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The virtual charge and current densities illustrate
new, previously unnoticed consequences of the dragging
of the inertial frame. The interpretations thereof given
above are made possible by the fact that these e6ects
are related to the first derivatives of the metric tensor—which can be proved in all generality. " Further-
more, these concepts are entirely general and can be
applied to any rotating metric with a superposed mag-

"F. Occhionero (unpublished).

netic field; in fact an application of p, to the Kerr
metric" is possible. In relation to direct measure-
ments of p, and g'„ the best chances seem oGered by
pulsars, within the current model, and, because of the
sharp radial dependences of (9) and (14), consequences
will possibly be felt by the surface-emission theories. "

I am indebted to Dr. J. M. Bardeen, Dr. H. Y. Chiu,
Dr. M. Demianski, Dr. P. Goldreich, Dr. H. Heintz-
mann, Dr. M. A. Ruderman, Dr. E. E. Salpeter, Dr.
E. A. Spiegel, and Dr. C. V. Vishveshwara for criticism
and discussions, and to Dr. Robert Jastrow for his
hospitality at the Institute for Space Studies.

~ R. P. Kerr, Phys. Rev. Letters 11, 522 (1963).
"H. Y. Chiu and V. Canuto (unpublished).
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Previous work on the gravitational two-body problem is surveyed. Next, we present a new approach,
which we consider to be simpler and more transparent than the usual methods because it is based on a
gravitational potential energy. This enables us to carry out our calculations using only the familiar tools
of Newtonian mechanics and the Euler-Lagrange equations. Starting from a gravitational potential energy
derived from Gupta s quantum theory of gravitation, the classical motion of a spherical gyroscope in the
gravitational field of a much larger mass with a quadrupole nioment is found. The results of the precession
of the spin are compared with those of SchiÃ, and a detailed derivation of the results of 0 Connell for the
effect of a quadrupole moment (and higher moments) on the precession of the spin is presented. ln addition,
we present some new results. First, we show that the quadrupole moment manifests its presence in another
way, which also contributes to the precession of the gyroscope a term that is about ten times larger than
what could be detected. Second, with regard to the precession of the orbit, in addition to the usual contri-
butions, our results include the effects of the spin of both particles (which enables us to calculate the effect
of the rotation of Mercury on the precession of its perihelion).

I. INTRODUCTION

'HE gravitational two-body equations of motion
without spin were first derived by Einstein,

Infeld, and Hoffmann' using a very lengthy and dificult
procedure. A somewhat simplified procedure was used

by Fock' and further developed by Papapetrou and
Corinaldesi' 4 who derived equations of motion of

bodies with spin. Later Corinaldesi, using the quantum
theory of gravitation first developed by Gupta, ' de-
rived the Einstein-Infeld-Hoffmann equations of mo-
tion from the one-graviton-exchange interaction.

In this paper we shall be interested in deriving the
equations of motion of particles zoic spin using the
quantum theory of gravitation. For mathematical

~ A. Einstein, L. Infeld, and S. Hoffmann, Ann. Math. 39, 65
(1938).

' V. A. Fock, J. Phys. USSR 1, 81 (1939); The Theory of SPace
Time and Gravitation, 2nd revised ed. (Macmillan, New York,
1964).

e A. Papapetrou, Proc. Roy. Soc. (London) A209, 248 (1951).

4 E. Corinaldesi and A. Papapetrau, Proc. Roy. Soc. (London)
A209, 259 (1951).

' E. Corinaldesi, Proc. Phys. Soc. (London) A69, 189 (1956).
' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161 (1952);

