<3jm, there exists a sequence
{gox} with goyr—0 as M — o, such that the energy
levels of Ha(gowr) approach the energy levels of the
renormalized Hamiltonian Hz(0re) as M — « (apart
from an additive constant).

The first result means that if the uncutoff unrenormal-
ized Hamiltonian with finite go is defined as a limit of
cutoff Hamiltonians, then its solution is the same as
the solution of the free uncutoff Hamiltonian and, in
particular, is not related to any of the renormalized
theories with interaction. The second result means that
a single uncutoff unrenormalized Hamiltonian, the one
with go= o, has an infinite number of possible solutions
depending on what sequence {gox} is used in the
cutoff Hamiltonians. Therefore instead of each re-
normalized Hamiltonian corresponding to a separate
unrenormalized Hamiltonian, one finds that all the
renormalized Hamiltonians solve a single unrenormal-
ized Hamiltonian. The nonuniqueness of the solution
of the unrenormalized Hamiltonian with gy=o is
discussed further below.

Now the results quoted above will be proven. It is
helpful to prove the following. If §<6; and both lie
between 0 and %, then

fL(9><fL(91) (for 6<6y). (7.1)

The proof is based on Theorem 5. From 5(b), f1(61)
—f2(0) is positive for 6:>0. From 5(d) [Eq. (5.54)]

| f1.(61) = f1.(6) | >0.025[6:—6] . (7.2)

From 5(b), F1(8) is continuous in 6. Hence f7(61) — f£(6)
cannot change sign anywhere in the range 0<6<6:.
Hence Eq. (7.1) holds. To prove the first result, consider
a sequence {gon} with a finite limit go as M —oo.
Consider the unrenormalized Hamiltonians H s (goar)-
Using the transformation 7" one can generate effective
Hamiltonians Hy (M) with coupling constants 6x (M)
having the same energy levels as H(gon,). The con-

stants 05 (M) satisfy Egs. (5.92) and (5.93) and
tanfy (M) =V2gou . (7.3)

Let 6 be an upper bound to 8 (M) ; since goar has a
finite limit, one can choose 8 to be less than 3r. Define
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Fic. 1. Artist’s conception of the trajectories C(3), C(7), Ca,
and Cp projected on a two-dimensional space. The renormalized
coupling constant is }w. The curve R is also shown. The first few
points on Cy4, Cg, C(3), and C(7) are labeled explicitly: Py is the
first point on Cy4; Pro is the first point on Cp.

a sequence {61} to be 6,=0, 0.,=f.(07-1). Because of
Eq. (7.1), 0x—n is an upper bound for 6x(M). The
sequence {f.} is a decreasing sequence with limit O
as L—; this follows from the inequality (5.31).
Hence 0x5(M)— 0 as M — for fixed N. Hence in
the limit M — oo, Hy(M) becomes a free Hamiltonian,
which is result (1). To prove the second result, consider
the sequence {gom}, defined in Sec. V following Eq.
(5.93), corresponding to a given nonzero renormalized
constant 6go. Again one has constants 05 (M) satisfying
Egs. (5.92), (5.93), and (7.3), but now 8,(M) is fixed to
be Ogo. From Eq. (5.31), 6:(M+1)>0,(M+1)=0,(M);
using Eq. (7.1) repeatedly, one gets Ony 1 (M +1) > 05 (M)
for all N, and hence goay1>gowr- Thus {gon} is an
increasing sequence. It cannot have a finite upper
bound, for if it did, 6z, would have to be zero. Hence
gomw —© as M —oo. By the analysis of Sec. V the
Hamiltonians Hy(M) have well-defined limits as
M — . [In Sec. V the unrenormalized Hamiltonians
Hy have a ground-state energy subtraction; if this
subtraction is not made, then only the energy differ-
ences of levels of Hy(M) have a limit as M —o0.]
Such a sequence {gox} exists for any 6ro, so result (2)
is proved.

The fact that the uncutoff Hamiltonian with go=
has an infinite number of solutions can be blamed on
the fixed point P, of T4. This result can be seen by
studying the behavior of the double sequence Py (M)
of points in S 4 defined in Sec. V as part of the renormali-
zation analysis. The points Py (M) have the following
properties.

(a) Pu(M) has the decomposition (6(M),0,0), i.e.,
the components A; and Cj are all zero. The point
P (M) corresponds to the unrenormalized Hamiltonian
H i (gonr) with finite cutoff M and goar given by Eq.
(7.3).

(b) Po(M) has 0 coordinate 6o, by definition.

(c) Py—1(M)=T4[Py(M)].
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When M — o, 03 (M)— 3w, so Py (M) has a limit
(37,0,0) when M — oo, Denote this point by Py. The
point Py corresponds to the unrenormalized, uncutoff
Hamiltonian with go= 0.

The point P,=R(3w) (the fixed point of T4) also
has 6 coordinate w, but it is easily seen that the
components A and Cy of P, cannot vanish. Hence P,
is distinct from Py.

One can think of the points Py (M), for fixed M, as
defining a trajectory C(M). If one takes the limit of
the trajectories C(M) for M —, one gets a double
trajectory C4 ®Cp. The trajectory C4 goes from Py to
P,, i.e., it connects the point Py representing the
unrenormalized Hamiltonian to the fixed point P..
The trajectory Cp connects the renormalized point
Pro to the fixed point P.. The first trajectory is an
infinite sequence of points (Py,Py1,Pus,...), all with
0=1%r, satisfying Pyxy=T4(Pun-1), and with the limit
P, as N —w. The trajectory Cp consists of the re-
normalized points Pry lying on the curve R, again with
limit P, as N — . The trajectories C(M) with M large
lie close to the limiting trajectories: The first few points
on C(M) [e.g., Par(M), Py_1(M), etc.] lie close to the
first few points on C4. The last few points on C(M)
Le.g., Pi(M), Po(M), etc.] lie close to the first few
points on Cp. The points near the middle of the trajec-
tory C(M) [e.g., Pu2(M)] all lie close to P..

The trajectories C(M), C4, and Cp are illustrated in
Fig. 1. Figure 1 is an artist’s conception of what these
trajectories might look like if the space S4 was a two-
dimensional space instead of an infinite-dimensional
space. The two dimensions are § and a coordinate «
replacing the infinite-dimensional space defined by the
sequences {A;} and {C;}. One can see explicitly in Fig.
1 that the points Py(M)— Pry as M —o and
Py_n(M)— Pyy as M —. One can also see the
clustering of points about P,.

Now return to the problem of the infinite number of
solutions of the unrenormalized Hamiltonian. The non-
uniqueness is connected with the fixed point P,, because
the limiting trajectory C4@Cp is nonunique only on
the section Cp. The trajectory C4 connecting Py to
P, is uniquely determined by Py and the recursion
formula Pyy=T4(Pyn—1). The trajectory Cp connect-
ing P, to Pgo is nonunique; it is a different trajectory
for each different value of 6zo. Thus the nonuniqueness
arises at the point P,.

The next question is: How is the nonuniqueness
related to the properties of the fixed point P.. In
order to discuss this question it is necessary to know
the behavior of the transformation 74 in the neighbor-
hood of P,; this behavior will now be investigated.

Assume that the transformation 7', is differentiable
in the vicinity of P, so that if P is any point near P,
one can write

T4(P)=P,+Us(P—P,)Forder (P—P,)?, (7.4)
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where Uy is a linear transformation. Now consider a
trajectory of points Py, namely, a sequence of points
satisfying

Pyy1=Ta(Pn), (7.5)

and suppose that the trajectory lies in the vicinity
of P.. Then approximately,

Pyi1—Po=Us(Py—P,). (7.6)

Consider therefore the trajectories defined by Uy, that
is, sequences of points Qy satisfying

Qn1=U4(0Qn).

Since this is a linear equation, an arbitrary solution
can be written as a linear combination of a set of
linearly independent ‘“basic” solutions Qn. (a=1, 2,
3, ... labels different linearly independent trajectories).
The simplest type of solution is of the form

QN“=QO¢X(7&)N: (7.8)

where Qu, is a point (determined up to a scale factor)
and 7, is a constant. Qo is an eigenvector of the trans-
formation Uy,

(1.7

raQ()a = UA (QOa) ) (7-9)

and 7, is an eigenvalue. Since U4 does not have to be
a self-adjoint transformation, the eigenvalues 7, need
not be real; also, there may be trajectories Qn. behaving
as N (7)Y, N%(r.)Y, etc., under special circumstances.
Since U, is a transformation on a space with an
infinite number of dimensions, there will be an infinite
set of basic solutions Q.. These solutions divide into
three possible categories. Those with |[r,|>1 are
called ‘‘unstable” trajectories; these trajectories move
away from P, as one keeps applying the transformation
T4. Those with |7.|<1 are stable trajectories; the
stable trajectories approach P. as one keeps applying
Ta4. For example, the trajectory C4 connecting Py
with P, is a stable trajectory; the trajectory Cp is an
unstable trajectory. There can also be ‘‘neutral”
trajectories with |7,| =1, in special cases.

