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evolution. White dwarfs have long since passed the
stage of nuclear slow-down. '

On the photon-neutrino coupling theory, the bright-
est white dwarf in the Hyades would be expected to
appear at a luminosity of about logm(L/Lo) = —3.6
(for 1Mo). This is 2 magnitudes faittter than the
luminosity of the faintest observed white dwarf on the
blue sequence. The red white dwarfs would be expected
to be even fainter.

In order to obtain agreement with the observational
data, the neutrino luminosities should be drastically
reduced. This allows one to place an upper limit on the
square of the photon-neutrino coupling constant, which
then becomes approximately 10 4g~„s (based on the blue
sequence) and 10 sgr, s (based on the red sequence).

If the coupling constant were actually this small (or
smaller), then the astrophysical consequences of
photon-neutrino coupling wouM be negligible in virtu-
ally all situations except possibly supernova implosions.

9 C.-W. Chin, H.-Y. Chiu, and R. Stothers, Ann. Phys. (N. Y.)
39, 280 (1966).See also M. Schwarzschild, Structure and Evolution
of the Stars (Princeton U. P., Princeton, N. J., 1958), Chap. 7 and
references.

Thus, one would be obliged to discard the current
explanation of the scarcity of very massive red super-
giants as being due to the neutrino-induced speed-up of
the nuclear evolution of a nondegenerate starm (to say
nothing of the other astrophysical evidence for ac-
celeration of evolution in stars). In this connection,
Bandyopadhyay' ' seems curiously to have sought to
prolong the evolution of red supergiants, primarily
because he has used the earlier stellar models and argu-
ments of Hayashi et a3.,

"which have since been reversed
and, in their corrected state, now provide the best
evidence in favor of neutrino emission.

We conclude, on the basis of the astrophysical data
for white dwarfs and red supergiants, that the photon-
neutrino coupling theory as proposed by Bandyopad-
hyay is definitely excluded.

It is a pleasure to thank Dr. C.-W. Chin for deriving
the neutrino luminosities of the models.

"R. Stothers, Astrophys. J. 1SS, 935 (1969); R. Stothers and
C.-W. Chin, i'. 158, 1039 (1969)."C. Hayashi, R. Hoshi, and D. Sugimoto, Progr. Theoret.
Phys. (Kyoto) Suppl. 22, 1 (1962); D. Sugimoto, Y. Yamamoto,
R. Hoshi, and C. Hayashi, Progr. Theoret. Phys. (Kyoto) 39,
1432 (1968).
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A deterministic local hidden-variable model is presented which describes the simultaneous measurement
of the spins of two spin--, particles which emerged from the decay of a spin-zero particle. In this model the
measurement of the spin of a particle has one of three possible outcomes: spin parallel to the apparatus axis,
spin antiparallel to the apparatus axis, or the particle goes undetected. It is shown that agreement with
the predictions of quantum theory is obtained provided the experimenter rejects the "anomalous" data in
which only one particle is detected, A reasonably model-independent lower bound to the fraction of un-
detected particles is also computed: It is found that in 14% of the decays or more, one or both of the par-
ticles will go undetected.

I. INTRODUCTION

A HIDDEN-VARIABLE description of the mea-
surement of the spins of two widely separated

spin-~ particles which were products of the decay of a
single spin-zero particle has been considered by Bell. '
(This example was first invoked by Bohm' to illustrate
the Einstein-Podolsky-Rosen' argument that quantum
theory is not a complete description of nature. ) Upon
leaving the site of the decay, each particle is presumed
to have "made up its mind" as to the spin direction that
will be measured by an apparatus (e.g. , a Stern-Gerlach

' J. S. Bell, Physics 1, 195 (1965).' D. Bohm, Qgantum Theory (Prentice-Hall, New York, 1951),
p. 614.

' A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

appara, tus) placed in its path, for any possible orienta, —

tion of that apparatus. In particular, the response of one
particle to the apparatus in its path is unaffected by the
orientation of the apparatus encountered by the other
particle. (Because of the absence of this long-range
interaction, Bell has called a hidden-variable theory of
this type "local.") The predetermined responses of one

pair of particles arising from a single decay to their two
apparatus does not have to be identical to the predeter-
mined responses of another pair. Using the constraints
of ordinary probability theory, Bell showed that a model
containing the above features cannot produce predic-
tions of the outcome of the spin measurements which are
in agreement with the predictions of quantum theory.