A65, 608 (1952};Phys. Rev. 96, 1683 (1954); Rev. Mod. Phys.
29, 334 (1957); Recent Development in General Relativity (Perga-
mon, New York, 1962), p. 251; Phys. Rev. 172, 1303 (1968).
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simplicity we shall con6ne ourselves to the case where

one mass is much greater than the other and only the

heavy mass has a quadrupole moment,
Our procedure is different from that used by

Corinaldesi' in his calculation of the equations of
motion of nonspinning particles. The essence of our
method is the use of a potential~ derived from Gupta's
quantum theory of gravitation. The Lagrangian follows

almost immediately, and then using the Euler-Lagrange
equations, we obtain —in a manner which we consider
to be simpler and more transparent than the usual
methods —the equations of motion. In particular, we

treat two important consequences of general relativity.
First, we derive the precession of the spin of the lighter
mass (a gyroscope) and compare our results with those
of Schiff. .' Pustovoit and Bautin' have also considered
the problem. of the precession of the gyroscope. How-

ever, their starting point is the Lagrangian for a non-

spinning particle, which they generalize to include spin

by an integration over the volume of the moving gyro-
scope. By contrast, in our method the effects of spin
are included ab initio. We also derive in detail the re-
sults of O' Connell' for the effect on the spin of the
gyroscope due to an arbitrary multipole potential (a,nd,
in particular, a quadrupole potential) of the heavy mass.
Second, we derive the precession of the orbit and, in
addition to the well-known Einstein and Lense-
Thirring" contributions, we obtain the contribution of
the spin of the light mass, which we apply to a calcula-
tion of the effect of the rotation of Mercury on the
precession of its perihelion.

II. LAGRANGIAN FOR TWO SPINNING BODIES

correct to first order in G. We thus have
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We can obtain the classical result from the above by
letting ~he('~ ~ S(" —Ae(') —+ S('&, and dropping the
contact terms; S'" and S(" are the classical spin angu-
lar momenta of m~ and m2, respectively. Let us also
make the large mass approximation, m2)&m~. With this
approximation we get, correct to zeroth order in w'/c',
P= m&v, where v is the velocity of the first particle. We
then have

Consider two particles of spin ~ and masses m~ and
m2 with a center-of-mass momentum P for the first
particle. An expression for the Fourier transform of the
gravitational potential energy V(k), correct to the first
order in the gravitational constant G, has already been
obtained. "In the nonrelativistic approximation (where
sz] c &)P 7 ~2 c ))P ) and the N ewton jan and first
relativistic terms are kept), the gravitational potential
energy itself, which we denote by Vi(r), has also been
obtained. "The subscript in Ui(r) indica. tes that it is

'B. M. Barker, S. N. Gupta, and R. D. Haracz, Phys. Rev. ,
149, 1027 (1966).

L. I. Schiff, Proc. Natl. Acad. Sci. U. S. 46, 871 (1960); in
Proceedzrlgs oI the Theory of Grav@atioe, edited by L. Infeld
(Gauthier-Villars, Paris and Warsaw, 1964), p. 'l1.

V. I. Pustovoit and A. V. Bautin, Zh. Eksperim. i Teor. Fiz.
46, 1386 (1964) LSoviet Phys. JETP 19, 937 (1964)j.

"R.F. O' Connell, Astrophys. Space Sci. 4, 119 (1969); Nuovo
Cimento 1, 933 (1969); for the effect of the Brans-Dicke theory,
see R. F. O' Connell, Phys. Rev. Letters 20, 69 (1968)."J.Lense and H. Thirring, Z. Physik 19, 156 (1918).

"See Zqs. (27)—(34) of Ref. 7 and also the notation oi Ref. 7.

3(S&'i r) (S&'i r)

(X S'il. S(si (2)
r2

The Lagrangian" can then be written as

2 = Zi„.—Vi(r) . (3)

where m~ is the relativistic mass of the erst particle in

"What we are actually starting with is the Hamiltonian as
a function of r and P such that 3!(r,P) =Kg (r,P)1V(r,P) and
then going to the Lagrangian as a function of r and v such that
Z(r, v) = 2& (r,v) —V(r,mIv)+higher-order terms that can easily
be shown not to contribute to the results of this paper.

