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ponservation of energy is well satisfied in our model
by having the mean multiplicity of pions as the ex-
ponent of the Poisson distribution. Compared with the
Fermi model, ' the calculation presented here is much
simpler because no tedious phase-space integration is
involved. Our model is expected to work well at cosmic-

~ E. Fermi, Progr. Theoret. Phys. (Kyoto) 5, 570 (1950).

ray energies too. Besides, one can use the model to
express all inelastic partial cross sections at various
multiplicities in terms of a single one. As the new high-
energy accelerators begin to accumulate data, our
proposal would provide a convenient way to systematize
high-energy data.

The authors woul. d like to acknowledge many en-
lightening discussions held with Professor C. P. Wang.
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We present a treatment of Ef3 decays based on current commutators and using a covariant sum-rule
formulation. Working in a general kinematical configuration and dispersing on a line (in the plane of the
squared pion mass and of the momentum transfer) which belongs to a family of curves all parallel to the
"steepest" (kaon rest frame) parabola, me write down de6nite expressions for the form factors 1+ and f .
The relation of our procedure to other recently reported approaches is discussed.

I. INTRODUCTION

K( FNTI Q, Adcmollo, Dcnardo, and Furlan, 1

using the techniques of Ref. 2, gave a generali-
~

~~

~~

~

zation of the Callan-Treiman soft-pion relation'
between the K~3 form factors and those of the axial-
vector decays of the E and m Inesons, in which the
pion IQass was cxtI'RpolRtcd to thc physlcRl value by
pcI'foI'Illlng R sRtuI'Rtlon of ccI'tMIl comD1utators ln the
kaon rest frame. In order to obtain expressions for the
Ets form factors as functions of the momentum trans-
fer, it is of course necessary to work in a morc general
kinematical con6guration. Onc posslblllty, Rctually used

by Dcnardo and Komen, 4 is to saturate the relevant
commutators by sandwiching them between the vacuum
and, 8, E-meson state of arbitrary energy E. The inter-
gration path is then a curve in the plane of the squared
pion four-momentum (g') and of the momentum trans-
fer (k'), which belongs to a family of parabolas (labeled

by E) always passing through the Callan-Treiman point
Lq'=0, k'=(kaon mass)'j. In this paper, applying the
generalized sum-rule formalism given in Ref. 2, wc
shall consider another possible way of getting the mo-
mentum-transfer dependence of the E)3 form factors.
In order to work covariantly, we shall. disperse on a line

* On leave of absence from the Institute for Atomic Physics,
Bucharest, Romania.

'M. Ademollo, Q. Denardo, and G. Furlan, Nuovo Cimento
$7'A, 1 (1968).

~ S. Fubini and G. Purlan, Ann. Phys. (N. Y.) 48, 322 (1968).
& C, 0, Ca]lan and S. B, Treiman, Phys. Rev. Letters 16, 153

(1966),
& (z, Dgnagdo and 6, J. Komen, Nucl. Phys. 814, 593 (1969).

belonging to a set of parabolas all parallel to the steepest
one (that corresponding to the kaon rest frame).

In Sec. II, we start from current- and field-algebra
commutators and we derive a set of sum rules, the
evaluation of which is treated in Sec. III, where we
find, in the one-particle saturation scheme, definite
expressions for the Ei3 form factors f+. An alternative
pI'occdulc bRscd on thc usc of dispclslon I clatloIis fol
f+ in k~ at q'= (pion mass)', together with a current-
algebra sum rule and a field-algebra (superconvergent-
type) relation, is developed in Sec. lV. The results of
this work, as well as its relation to Rcfs, 1 and 4, are
discussed in Sec. V,

In this section wc use the procedure proposed by
Fublnl RIld Furlan to derive sulTl I'ulcs foI' thc Invariant
weak amplitudes related to the Et3 decays in the same
way as it was done for axial-vector —nucleon-scattering
amplitudes in Ref. 5. We start by defining the quantities

T = d's e"'8(so)

&&&oIL~."'() i'. ' "(o)ll& (p)) (2 l)

U'„=i d's e*&'0(so)

&&&oILD "'& ),i".' '&(o)jl&-{p)), (2.2)
' M. Micu and E. E. Radescu, Nuovo Cimento 61A, 73/ (1969),
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~in absorptive partswith the correspon ing a

IS

ual rocedure:Eqs. (2.13) and (2.14) by the usua p

21''" s iv. ' "(0)]l
& (P)&, (2 1d4S e'2*(0

l
[Au&2i(S V~pv = r (x q") dx ,f—x—) (2.15)

2 2'v '""(0)]1lt (P)&I = — d's e'2v(0
l
[Dg&'&(s, v„Is

+00

r2(x,q") dx=o. (2 16)

Defining now

r„„=„„—+r2q„', (2.17)"u=Putuv riPuR.=p—T „=Rip„+R2q„, r„„=—„,— r2 „,
he Ward identityand using t e

~vTuv —V))+ 2firpu )

tor axial-vectortor a
' - weak cur-
'

ts. E uations (2.1)SU superscripts. qud b the 2 ts. u
and (2.2) reflect t e ra

V i~ '(k) and X (p) ' „,es ec-

We introduce, as i
t q' through the paramfour-vector q

q=xp+q', (q' p =0

k= (1—x)p —q'.