We would like to discuss a hidden-variable description
of this experiment which is "local" and which ap-
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parently, although not actually, produces predictions
in agreement with the predictions of quantum theory.
This somewhat enigmatic last statement is explained as
follows: Suppose that each particle has three responses
to a spin-measuring apparatus instead of two; it can as
usual show itself to have spin parallel or antiparallel to
the apparatus orientation, or it cannot show itself at all,
i.e., cannot be detected. ' Then instead of four possible
experimental outcomes of the measurement of the spins
of two particles, there are nine possible outcomes. In one
of these outcomes, neither particle is detected, and so
the experimenter'is unaware that a decay has taken
place. In four of these outcomes one of the particles is
not detected. If the experimenter rejects these data (in
the belief that the apparatus is not functioning properly
and that if it had been functioning properly, the data
recorded would have been representative of the accepted
data), he is left with the usual four possible outcomes.
We now suppose that an analysis of these remaining
data produces predictions in agreement with the pre-
dictions of quantum theory.

The question arises as to whether it is possible to
produce a local hidden-variable theory with the prop-
erties described in the preceding paragraph. We show
that it is indeed possible by explicitly displaying a mode15

with these properties. Then we examine a general
restriction on such models.

II. DESCRIPTION OF MODEL

Each pair of decaying particles is represented by a
point in a "phase space" consisting of a sphere of unit
radius. The probability density that a pair is repre-
sented by a point r, whose polar coordinates are r, 8,
and p, is a function p(r) which is to he determined;
of course,

p(r)) 0, 4m r'dr p(r) =1.

We must give a prescription describing how a particle,
in the pair represented by the point r, responds to an

apparatus whose axis is oriented along the unit vector
a. Consider the spherical surface of radius r upon which

the representative point lies. We divide this surface into
three regions determined by its intersection with a

E. P. Wigner (private communication) has independently con-
sidered this possibility, and obtained a model-independent lower
bound for the fraction of undetected particles. The author is
grateful to Professor signer for informing him that it was possible
to obtain such a bound.

5 The first —and best—hidden-variable model, applicable to
quantum systems with a finite number of states, based upon the
conceptual structure of statistical mechanics, is due to N. Wiener
and A. Siegal, Phys. Rev. 91, 1551 (1953);Nuovo Cimento Suppl.
11, 982 (1955); Phys. Rev. 101, 429 (1956). 'Bell (Ref. 1) pre-
sented a model for measurement of the spin of a single spin--',

particle. A similar model was found by the author t Harvard
University Report, 1965 (unpublished)], and independently by
S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 {1967).
These spin- —', models were based on a hidden-variable space con-
sisting of points on the surface of a sphere; the model presented
here is a natural extension of this.

=0
(2)

rr) P.

The probability Pi t(n) that: spin 2 is measured parallel

to a and spin 8 is measured antiparallel to b is therefore

Pt, t(n) = dr p(r)I(P(r), n), (3)

where we have permitted the angle P, which determines

the size of the circular regions on a surface of radius r,
to vary with r. In fact, there is no loss of generality in

choosing

(4)

which allows a circular region subtending each permis-

sible angle to exist on some surface of radius r; any P(r)
can be brought to the form of Eq. (4) without changing
the form of Eq. (3) by a suitable (possibly multivalued)
transformation on r, together with a redefinition of p(r)
which does not change the essential requirements on a

double cone whose axis (passing through the origin)
lies along a and whose opening angle is P (P(s-). If
the point r lies outside the two circular regions cut on
the spherical surface by the cone, the particl- call it
A—will not be detected. If the point r lies inside one of
the circular regions cut by the cone—say, the region
whose center is pierced by the vector a—then the
particle will be measured as possessing spin parallel to
d. If the point r lies inside the antipolar circular region,
the particle will be Ineasured as possessing spin anti-

parallel to a .
Likewise, the response of the other particle —call it

8—to an apparatus whose axis is oriented along the
unit vector b is determined by a similar construction
utilizing a douhle cone, also of opening angle P, whose

axis lies along —b. Thus when both apparatuses are
identically oriented (8=b), the surface of the sphere is

divided into only three regions (in which spin 2 is

measured parallel and spin 8 is measured antiparallel
to a, or in which spin 8 is measured parallel and spin A

is measured antiparallel to a, or in which neither A nor
8 is detected'). However, for arbitrary orientations of

a and, b, the surface is generally divided into nine

regions corresponding to the nine possible outcomes of

this experiment. It is important to realize that this
construction ensures that the response of particle 2
(particle 8) to its apparatus is independent of b (a),
thereby guaranteeing the locality of this model.