A crucial question is that of how many linearly
independent unstable trajectories U4 has. The answer
is one; the proof is as follows. There must be at least
one basic unstable trajectory, for if all the basic trajec-
tories were stable then all linear combinations of the
basic trajectories would also be stable, i.e., all solutions
of Eq. (7.6) would be stable. But we know there are
unstable solutions, namely, the trajectories Cp for any
Oro (to be precise, the parts of these trajectories lying
near P;). On the other hand, there cannot be more
than one basic unstable trajectory. For if there were
two linearly independent unstable trajectories, say Qw1
and Qu2, then one could form a linear combination of
these, say B10nx1+B8:20n2, such that the 6 coordinate of
B1Q11+B:012 is 0. This means the 6 coordinate of
(Po4+B81011+B:012) is 2w. But now the 6 coordinate of
P +B10x1+B20n2 will be 37 for all N because T4 does

1459

not change 6 if 6=2%=. But then the sequence of points
P+B10n1+B:Qn2 must approach P, as N — o, using
Theorems 8-10 of Sec. V. This means B1Qx14+B:0n:2 is
a stable trajectory. Then we could use 81Qwn1+B8:0n:2
as a basic trajectory instead of (', for example, which
leaves only one unstable trajectory. The trajectories
Cp for different 6zo must all be multiples of the single
unstable trajectory. This result has already been
demonstrated in Sec. VI [see Egs. (6.12) and (6.17)].

It will now be shown that the number of linearly
independent unstable trajectories of U, determines
the number of free parameters in the renormalized
Hamiltonian. In other words, the degree of non-
uniqueness of the solution of the unrenormalized
Hamiltonian is determined by the number of unstable
solutions of the linearized transformation U 4.

To show this, we must discuss what would have
happened if U4 had two or more linearly independent
unstable trajectories. It will be shown that in this
case the nonuniqueness of the solution of the un-
renormalized Hamiltonian involves two or more free
parameters. To be precise, we show that one can
construct sequences Py (M) such that

(1) lim Py(M)=Pu,
() Lim Py(M)=Pry(a1---ar),

(3) PN_l(M)=TA(Pn(M))J

where the point Pry depends on %2 phenomenological
parameters ai---ax, k& being the number of linearly
independent unstable solutions of U,4. Having shown
that such sequences exist for any choice of the param-
eters ai---ax, it is clear that there is a k-parameter
family of renormalized Hamiltonians, defined by the
points Pgy(@1---ax) for all N, all of which can be
considered solutions of the single unrenormalized
Hamiltonian Py.

To prove the existence of the sequences Py (M), it is
sufficient to consider the part of the sequence lying
near P, say, the points Py (M) with

L<N<M-L,
where L is large but held fixed as M —. So long as
1) }}‘:ﬁo Py_r(M)=Pyy
(Pyy is the Lth point on the trajectory C4),

2" lim Py(M)=Pre(t1--a),

one can reconstruct the remainders of the sequences
using 7'4 or T 4! and satisfy the original requirements.
If L is large enough, Py and Pgy will be near P, and
we can assume that

(31) PN—I(M)=P0+UA(PN(M) _'Pc)o
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Since Py(M)—P, satisfies the linearized equation, it
must be a linear combination of the basic solutions

for each M :

Py(M)—P.=3_ Ba(M)Q1r-Na- (7.10)
(Q depends on M —N rather than N so that the index
of Q increases as one applies Uj4.) The sequence Pyy
must also be a linear combination of the basic solutions:

PUNZZ 'szQNa_l—Pc- (711)

Furthermore, since Pyy— P, as N —, the coeffi-
cients v, must be zero for all unstable trajectories.
Suppose, to be specific, that the unstable trajectories
correspond to 1<a<k and that the trajectories for
a>k are stable. Then v,=0 for a<k. The requirement
that Py—r(M)— Pyr as M —o means that G.(M)
must satisfy

lim Ba(M)=7a. (7.12)
The requirement that Pr(M) have a limit as M —o
means that Y, B.(M)Qu-1r. must have a limit for
M —wo. For the stable trajectories, Qu—r.—0 as
M — 0 and since B, (M) — v, which is finite, the stable
trajectories drop out in this limit. Assume that the
unstable trajectories have pure exponential form [Eq.
(7.8) ; the author has not examined alternative forms in
detail]. Then the limit is > ac1® Ba(M) (70) ¥~ LQ¢e. For
this to have a limit, it is sufficient to have

Ba(M)=a,(r )™ (1<aLlk),

where the constants a, are arbitrary. Since |7q|>1
for <k, the constants B,(#) for «a<k have the limit 0
as M —oo, as required by Eq. (7.12). To complete the
specification of 8, (M), put

Bm(M) Ya (a>k). (7.14)

With this specification of B,(M), the points Py (M)
satisfy the requirements 1-3’. The limit Prr has
the form

(7.13)

k
PRL=-P¢:+ Z aaQOa(Ta)_L, (715)
a=1

which has % arbitrary constants, as was stated at the
beginning. In fact the renormalized points Pr; (for
sufficiently large L) are just a linear combination of
the & unstable trajectories of U4, with the coefficients
representing free parameters in the renormalized
Hamiltonian.

‘In fact, the transformation U4 has only one unstable
trajectory, the renormalized Hamiltonian has only one
free parameter, and Eq. (7.15) reduces to Eq. (6.17),
where the free parameter is ¢ (which depends on 6zo).
It was also shown in Sec. VI that the eigenvalue of
Ua [r1in Eq. (7.15) or B! in Eq. (6.17)] determines
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the scaling properties of the renormalized Hamiltonian
at small distances.

As a final comment, one notes that the unrenormal-
ized Hamiltonian could be chosen to be any point P
with 6=4347; the renormalized Hamiltonians are in-
dependent of the choice of the unrenormalized Hamil-
tonian since the sequences Py (M) will in the limit of
large M go from the unrenormalized point to P, and
then along the unstable trajectory to a renormalized
pOiIlt P RO-

In summary, the renormalized Hamiltonian 1is
determined by properties of the fixed point P, rather
than those of a particular unrenormalized Hamiltonian.
The sequence of renormalized Hamiltonians Pry ap-
proaches P, as N — ; for large NV, Pry—P. must be a
linear combination of the unstable trajectories leaving
P,, and the different renormalized theories can be
labeled by the coefficients a, relating Pry—P. to
unstable trajectories. I think it is this relation of the
renormalized theory to unstable trajectories leaving a
fixed point, which is simple, to answer the question
raised earlier. The coefficients a, are, I think, as close
as one can get to being fundamental parameters in the
theory.

B. Why Renormalization?

In this part we shall try to understand what features
of the model Hamiltonian make renormalization
necessary. The first step in the analysis will be to show
that the transformation 7" is divergence free. Then the
reason for the appearance of divergences in perturbation
theory will be examined.

The statement that the transformation 7" is diver-
gence free means the following. Let H be a Hamiltonian
in S. Let H' be T'(H). Let H have a decomposition
(J,8,N,0,Ax,Cy) and H' have a decomposition (J', &,
N—1,6,A),Cy). Then, as discussed in Sec. V, if J,
&, 0, Ay, and C; are held fixed while N wvaries, the
quantities J', &', ¢, A}/, and C})’ are independent of N
and cannot diverge for N —o . Furthermore, the trans-
formation is continuous, that is, if H and H"' are two
Hamiltonians with transforms H’ and H'", then
H'— H'" when H— H". This continuity is uniform
in NV.

To understand the significance of T being divergence
free, one can study the divergences that appear in
ordinary perturbation theory and see that they arise
despite the finiteness of 7'. Consider the unrenormalized
cutoff Hamiltonian Hj with a small, bare coupling
constant go and large cutoff M. Consider also the
effective Hamiltonian H,(M) which describes the
ground state and first few excited states of H . That go
is small means the angle 6,(M) [also called oy, as in
Eq. (5.87)] is small, and an expansion in g, can easily
be converted into an expansion in 63 (M). The effective
Hamiltonian H(M) is known if one knows the three
parameters Jo(M), 8o(M), and 8o(M) and the curve
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Qa(®) in S4. The curve Qy(f) is well behaved for large
M: As M — it approaches the limit curve R(f).
From Eq. (5.104), Jo(M) is a simple function of 6,(M).
Thus any divergences in the low-lying energy levels
of Hyr as M — must be due to divergences in &o(M)
or 6(M) as M —o. A divergence in 8y(M) affects
only the ground-state energy but not energy differences
between the ground state and excited states. A diver-
gence in 0o(M) means a divergence in differences of
energy levels at least through the scale factor Jo(M).
The divergence in 6o(M) can be identified as a coupling-
constant divergence while a divergence in &y(M) is a
ground-state energy divergence.