(2.18)
where

(23) V„=; d,
(2 4) '" O,~.v. ' "(—s)]l& (P)))&(Ol [Au "i(0),B,V„

= Vip„+ V2q„',
utation relatione ual-time commu a

'
Using the equa- u a

5(sp) [22&21(s,121, V ++i(0)]=ig„or

ard identity:ve the following Ward
' «"'(- )]I&-(p) &2)„=— ' —'"(Ol [A„"i(O,B„V.d s8

(2 6)
(2.19b)=viPu+i)2qu )

ubtracted dispersion re-under the hypo e ubtracte
lations in xg Bt fixed g OI'

obtaig. the following sum

(2.8), S,—U, ,f p

ondlng a soI'pand thciI correspon
'

gwhere E.p) 5p an on g
r s„have been de6ned asPp

(2.20)ri(x, q") dx= ,'fg, -

we ha

Apv) qutuv =2f»

where fir is de6ned by

(Ol Au ' "I& (P)&=2fSps.

can be written asThe Ward identity can
'

as

1 xr v+ Sv Sv)-—Z vp

R„=p„T„„, S„=q„'T„„,— (2.9a) r2(x, qi2) dx=0. (2.21)

(2.9b)rv= putuv) Sv:—qu —tuv ~

we have the follthe basis (p„q.'), we av
t amplit t1des:t'o lnvarlandecoD1poS1

alder the Ward iden 1 y obta1IledWe shall now consider e
vrith a double contraction

(2.22)

OW1Qg

q. ~ "= IV 'f~(I -P)+-S-.

Here we have denoted,

tiODS 1n

p+U = Uip, 2q. ,v
—

q

I
r) =riPv+r2qv )Ri v 2qv )R, p

Sv =SiPv+ S2qv ~S„=Sip„+S2q„, ()
(Dr'~+'== Buvu fair+& (2.23)ove areariant functions a ov

etc.]In terms oftaken to be x and q .

1

t functions, the ar
be split into the o owin

and 5 is the "0" term

(2.11)
"' s,Dr' "(0)]l& (P))w= d's e'&'0(se)(ol [Dg&21 s,

SR1 1= —— XP1+$1=N1 ~++1+~1 U1 2 Xp

S= d's e'"h(s, )(2.13)

(2.14)xr,+s2 ——cc2. '"(.) v, ~ "(o)]lz (p)) 4(2.24)y(olLD.

(2.25)

xR2+ 2 2)

2 22 can bc written as

=x 1-x)C—

u osing now that R1,

gP~V~N»=

Supposing no

d " the following sum6xCd
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where
~=P—.P T D= (P—.q'+P q') T

&= (q'—P q'—q') T", (2.26)

in the equivalent form

1 +"w+e —xd
dx=

& frets
x(x—1)

(2.27')

and we shall denote everywhere (as before) by small
letters the corresponding absorptive parts of the quan-
tities IV, C, D, and E (i.e., by w, c, d, and e). With the
same procedure, we get from Eq. (2.22) the following
sum rules:

c(x q") dx=-',fxm' (2.27)

fd(x q'P) +xc(x q'P)] dx =5. (2.28)

np(x, q'P) dx=0, (2.29)

Equations (2.15), (2.16), (2.20), (2.21), (2.27), and
(2.28) are consequences of the algebra of current
densities and the hypothesis of unsubtracted dispersion
relations in the variable x at fixed q", made for certain
weak amplitudes. Of course, not all these sum rules are
independent. For instance, it is immediately seen that,
in fact, Eqs. (2.15), (2.20), and (2.24) are all equivalent.

Further, we shall make use of the following set of
sum rules of superconvergent type:

1 +"w+e
dx= —' fxns'+5 (2.28')

(2.15/)

the arguments of the integrands being (x,q'I). For q'= 0
we have automatically $1=0, e=0, and d=0, and our
sum rules (2.15), (2.27'), (2.28'), and (2.29) become in
this ("collinear" ) case, respectively, Eqs. (31), (34),
(32), and (38) of Ref. 1.

The sum rules (2.15), (2.16), (2.21), and (2.29)—(2.31)
represent the basis of our further discussion. By picking
up the relevant one-particle contributions, we shall be
able to write down definite expressions for the physical
E~3 form factors.