Suppose now that the angle between a and 5 is n. The
area (common to the two circular regions on the
spherical surface of radius r) which corresponds to spin

2 being measured parallel to a and spin 8 being mea-

sured antiparallel to b is shown in Eq (A5) o.f Appendix
A to be given by the expression

P/2 — cosiP 2- tl2

I(P,n) =4r' dX I—
cosA
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probability density expressed in Eq. (1). Thus the
points of the sphere which correspond to spin A being
measured parallel to axis a. lie within a mushroom-
shaped region that is cylindrically symmetric about a,
and the points contributing to the integral in Eq. (3)
lie within the intersection of two such mushroom. -

shaped regions.
Quantum theory predicts that the probability that

spin A is measured parallel to c and spin 8 is measured
antiparallel to b is —,

' cos'(-', n). If we denote the fraction
of events in which both particles are detected by g(n)
[0&g(n) & 17, the requirement that the unrejected data
yield the same predictions as quantum theory becomes

g(n) g COS (2n) Pl,—1(n) P—l, l(n)
»

(5)dr p(r)I(m. r,n) .

In Eq. (5) we have utilized the obvious symmetry of the
construction to equate P»» to E'

», ». We have also
utilized Eq. (4) and the vanishing of I(P,n) for n&P to
set the lower limit of the integral over r.

In a like manner, one can compute the probability
P»» that both spin A and spin 8 are measured parallel
to their respective apparatus axes. It is readily seen that
the appropriate integral is that of Eq. (3) or (5) with n

replaced by x —n. Since quantum theory predicts the
probability of this outcome of the measurement to be
—,
' sin'(-,'n), we require

g( ) l »n'(l ) =Pi.i( ) =P-,—( )

III. SOLUTION OF EQUATIONS

Any function p(r) satisfying the probability-density
requirements of Eq. (1) will, upon insertion into the
integral on the right-hand side of Eq. (5), yield a
monotonically decreasing function of n, because the
overlap area represented by I(7rr, n) is a monotoni-
cally decreasing function of n. When this integral
is divided by iicos'(imn), we obtain a positive func-
tion of n which, however, will not ordinarily satisfy
the symmetry requirement of Eq. (7). We now proceed
to determine the general form for p(r) such that Eqs.
(1), (5), and (7) are satisfied.

Equa, tion (5) is a dificult integral equation to solve
directly because I (mr, n) is a, complicated function. How-
ever, if we ta,ke Eq. (5),

g(n)2 cos'(2n) = 4r'dr p(r)

~r/2 —
cos21&r 2- »/2

dA.

cosh/2

(10)

and differentiate it with respect to n, we obtain an
equivalent integral equation with a much simpler kernel
in the integrand:

Po, o(n) =1+g(n) —2g(0)

It is shown in Sec. VII that the relationships between
P;,, (n) and g(n) displayed above are relevant to a wider
class of models than those explicitly constructed here.

dr p(r)I(m-r, m. —n) .

A comparison of Eqs. (5) and (6) will show that if one
of these equations is satisfied, the other equation will
be satisfied provided

d——g(n)2 cos'(kn)
cos2n dn

h(a cos—,'n) (1—a') '"da (11)

g(n) =g(~ —n) . (7)

All the remaining probabilities predicted by this
model can be determined in terms of the probability
functions already introduced. Indeed, the probability
that the spin of particle A will be measured parallel to
ri (regardless of whether particle 8 is detected or not) is
given by the integral of the probability density over the
mushroom-shaped region, and is equal to

Pi, i(0)=-;g(0).

h (cos-', mr) =p(r)r'/sin2m. r, (12)

and we have introduced a new variable of integration,

s= cos~ivrr/cos-, 'n.

Equation (1), expressed in terms of h, becomes

(13)

In Eq. (11) we have introduced a new probability-
density function h, which is related to p by

If we denote by Pi 0(n) the proba, bility tha, t spin A will
be measured parallel to a while particle 8 goes un-
detected, we have

h(x)&0 (0&x&1): h(s)da= s'. (14)

Pi,o(n) = mg(0) —Pi, i(n) —Pi,—i(n)
= —,'[g(0) —g(n) 7.