To study the divergences in 8o(M) and 6o(#) one
uses Egs. (5.91) and (5.92) of Sec. V. Let 6 (M) be
denoted 6ir; Ex (M) is zero (we do not make an energy
subtraction in Hjr). From the inequality (5.31), one
finds that for 6 small,

fr(8)=0—n16%, (7.16)

with nz~~3. For L —c, 9z approaches a limit 7 since
f2(6) has a limit. To a first approximation one neglects
the 6® term in Eq. (7.16); then one gets 6o(M)>0,.
To a second approximation one replaces 6° by 6°;
then Eq. (5.92) becomes

On (M) =0n41(M) —nrr—n02°, (7.17)
which gives
M
Oo(M) =0~ (2 na)0s’. (7.18)
n=1
For large M this becomes
O0o(M )01 — Mnb1s®, (7.19)

and one has a divergence linear in M. This corresponds
to a logarithmic divergence in the cutoff momentum
(since the cutoff momentum is A%). The energy
8Eo(M) is dominated by a contribution from J (M):

g() (M)QAM (COS@,»[)ﬁch(PM (M) . (72())

Since T'¢e~—1 for any argument, &,(M) is linearly
divergent in the cutoff momentum. These are the
divergences one expects.

The divergence in &,(M) is easy to understand. The
ground-state energy of H gets contributions from each
meson degree of freedom represented in H ;. The degree
of freedom . contributes an energy of order A™, for
that is the energy scale for mesons in state y¥,. The
dominant energy is AM associated with mesons having
the cutoff momentum. Therefore &¢(M) is of order
AM. In any case the divergence in &,(M) as M —x
arises because the scale factor Jar (M) —o as M —x.
This type of divergence occurs also in relativistic theories
as mass renormalization. In some field theories the mass
is linearly divergent. The cause of this is that when the
cutoff is large the natural energy scale for self-mass
effects is the cutoff. Then one must let the bare mass
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in the Lagrangian be of the order of the cutoff and
chosen very carefully so that all cutoff-dependent
self-masses cancel and the physical mass is much
smaller than the cutoff.

The coupling-constant divergence in 6o(M) is more
subtle. There is no question of a cutoff-dependent
scale here; 6 is a dimensionless variable. The divergence
is proportional to the number of degrees of freedom.
It arises because the transformation 7" must be iterated
M times to give Ho(M) starting from Hy. These
iterations define a sequence of constants 8y (#). The
difference between 65 (M) and Oy1(M) is finite for all
N and small in perturbation theory. However, these
differences add in going from 6 to 6o(M); hence the
divergence.

One sees from the above discussion that the diver-
gences of perturbation theory derive from two causes.
The linear divergence is due to the energy scale of the
cutoff Hamiltonian H s being A¥ instead of the pion
mass. The logarithmic divergence arises because the
transformation T is iterated M times in going from 6y,
to 8p(M). The cause of the logarithmic divergence must
be pursued further. Why was it necessary to compute
0o(M) by an iterative process? Will an iterative method
in which 6,(M) is calculated in M steps always make
6o(M) divergent when M —oo?

To set up the discussion, pretend that the details
of the analysis of the model had been different from
what was reported in Sec. V. Suppose that the cutoff
energy A¥ had not been crucial for the discussion of
the model, but that still one defined a sequence of
constants Oy(M) in going from 6 to 6o(M). What
might one expect in this case? Then, when M and N
are large, one would expect that there could be no
appreciable difference between Oy(M) and Ony1(M),
for in both cases the effective cutoff (AY or AN*Y) is
large compared to the only important length. Most-of
the difference between 6,(M) and 6 would be due to
the difference 6o(M)—6:(M) or 61(M)—6.(M); the
differences 0y (M)—0n11(M) for large N would go to
zero and could not accumulate to make 8o(M) diverge
for M — 0.

Thus the essential question is why the difference
On(M)—0n1(M) does not go to zero for large N, at
least in perturbation theory. The answer lies in two
features of the cutoff Hamiltonian H and the effective
Hamiltonians Hy(M). The first is that meson degrees
of freedom of order N dominate the Hamiltonian
Hy (M) rather than meson degrees of freedom of order
1. As a result, the change from Hy(M) to Hy—1(M),
which means eliminating the Nth degree of freedom,
is a nontrivial change. Thus one can hardly expect
On—1(M) to be the same as 0y (M) no matter how large
N is. If by contrast the meson degrees of freedom of
order 1 had been the dominant degrees of freedom in
Hy(M) for large N, then dropping the Nth degree
of freedom would have been a negligible change and
Ox—1(M) would probably have been equal to Ox(M).
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The second important feature is scale invariance. Scale
invariance means that if the degrees of freedom of
order 1 can be neglected (which is true for large NV),
then the process of going from Hy(M) to Hy_1(M)
is indistinguishable from the process of going from
Hy (M) to Hy_»(M). In particular, if Hy_1(M)
differs from Hy(M) only by a scale factor and an
additive constant, then Hy_,(M) differs from Hy_1(M)
only by the same scale factor and another additive
constant. Now if 0y (M) is small, N is large and M>N,
Hy (M) does differ from Hy(M) by little more than
a scale factor and an additive constant. This is because
Hyx(M) is defined by the constants Jy(M), &x(M),
O (M), and the point Qa—n(6x(M)), while Hy_(M)
is defined by Jy_1(M), Enx-1(M), Oy_1(M), and
Om—n1(0n_1(M)). If 0x(M) is small then Oy_1(M)
~0y5(M); since Qr(f) = R(t) when L is large,

Ou—n(On(M))~0u n41(On-1(M)).

Thus only the scale factor Jy(M) and constant Ex (M)
can differ appreciably from Jy_1(M) and En—1(M).
But under these circumstances the effect of the trans-
formation 7" on Hy(M) and Hy—_1(M) is essentially
the same, except for the effect on the scale factors J
and the constants 8. This is scale invariance, and
it means in particular that the difference Oy—o(M)
—0x_1(M) is the same as the difference 6x—1 (M) —On (M)
when Oy (M) is small; hence the divergence in 8o(M)
in perturbation theory is proportional to M rather
than some other function of M.

In conclusion, the fact that meson degrees of freedom
of the order of the cutoff dominate the cutoff Hamil-
tonians makes renormalization inevitable. The diver-
gence problem is not just an artifact of perturbation
theory. Since the dominance of the degrees of freedom
of order of the cutoff is due to the energy of a meson
increasing as its momentum increases, which is also
true in relativistic theories, one expects that renormali-
zation will also be inevitable for strongly coupled
relativistic theories. We note also that not only does
the transformation 7 determine basic properties of the
renormalized theory, as shown in Sec. VIT A, it is also
divergence free. Clearly one will want to define an
analogous transformation for relativistic theories.

C. Analogy to Renormalization Theory
of Gell-Mann and Low

Gell-Mann and Low, in 1954, presented an analysis
of the renormalization of quantum electrodynamics,
and predicted that there would be an ‘‘eigenvalue
condition” for the bare coupling constant.® That is,
the bare coupling constant e, would have to have a
fixed value independent of the value of the renormalized
coupling constant. To be precise, they predicted that
there would be a function ¥(x) with the property that
if o is finite, then e is a root of the equation ¥ (e¢) =0.
To show this, Gell-Mann and Low of necessity had to
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obtain ideas from perturbation theory and then
extrapolate to the region of strong bare coupling
constant. This involves several speculations, some of
which will be criticized below. Nevertheless, the analysis
of Gell-Mann and Low remains after 16 years the most
sensible discussion in the literature of nonperturbative
renormalization theory for relativistic field theory.

Here is a brief review of the Gell-Mann-Low theory.
Let ¢ be the physical (renormalized) electron charge
and let m be the physical electron mass. Let d.(k%/m?¢?)
be the renormalized photon propagator apart from a
factor k2. The customary normalization requirement
for d, is assumed:

10(0,e) =1. (7.21)

Gell-Mann and Low define a generalization of the
usual renormalization procedure for electrodynamics,
with a different definition of the renormalized charge.
In the Gell-Mann-Low program, the renormalized
charge is a quantity ex depending on a subtraction
point . The photon propagator is (apart from the
factor £~2) a function d (k2/\2,m2/N\2,e,?) with the normali-
zation condition

d(1,m*/N,e?)=1. (7.22)
The propagator d is related to the usual propagator d.
through the relation

ed (k2 m2,e?) = ex?d (k2 Neym?/Ne?) . (7.23)
In particular, putting k2=\? gives
ext=exd . (\2/me?) , (7.24)

which gives the definition of e) in terms of e. In the
Gell-Mann-Low program, all other amplitudes (elec-
tron propagator, vertex function, etc.) are functions of
ex, and all depend on the reference momentum \ as well
as m and various momenta. The subtraction procedure
of Gell-Mann and Low is defined so that the bare
coupling constant e, is the limit of ex as A —.

Gell-Mann and Low then argue that the function
d(k2/N2,m2/\2,e52) has a, finite limit when 7 — 0 holding
k2, 22, and e fixed. This should also be true of other
amplitudes. They give an example of this from fourth-
order perturbation theory, and then argue that it is
true in general because the momentum % provides an
infrared cutoff. Whether the finiteness assumption is
true is still an open question; the author knows of no
reason to doubt it, and it will be assumed to be correct
in the following.

If d.(k2/m?e) is expanded in powers of e* for k*
large, the coefficients involve logarithms of k?/m?, so
that the effective expansion parameter is €? In(k?/m?)
and not e?; this means that radiative corrections
become important when In(%%/m?) is sufficiently large,
no matter how small e is. In contrast, as Gell-Mann
and Low make clear, the fact that d is independent
of m2/\2 when m?/)\? is small means that the expansion
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of d(k2/N2;m2/N2,ex?) in powers of e)? involves no large
logarithms if £ and X are simultaneously large so that
k2/N2 is of order 1. In fact, in this case the coefficients
of ex?, e\t etc. are of order 1 no matter how large &
and \ are.