III. EVALUATION OF SUM RUIES

To obtain an insight into the q" dependence of the
sum rules derived in Sec. II, we shall now start to study
the kinematics of the x integration at fixed q". The dis-
persion path is a parabola in the g', k' plane, dependent
on the parameter q" and given by the equation

($2 q2 ~2)2 —4~2(q2 q&2) (3 1)

ep(x, q'P) dx=0,

w(x, q") dx=0.

(2.30)

(2.31)

which can be obtained immediately by eliminating x
between the expressions of q' and k'= (P —q)', with q
and k parametrized as in Eqs. (2.3) and (2.4). In the
plane e, I, where

e—$2+ q2 gg
—$2 q2 (3 2)

Qle are postulating these sum rules, taking as a guide
the Bjorken procedure to find the asymptotic behavior
of U2, V2, and 8' for x —+~, controlled, respectively,
by the equal-time commutators Lcl„A „~'&,V;&x+&],

[3;&'&, c7 „V„&rc+&](i = 1,2,3) and fcj„A„&'&,cj„V„&~+&].(This
can easily be seen by specializing the considerations to
the rest frame of the kaon, wheny=0, qo'=0, q=g', and

qp =xmas. ) The Bjorken procedure, if these commutators
are taken to be 0 or c numbers (as will indeed be the
case, for example, in field-algebra models with partial
conservation of A„or V„, when the divergences can be
viewed as pseudoscalar or scalar fields), would predict
that U2, V~, and 8" vanish, when x~~, faster than
1/x, implying then the sup erconv erg ent relations
(2.29)—(2.31).

The sum rules derived or postulated in this section
represent a generalization to the general kinematical
situation of the results found in the collinear configu-
ration (q'=0) in Ref. 1. To visualize this better, we
rewrite, for instance, Eqs. (2.27), (2.28), and (2.15)

Eq. (3.1) takes on the form

e=e'/2m'+-', m'+ 2q". (3.3)

When q" varies, we have a family of parallel parabolas
whose common symmetry axis is the line N=O. For
q"=0 we get the parabola corresponding to the (kaon)
rest-frame saturation. This was the dispersive path
used in Ref. 1, and it passes through the Callan-Treiman
point t q'=0, k'=m', or, equivalently, I e=m' in=.

the (N, p) plane]. As shown in Ref. 1, where a full dis-

cussion concerning the frame dependence of the satu-
ration of an equal-time commutator in the case of three-
point functions has been given, the most general
dispersion path is a parabola in the (q', k') plane de-

pending on the external kinematical variables. The
parabola has a maximum curvature in the case of the
(kaon) rest frame and becomes a straight line (q'=0)
in the infinite-momentum system. Dispersing on the
steepest (rest-frame) parabola in Ref. 1, relations have
been obtained for the E~p form factorsat themomentum-
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s=u'/2m'+-, 'm'. (3.5)

From this point of view, our approach and that fol-
lowed in Ref. 4 are two different possible generalizations
of the results found in Ref. 1.

We shall now discuss the contributions to the inte-
grands in our sum rules. Following the results of Ref. 1,
the general structure of I,„,can be shown to be

&pv
=

&pv +&yv

(2ir)'
. LZ ~(~-p-)(0I&.&'&(0)

I )
2i n

transfer value k'=(m —p)'. To find the momentum-

transfer dependence of the form factors, it is necessary
to work in a more general kinematical situation. Our
procedure will consist in dispersing on a parabola
belonging to the family (3.3), depending parametrically
on q". This will allow us to obtain expressions for the
%~3 form factors working covariantly. Another way to
generalize the collinear configuration (q =xp) considered
in Ref. 1 has been used in Ref. 4, by particularizing the
considerations to the case q=o, when one has a set of
parabolas tangent to the infinite-momentum line (u =a)
in the Callan-Treiman point k'=m', q'=0 (u=e=m')
and dependent on the parameter E, the energy of the
kaon.

The equation of this family of curves is

s= u'/2E'+m'/28'+u(E' m')/E'—. (3.4)

Our set of parabolas LEq. (3.3)7 and, that given by
the above formula have in common only the steepest
parabola I obtained for &t"=0 from Eq. (3.3) and for
E=m from Eq. (3.4)7:

where we used the notations

(o
I ~."'