By similar reasoning we find that

Pi, o(n) =P—i,o(n) = Po, i(n)
=Po,—( )= l[g(0) -g( )7, (g)

It is shown in Appendix B, Eq. (B6), that the solution
to Eq. (11) is

[1—(xw)'7"' d
h(x) =- x

2 dx' 0 (1 —w')"' 4xw dx~o

Xg(xw) x'w'. (15)
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We have changed the argument of g in Eq. (11) from cr

to cosign=
—x in order to obtain Eq. (15). On account of

Eq. (7), g(x) must satisfy the symmetry condition

g(*)=g((1—x') '"). (16)

We have found it convenient to introduce a function
p(x),

p(x) —=— 1 d (1—x')' d—g(x)x', (17)
(1—x') "'dx 4x dx

satisfying the same symmetry relation as g(x):

/ (x) =-/ ((1—*')'"), (18) 0' 30' 60' 90 /20' /$0' /80
which follows from Eqs. (16) and (17).Upon multiplying
Eq. (17) by (1—x')'" and integrating once, and adding
the resultant equation to its symmetric counterpart, we
obtain

I'ro. I. Graph of the upper bound on X(n) (Sec. VIII), and graph
of X(n) =g(n)/g(0) for a particular model [Eq. (27)j.

Lastly we determine g(n) from Eq. (19):
1

lt:(*)=( ~(~)0 —")"'&*) (& —~') 2 n —sinn
g(n) =-

3m. sin'(on)

(m' —u) —Slnct

cos'(-',a)
(23)

It follows from Eqs. (15) and (17) that the expression
for h in terms of p is|d' X2

h(x) = — dz p(s)(1 —s')"'2' 1 —x

If a function /l(s) satisfying Eq. (18) but otherwise
arbitrary is chosen, and Eq. (20) is' solved for h(x), this
solution may or may not be positive over the whole
range 0&x&1. If it is positive, our task is completed,
since the normaliza, tion condition (14) can be achieved
by a scalar multiplication, and g(n) is given by Eq. (19)
in manifestly symmetrical form.

IV. DETERMINATION OF PROBABILITIES

Our purpose is only to demonstrate that a model with
the desired properties can be constructed, and so we
shall choose the simplest function which satisfies Eq.
(18):p= constant. When p= C, Eq. (20) yields

h(x) =-,'Cm(1+x)', (21)

4
p(r)r'=—

3m (1+cos-',mr)'

sing%'t

which is clearly positive for C&0 and 0&@&1.The
normalization condition (14) requires that C=4/3m. ,
and so by Eq. (12), the probability density p(r) is

V. DISCUSSION OF MODEL

We see from Eq. (23) that the fraction of events in
which both particles are detected goes from a maximum
of g(0) =-,' to a minimum of g(—,'m. ) =-,'(1—2/m-) Lalso see
Fig. 1, where a graph of g(n)/g(0) is displayedj. Accord-
ing to Eq. (8), the fraction of events in which only one
particle is detected goes from zero (when rr=0) to a
maximum of ~o (4/m —1) (when rr = —,'m.). Both particles go
undetected in a maximum of a of the events (when
n= 0), to a minimum of 1—8/3m events (when n= rom-).

One might argue that since the experimenter would be
totally unaware of those events in which both particles
go undetected, the experimentally important quantity
would be the number of events for which both appa-
ratuses detect particles, divided by the total number of
events of which he is aware. This ratio is

+1,1((r)+f r,—l(rr) ++-1,1(&)++—1,—1(&)

1 —f'o, o(n) 2g(o) —g(n)

VI. INEQUALITY

In order to obtain an upper bound on g(n), we shall
utilize inequalities which are a slight generalization of
an inequality due to Clauser, Horne, Shimony, and

which goes from a maximum of 1 (when n=0) to a
minimum of om. —1 (when n= om).

The fraction of undetected events can be reduced
somewhat by a different choice of tu(x); the extent of
this reduction is an open question. Instead of working
within the framework of the class of models constructed
here, we shall consider a wider class of models for which
we can obtain an upper bound on g(n). 4
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and

we find

IA(a~)A(a) I
= IA(«)B(b) I

=1

I1—A(a')B(b ) I
=1—A(a') B(b,),

A (ai)B(bi)+B(bi)A (ap)+ A (ap) B(bp)+
+A(a„)B(b )& 2n 2+A—(ai)B(b„). (25)

We now multiply Eq. (25) by p(X) and integrate over X.