To compute ¢, from Eq. (7.24) directly would be
difficult since for any e the radiative corrections to
d.(\2/m?,e?) are infinite in the limit A —oo. Therefore
Gell-Mann and Low develop an indirect procedure
which requires knowing only d(k%/)2,0,e2) for k% near
A2, The radiative corrections to 4 will be important
because, as will be seen, one will have to consider
coupling constants ey of order 1. But unless one must
consider the limit ey — o, the radiative corrections will
be finite. The trick of Gell-Mann and Low is to observe
that one can use the function d to set up an equation
for dey/d\. From Eq. (7.23) one finds that, for any
X and X,

exd (k2/N\2,m2/ \2,e:2) = ex?d (R2/N'2m?/N2en?) . (7.25)
Putting k=)’ gives
ex?=ex?d(\'2/N2,m2/\2,e2) . (7.26)

If A and N are both much larger than  one can neglect
the m dependence. Differentiating with respect to \’
and then putting M=\ and approximating m/\ by 0
gives

2ex(den/dN\) =2y (ext)/\, (7.27)
where
9d(y,0,x)
Y(x) =yr— (7.28)
dy y=1

The function ¥(x) has a power-series expansion in x
for small x with finite coefficients; Gell-Mann and Low
assume it has a well-defined extrapolation to values
of x of order 1. To compute the limit of ex for A —o,
one must solve the differential equation (7.27). If
dey/d\ does not go to zero for finite ey, then necessarily
an infinite increase in A will give an infinite increase
in ex. Thus the only way e, can stay finite as A — is
for Y(ex?) to have a zero. If ¥ (x) has a zero at x=ux,
and is positive for x<x, (¥ is positive for small x from
perturbation theory), then the solution e? of Eq.
(7.27) will be an increasing function of N\ with the
limit xg as A —c (assuming ey?<xo when X is of order
m, as it will be if e is small).

If ¥(x) has a zero at x, then the function ey? will
have the limit xo as A — for any value of e sufficiently
small. This demonstrates the main result of Gell-Mann
and Low: The bare coupling constant e, is independent
of the physical coupling constant e, at least over some
finite range for e. Even if ¢ (x) does not have a zero, the
solution ey will have the limit « for A —c independ-
ently of the value of ¢; the bare coupling constant is
again independent of the physical coupling constant.
[This is true only for certain forms of the function
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¥(x). If the integral Ji* dx/y/(x) is finite, then ey — oo
for some finite value of A and the theory becomes
nonsense for larger values of A. This leads to contradic-
tions discussed below. ]

Thus Gell-Mann and Low predicted for electro-
dynamics the result that one unrenormalized Lagrangian
would have an infinite number of solutions. This is
exactly the result that was proved for the model in
Sec. VIT A.

The differential equation (7.27) can be regarded as
analogous to the transformation equation

Pry=Ts(Prny1) (7.29)

that is involved in the definition of the renormalized
Hamiltonian of the model. Equation (7.27) tells how a
coupling constant e, changes as N changes, while Eq.
(7.29) tells how an infinite set of coupling constants
change as V changes. One can think of the function ¢
as defining an infinitesimal transformation on a one-
dimensional coupling-constant space. In the limit
A—o0 e\ goes to a fixed point of the transformation
defined by ¢ [if ¢(e?) =0, then for ex=ey, der/dA=0:
thus e, is a fixed point]. This is analogous to the result
that the limit of Pry as N —c0 is a fixed point of 7 4.
Thus Gell-Mann and Low discovered the idea that a
fixed point of a transformation is important in re-
normalization. There are differences between Gell-Mann
and Low’s fixed point ¢o and the fixed point P,; these
differences will be emphasized below. These differences
do not alter the fact that Gell-Mann and Low discovered
the essential idea of a fixed point. Since they discovered
the idea in the context of relativistic field theory, there
is encouragement to believe that the analysis of the
fixed point in the model is relevant to relativistic field
theory and not just a consequence of the many simplifi-
cations which were made in defining the model.

There are two basic differences between the trans-
formation 74 defined for the model and the trans-
formation ¢ of electrodynamics. First, the function ¢
can only be computed after electrodynamics has been
solved, whether by a perturbation expansion or what-
ever. This is because ¢ is defined in terms of the
renormalized - propagator which is itself part of the
solution of electrodynamics. In particular, if electro-
dynamics does not have a solution except as a pertur-
bation expansion, then the ¥ function will not exist
for strong coupling. In contrast, the transformation
T 4 is defined before one knows whether the model has
a solution. In the model of this paper the renormalized
theory exists, but there are other models for which
there is no renormalized theory (except one with no
coupling). A particular example is a derivative of the
Lee model constructed by analogy with the model of
this paper. An earlier version of such a model was
described in a previous paper” and from the analysis
given there it is easy to see what happens in the trun-
cated Lee model. One defines a transformation analo-
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gous to T4 and uses it to construct curves analogous to
Q(#). However these curves do not exist over the full
range 0<t< %, but rather over a range 0<¢<{z, where
the constants {z, form a decreasing sequence with the
limit 0 as L. — 0. The reason for this is that if a Hamil-
tonian has component 6, the Lee model transformation
takes 6 into 6’, where 6'< for any >0 including
6=3%r. This means also that the Lee model 74 has no
fixed point analogous to P.. This analysis assumes that
one does not permit complex coupling constants, as
would be necessary if one wants to obtain nontrivial
renormalized solutions. Since every time one considers
a new theory the existence of a fixed point of the corre-
sponding transformation 74 is in doubt, and since
renormalizability depends on there being such a fixed
point (at least for the two examples considered; a
general analysis of renormalization theory indicates
renormalization could be possible for some types of
transformations without fixed points), it is important
that T4 be defined without reference to the renormal-
ized theory.

The second difference between ¢ and 74 is that ¢
acts on a one-dimensional space, while 74 acts on an
infinite-dimensional space. In order to formulate the
transformation ¢ as a transformation on one variable,
one has to know that the renormalized theory depends
on only one phenomenological parameter. For example,
in pseudoscalar-meson theory where there are two
phenomenological parameters, one must replace y by a
transformation on a two-dimensional space. But the
lesson of the model of this paper is that the number of
phenomenological parameters is not known until one
has found the fixed point of 74 and determined the
number of unstable solutions of T4 near the fixed point.
The fact that T4 is a transformation on an infinite
set of coupling constants means one is not committed
in advance to a particular number of phenomenological
constants. Furthermore, one is not restricted to theories
with interactions which are renormalizable. As long
as T4 is a transformation on the space of all possible
couplings, renormalizable or not, the customary reason
for considering only renormalizable interactions be-
comes irrelevant. The customary reason is that re-
normalizable interactions require an infinite set of non-
counter terms to be renormalized ; but now these counter
terms are all present in the phenomenological Hamil-
tonians (or Lagrangians, perhaps). Thus if the re-
normalization theory of the model can be generalized
to relativistic field theory, there is hope that pure
quark models or the Fermi interaction can be studied,
although there is no guarantee that the corresponding
transformations will have fixed points.
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APPENDIX A

It is proven here that an iterative solution to Eq.
(4.9) exists and that 14+ R'—R has an inverse provided
that

| H:]|<0.2AE, (A1)

where AE is the energy difference between the ground
states and first excited state of H,. Define a sequence
of operators {R,} by

Ro=0, (A2)
Rn= (1—P) (E()‘—'Ho)_l(l—P—Rn_l)
XHi(P+R,5) (n>0). (A3)
Then
R=lim R,. (Ad)

n—->0

To prove the existence of the limit, the following
equation is useful:
Rop1—R,=(1—P)(Ey—Hy)™?
X[(1—=P—R)H;(R,—R,_y)
- (Rn_Rm-l)HI(P+Rn—1):'-

Now it is shown that

(AS)

IR.]|<0.4. (A6)

Proof. This is true for n=0. Suppose it is true for
n—1. Now

|(A=P)(Eo—Ho) " (1=P)|=AE, (A7)
1—P=1, (A8)
[Pll=1, (A9)
and R,_y=(1—P)R,_1 from Eq. (A3). Thus
|R.|<AE(1.4)(0.2AE)(1.4)<0.4. QE.D. (A10)
Likewise one can show that
[ Rat1—R,[|<0.4X (0.56). (A11)

Hence from the Cauchy criterion, R exists. It is easily
shown that R satisfies Eq. (4.9). The bound (A6)
implies that

|R"—R||<0.8, (A12)

which means that the inverse of 14R'—R exists as a
power series in Rf—R,

APPENDIX B

In this appendix the transformation 7" will be defined
in detail. It will be shown that 7" has the form of Eqs.
(5.16)—(5.19). Then Theorems 1-4 of Sec. V will be
proven. The only assumption made in this appendix is
that A>4X108.