I '(v)) = i(f./v2) v. ,

&- (~)Ii."I~-(p)) =(1/~2) {f,L(p-~) 7(p+~).
+f-L(p —v)'7(p —v).) (3 9)

(3.8)

In connection with this pion contribution, we intro-
duce the following kinematical relations:

S(q2 —&2) = (1/2x.m') LS(x—x.)+S(x—x.)7
(@=pion mass),

x —=+I:(~'—g")/ '7'"= —* (3.10)

2 —(1 x )2m2+g~2 k 2 —(1 x )2m2+g12

It will be particularly convenient to keep for further
discussion the sum rules (2.29) and (2.31), and the
following combinations of the sum rules (2.16), (2.21)
and (2.27), (2.29):

I r2(x, &t'2) —Fg(x,q")7 dx=o, (3.11)

u2(x, q") dx, (3.13)

j. x 'm'
c(x,g")— —u2(x)q") dx=-,' fromm'. (3.12)

p,

(The other independent sum rules could provide some
helpful constraints, e.g., on the continuum contributions
to our relations. )

Picking up the pion contributions to Eqs. (2.29),
(2.31), (3.11), and (3.12), we obtain the following ex-
pressions involving f~(k, ') and f~(k '), respectively:

2D+(k-') —f-(k-') —f+(k-')+f-(k-') 7

&&&ul l'. & "(0)I& (p)) —Z e(v+p-)

X&0I l' ' "(0)lu lt (p))&ul~. "'(0)l»7 (36)

(2x)'
(„„"=——[—P 8(k —p )(OIV, &~ &Im)

2i

&((mid„&3ilE (p))+p 8(k+p )

x&OIA„&'~lmK-(p))&ml v, &z"&I0)7.

2 I:(m' —~')f+(k-')+k. 'f-(k. ')
—(m' —p') f+(k.') —k.'f (k„')7

m(x, g") dx, (3.14)

4Lf+(k-')+f-(k-') —f+(k.') —f-(k-')7

2$
I r2(x, &t'2) —F2(x,P)7 dx, (3.15)

lLf+(k-')+f-(k. ')+f+(k.')+f-(k.')7
The contributions to the sum rules can be computed
using the above decomposition as well as the relations
between the respective absorptive parts and t„„.

We shall begin by taking into account the pion state
contribution (in class I). With Eq. (3.6), we have

fK

f m'f vr

c(x,g")dx

2x.'m2

u2(x, g") dx. (3.16)+
~.,* - =-:-~(& -") ( )f.(*p.+~.') y'fn.

&& &f+(k') L(1+x)p +a '7 The prime on the integration signs in the right-hand

+f (k')I (1—x)p„—g„'7}, (3.7) side ot the above equations indicates that the pion con-
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s~
fi(k ') = —+ — — dx w(x, q") ——

f„7rf, 2p, 2 2

X[r,(x,q' ) —r-, (x,q' )]—(1/m ).(x,q' )

+ —ug(x, q") (m'x. '—,'p' —,'m'x. ), (3.17)
p 2

2
f (k-') =-

mf

1 1+x
dx — n)(x, q")+ — [r2(x,q")

2p 2

tributions have already been taken. oB. The occurrence
of the form factors evaluated at two different points
results from the contributions of connected and semi-
disconnected diagrams to the absorptive parts (Ref.1).

Solving the system (3.13)—(3.M), we get the following
expressions for the EE3 form factors as functions of the
momentum transfer k ':

where the following de6nitions have been used:

(oII'.( "Ix(k)&=f.4
(~(k) I

A„(')
I
z—

(p))
=i[g+(q')(P.+k.)+g (q')-(P. k.—)],

&oI v. ' "Ilt* (k)&=f*"'(k)
(K*(k) I

A „(3)
I
k (p))

=i%'r(q')"*+(~* P)[&2(q')(P.+4)
+& (q)(p"—k.)]&

(0 I ~.")
I
~ i'(q)) = f~ ~."(q),

&~i'(q)l~. ' "I& (P)&
= &{""Gr(k')+(~" P) LG2(k') (P,+q.)

+63(k')(P.—q.)])
In connection with the one-particle contributions
written above, we shall, further, need the following
kinematical relations:

m'x +p, '—r (x,q")]+— ~ (x,q") . (3.»)
2p 2m'(1-x, )

Up to this point, our equations are exact. Equations
(3.17) and (3.18) allow, in principle, the determination
of the Eie form factors in terms of the contributions of
different intermediate states to the integrals. From now

on, we shall adopt the procedure of one-particle satu-
ration. Besides the pion, the other one-particle states
contributing to our sum rules are the ~ and E"mesons

[in class II, according to the deomposition given in

Zq. (3.6)] and the A) meson (in class I). The contri-
butions of these states to f,„„are, respectively,

s.f')(k' m') e—(1—x)f—k

&&[g+(q')(2P.—q.)+q.g-(q')], (3»)
f„,"(x '= —xb(k' —m~') e(1—x)f~{H)(q')

X( g„.+k„k,/m~'—)+[ p.+(k p/m~'—)k„]
&&[~ (q')(2P. —q.)+~ (q')q.]), (3.20)

1 '( )'= n()(q' —mg')e(x) fg{G)(k')
&& ( g"+q.q /m~—')+[ P.+ (q P/m~—')q.]