By further supposing that a and b are unit vectors
a and b, respectively, and that

dxpP)AP, a)BP, ,b) =S(a b) (26)

we then obtain the inequality

S(ai bi)+S(bi. ap)+ .+S(a b )
&2n —2+S(a, b„). (27)

If the angles between adjacent vectors in the sequence
ai, bi, a&, . . . , b„are identical, Eq. (27) becomes the
inequality

(2n —1)S(a b) & (2n —2)+S(ai b„) (28)

(where a and b are any two adjacent vectors in the
sequence) .

Holt, which is in turn a generalization of an inequality
6rst introduced by Bell.'

Consider a sample space which has a unity-normalized
probability-density function p(X) defined on it (X sym-
bolizes the coordinate of an arbitrary point in the space
and dX is the volume element). We introduce a function
A (X,a) defined on the space, which can only take on the
values &1, and which depends upon the parameter(s)
a; similarly, we introduce another function B(X,b).
Because A'=B'=1, it follows that (suppressing the
variable X)

A (ai) B(bi) —A (ai)B(b„)
= A (ai)B(bi) L1—A (a,)B(b,)7

+A (ai) A (ap) L1—A (a,)B(b,)7
+A (ai) B(bp) L1—A (ap) B(bp)7+

+A(ai)A(a )Ll —A(a„)B(b„)7. (24)

The left-hand side of Eq. (24) is dominated by the
absolute magnitude of the sum of the individual terms
on the right-hand side. Realizing that

g(a) =g(~-a) (31)

The third condition states that a detection rate at
one apparatus does not depend upon the orientation of
the other apparatus axis, e.g.,

Pl, l(a)+Pl, p(a)+Pi, —1(a)= C(a), (32)

Pp, i(~)+Pp, p(a)+Pp, -i(a) = C'(a), (33)

where C(a) and C'(a) are functions which can only
depend upon the orientation vector a. However, since
the left-hand sides of Eqs. (32) and (33) depend on the
scalar product a.b, we see that C and C' are merely
constants. Putting Eq. (29) into Eq. (32), we And that

Pi, p(n) = C——,'g(n) . (34)

Putting Eqs. (30) and (34) into Eq. (33), we obtain

Pp, p(n) = C' —2C+ g(e) . (35)

The normalization condition

2 P', (~) = g(~)+4Pi, p+Pp, p= 1

2. Predictions possess the same symmetries as do the
predictions of quantum theory.

3. It is a local hidden-variable model.

We now show that the relations LEqs. (5)—(9)7
between P;,,(n) and g(n) are very nearly satisfied for
this wider class of models.

The first condition stipulates that if one apparatus
axis is along a, and the other apparatus axis is along b

(a b=cosn), then

P, ,(a,b) =P, ,(a,b) = g(a, b)-', cos'(-,'~),
29

Pi, i(a,b) =- P i i(a,b) = g(a, b)-', sin'(-', n),

where g(a, b) is the fraction of detected particles. The
second condition requires the dependence of P;; and g
to be upon o, only, rather than upon the absolute
orientation of the apparatus axes. It also requires that
the predictions be invariant under exchange of the two
apparatuses and invariant under inversion of both ap-
paratus axes, from which we conclude that

Pi p(n) =- P , i(np) =Pp i(n) = Pp, i(n) . (30)

Likewise, if only one apparatus axis is inverted, the
predictions for an angle o. must be the same as for an
uninverted apparatus axis with an angle ~—o., so by
Eq. (29),

VII. DEFINITION OF CLASS OF MODELS

In order to apply Eq. (28) to the present problem, we
suppose that a hidden-variable model has been con-
structed satisfying three conditions:

1. Predictions are made in agreement with quantum
theory, based upon the data-rejection hypothesis.

' J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Letters 23, 880 (1969).

tells us that
2C+C'= 1, (36)

which, when inserted into Eq. (35), yields

Pp, p(n) = 1—4C+g(n) . (37)

It is a, consequence of the requirement P;,,(n) )0 and
Eqs. (34) and (37) that

-'+-' Lg( )7+C+ m "Lg( )7.
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In the model previously constructed, the constant C
was equal to -', g(0) =-,' maxLg(n)7. In the more general
class of models now under consideration, such an
equality is not assumed to hold.