In order to find Z~„, it is convenient to find BC~„, first.
The fact that we are using a large-mass approximation
in the center-of-mass system ensures that the heavy
mass m2 is at rest. The term m~c' may thus be considered
as a constant (as the rotational angular velocity es&'i

for the heavy mass does not change) and may be
dropped from 3C~„,. We then have

Xi...=mtc'(I —v'/c') '",
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its rest frame. Let m01 be the mass of the first particle
in its rest frame when it is not spinning. If the first mass
is spinning with an angular velocity u„,t,

(" about an
axis through its center-of-mass which is at rest, the
energy of the body is given (to order needed) by

01C M2 ~ motrin restK'(1) 2 I 1 ~ &'I2 (1)2

which depend on u(". These terms may he written as

Gm2
t. &'(~y.

2 c' c'r

+XJ())(d(i)4/cs I(&)~(i) .Q (12)
where

+-,' P m„r,"'~„,„&')'/c', (S)

I&') =P m();r'" and J"&=P m();r;."', (6)

where mo, is the rest mass of the ith particle in the first
body and r;" is the distance of the ith particle from the
axis of rotation. If we now define

Q =Qns+QLr,

3Gm2
Qns =— (r&& v),

2c r

G 3r(S "& r)
T= S (2)

c2r3 r2

(13)

we obtain

mi —jv(i)/c~ = m + iI(()~ „(l)2/c'-+ sJ (()~ ())%4 (7)

The relation between ~(" as measured in the system
where the first particle is moving and or„,t") as mea-
sured in the system where the first particle is at rest is
given by

M (1 ~= (1 v2/c2) 1M(1)

Then using (7) and (8) in (4) we obtain, to the order
required,

and QD8 and Qi,T are called the de Sitter' and Lense-
Thirring" terms, respectively. Using the space axes, we
can write""

(d~&') = 8'" cos$")+P&') sin8&'& sing&')

cov,
&'& = 8&'& sing&" —P&') sin8&'& cosP "&

cv ( ) =P(i) cos8& )+Q( )

(16)

where P&'), 8"', and P(" are the Euler angles represent-
ing the orientation of the light mass m01. We shall
always use a dot to denote differentiation with respect
to time. Lagrange's equations for these angles can be
written as"

X( ——mo)c'+-'I"'co")'+-'moiv'+-'I(')co &')'v'/c' Gm2—I&"~&" 1+——++ ssJ&i)co(')'/c'+ ssmoiv'/c'. (9) 2c cr
The corresponding Lagrangian is given by

Z = —m c'+-'I&"co&')'+-'m v'+-'I")(d&')'v'/c'

+g' I(i)co &"'/c'+-s, moiv4/c'. (10)

Using (7) and (8) in (2) we obtain

Gmo lm2
v,(.) =

r 2mo1c2 2 c 2

3Gm2 2Gmp1
+ S"& (r)&v)+ — S&') (rXv)

2c2f 3 c2r3
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c2r3

~

~
~
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We may use S&"=I&i)~&') and S&') = I&')~&" in Eq. (11)
and be correct to the order that we need. Equations
(10) and (11) may now be combined as in (3) to give
the total Lagrangian Z.

III. PRECESSION OF SPIN

For the precession of the spin of the lighter ma, ss, we
need only those terms in the Lagrangian of Eq. (3)

J(1)~(1)~(1)
—I&))e

2 c

=Q&&(l&"~&"). (17)

If 7. is the proper time as measured by a clock moving in
the satellite which contains the lighter mass, we have
the relation between t and r given by'

dt 1 e2 Gm—=1+-—+
2 c'

which is just the first round bracket of Eq. (17).Let
us now define uo") by the rela, tion

(1)— (1)

dT

W. de Sitter, Monthly Notices Roy. Astron. Soc. 77, 155
11916};V'7, 481 (1916}.

5 H. Goldstein, Qussicct M echumics (Addison-Wesley, Reading,
Mass. , 1965), p. 141.

p Lagrange's equation for @(') gives the s component of Eq.
(17).