&&[G2(k')(P.+q.)+63(k')(P.—q )]), (3 21)

(m„=z mass), (3.23)

1 —x„=[(m„'—q'2)/m']'('=— x„—1,
2 —x 2m2+qi2 q

2 —g 2m2+q12

Concerning the Ai and E~ poles, we introduce the
variables x~, 0~2, k~2 and x+, q+2, g+2, in analogy with

Eqs. (3.10) and (3.23), respectively, with the obvious
replacements )a ~m~ (m~ is the Ar meson mass) and
m„~ m+ (m+ is the mass of the E" meson). With the
aid of Kqs. (3.19)—(3.21), we have immediately the one-

particle contributions to all our sum rules, by contract-
ing t„„with the relevant momenta and projecting the
results on the basis p„, q„'. So we can now write down,
using the sum rules (3.17) and (3.18) (in the one-

particle saturation scheme), the following expressions
for the X)3 form factors f+ and f:

f+(k.') = fx/f-+~(+) ("'+~(+) ' *)+~(+)'"", (3.24)

f-(k.') = ~(-) '"'+~(-) ' *'+~(-) '"" (3.23)

where

f. m„' —)a' m'x. g„(q„') g„(q„') f„1 x, —
Q( )

(&)= —+m'x, '——
m'v2(1 —x„) 2 2 )J,

' q' p' —q
' —f 1—x

xLg+(q. ')+g-(q. ') —g'(q. ') —g-(q.')]
+(f If-)Lg+(q')(2 x.)+g (q')x. +g+—(q')(2 -*.)+g-(q.')*.], —(3 26)

f„ f 1 m' m'

~(+) ' *'=—— ——Jf2(q*')I — ———,+&3(q*') — + ——+&2(n') — ——+—
2 f. i 1—x~ m, ' 1 XQ mQ sg m+

1 m' f„1 m2
—a (s.')( +— —1+(1—x~)'—

1 —x~ m~' f m'(1 —x„) m+

&& {Jfr(q*')+m'[(2 —x-)& (q*')+x*1~~(q.')]—If)(q» ) —m'L(2 —*.)&2(q.')+xA'~(q*') 3
f. g*(q*') g*(vV)

+(m'x. ' —,')((' —-', m'x. )- — +, (3.27)
m@ V2-p gg p gg
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1—x~fA
- &ms 1 fm' 1q )(ms 1 /ms 1

~(p)(""=— —Gs(kA')[ +—+I ——IGs(&A')+Gs(kA')I ——+Gs(kA')I +-
(mA2 x, &mA2 xA] &mA' xA &mA' xA

SA m
[G((kA2)yms(1+xA)G2(kA2)+ms(1 xA)Gs(kA2) G)(kA2) m2

f~ xAm mA
)& (1—xA)G2{kA') —ms{1+xA)Gs(kA') $, (3.28)

f, —
g„(q„') g(g„') —m„s+)(22+msx )

42m'(1 —x,) p,
' —q.' (2' —g.' 2 j

1+x f„+ — — [g+(q ')+g-{q ') —g+(q ') —g-(q ') j, (3»)
2 f.(1—x.)

1+x f„ 1 m2 1 m2 1
~(-)( *'= — ——H2(q, ') — ——+Hs(q, ') ——+—+Hs(g, ')

2 f 1—x~ m~s 1 SQ mQ SQ

1 m' f~ m'x +)22 g"(q„')—»(2.')(— — + — — — +
xg mg — mg v2 2 p

1+x fA m2 1 m'
&( )'""= — ——G2(kA2) +—+G (kA')

2 f- mA ~A mA SA

g*(vV)
3.30

~2 g2

m2 m2 1
+G2(kA2) ——+Gs(kA') +— . (331)

mA XA mA SA

galen =-gz(p ) and gz")re = gs(p ) ~

Noting the kinematical relations

(3.34)

(k '—m„') (k,'—ms, s) = (q~s —(22) (gs,
s —(22), (3.35)

(k '—m„')(k '—m„') = (q„'—p, s)(g„'—)22), (3.36)

(kA' —m ')(kA' —m ') = (q
'—mA')(g '—mA') (3 37)

(kA' —ms, s) (kA' —m~s) = (q,' —mA') (gs,
s —mA2), (3.38)

we see that the poles of f+ and f at k '= m~s are given
by the explicit factors 1/(q22 —ps) and by the pole of
Hs(q~s) at qss=)22 in Eqs. (3.27) and (3.30). Also, the
pole of f at k '=m„' is given by the factor 1/()22 —q„')
and by the pole of g (q, ') at q„'=)22. The As poles ap-
pearing at gq =mA lIl g+ and g and at gg =SABA ln
H&, 2, 3, of course, are exactly canceled by the poles of
Gj,2, 3 at kA2 ——m„' and kA2 ——m~2.