X(n) =—g(n)/2C, (41)

which satisfies 1&X(n) & 0 Lby Eq. (38)7. In Eq. (40),
o. is the angle between any two adjacent vectors in a
sequence of 2n vectors, and P is the angle between the
first and last vectors of the sequence.

Simila, rly by choosing A(X,a) LB(X,b)7 to have the
value +1 at all points X for which particle A (B) is not
detected, and to have the value —1 at all other points,
we find that in this case the value of the integral in
Eq. (30) is

S(n) = (1)(1)i'.o,o+(1)(—1)(Po,i+Po, i)
+ (—1)(1)(Pi,,+P, ,)
+( 1)( 1)(P1,1+Pl,—1+P—1,1+P—1,-1)

=4g(n)+ 1—8C. (42)

Upon inserting Eq. (44) into Eq. (31), we obtain a
second inequality which g(n) must satisfy:

(2n —1)X(n) &2(n —1)+X(P). (43)

Two new inequalities can be obtained if we replace
A (li,a) by —A P.,a) in the previous two paragraphs, but
we have not found these inequalities to be useful, so we
shall not include them here. All other natural choices of
definitions for A(X,a) and B(X,b) produce inequalities
which are identical to those already mentioned.

The upper bound on X(n) obtained from Eqs. (40)
an.d (43) is drawn in Fig. 1; the procedure by which this
graph was obtained is outlined in Appendix C. Here we

VIIL USE OF INEQUALITY

We shall take the probability density p(X) in Eq. (26)
to be the probability density of a hidden-variable model
satisfying the three conditions of Sec. VII. Upon choos-
ing A(X,a) [B(h,b)7 to have the value +1 at all points
X for which particle A (particle B) is detected with spin
parallel (antiparallel) to the apparatus axis, and to have
the value —1 at all points X for which the particle is
detected with spin antiparallel (parallel) to the ap-
paratus axis or for which the particle is not detected at
all, we see that the value of the integral in Eq. (26) is

S=- (1)(1)Pi,-i+(1)(—1)LPi,i+Pi, o7

+ (—1)(1)LPo, ,+P,
+ (—1)(—1)LPo.i+Po,o+P—i,o+P i,17

= 2g(n) cos'(-', n)+1 4C— (39)

When Eq. (39) is inserted into Eq. (28), we obtain an
inequality which the g(n) of this model must satisfy, viz. ,

(2n 1)X—(n) cos'(-'n) &2(n 1)+X—(P) cos'(-'P) (40)

where we have introduced the new variable

—,'+~X0.83&&2C&C or 0.43&C. (45)

Since g(n)=2CX(n), we see from the upper bound
displayed in Fig. (1) that g(n) must be less than 0.86
everywhere: In particular, this is our upper bound at
n =0' (and 180'), while at n =45' (and 135'), g must be
less than 0.86)&0.83=0.72.

IX. REMARKS

(A) We have shown that it is possible to make a
local hidden-variable theory, based upon the data-
rejection hypothesis, by constructing an explicit model.
We have obtained an upper bound on the fraction of
events in which both particles are detected, for any such
model in a wide class. Because we found that in 14% or
more of the events one or both particles will go un-
detected, it is difficult to take this hypothesis seriously
as a physical principle capable of extension to a large
group of phenomena; had such large fractions of un-
detected events occurred in other already performed
correlation experiments, it is hard to see how such
behavior would have gone unnoticed.

(B) A correlation experiment of the type considered
here (utilizing photons whose polarizations are mea-
sured by their being passed or stopped by a polaroid
filter) has been recently proposed by Clauser, Horne,
Shimony, and Holt. ' This experiment will test whether
nature chooses to satisfy an inequality t of the type of
Eq. (27), with n =27 which must be satisfied by a local
hidden-variable theory (as was first shown by Bell') but
which is not satisfied by quantum theory.

In the language of the comparable measurement on
spin-~ particles, the experimentally obtainable quan-
tities are (1) the rate of events in which both particles
are measured with spins parallel to their respective
apparatus axes, (2) the rate of events in which one
particle's spin is measured parallel to its apparatus axis
while the other apparatus is removed and the other
particle is detected (without having its spin measured),
and (3) the rate of events in which both particles are
detected (without having their spins measured) while
both apparatuses are removed.