'This is obtained from the relation Zp ———1ftp1c'dv/dt, where
Zp is the Lagrangian of a nonspinning particle of mass mp1. Thus
the right-hand side of Eq. (18) follows essentially from Eq. (3)
by setting u(') equal to zero.
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which means that uo(" is the angular velocity as mea-
sured by a clock moving with the lighter mass. Note
that ao") refers to the angular velocity in the presence
of the gravitational field whereas (p„,p(') Lsee Eq. (8)$ is
de6ned in the absence of the gravitational 6eld. As the
canonical momentum P&(» is the s component of the
expression in the square bracket in Eq. (17), a natural
definition for So(') is

(1) I(1)~ (1)+1(J(1)~ (1)2~ (1)/c) I(l)~ (20)

where we have made use of Eqs. (18) and (19).We thus
obtain

(21)S,('& = a && S,('&,

which agrees with the result obtained by Schiff, ' or,
explicitly,

I (1)p'p (1)+J(1)A (1) . pp (1)A (1&/c2

+~I (r)p («&p /c —I Q
= Q)& (I(1&pp ('&) (22)

Using Eq. (22) in itself, the terms involving J('& can be
dropped because they are of higher order. This gives us

I('&p'pp('& = QX (I('&ppp('&)+I("Q. (23)

Eq. (23) can also be put in the alterna, tive form in

terms of u(') rather than ~0(') as

In order to obtain the secular precession of the spin,
we must average Eq. (23) or (24) over a complete
Newtonian orbit. The averaging process is quite
straightforward and we have included a useful table of

average values in the Appendix. Any term that is a time
derivative of some quantity will have a zero average
value. As a consequence of this we obtain immediately
from Eqs. (23) and (24)

~0 av= ~ av ~
(&) —' (&)

We further obtain from Eqs. (13) and (23)

I'(1)pp(1) =~y (I(1)pp(l))+I(1)~

d dt
+ —I")pp('& 1 —— . (24)

df— dT

mentum I. is given by

L/mpl Gm2 ')2 2m.

(12(1 e2) 1/2 gp
(30)

where r; is the distance from m2; to the gyroscope, r is
the distance from the center of mass of m2 to the gyro-
scope, and r is the distance from the center of mass
of m2 to m2;.

In the potential Vl(r), with S('&=0 as we are not
interested in the Lense-Thirring term here, we have
only the two terms Gmp/r and Gmpr/r' which must be
generalized. We thus obtain

G»(r')
d V'=y(r),

J
r —r'J

(32)

Gm2 Gm2r—V

Gp2(r') (r —r')
+&(r) (33)

r —r' '

where T is the period.

IV. MULTIPOLE EXPANSION OF POTENTIAL

The sects of the nonspherical heavy mass on the
precession of the spin of the gyroscope has already been
investigated by one of us. "We wish to present here
a detailed derivation of these results, ' and in addition
to present some new results. We will show that the
quadrupole moment actually affects the precession of
the gyroscope in two ways. First of all, there is a direct
effect, " and second, there is an indirect eBect which
manifests itself only when the principal term (i.e., the
de Sitter term) is aver(Jged over a period of the motion.
We are interested in a generalization of the de Sitter
term only as this is the only case of pra, ctical impor-
tance. I.et us divide the heavy mass m2 into a number
of smaller masses m~; such that

where
~0 av= @avX0~ (~) (l)

Qav =+DS av++ LT av r

(26) where p2 is the ma, ss density for the heavy mass. Using
Eqs. (32) and (33), we obtain the generalizations of

(27)
V,(r) and Z(~(')) as

3GLm2/ml
&Os av= ——

2c2ap(1 -e)'(' (28)

1(&)(g(&)2 3
V, (r) = —n&„a(r)(1+ + ——

2mocc' 2 c'
+S('& 0, (34)

-(nn' —3(n n"')n), (2&&), &,&, ,I&,) &,) (, ",
)2c2gp(1 e2)2)2

2 c' c'

and e is the eccentricity; u is the semimajor axis; n('),
n('), and n are unit vectors in the S('), S('), and L
directions, respectively. Also, the orbital angular rno-