The first problem is to define 7. Let H be a Hamil-
tonian in S. Let H have the decomposition (J,8,N,P,)
where P 4& S 4. Let P4 have the decomposition (6,A;,Cy).
Let H=H+Hr with H, given by Eq. (5.14). Define
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H o using Eq. (4.29). To define 7', we must specify the
decomposition of H . The decomposition of H e must
be defined because it is not unique, as was pointed out
in Sec. V. This nonuniqueness means that one must
often prove properties for the decomposition of an
operator which are obvious or already established for
the operator itself. To define this decomposition, we
will write out in detail the steps leading to Hs, and
specify the decomposition of each of the operators
arising in the calculation. The operator Hy has the form
H [=] SCI, Wlth

N N
3r=3 Vi-Birat-2 Cy,

k=1 k=0

(B1)

where

BO: (m,\ﬁqu',\/ng*) +A05
Bi=A: (£>0),

(B2)
(B3)

and m=cosf and g=(1/V2) sinf. The equations which
define Hs are as follows [including the iterative
definitions of R and (14+RR)+1/27:

R0=0 5 (B4)
R.=(Ey—H)'‘(1—P—R,_)Hi(P+R, 1), (B5)
R=lim R,, (B6)
00=0, (B7)
Qw=3(R'R—Q.—1%, (B8)
Q=1lim Qx, (B9)
OO‘:O) (Blo)
0n=~Q—Q0n-1, (B11)
0=1im 0., (B12)
Hese=(P+Q)Hi(P+R)(P+Q)+PE,. (B13)

In these formulas P is the projection operator onto
the two ground states of H,, (P+Q) is (14+R'R)12P
and” (P+Q) is P(14+R'R)™'2, and E, is the ground-
state energy of H,.

A particular form for 3¢; has been given in Eq. (B1).
The operators By and Cj, will be called the decomposi-
tion of 3C;. Analogous decompositions will now be
defined for R, etc. The equations (B4)-(B13) involve
three basic operations: multiplication of Hy, R,, etc.
with themselves, multiplication with P, or multipli-
cation with (E,—H,)™. Thus it is sufficient to define
the decomposition of any of these products. Let X be
an operator with decomposition (D,F), for example.
Then PX has the obvious decomposition (PDg,PFy),
and analogously for (Eq—H,)7'X. This is a legitimate
decomposition since the only requirement on a de-

17Q is a symbol completely independent of Q.
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composition (Dy,Fy) is that Dy, and Fj do not involve
meson operators numbered above £ (no upper bounds
on D; and F; will be imposed now). Since P and
(Eq—H,)™! act in the space of nucleons and 0-mesons
(meson operators numbered 0), this restriction is
satisfied by PD; and PF;, or (Ey—H,)'D; and
(Ey—H,)'Fr. Now let ¥ be another operator with
decomposition (Az,Cx). One must define a decomposi-
tion (Gg,Ls) for the product X¥. The decomposition
is as follows:

G’() =F0A0+D0C0 5 (B 14)
Ly=FCy. (B15)
For k>1,
Gy = Z (FnAr+DiCrn)+ z (FrAn~+DuCr)
m=0
n—1
+ Z 2. [Diu(T.-Ap)+(T,-D.)AL]
n=1 m=0
k—1 k—1
+ Z Z [D71(Tk'Am)+(Tk'Dn)Am] 5 (Blé)
n=0 m=0
k—1 k—1
n=0 m=0
k n—1
+2 2 [(Ta-Du)Cr+Fr(To-Awn)]
n=1 m=0
k k—1
+3 FiCut+ Y FuCi. (B17)
m=0 m=0

T, is defined by Egs. (5.4)-(5.6). It is clear from these
formulas that G and L do not involve meson operators
numbered above k2. With some straightforward algebra,
one can verify that the operator product XV is given by

XV = Z Ve Gk_1+Z L.

k=1

(B18)

It can be shown that the decomposition is associative,
i.e., a triple product (XY)Z has the same decomposition
as X(YZ2).

With the rules specified above and Egs. (B1)-(B13),
the decomposition of Heis—EoP is uniquely defined.
Note that the number of degrees of freedom NV nowhere
enters into the calculation of Gy and L. Therefore
if the operators By and Cj in the decomposition of 3C;
are defined for all £ and are independent of N, then
the decompositions of R,, etc. (including He) will
also be defined for all 2 and independent of N. It will
be presumed from now on that decompositions are
defined and computed for all 2. Note also that Hy, H,,
and E, are all proportional to J. This makes R,, Q», etc.
independent of J and Hes proportional to J. To be
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specific, Hess has the form
7 - N N V
Hoy=PEy+J (2 Vi-Giat 20 L), (B19)
k=1 k=0

where G and L; depend on 7+ and meson operators
numbered 0 to . '

Since H.s acts within the subspace projected by P,
the dependence of He; on the 0O-meson operators
(a0, etc.) and 7% can be reduced to a dependence on
Tr*, the raising and lowering operators for the ground
states of H,. When this is done, G and L;, depend only
on 7z* and meson operators numbered 1 to k2. To put
H ¢ in a form in which it can be contained in the space
S, one must renumber the meson operators 1-V to
run from 0 to N—1, e.g., a1— aq, as— a1, etc. Also
one replaces 7x* by 7%, Under this renumbering, V
becomes A7'V;_y; Hess is

N—-1 N
Het=Eot-JA (Y Vi-GitA 3 L), (B20)
k=0

k=0

where G and L; depend on 7+ and meson operators
numbered 0 to 2—1. PE, is replced by E, because
there is no longer any possible reference to states
outside the subspace projected by P.

Now consider Gy and L, They involve no meson
operators; they can be expressed purely in terms of
7%, Furthermore G, and L, satisfy the appropriate
Hermiticity, charge conservation, charge conjugation,
and time-reversal requirements, because these require-
ments are preserved by the equations defining the
decomposition of He. These requirements force Lo
to be a real constant and G, to have the form

Go=(m"N2g"1TN2¢"v7), (B21)

where m’’ and g’ are real constants.

It is now easy to define a decomposition of H in
the space S. Denote the decomposition (J’,8',N',P4’)
with P4’ having the decomposition (8',A%',C+"). Com-
parison of Eq. (B20) with Egs. (5.1), (5.2), (5.8),
and (5.9) leads to the following formulas:

T =A-T (m4-2g' )2, (B22)
&' =Eo+J Lo, (B23)
N'=N-1, (B24)
0’ =tan"t(V2g'""/m'"), (B25)
Ay = (m'"42¢") 712Gy, (B26)
C¥' =A(m'"+2g"?) 2 Lyy1. (B27)

The quantities m'/, g, Lo, Gk, and L; depend only on
P4, not on J, &, or N. Hence, Eq. (B22) has the form
of Eq. (5.17) with Tg(Pa)= (m'2+42g¢"?)12, Also, Eqgs.
(B25)-(B27) define the transformation T'4(P4) of Eq.
(5.19). Finally, the ground-state energy of H, [defined
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by Eq. (5.14)] is
Ey=8—J (B28)

(of Table I). Hence & has the form of Eq. (5.18) with
To(Pa)=—1+Lo. (B29)

The next problem is to prove Theorems 1-4 of Sec. V.
The proofs involve a very large number of upper
bounds and are quite complex. To guard against
subtle errors, all bounds have been obtained as explicit
numbers multiplying powers of A. In principle, it
would have been sufficient to know that bounds existed
in the form of unknown sufficiently large numbers
multiplying known powers of A. In addition, the use of
numbers saves symbols. In the following, < means
only } (the equality need not be realized). These
proofs are crucial to the renormalization of the model
of this paper; they are condemned to an appendix be-
cause they are special to the model, whereas the analysis
of Sec. V is of more general interest.

To start with, one needs an upper bound for the
decomposition of the product XV given bounds on X
and V. Let X and ¥ have decompositions (D,Fx) and
(A%,Cr) as before. It is convenient to define an abstract
bound for X. This bound will consist of three numbers
(d,e,f). By definition, X has a bound (d,e,f) if

Dol <md,  |Dif<meA™* (k21),

IB< i, [F<ens (1), B0

where |[Do|| is a vector with components || Do1f|, || Dog|,
[[Dosll, |[Doy]| being the ordinary operator bound. Also,
m is the vector (m,v2g,V2g), and m and g are as defined
before.