%e shall now consider the poles at k '= m„' and k '
=m+' of the diferent terms appearing in the expressions

The form fs,ctors g„(q') and g~(qs), which appear in the
above relations, are defined as follows:

{2(&)I ~.~."'I& (P))= Lg+(q')(m' —™')+q'g-(q') &

u'f. g.(q')/—~~() ' q') (3 32—)

{X*(k)[ B„A„(')[E (p) )
=(c* P)[H((qs)+{ms —mss)H2(qs)+qsHs(qs) 1

("P)1"f-g*(—q')/~~(1" q') (3 33)—
For q'=)22, g, (q') and g2(qs) become, respectively, the
physical g„z and gz+&-&&{-) ' coupling constants

of the form factors f+ and f We shal. l write, for
instance,

f g(q')
g-(q') —= — —+g-(q'),

V2 p2 —q2

f~ g*(q')
Hs(q') —= ——— +Hs(q'),

42 p,
2 —q2

(3.39)

(3.40)

m+m„(m —m„)' —q„'
q"(R=—g (q.')—

m ms' 2m

m+m„)
+a+(C')(2 —*.—— l, (~42)

m )'
fsr g, (g.') 1

g+(q')(2 *.)+g (q—')*.= -——
%2)(22—g

' m(m+m„)

)& )22+ — [(m+m„)' —g„'j +q'2((t(s), (3.41')
2m

where the new defined quantities g and Hs have no
poles at q'= p,2. %e shall also make use of the following
convenient expressions:

f g(q')
g+(q')(2 x)+g (q')x. =———-

V2 ps —q.' m(m —m„)

m+m„
X ps+ [(m —m.)'—q,s] +q"8, , (3.41)

2m
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m —m. (m, +m„)'—g, '
q12g (Z) =g (g 2)

m+m„2m'
+g+(g„')E2 —x„—(m —m„)/m]. (3.42')

for
q'2=0 Lk.'=(m —~)'],

we obtain from Eqs. (3.44) and (3.45) the relation

V2g„f,a(2m„'+ p(m Ii)]—
(3.48)

(m„' m—')(m+p) I (m y)—' m—„']
fIC

f-

8$ Pq"Gt (q"(R' i), defined above, have no pole at k '=m„' f L( )2]+
(k.'=m. ') and vanish at q"=0. m+IJ,

In the absence of any information on the momentum-
transfer dependence of g„(q') and g+(q'), we shall +make the approximation of taking them as constants:

g.(q ') = g.(g.') =g.(u') =g x-—=g,
A(A ) =A(ge ) =A(P ) =

girsx~: g*
(3.43)

Using Eqs. (3.39)—(3.42') and the approximations
(3.43), we finally obtain after some work the following
expressions for f+ and f:

which is the last equation of Ref. 4 or essentially
Eq. (47) of Ref. 1. The point is that, unlike the case of
Ref. 1, we obtain it without any use of fixed-q' (q'= y')
dispersion relations in the momentum-transfer variable
k2.

fx v2g„f„g„fk„'
f+(k-') = ——— +-

f m. ' —m' v2m„'(k. ' m„'—)

IV. DISPERSION RELATIONS IN O2 AT q2=p2

We present in this section another way of deriving
formulas for the E~3 form factors, based on the use of
once-subtracted dispersion relations for f+ in the mo-

mentum-transfer variable k2, along the line q2= p2.

This procedure, which makes it possible to connect

f+(k, ') with f (k ') provides two supplementary
relations which, together with the current-algebra sum

rule (2.27) and Eq. (2.31) (of superconvergent type),
will again allow us to solve the system for f+(k ') and

f+(k, '). As we shall see below, this treatment limits
somewhat the model dependence of the results, in the
sense that the contributions related to the Ai meson

will vanish now, unlike the case of Sec. III for q"=0.
We begin by displaying the sum rules (2.27) and

(2.31) with all one-particle contributions explicitly
written down. We have, respectively,

+5f+(k '), (3.44)

~~g f. f*g*(m' I ')—
f-(k-') =-

k ' —m„' &2m„'(k '—m, ')

+Af (k '), (3.45)

where

xLg+(q ')+g-(q ') —g+(g, ') —g-(q ')]
+(f„/f )q'2((R jot&i'), (3.46)

f„1+x
~f-(k.') =~~ i'" i+~i )( ")+-

2fgp 1—x„
kLf+(k-')+f-(k')+f+(k-')+f-(&-')]

+5~-Lf+(k-') —f-(k-') —f+(k-')+f-(k-')]
=fx/f. +(f./f. )hagi(q, ') (2 ~.)+g (q.')*,

+g+(q.') (2 —*.)+*.g-(q ')]

&& t g+(q ')+g-(q ') —g+(q. ') —g-(g ')], (3 47)

c"""(xq") dx (4 1.)
m7r x2

—(m' —p') f+(k ') —k 'f (k ')]
m '~-f. g (q ') g.(q.')