] J(&)~ (&)4

+ —— = —I"&~"& Q (35)
8 c'
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where
3

Q= ——Vg(r) Xv=-
C2 C2

where n(~& is a unit vector in the direction of the
perihelion. Setting e= 0, we obtain the result for a circu-

36
lar orbit as

dt 1 ii' y(r)=1+ +
d7 2C C

Xn —(n&'i n)n&'&) (46)
(37)

As we are interested in results correct to the 6rst
power of J2, it will not suffice to average QD8 over an
elliptic orbit. Ke must average Qos over a distorted
elliptic orbit which is the result of using the complete
Newtonian potential energy —mph(r). We will con-
sider two types of orbits for which the plane of the orbit
does not change its orientation in space and so a
"period" is a readily definable quantity: (a) a distorted
circular polar orbit (the polar orbit is of particular im-
portance because this is the orbit selected for the
Stanford experimental test, "' primarily because it
enables one to measure Qns and QLr separately), and
(b) a distorted circular equatorial orbit. We have
averaged QDs for these two special cases.

Thus the equations for the precession of the spin are
still of the same form as Eqs. (23) and (24).

If the heavy mass has an axis of symmetry in the n('&

direction we can expand ~ft(r) as"

|m2 I
4&rl = — 1 ——JA — I,P, . ), —&Sti-

r r2 r8

where the J's are constants and the P's are Legendre
polynomials. Restricting ourselves to the quadrupole
moment contribution (which turns out to be the only
one of significance as far as the precession of the gyro-
scope spin is concerned), we can write Q(r) as

and f= Vg(r) is the Newtonian force per unit ma, ss. The 3GLnsp/nspg 3Jp
RV

relation between t and ~ is now given by 2c~a3 2a~

Gm, GJ,m, 3(n&" r)'
+ -1-- - -, (39)

r 2r3 r'

J,= p, (r')l r"—3(n&'i r')'jdV'. (40)
2m2

Using Eq. (39) in Eq. (36), we obtain

A. Distorted Circular Polar Orbit

From the Lagrangian

Z = r reer(r'2+rp&t'p)

Gmpgm2 GJ2mpgm2
+ —+ (1—3 cos'g), (47)

2r3

where

Q= QDs+Qq, (41) where @ is the angle between n&-' and r and 0&@(27r,
we find the solution

3gmg
&ns = (rxv),

2c2r 3
(42) r= a—(J,/2u) cos'(&oi),

@= &ot (Jp/8a') si—n(2&pi) .
(48)

36m2
Qo = (RXv),

2c r
ln the above, a is a constant and &o is the average
angular velocity. Ke also have

3J,— (n&'i r)' 3J2
R= — 1—5 r+ —(n&'i r)n&2&. (44)

2r2 r2 r2

Fquations (43) and (44) agree with the results of
O' Connell. "

Averaging over an elliptic orbit, we find

&o = 27r/T = (Gmp/a') 'i'. (49)

&equatorial =
&tp rpoler = &t JS/2Q . (50)

Notice that our definition of the constant u is such as
to ensure that Kepler's law holds in its normal form, as
in Eq. (49). From Eq. (48), we have

3GLipe2/mor 3J2
(L—(4+e')

2c'a'(1 —e') "' 16u'(1 —e')'

Noting that

lrxvl/r'= j/r,

+(20+15e2)(n&» n)2 —10e'(n&» n&~i)']

Xn —(8+2e')(n&» n)n&» —20e'(n&'& n&~~)

X(n&'& n)n&~&), (45)

~ By this definition Jq will be positive for an oblate spheroid.

rp C. W. F. Everitl and V. M. Fairbanks, in Proceedirtgs of the
Tenth International Conference on Low-Temperature Physics,
Moscow, Z966, edited by M. P. Malkov (Proizvodstrenno-Izdatel'-
skii Kombinat, VINITI, Moscow, 1967).