Suppose X has a bound (d,e,f) and ¥ has a bound
(a,b,c). Then it can be shown that XV has a bound
(g.0)% with

g=A"(af+dc), (B31)
h=5ad+A"[bf+ec+ (\/70) (ae+bd) ]

+A2(14be), (B32)
I=cfA1. (B33)

(These bounds were computed assuming only that
A>21.) A brief summary of the proof of these bounds
is as follows. The operators T'x; have bounds

1Tl =AE. (B34)

(This is proved by a straightforward calculation.) Next
one puts bounds on the sums Y1 || Tal], 2o 5=c ||Anl],
etc. (which are also bounds for finite sums such as
> a=o® ||A4l]). One gets

3 | Ta] =11 (1 —A-)~1< 10541, (B35)

18 The symbol g here has a different meaning from elsewhere in
the paper.
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where 1 is the vector (1,1,1). Also,

i IIA,|| <ma+mbA-1(1—A-1)!

n=0

<m(a+1.05A-1), (B36)

using the definition of the bound (a,b,c). Similar
formulas can be obtained for sums of ||C,[], | D4/, and
||Fa]l. Now one constructs upper bounds for all the
terms in Eqs. (B14)-(B17) for Gy, Lo, Gy and Ly. For
example, one term in Gy is

I 5 DT A<Dy = T 5 ]

n=1 m=0 n=

<meA—*(1.05A-1)1-m(a+1.05A-15). (B37)

Now 1-m=m-+2v2g. An upper bound on m-42v2g
results from

(m+2V2g)*—5 (m*+-2¢%) = — (2m—V2g2<0. (B38)

Because m?4-2¢g2=1 (normalization condition), one
gets the bound

1-m<+/5. (B39)
Hence
k n—1
|Z ¥ Ditea
<mA~*1(1.051/5)(ae+1.05A~1be). (B40)

Similarly one finds bounds for all terms in Eqgs. (B14)-
(B17); the result is that (g,4,/) given by Egs. (B31)-
(B33) is an upper bound for the product XV. It is
convenient to introduce a shorthand for Eqgs. (B31)-
(B33): We define the “product” (a,b,c)(d,e,f) to be the
quantities (g,4,J) given by Egs. (B31)-(B33). This
product can be shown to be associative and commu-
tative and thus algebraic expressions involving these
products can be manipulated using ordinary algebra.
This simplifies the calculations.

Using the bound quoted above for products, one can
construct a set of upper bounds for the operators R,,
Qu, etc. These bounds are listed in Table IV. They are
not least upper bounds. The operator H in Table IV is
defined in terms of He by

Hi=PE+JPM-V.P+JH , (B41)

where Heg is the effective Hamiltonian, as of Egs.
(B13) and (B19), before renumbering the meson
operators, and M is '

M = (m,V2grtV2gr™). (B42)
The operator 3C; in Table IV is defined by
N N
Cr= Z Vk 'A}c._1+ E Ck , (B43)
k=1 k=0
so that
Jr=M-Vi-+3C;. (B44)
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Tasre IV. Operator bounds obtained in the proofs of
Theorems 1 and 2, assuming A >4X105.

Operator Bound Operator Bound

JCr (1.5,0.5,100) On—0n_1 132 X104 (A71,1,A71)
s 200g2(A™1,AL,1) Qn Q 14g2 X103(A1,1,A71)
R., R £(2,65,160) Qn—0Qn_1  14g2X10477(A71,1,A71)
Ry —Rn_1 16g X 10277 (1,A,1) H £2(25 X 103A71,40,210)
QOn, Q 13g2X103(A71,1,A71)

The proofs of the bounds of Table IV are mostly
straightforward and only examples of the proofs will
be given here. In some cases the bounds of Table IV
are gross overestimates of the bounds one calculates
in the proofs quoted below.

The bounds on JC; and 3C; are simple consequences
of the definition of the space S, in particular, the
bounds (5.10)-(5.13). In computing the bound on
3JCr, one also uses the inequality g?<3 which follows
from the definition (5.9) of g (also one uses A>200).

In proving the bound on R,, it is convenient to
eliminate the factor J by defining

H0=E0+J3€o, (B4S)

Now write the equation for R, as

Ru=(—30o)(1— P)M- VP
+ (*ZC())_I (1 —'P) (GCJP—Rn_ﬁ,‘CIP—I—GCIRn_l
—R,_i0R,_1). (B46)

The proof of the bound on R, is by induction. It is true
of Ry. Assume that it is true of R,_;. To bound the first
term of Eq. (B46), one needs the following bounds:

[ (=3 (1=P)] =1, (B47)
[(A=P)r*Pl|=|[1=P)rP||=g. (B48)

These bounds can be obtained by explicit calculation
using Table I. With this information, one finds that
(—3Co)"1(1—P)M- VP has a bound (g,0,0). The second
term in Eq. (B46) can be bounded using the bound
IIP||=1, Eq. (B47), and the bounds of Table IV for
3Cs, R.—1, and 3C;. Schematically one has

[R,[<(g,0,0)+[5Cs [ +2| Ry | 3¢ |
+15Cr] | Raa]?, (B49)

where [3¢;| means 200g2(A~1,A1,1), etc. After calcu-
lating the products explicitly using Eqs. (B31)-(B33),
one finds that this expression is less than the bound
of Table IV for |R,|. Hence the bound of Table IV
for R, holds for all », by induction. The same bound
holds for R because R is the limit of R, for n— .

The bound on R,—R,_; is also proven by induction.
The bound on R;—R, is true because it is larger than
the bound of Table IV for Ri. Then one computes a
bound on R,;1—R,, given the bound for R,—R,
and using Eq. (A5) of Appendix A. Since the bound
for [R,—Rn_| goes to zero as n — o, the decomposi-
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tion of R, approaches a limit for #— o ; the limit
defines a decomposition for R.
To get a bound for H, one writes

H=PM-V;(1—P)R+P3;(P+R)
+Q3er (P+R) (P+Q)+P3cr(P+R)Q  (BS0)

and sums the bounds of each term. ~

Now one can get bounds on 7 and g”. Let H have a
decomposition’ (Dy,Fr). Comparing Eq. (B41) with
Eq. (B19), one gets

Go=PMP+D,, (BS1)
Gy=D; (£>0), (B52)
Ly=F, (allk). (BS53)
Explicit calculation using Table I gives
PMP=(m,V2g(1—g)rrt,V2g(1—g)7r"). (B54)

From TableIV,D,has the bound (remember A>4X10°)
|Dol| <mg?X 25 000A1<0.01mg?. (BS3)

The bound on Dy is a bound on the difference Go—PMP.
Gy can be expressed in terms of m'" and g"” [Eq. (B21);
for 7= in Eq. (B21), read 7g%, since in the present
analysis we have not yet substituted 7% for 7z%].
Using Egs. (B21), (B54), (BS1), and (BSS5), one gets
the bounds

[m” —m| <0.01mg?, (B56)

lg"—g(1—¢)| <0.01¢". (B57)

From these bounds, one gets bounds on tané’ [Eq.
(B25)]:

(VZg/m) (1—1.01g%) (140.01g2) ' < tand’
< (V2g/m)(1—0.99g%) (1—0.01g)~1.  (B58)

Using the bound g2<%, one can simplify these bounds;
inserting V2g=singd and m=cosf, one gets

tanf(1—0.51 sin?f) < tand’< tanf(1—0.48 sin%h). (BS59)

To complete the proof of Theorem 2, one notes that
[see Eq. (B29)]

To(Pa)=—14Lo=—1+F,. (B60)

From the bound on H, Fy is less than 210g2A* which is
less than 0.01. Hence one obtains Eq. (5.30).

To prove Theorem 1, one must have bounds for
||A%’|| and C3’ in terms of ' and g’. One has bounds for
|G4|| and ||La|| in terms of m and g [from Table IV
and Eqgs. (B52) and (B33)]:

G4l <mgzX40A~*  (k>1), (B61)
| Li]| < g2X40A2%  (k>1). (B62)

From Eq. (B59) one has ¢’ <6, and therefore m <m’.
To get a bound on g in terms of g’, one uses Eq. (BS9).
Let

(1—0.51 sin2)2=1—4. (B63)
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Then
g/ ¢?=sin%0/sin?¢’ =sin?6[ 1+ (tan26’)™ |
<sin?0[ 14cos?0(1—B) 1 (sin20)~1 ]
=1+ (1—sin29)3(1—8)1.
The maximum value of 8 occurs for sinf=1 and is less

than 0.8. Except for very small 6, 1—3 is larger than
1—sin?), making g2/g" less than 143. Hence

$£<1.8g7.

(B64)

(B65)
Hence

m< (1.8)"m’ (B66)

(the inequality is true for each component of the
two vectors). Also, from Egs. (B56) and (B57) and
m*~+2g%=1, one gets a minimum value for m’242¢""2,
which in turn gives a bound

(m'4-2g'")"12.< 2.03. (B67)

The bounds (B61), (B62), (B66), and (B67), substi-
tuted in Egs. (B26) and (B27), lead to the bounds

|Ay| <200m’g2A~*1 (B68)
|Cy'| <200g"2A—2F1, (B69)

To complete the proof of Theorem 1, one must show
that A’ and C/ satisfy Hermiticity requirements and
symmetry requirements with respect to charge conser-
vation, charge conjugation, and time reversal. The
symmetry requirements are easily established since all
the intermediate operators R, etc., have the same
symmetries as H. One easily verifies that if X and ¥
are operators whose decompositions obey the symmetry
requirements, then the product XV has a decomposition
obeying the symmetry requirements. The rest of the
proof of symmetry is omitted. Hermiticity is more
complicated because R, and R are not Hermitian, and
one must use Eq. (4.3) instead of Eq. (4.19) to show
that Hes is Hermitian. However, a proof showing that
Ay’ and Cy’ satisfy the Hermiticity requirements of .S4
can still be constructed. The basic result needed for
the proof is that if XV has a decomposition (Gg,Lx),
then YTXT has the Hermitian conjugate decomposition
(le - leT, Gk2 e Gk3T, Gk:g e GkgT, Lk d LkT) The
proof is omitted.