In order to apply the three-outcome local hidden-
variable model presented here to this experiment, we
must make additional assumptions about the counting
rates in (2) and (3), which require experimental setups
different from that considered for our model. It appears

will merely note that since X(n) =X(m —n), if we set
P=m. —n we obtain inequalities involving X(n) alone.
For n = xiir, P= o41r, and n = 2, we find from Eq. (40) that

X(45')&0.83, (44)

which is the smallest bound we have been able to obtain
from any angle.

It is now possible to find an upper bound on g(n)
itself by employing the inequality (38) involving C, and
the smallest bound (44):
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most natural to assume that when both spin-measuring
apparatuses are removed, all particles are detected at a
rate in agreement with, thatfpredicted~~by quantum
theory, and also that when one apparatus is removed,
the rate at which the other apparatus measures the
particle's spin component is unaffected. This means
that the counting rate in (2) is

I'x, i(n)+I'i, o(n)+I'~, i(n) = &

times the counting rate in (3).
With these assumptions, it is readily seen that this

experiment cannot distinguish between a two-outcome
and a three-outcome local hidden-variable model.
Indeed, the experimentally measured quantities do not
distinguish between a particle whose spin is measured
antiparallel to the apparatus axis and a particle which is
not detected at all. Therefore the experiment electively
turns the three-outcome model into a two-outcome
model. It is amusing that the three-outcome model
appears to yield the predictions of quantum theory in
the more difTicult experiment where all spin components
are measured (because the extra information encourages
one to selectively reject data), while this relatively
simpler experiment distinguishes the three-outcome
model from quantum theory (because no data is re-
jected); of course the former experiment would perform
the same service as the latter experiment if the data
were properly handled.

Thus if the outcome of this experiment is in agreement
with the predictions of quantum mechanics, both local
hidden-variable models will be rejected. But if the
inequality is satisied, further experimentation will be
necessary to determine which model is correct. A crucial
test of the three-outcome model with the above assump-
tions would be to compare the counting rate in (2) with
that in (3). According to quantum theory, the ratio of
these rates should be 0.5; according to the model, this
ratio should be 0.43 or less. Indeed, sufficient data to
settle this question may have been taken in already
performed photon-correlation experiments. ~

(C) The model presented here is not complete in that
its extension to measurements on more complicated
physical systems is not readily apparent and such an
extension would lead to new unresolved difhculties. For
example, if the two spin-~ particles are oppositely
charged, and one of them is detected while the other is
not, does this mean that the model predicts an experi-
mentally measurable violation of charge conservation?
Or shall we interpret the words "particle is undetected"
to mean that the particle will only be undetected by an
apparatus which is capable of measuring its spin, but
that an apparatus incapable of measuring its spin can
detect it? This rescues charge conservation at the
expense of introducing an unusual kind of incompat-
ibility between spin measurements and charge measure-

7 C. S. Wu and I. Shaknov, Phys. Rev. '77', 136 (1950); C. A.
Kocher and E. D. Commins, Phys. Rev. Letters 18, 575 (j.967).

ments. However, the resolution of these difhculties does
not presently appear to be an urgent problem.

APPENDIX A

We wish to calculate the area on a spherical surface
of radius r, which is common to the interior of two cones
each of opening angle P(m, whose axes pass through the
origin at a relative angle n. When n&p, the area of
overlap of the two circular regions cut by the cones on
the surface is zero. In order to calculate the overlap area
when n(P, we choose a coordinate system in which the
two cone axes a and b lie in the xy plane, each making
an angle ~n with the y axis. The boundaries of the two
circular regions are then given by the expressions
a.r=r cos2P and b r=r. cos ~~P, which become (using
o,=f, sin~n+z„cosign, b= f, si—n~n+f„cosign, and polar
coordinates)

cos—',p = sin8 sin(p+ 2n)
= sin8 sin(p —~n) . (A1)

I(P,n) =4r'
in (cos~2P/costa}

sinod0

a+s in (cos)P/s in8}
dp. (A3)

After integration over y followed by an integration by
parts with respect to 8, we obtain

I(P,n) =4r'
si n (cos+P /co s~2a)

de cot'0

cos2p
X (A4)

(1—(cos'(-'P)/sin'8) $'"

Finally, a change of variable of integration to X= cos '
(cos2p/sine) yields

I(P,n) =4r'
a2a

(cos~2p ' '~'
dZ 1 —

~

k cosh
(AS)

This integral can be evaluated, but we will not 6nd it
necessary to do so.