20 . M. Fairbank, in Proceedings of the Eleventh International
Conference on Low-TenzPerature Physzcs, edited by J. F. Allen,
D. M. Finlayson, and D. M. McCall (University of St. Andrews
Printing Department, St. Andrews, Scotland, 1969), pp. 14, 15.
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and using Eqs. (42), (48), and (49), we obtain

3Gm 2' J2
@AS av= ' 1+ 11.

2c'a 4u'
(52)

where Vr(r) is given by Eq. (11),

G2m01m2"
V, (r) =—

2c r
(61)

GJsmsrms 3(n&'& r)'
Vq(r) = — — —1

2r2 r2
(62)

3Gm2~ 3J,
Qg, = — — - D.

2c2a 4a2
(53)

The V&(r) term" was not necessary for the precession
of the spin since it is not a function of u(').

Using the above Lagrangian, Eq. (59), we find by the
use of the Euler-Lagrange equations that the equations
of motion can be put in the form

Note that the magnitude of the direct quadrupole-
moment effect, as given by Eq. (53), is of the same order
as the indirect effect, as given by the second term in Eq.
(52). This will be true in general.

v+Gm&r/r'= B, (63)

and
For the special case of the polar circular orbit, Eq. (46)
reduces to

B. Distorted Circular Equatorial Orbit

From. the Lagrangian

Gm01m2 GJ2m01m2
Z =-,'m„(r'yr' j')y —+ — (54)

r 2r3

where

ancl

B(&)—

B=- B&E)+Bl&)+B&2)+B&1,2)+B&Q)

Gm2 4Gm2r
— —s'r+4(v r)v

c'r' r

(64)

(65a)

where 0(g& 2x, we find the solution

r= u+ Js/2u, Q=cof,

and Eq. (49) holds here also.
Using Eqs. (42), (55), and (49), we obtain

(56)

3Gm2
B&'&= {-'LS&'& (r)&v)]r+r'S&'»&v

c'r'mp1 ——,'(v r)S&'»(r}, (65b)

4G
B&2) — (s(S&2) . (r)(v)gr+r2S &2) yv

c2r5
——,'(v r)S&")&r), (65c)

For the special case of the equatorial circular orbit, Eq.
(46) reduces to

3G
B&' "=—— L(S"' r)S&'&+(S "& r)S&'l —(5S &&r).

c'r'm01
3Gm2co 3J2

Qg,~= Q.
c2a 2a2

For the case of the earth, we have"

(57)

B(Q)—

)&(S"& r)r/r'+(S&'& S&'&)rj, (65d)

3GJ2m2

2r'
Js/R' = (1082.64&.08) X 10 ', (58)

where E. is the earth's equa, torial radius. Hence 0@
10 'QDs, for a gyroscope in orbit close to the earth.

For a gyroscope in a circular orbit 300 miles above the
earth Qns, » 7"/yr and thus Qo, 0.01"/yr. Since
measurements accurate to 0.001"/yr will be feas-
ible'0 by use of the London moment-readout technique,
we see that the quadrupole-moment contribution is
about 10 times larger than what can be measured.

V. PRECESSION OF ORBIT

with

Z =- Z&„,—V(r),

V(r) = Vr(r)+ Vs(r)+ Vo(r),

(59)

(60)

"D. W. Smith, Planet. Space Sci. 13, 1151 (1965).

For the precession of the orbit, we shall use the
Lagrangia, n

5(n&'& r)'
— r+2(n&'& r)n'" (65e)

r2

B thus represents the correction to the Newtonian force
per unit mass demanded by the general theory of
relativity.