Now Theorem 3 will be proven. If an operator X has
a decomposition (ACr), we will call the A the
‘“l-components” of X.

Note the following. Let operators X and ¥ have the
decompositions (Dy,Fr) and (AxCy), respectively. Let
Ay vanish for all £ and Dy, vanish for £>0, and let
Dy be a ¢ number. Let the product XV have de-
composition (Gg,Lx). Then from Eqgs. (B14) and (B16),

Go1=DpnCy, (B70)
k1

Gii=Do(Cr+ 2 Ti-A,) (R>0). (B71)
m=0
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Exactly the same formulas for Gy, and Gy, result from
decomposing the commuted product YX. This means

that the commutator [X,¥] has no 1-components in -

its decomposition.

If Do, is zero also then XV has no 1-components.
Now consider Theorem 3. Let the 1-components of
H; vanish. We prove by induction that R, has no
1-components. This is obviously true of R, Assume it
is true of R,_;. Consider Eq. (BS5). The operator
(1—P)H:P has no 1-components because

(1—P)HP=(1—P)M-V.P+(1—P)H,P; (B72)

Hj; has no 1-components by assumption and
(1—P)M,P=(1—P)mP

vanishes. The product R, 1H;R, 1 can be written
R,_1PH;(1—P)R,_; and so is a product of terms none
of which contain a l-component. So this product has
no l-components. The remaining term in R, can be
written (Eoq—Ho) 1(1—P)[H,R._1]P. The operators
X=Hrand Y=R,_; satisfy the conditions noted above,
so the commutator [Hr,R,_1] has no 1-components.
Hence R, has no 1-components. It follows that R has
no 1-components, nor do Q and Q. Now consider H
[Eq. (B13)]. Using the fact that Q=QP, Q@=PQ,
R=(1—P)R, and that PH;(1—P) has no 1-com-
ponents, one sees that the l-components of Hcs are
contained in (P+Q)PH;(P+Q). This can be written

PH(P4+Q)+PHQ(P+Q)+[Q,PHI(P+Q).

The commutator has no 1-components by the argument
noted above. The other terms can be written

PH(P+Q)(P+Q)=PH:P, (B73)

since (P+Q)(P+Q) is P. This means that the only
1-component in Hes; comes from PM -V, P. This means
that in Eq. (B20), Go1 is m and Gy vanishes for 2> 1.
This means f[that m”=m and A;’=0, which is
Theorem 3.

Finally Theorem 4 will be proven. This requires
that two Hamiltonians, say, H and H,4, be compared.
Let H and H 4 both be elements of .S. Then for each of
the operators 3C;, 3Cs, R,, etc., associated with H,
there is a corresponding operator 3Cra, 3Csa, Ran, etc.,
associated with H4. The decomposition of 3C; is
(Ar,Cr); the decomposition of 3Crs is (Axa,Cra).
One has

3er=M-V+3C;, (B74)
ICra =MA'V1+3CJA, (B75)
where
M = (m,V2grtV2g7r), (B76)
MA= (mA,VZgAr+,V2gAT—) ’ (B77)
and

w2282 =m 4?4 2g42=1. (B78)
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The assumptions of Theorem 4 are that
(m—ma)*+2(g—ga)<ds?, (B79)
|Ars—A] <dmuA*1  (all k), (B80)
|Cra—Cil| <deA=21  (all k), (B81)

where u is the vector (1/v2)(1,1,1). The objective is to
obtain bounds on m4 —m', gi'—g', Ard—A4, and
Cra’—Cy/, all in terms of dy and ds. The bounds will
be computed by the same techniques as in the proofs
of Theorems 1 and 2. One change is that in defining
the bound (a,b,c) of an operator X, the vector u is
substituted in Eq. (B30) for m. From Eq. (B78) it
follows that m<v2u, and m,<V2u, which means that
a bound (a,b,c) from Table IV (which implies the use
of the vector m) can be changed into a bound using the
vector u simply by the replacement a — V2a, b — V2,
¢ — ¢. The bounds for 3¢y, etc., expressed in terms of u,
also bound 3Cr4, etc.

A problem arises in comparing Ax4” with A, As
part of the definition of A}/, one took Gy and replaced
7rt by 7F. The operator 7" is an operator in the full
Hilbert space of mesons labeled 0~V and the nucleons,
although it is nonzero only in the subspace of the ground
states |P) and |N) of H, plus mesons labeled 1-N.
The operator 7+ acts in a separate space isomorphic
to this subspace. Now when the operators A4 are
calculated, one starts from Gyy14 expressed in terms of
operators 7p4* which are different from rg*. This is
because 7ra* are raising and lowering operators for a
different pair of states |PA) and |NA4), namely, the
ground states of Hos. However, in A’ and A4’ the
same operators 7+ appear. Thus it will simplify matters
to make a unitary transformation on Gpyi14a which
takes 7paT into 7x*; after this has been done, one can
make comparisons in the full space of 0-NV mesons
plus nucleons instead of the separate space involving
7% plus 1-NV mesons. Let the unitary transformation
be Uy. One wants Uy’ to take eigenstates of Hy, into
eigenstates of H,4. In particular, if P4 projects the
ground states of Hg4, one wants ‘

UatPaUas=P. (BS2)

Then one replaces Gia by U4'GaU 4 before comparing
with Gy, and likewise for Lya.

One can take Eqgs. (B4)-(B13), replace R, by R,
etc., and then transform them all by Ut --Uy4. Note
that 3Co4 and 3¢, [cf. Eq. (B45)] have the same eigen-
values (0, 1, and 2) (cf. Table I), so U4™3Co4U4=3C,.
From now on, let R4, stand for what was U4 R4,U 4,
and likewise for RA, QA,,, QA, QAn, QA, I:—IA [Cf. Eq.
(B41)]), and H 4.s;. However, 3Cr4 and 3Cr4 will still
be the untransformed operators; denote U4™3Cra U4 by
3Cra’”"" and Ua'3;.U4 by 3Cs4”". The equations for
R4n, Qan, etc. are now obtained from Eqs. (B4)-(B13)
by replacing H; by 374" and by inserting an over-all
scale factor J4 in the formula for H 4 cs.
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TaBLE V. Bounds on operators needed in the proof of Theorem 4. The bound (d,e,f) is defined by
Eq. (B30) except that the vector u=(1/v2) (1,1,1) replaces the vector m.

Operator Bound
M,-V; d1(5.5,0,0)
Va Vv2d,
e d1 (450A71,450A71,300) +dz (A~1,A71,1)
Ran,Ra d1(8,800,1600) +d5 (30A~1,2200A7,1.3)
Qan,Qa d1(3.25X 105A71,245 3.25 X 10°A~1) 4-d; (7.9, 1100471, 2200A™)
Qan,Q d1(3.3X105A71, 250, 3.3 X 105A1) +-d(8A™1,1200A71,2400A 1)
H, d1(7200A71,230,310) +d» (16A~1,27 000A~,1.1)
HH, (20 000A~1,40,120)

Now define the following differences:

1224
roa=3ras"""—3Cr,

117
3Cre=3Cs4""—3Cr,

B83
M. =M,"'~M, (59
Run=R4s,—R,, etc.,
where
M, ""=U,MsUy. (B84)

One can write equations for the differences R,,, etc.,
as follows:

Ra0=07

Run=(—3C0) ' (1—=P)[(1 = Run-1)Rra(P+Ran1)
~Ran—IJCI(P+RAn~1) + (1 _Rn—l)JCIRan—l:]
(»>0), (B86)

Qan = % (RATRa—f"RaTR _QAn—IQan~1_Qan—1Qn—1)
(n>0),

(B85)

(BST)

Qanz "‘Qa_QAQan—l—‘QaQn—l 5 (BSS)

H,=P3¢;.P+Qadra(P+RA) (P+Qs)
+Qu3Cr (P+Ra4) (P+Q4)+Q3CRo (P +_QA)
+030;(P4+R)Qu+P3ro(Ra+Qa+RaQ4)

"I_PGCI (Ra+Qa+RaQA+RQa) .

Knowing upper bounds for ,, one easily obtains upper

bounds for UATGkA Ua —-Gk and UATLkAUA—-Lk.