APPENDIX B

YVe wish to solve the integral equation

1

X(x) = — h(sx) (1—s') "'ds

These boundaries intersect at q =~x in two points
which, according to Eq. (A1), are characterized by

sin8= cos~~p/cos-,'n.

The area I(P,n) between these boundaries is four times
the area lying within the octant x&0, y&0, s&0, so

7r1
2
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for h(x) (here X is an arbitrary analytic function over
the interval 0&x&1). We begin by expanding both
sides of this equation in powers of x and equating terms.
Upon inserting the series

0&n& 70',
0&n&53',
O«&44',

n=2
n=3
n=4

Thus we will only Gnd the inequality useful for

X(x) = P X&"&x" h(sx) = P hi" &x"z"
n~0 n 0

(B2)

r(-;~+2)

r(-', (~y 1))r(-;)
(B3)

It will be useful for us to recognize that Eq. (B3) can
also be written as

(-,'v+1)(-', e+-,') I'( ', e+-1)I'(-,')
h (~) —x~g(~)—

r(k)r(2) r(2~+2)
mn+idm

=-,'Xi.&(ey2)(~+1)
(1 wm) 1/2

Upon forming the sum P h&"&x", we obtain

i ' mdm
h(x) = — P X&"'(xw)"(e+2)(I+1), (B5)

2 o (1,—w')'i' n=o

which can be written in terms of X itself by replacing
x~(n+2) (n+ 1) by d'x~+'/dx':

1 d' 'X(xw)wdw
h(x) = — x'

2 dx' g (1—w')"'

Eq. (B6) is the desired solution.

(B6)

APPENDIX C

Here we outline the procedure by means of which the
upper bound on X(e) illustrated in Fig. 1 can be ob-
tained from the inequalities (40) and (43):

(2n —1)X(e) cos'(-,'n) &2(n —1)+X(P) cos'(-,'P), (C1)

(2N —1)X(n)& 2(n —1)+X(P). (C2)

We first consider the use of Eq. (Ci), and remark
that the inequality is certainly satisfied, regardless of
the value of X(n) (or P), if (2n —1) cos'(i~n) &2(n —1).

into Eq. (B1),performing the integrations, and equating
terms, we obtain

Since X(n) =X(~—n), an upper bound for a.& 70' can
be turned into an upper bound for n&110'; for n
between 70' and 110' we will use the inequality (C2).

The inequality (C1) is most powerful when n is as
small as possible and P is as large as possible, because we
find that cos'(i2n) is a much more rapidly varying
function of e than is X(n).

We first utilize Eq. (C1) by setting P=~—n; since
X(n)=X(s —n) we obtain an inequality involving a
single variable, and a consequent upper bound

X(u) &
1+Les/(n —1)j cosn

(C3)

for u such that s./2n(n( cos '(e —1/e): these limits
on n stem from the restriction that n can be no less than
P/(2n —1), and from the knowledge that X(n) & 1. We
compute an upper bound on X(n) from Eq. (C3) for
each value of n, and take the least of these upper bounds.

Thus we obtain an initial upper bound for all
0&n&60 (and by the symmetry relation for 120)n) 180') which, as expected, is especially good when
n takes on its minimum possible value vr/2n

For 60'&n& 70', we may obtain a useful upper bound
from Eq. (C1) by setting P=7r.

Turning to Eq (C2),. we set P=135' and n=2;
because X(135')&0.83 LEq. (44)), we obtain

X(n) &0.943, 45'& n& 90' (C4)

which is our lowest bound in the region 70'&n&90'
(and by symmetry for 90'&a&110'), where Eq. (C1)
is not useful. Ke now have an initial upper bound
for all n.

Returning to Eq. (C1), we set n=P/(2n —1) and.

by letting P successively take on values between 180'
and 0', and X(P) take on the values of the initial upper
bound, we can obtain an upper bound on X(n) which,
for certain n and certain ranges of n, is an improvement
over the initial upper bound. Eventually we end up
with the upper bound illustrated in Fig. 1.