For a Newtonian elliptic orbit around a spherically
symmetric body, the energy E, the orbital angular mo-
mentum L, and the Runge-Lenz vector A are constants
of the motion. They can be written as

E=mot(v'/2 —Gms/r), (66)
2~ This is not one of the higher-order terms mentioned in fppt-

note 13. For a classical derivation of this term (for nonspinning
particles), use the Lagrangian 20= ma&;( g„,x—l'i")'&,—where g„„
is the Schwarzschild solution expressed in isotropic or harmonic
coordinates, and then expand 20 as a power series in G an&i ss/q'.
Qpte that the Geld theory results are derived in the harmpnic
coordinate system6' and, in addition, this system is identical arith
the isotropic system up to terms of order Gas/c' or G'.
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L= mor(rXv),

A=morr vX(rXv) —Gm, r/r$.

(67)

(68)

We can write 0* in the form that the astrononiers or
experimentalists use as

Taking the time derivative of Eqs. (66)—(68) and using
Eq. (63), we obtain

E=mpt(v B), (69)

L= mp&(r XB),

A= morLvX (r XB)+BX(r Xv)j.
(70)

(71)

Explicitly writing Eqs. (69)—(71) with the values of Eq.
(65) leads to rather lengthy expressions. The results
that are of interest are the secular results, the time
average of Eqs. (69)—(71) over a complete ellipse. After
a rather lengthy calculation, we find that

(72)

dQ' dho' d3' (n")Xn)
U*= — n("+ — —n+-

dk d/ d/ (n(3)Xnj
(77)

where

n('& = (rn(')+ pn+y(n(') Xn)/~ n('& Xn ~, (78)

where 0', cv', and i' denote the longitude of the ascend-
ing node, the argument of the perihelion, and the in-
clination of the orbit, respectively, in the heavy mass's
equatorial system. "'4 The terms Q(~' Q(') and Q()
depend only on n"' and n, but, since the presence of
(n(3) Xn) in 0*is necessary to change the inclination of
the orbit, it follows that these terms do not cause the
angle i ' to change. The terms Q "' and Q "" depend
also on n('), which can be written as

where

L,~= Q*XL,

A~v= Q*XA,

(73)

(74)

(r= Ln(') 11("—(11(" n)(n(') n)j/Li —(n, (» n)3)

p= (n(".n —(n('& 11('))(n('& n) j/L1 —(Il('& n)') (79)
y=n(') (n(')Xn)/~n(»Xn~ .

a*=a(E)+e(»+ a(')+ e('»+ a «), (75)

Q(") and Q'~) are
corresponding to B, B, B, B
respectively. The final form is

the results
and B«),

3GLms/m or
Q~~) = — n=2QDg, ,

c2(33(1 c2) 3/3

3GS(')ms/mpr
Q(') = Ln(') —3(n n('))n7,

2c2g3(1 c2) 3/3

(76a)

(76b)

Q&»=
2CS&»

[n(3) —3(n. n('-&)nj
3(1 cp) 3/3

=4Qz, T. , (76c)

3GS(l)S(3)/I
~(&,» = — ((n n('&)n('&+(n n"')n(')

2cpa3(1 —ep) 3/3

Q(Q)—

+Ln(') ~ n(3& —5(n n('))(n n(')) jn), (76d)

—3GmprmsJscs/I-

4 3+3(1 &3)3/3

X(2(n.n(»)n(')+L1 —5(n n(3))3]n) . (76e)

The factors jn Eq. (76) can be altered in various ways

by using the relations of Eq. (30). The term Q(E) gives
the familiar result of Einstein, while the telnl Q(-') was
first given by Lense and Thirring. "The term due the
quadrupole moment, Q(), is also a standard result.
The terms Q&') and Q(' "are new results. As Q* is the
same for Eqs. (73) and (74) the ellipse precesses as a
whole with the angular velocity 0*.

Thus the terms Q&') and Q(' ') can cause a change in
the inclination of the orbit.