The first step in deriving upper bounds is to get

upper bounds for 3¢, and M,. One has

M= (ma—m,V2gaU 47t U4 —V2grT,

(B89)

V2guU4TmUs—V2gr™). (B90)
Write Uy =14V 4; then
gaU A rtUs—grt=(ga—g)U4'rt U
+gVatrtUs+grtVa. (BI1)

Thus one needs a bound for V4. The operator Uy is

Us=3 |m)alnl, (B92)

n=1

where |#) (1<2<8) are the eigenstafes of Hoand |#n)a

are the eigenstates of Hos. These are known explicitly
from Table I. An upper bound for ||V 4]|? is obtained by
computing the trace of V4"V 4. The trace is

TI'VATVA ZTI‘(Z—" UA'— UAT)

_ zsl @—(ulna)—(nalm)). (BO3)

n=

In fact, one can compute the trace separately for states
of a given charge; the maximum of these traces is still
greater than ||V 4|2. The traces are as follows:

charge=2 or —1: TrV4V,=0, (B9%4)
charge=0or 1: TrV, 'V,
=2 (m—ma)+2(g—ga)*]. (BIS)

The latter result was obtained using Table I and Eq.
(B78). From this it follows that

|V 4|l £V2d;. (B96)

Also, |m—ma| and V2|g—ga| are less than d; [from
Eq. (B79)];V2g and V2g, are less than 1; and ||U4||=1.
Using these results in Eq. (B90) gives

M, <5.5dwu. (B97)

A similar calculation for 3C;,, using the bound of Table
IV for 3¢; and 3Cs4, plus the bounds m<V2u and
m, <V2u, gives the bound shown in Table V. One can
now obtain bounds on Rgn, R, etc., using Egs. (B85)—
(B89). One uses Egs. (B31)-(B33) to obtain bounds on
products [with u replacing m in the definition of the
bound (a,b,¢)]. The results are shown in Table V.
Write the decomposition of H, as

_ N N
Ho=2% Vi-Das+ 2 Fo. (B98)
£=0

k=1

The bound of Table V for H, gives the following
bounds:

IDyol| < (7200A7%d1+16A")u ,
D]l < (230d:+27000Ady)uA~*
| Fazl| < (230d1-+27000A" d3) A—2*

(k>0), (B99)
(k>0).
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Consider the significance of D,o. It is a difference
D4o—Dy. From Egs. (B51), (B54), and (B21) [one
must substitute 7g* for 7% in Eq. (B21)], D, itself is

Do=(m" —m,V2[g"—g(1—¢) Irr",

V2[g"'—g(1—g)Jrz7). (B100)
Correspondingly,
Dao=(ma"" —ma, V2[gs" —ga(1—ga®)Irrt,
V2[ga" —ga(1—ga®)Jrz7). (B101)

Thus D, involves differences such as
(ma"" —ma)— (m" —m).

We can use the bound on Dy, to prove the inequalities
of Eq. (5.37) (the first inequality of Theorem 4). In
the notation of this appendix the quantity di is
defined as

(@)= (ma’—m'y+2(ga"—g')*,  (B102)
where

m' =cos’ =m"" [ (m'"*+2¢"2)112, (B103)

g =sind' =V2g" /[ (m'"*+2¢""*)12, (B104)

and analogous formulas hold for m4’ and g4’; 6’ is the
angle in the decomposition of 7'(H) [cf. Eq. (B25)].

To get bounds on dy requires some further manipu-
lations which are most conveniently done with another
set of vectors. Define the following two-dimensional
vectors:

x=(m,V2g(1—g%), (B105)
X" =(m"~N2g"), (B106)
X' = (m'V2g), (B107)
and analogously for x4, x4", and x,4’. Define
£=|x|"x, etc. (B108)
Then
xX'=8", x4/ =8," (B109)
Now one has
di=|x4"=%X'| = 24" —2"] . (B110)

The bound di’ will be computed in two parts, first
relating £4”—4&"" to £4—4& and then bounding £, —2.

Write

¢=|24"—2"—24+2|, (B111)
Y=|ds—2|. (B112)
Then
Y—¢<di/'<¢+¢. (B113)
To compute ¢, it is convenient to let
t = (cosw, sinw) ,
£ = (cosw, sinw) (B114)

fﬁA = (COSCOA, sinwA) B
and m=cosf, V2g=sinf, m, = cosl4, V2g=sinb,. Then'?
w=tan [ tanf(1—% sin2d) = /()  (B115)

1 The function f is not the function defined in Sec. V.
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and wa is f(64). The derivative f/(6) has the form

F(0)=N(y)/D(y), (B116)

where
y=sin2f, (B117)
N =1-3y—y(1-y), (B118)
D(y)=1—y+1y*. (B119)

Analyzing the form for f’(6) one sees that the numerator
N decreases for 0<y<$2 and increases for $<y; the
denominator D decreases over the whole range 0<<y<1.
Therefore one has the following bounds:

N(0.75)/D(0)< f'(6)

<max{N(0)/D(0.75),N(1)/D(1)}. (B120)
Evaluated, this gives
0.4375< f"(6) <2. (B121)
Hence by the mean-value theorem,
0.436]04—0| < |wa—w|<2]|04—0|. (B122)

Now the definitions of dy and ¢ are equivalent to

di=1|2sini(04—0)], (B123)
¥=|2sind(ws—w)]. (B124)

One can show that
(sinaz)> a sing (B125)

when 0<z<4w and 0<a< 1. The result of Eqs. (B124),
(B122), (B125), and then (B123) is

¥> |2 5in0.218 (0, —6) | >0.436d,
[2=0.5(6.—6)], (B126)

¥<|2sin(04—6)|<2d; [az=0.5(84—0)]. (B127)

The next step is to bound ¢. It is convenient to define

g(x)=¢%. (B128)
Then
P 1t+¢s, (B129)
where
b1=g(x4s")—gxa+0x)[, (B130)
b= |g(xa+3x) —g(x+5x) —g (x4)+g ()|, (B131)
and
ox=x"—x. (B132)
Now by the mean-value theorem
$1<max(0<A< 1) [8e,- Vg (x4 —NX,) |, (B133)
where
0%, =%X," —x" —x,4+x, (B134)

and by a second-order mean-value theorem

$2<max(0<A< 1, 0< <)

X | (0x- V) (%a* V)g (x+Nx+ux,) |, (B135)
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where

X,=X4—X (B136)

(and 8x-V acts on g, not on x,-V). From Egs. (B56),
(B57), (B78), (B105), and (B106),

|ox[ <0.005,
and from Eq. (B99),
|6%, | < (7200A~'dy+16A71dy) .

(B137)

(B138)
Furthermore,

[Xa|?= (ma—m)*+2(ga—g)* (1 —ga*—gag—g")?*, (B139)
and since g4 and g are less than 1/V2, one has

—i<(1—gl—gag—gH<1. (B140)
Therefore

Xa|2< de2. (B141)

Now let y be an arbitrary vector; one can most easily
compute 0%, Vg(y) and (6x:V) (X, V)g(y) using a co-
ordinate system with the first parallel to y. If éx; and
dx, are the components of éx parallel and perpendicular
to y (and likewise for xa1, etc.), one has

0%, VE(¥) = (0,0xa |y |™) (B142)
and
(6X : V) (xa . V)g (Y) = (_6xlxa1 l y | _2’
— (Swixart+0x2a10) [y ). (B143)
In absolute value
| (0% Vg | < [6xa] [y |, (B144)
| (0% V) (xa- V)g(¥) | < (2/V3) [8x| | x| [y 2. (B143)

The second inequality is proved using the relation

2%411% 61021102, <5 (0X11%011)?

+%[(5§Cnxa1)2+ (Bxlxan)hi— (Bxlxal)ﬂ . (B 146)

To use the bound (B144) to obtain a bound for ¢,
[cf. Eq. (B133)], one puts y=x4" —\6X,; hence

[y [P < (x4 | = |oxa )7 (B147)

Now [from Eq. (B137) and the analogous bound for
%4 —%4]]
|6x,]| < |ox| 4 |x4" —x%4] <0.01 (B148)

and [x4"|>0.49 from Eq. (B67) (which holds for |x,"|
as well as |x”|). Thus (remember that A>4X108)

$1< 2.1(7200A7d;+16A1d5) < 0.004d;4-10-%d5. (B149)
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To get a bound for ¢, one uses Eq. (B145) with y being
(1—w)x+ux4+Nox. Since x-x4>0 and since p and
1—pu are non-negative,

[ (1 —wxtuxa 2> (1—p)?|x |22 x4 |2

But [x| and |x4|, and (1—u)2+442, are all larger than
or equal to £. So

| (1 —w)xtuxa| > 1/+/8.
ly|>(1/4/8)—0.005>%. (B152)

Hence from Egs. (B135), (B145), (B152), (B137), and
(B141),

(B150)

(B151)
Hence

$2<6V3|8x| |x,] <0.0524;. (B153)

From Egs. (B113), (B126), (B127), (B129), (B149),
and (B153),

0.38d1—107%d,<dy' < 20d+107%d,, (B154)

which is the first inequality of Theorem 4.

To obtain the second inequality of Theorem 4, one
starts from Egs. (B26), (B27), (B52), (B53), (B106),
and the corresponding equations for A4/, etc., from
which one can obtain

Apa’— Ay = (|22" | 2= X" [ ) Darsa

+ x| Day,1, (B155)
CkA,—C]cI=A(IXA”l~1—IXIII_I)FA]H_]_
—A|X" | WFopr. (B156)

Now, from Egs. (B67), (B134), (B136), (B138),

and (B141),

= | —
<|xa”—x"||x4" |7 x| 1< 4.07 | 6%, +%, |

<4.07(d1+7200A7'd1+16A7dy).  (B157)

From Table V, D41 and F 451 have bounds
[D 451l < 40uA—*1, (B158)
|F apsa]| <40A22, (B159)

From Egs. (B155)-(B159), (B67), and (B99), one gets
|4’ —Ax|I< (1100d:40.06d5)ud=1,  (B160)
| Cra’ —C'|| — (1100d,40.06d:) A2, (B161)

which proves the second inequality of Theorem 4.