&2(1—x,) p' —q, ' p' —q„'

and by 6(+), ( )
&~ & we have denoted exactly 6(+),(

)(~*)

given in Eqs. (3.27) and (3.30), with H3 replaced by
and with the la,st terms containing g~(q„2)/(y2 —q„2),

g,(g,')/(p' —g~') omitted.
2

Equations (3.44) and (3.45) represent the result of +q"z(q")—
the generalized sum-rule formulation in the one-

article saturation procedure and, using the approxi-
mation of taking some couplings (which, anyway, are i((m~ &~)f (k 2)+k ~f (k ~)

expected to have a smooth variation with the momen-
tum transfer) as purely constants LEqs. (3.43)],
d,f (k ') and hf (k ') (which, in general, are non-

vanishing even for q'=0) have no poles and are ex-

pected to be smooth functions of k '.
Since we have

k '
Af+(k ')+ — Af (k ') =0

SS P

2m2x
~-"'(x,q") dx= 0, (4.2)
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where Z(q'2) is defined by

A

Z(q")—= — - [Gi(k~')+m'(1+xg)Gg(kg')
f~ m'mg'sg

+m'(1 —g~)G3(k~') —G, (k~') —m'(1+gal) G,(kg')

—m'(1 —a:~)G,(k~')]——
f~ m'm„'(1 —x~)

X{Hi(q„')+m'[(2 —x„)H2(q„') +x„H3(q~')]
—Hi(qe') —m'[(2 —**)H2(qV)+*.H8(qV)]) (4 3)

and the last integrals in Eqs. (4.1) and (4.2) indicate
the continuum parts remaining after the one-particle
pieces have been taken off.

Writing now once-subtracted dispersion relations
for f~ in k', along the line q'=)(i',

A;2 —k2
f+(&') =f+(k-')+—

Imf~(k') dk'
(4 4)

(k' —k.') (k' —k.')

we have the following two additional relations:

(k.' —k„')f,g,
f+(&-') =f+(k-') —— —+C(+), (4 5)

42(k ' —m ')(k ' —m ')

(k.'—k.')v2 f„g„
f-(k-') =f-(k-')+

(k.' —m„') (k.'—m„')

(k ' —k ')(m' —p')f g
+C( ). (4.6)

m„'V2 (k ~' —m„') (k~' —m~')

Again, by C~~~ we have conventionally denoted the
remaining continuum contributions to the dispersive
integrals.

Using now the same approximation as in Sec. III
[Eqs. (3.43)] of setting g„(q') and g+(q') as constants
and taking also into account Eqs. (3.41), (3.42),
(3.41'), and (3.42'), we get from the system of equa-
tions (4.1), (4.2), (4.5), and (4.6) (in the one-particle
saturation scheme) the following expressions for the
form factors f~

fx ~~g f. k-'g.f*
f+,(k-') = ——— +-

my' —m' m 'v2(k„' m')—
+~f+(k-'), (4 7)

(4 8)

The quantity ()f+(k ') appearing in Eq. (4.7) is defined.
as

8f~(k.')—=q"p(k ') = —(1/4m') [k ' —(m —)(()']
X[k '—(m+ii)']p(k ') (4.9).(k-')= ~'+(f./f-)((ft+-6t"))

f g ~~ (m' I")f*g*-
f (k-') = —-+——

k' —m' m'92(m' —k ')

(By 2' we denote 2 [given by Eq. (4.3)] with H&

replaced by 83 defined in Eq. (3.40).)
Looking at the above expressions, we see that, in the

one-particle approximation plus the assumptions (3.43),
the current-algebra sum rule (2.27) and the "6eld-
algebra" relation (2.31), supplemented by the usual
subtracted dispersion relations for f~(k') (in k' at
q'=)i'), provide us with formulas for IC)3 form factors
less affected by the A~ contributions than in the ap-
proach of Sec. III, which was based entirely on current-
and field-algebra sum rules, all written in the dispersion
variable x, at fixed q". Indeed, here f is completely
determined in terms of f{: and A'* parameters only, while

f+ is affected by the axial-vector contributions through
the nonpolar and presumably smooth quantity 0f+,
which vanishes for q"=0 [that is, for k '=(m —p)',
the upper limit of the physical regi. on].