We will now apply our result for Q'" to a calculation
of the effect of the rotation of Mercury on the preces-
sion of its perihelion, i.e., the effect of Q"' on the angle
(o'. Now it is clear from Eq. (76) that 0(&)/0(3) is of the
order of magnitude of (E(')/E('))' where 8(" and E(')
are the radii of masses mo& and m2, respectively. In the
case of Mercury (mpt) and the Sun (ms), we have

g (t)/g (3)—3 6X 10—3 (80)

and since the Lense-Thirring term Q(" only contri-
butes about —0.003"/century to the precession of the
perihelion, it is clear that the contribution of Q(') is
negligibly small. The situation will be similar in the
case of the precession of the gyroscope around the
Earth. Due to the presence of the factor S(')/I. in the
ratio fl(' ')/Q(3), it is clear that the contribution from
Q(' " is even smaller still. For the same reason, the
effects of Q(') and Q" ') on the angles 0' and i' are
negligible.

VI. CONCLUSION

By using a potential'2 derived from the quantum
theory of gravitation, we have found the classical mo-
tion of a spherical gyroscope in the gravitational field

~ Whereas observations of Earth satellite orbits are referred
to the Earth's equatorial system, it should be noted that the
observations of all planetary orbits are described with respect to
the equinox and ecliptic of a given epoch. A discussion of this
point as well as details of the equations needed to transform from
the Sun's equational system to a system based on the equinox and
ecliptic of a given epoch may be found in Ref. 24.~ I. I. Shapiro, Icarus 4, 549 (1965); R. F. O' Connell, Astro-
phys. J. Letters 152, L11 (1968).
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of a much larger mass with a quadrupole moment. Our
/method of derivation is shorter and more straightfor-
ward than that of Papapetrou and Corinaldesi" as we
have made use of familiar Lagrangian concepts.

We made the approximation of one mass much larger
than the other only for mathematical simplicity and to
be able to compare our results with previous results. In
fact, Eq. (1) from which we start has not been subject
to the large-mass approximation, and thus we could
have proceeded in the same manner without this
approximation.

For the precession of the spin, besides the usual de
Sitter and Lense-Thirring terms, we derived in detail
the effect of the quadrupole moment of the earth. This
result gives a contribution of about 0.01"/yr, which is
about 10 times larger than the expected experimental
error "

For the precession of the orbit, besides the usual re-
sults, we found the effect of the spin of the lighter mass.

Applying this to the case of Mercury we found that the
rotation of Mercury had a negligible effect on the pre-
cession of its orbit.
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APPENDIX

In calculating the expressions in Eqs. (28), (29),
(45), and (76), the time average value of a number of
quantities had to be determined. If we introduce a
special coordinate system so that the orbit is in the x-y
plane with the perihelion in the x direction and the
orbital angular momentum in the s direction, we obtain

(r '). = (r ')
e2(1 e2) 1/2

2+e
av

g3(I e2) 3/2 2434(1 e2) 5/2

av

2+3e' 8+24e'+3e4
av

2a'(1 —e') "" sa'(1 —e') '/'

(A1)

e e
(xr 4), = —, (xr 5), = —, (yr 3), =0, (yr 4), =0, (yr 5), =0, (A2)

2453(1 e2) 3/2 554(1 e2) 5/2

(x'r '),„=-
2u3(1 —e') "'

4+9e'

8g5(1 e2) 7/2

(y'r '). =
2/33(1 e2) 3/2

4+3e'
(y" ')-=

Suo(I —e') '"

(xyr ')„=0,

(xyr '). =0,
(A3)

(xx'r '). =0,

3eL/mo3
(xr '). =0, (I/r '). =—

2534(1 e2) 5/2

(xyor '), =0,
—eL/mo3

Sy" ')-= 5eL/mo7
(7/xyr '), =0,

8554(] e2) 5/2

7eI./mo3
(xxyr ')„=, (7/x2r '), =

gg4(I e2) 5/2 g/24(1 e2) 5/2

(A4)

(A5)

(A6)
(4+11e')L/mo3 (4+e')I/mo3-

(xxr-5) „=0, (y7/r 5),~=0, (xI/r 5), = — —,(yxr ), = ——

8g5(I e2) 7/2 8g5(1 e2) 7/2