V. DISCUSSION OF RESULTS AND CONCLUSIONS

We have presented in this paper two possible sum-
rule formulations of X&3 decays, both of them furnishing
definite expressions for the form factors f+ and f as
functions of the momentum transfer O'. Their results
are, of course, not identical, the hypotheses and the
methods used being different. In the 6rst approach,
given in Sec. III and based entirely on current- and
field-algebra sum rules, we obtained expressions for
f~(k') containing some contributions related to the Ai
meson which do not vanish in general, even if we put
q"=0 [k'=(m —)i)']. In the second approach (Sec.
IV), we wrote once-subtracted dispersion relations for

f~ and by combining them with a current-algebra
sum rule and a Geld-algebra relation involving, respec-
tively, the amplitudes c and zv, we succeeded in mini-
mizing the appearance of A ~-related contributions.
Indeed, this time, while f is not affected at all by such
contributions, f+ is affected only by the piece bf+(k')
which vanishes at q"=0. Moreover, the derivative of
()f+(k') with respect to k' at k'= (m —p)' has in front a
factor )a/m:

(
d p

,[~f+(k')] = —
) [(m —) )'] (5 1)

dk' ~'=(m —p) 2 m

The results of Ref. 4, in which another possible way
(based on somewhat different postulates) of generalizing
the collinear configuration is explored, differ from our
results only by the terms 6f~ in Eqs. (3.44) and (3.45),
or 8f+ in Eq. (4.7). Our Eqs. (4:.7) and (4.8) coincide
with the results of Ref. 4 for k'= (m —)i)' and are es-
sentially the same as Eqs. (26) and (27) of Ref. 4 for
k' very near the boundary value (m —p)

' of the physical
region [in the sense that the derivative of bf+(k') at
k' in. k'= (m —p)' can presumably be considered negli-
gible]. The procedure of Ref. 4, making use of quantities
involving only divergences of the axial-vector currents,
can avoid the consideration of A~ contributions to the
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sum rules, but one must then disperse noncovariantly.
The appearance of Ar contributions (or, in general, the
consideration of matrix elements of the axial-vector
densities) seems to be a price to be paid if one wishes
to disperse on a parabola belonging to a family para-
metrized in terms of Lorentz invariants.

From Eqs. (4.7) and (4.8) we can eliminate the con-
tributions of the E* mesons by considering the par-
ticular combination f+(k')+ (k'/m' p') f—(k') One .can
further eliminate the product g„f„using the partially
conserved vector-current (PCVC) hypothesis

f,g„m„'v2
f+(k')+ — f (k') =- (5.2)

m2 y2 (m2 p2) (m 2 k2)

If this relation holds over a large k' region, one arrives
at the conclusion that 8f+(k') and 6f++I k'/(m' —p') j
&&Af are zero Lbecause with Eq. (5.2) they must be
constants and they vanish at the point k'= (m —p)'7.
Thus one gets the formula

k' fJr m. '(m„' —m')
f+(k')+ f-(k—') = —— — (5 3)

m' —p' f (m ' —
p, ')(m ' —k')

This relation is a generalization of Eq. (48) of Ref. 1

and coincides with it for k'= (m —p)'.
In our approach, without PCVC or further argu-

ments, bf+(k') does not seem to be negligible. Perhaps
the best thing to do is to take into consideration Eqs.
(4.7) and (4.8) (as well as their derivatives with respect
to k') only for k'= (m —p)' when 8f+(k'= (m —p)') =0
and its derivative at that point can, hopefully, be
neglected. In the linear fit procedures, such relations
could be used in order to make a comparison with the
data. Also, one could try to Qx some less-known
parameters by considering (for arbitrary q") other
sum rules which can be written down in connection,
for instance, with the additional vertex functions

(0IL~.() ~ (0)jl » (0IL~.() ~(0)3I )

as has been done, in the collinear configuration, in
Ref. 6.

tl D. W. McKay, J. M. McKisic, and W. W. Wada, Phys. Rev.
184, 1609 (1969).

The experimental situation is also unclear. In this
respect, as pointed out in Ref. 7

I
where a consistent

explanation is given of different P measurements, using
a linear fit for g(k')—=f (k')/f+(k') j, a precise experi-
mental determination of the X~ parameter (introduced
by the expansion f~(k') = f+(0)t 1+(X+/p2)k j) is highly
desirable.

Setting k'= 0 in Eq. (5.3) and using the recently de-
termined number o:fx/. —f f+(0) = 1.23 (the value
quoted in Ref. 8), one gets a value of the ~-meson mass
m„= L(0m~ —p2)/(0 —1)O'I'~1150 MeV, in good agree-
ment with the experimental evidence (Ref. 9). Dividing
by f+(k ) in Eq. (5.3), taking the derivative with respect
to k' at k'=0, and using for m„ the expression found
above, one obtains the following relation between

P(0) and P,+.:
(m' —p') (0.—1) m' —p'

f(0) =—
08$ p p

Taking X+——0.06, as suggested in Ref. 7 (this value of
X+ corresponds to a linear 6t of the combined data with
a X' probability of 98%), one frnds g(0) = —0.56, which

agrees within 1-standard-deviation error with the results
of Ref. 7 tor $(0).
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