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Coherent States and Transition Probabilities in a Time-Dependent
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New time-dependent invariants for the 1V-dimensional nonstationary harmonic oscillator and for a
charged particle in a varying axially symmetric classical electromagnetic field are found. For these quantum
systems, coherent states are introduced, and the Green's functions are obtained in closed form. For a
special type of electromagnetic 6eld which is constant in the remote past and future, the transition ampli-
tudes between both arbitrary coherent states and energy eigenstates are calculated and expressed in terms
of classical polynomials. The adiabatic approximation and adiabatic invariants are discussed. In the special
case of a particle with time-dependent mass, the solution of the Schrodinger equation is found. The symmetry
of nonstationary Hamiltonians is discussed, and the noncompact group U(tlT, 1) is shown to be the group
of dynamical symmetry for the time-dependent lV-dimensional oscillator.

I. INTRODUCTION

'HE I'"eynman path integrals method provides a
simple possibility for considering any quantum

system both with constant and time-dependent
quadratic Hamiltonians because the Green's functions
in these cases are equal to exp(is, t/A) 'Ne.vertheless,
the details of any nonstationary problem are interesting,
and there are many attempts to treat different aspects
of these problems. The Glauber coherent-states repre-
sentation' proves to be very convenient for many
problems of quantum theory. The main aim of this
article is to introduce coherent states for some time-
dependent Hamiltonians and to use this representation
for calculations.

Recently a class of explicitly time-dependent in-
variants for classical and quantum time-dependent
one-dimensional harmonic oscillators was found by
Lewis. ' Lewis and Riesenfeld4 have developed the
theory of time-dependent invariants for nonstationary
quantum systems and applied this method to the one-
dimensional time-dependent harmonic oscillator and to
charged particle motion in a time-dependent electro-
magnetic field. This paper gives a method for the calcu-
lation of the transition probability between energy
eigenstates of the quantum systems under considera-
tion. Earlier, the Green s function and the transition
amplitudes connecting any arbitrary initial energy
eigenstate to a Gnal one for the case of a forced one-
dimensional harmonic oscillator with a, time-dependent
frequency have been calculated in a quite different way
by Husimi. ' Husimi has obtained and used the generat-
ing function for the calculation of these amplitudes.
Using quadratic invariants found in Refs. 3 and 4,
Crosignani, Di Porto, and Solimeno have calculated
the evolution of an initial coherent state of the quantum

'R. P. Feynman and A. R. Hibbs, Qzsantgm Mechanics and
Path Integrals (McGraw-Hill, New York, 1965).

'R. J. Glauber, Phys. Rev. 131, 2766 (1963); Phys. Rev.
Letters 10, 84 (1963).' H. R. Lewis, Phys. Rev. Letters 18, 510 (1967).

4 H. R. Lewis and W. B. Risenfeld, J. Math. Phys. 10, 1458
(1969).' K. Husimi, Progr. Theoret. Phys. (Kyoto) 9, 381 (1953).
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oscillator and considered adiabatic invariants for the
oscillator with time-dependent frequency. ' Dyhne~ has
calculated transition probabilities for the harmonic
oscillator in the adiabatic approximation.

The coherent state of the oscillator with a constant
frequency is the classical packet, which was considered
by Schrodinger. ' Coherent states for both nonrelativistic
and relativistic charged particles Inoving in a constant
classical electromagnetic Geld (SJ K, BC'—P)0) were
introduced in Ref. 9. These states are connected with
the classical packets constructed by Darwin' and
Kennard. "Coherent states for a time-dependent mag-
netic field have been briefly discussed in Ref. 12.

Our purpose in the present article is to find all linear
independent invariants for the A -dimensional quantum
oscillator with time-dependent frequencies and for a
charged particle in an axially symmetric and uniform
time-dependent electromagnetic Geld. Using these
invariants, we construct coherent states for these
quantum systems and the Green's functions for the
corresponding Schrodinger equations. Employing the
explicit form of coherent states, we get all transition
amplitudes for the quantum systems under considera-
tion. We start with a brief discussion of the problem of
invariants in quantum mechanics (Sec. II) and' give a
survey of properties of coherent states, taking the one-
dimensional harmonic oscillator with a constant fre-
quency as an example (Sec. III). The cV-dimensional
nonstationary quantum oscillator is treated in Sec. IV.
In Sec. V we consider a charged particle moving in a

'B. Crosignani, P. Di Porto, and S. Solimeno, Phys. Letters
28A, 271 (1968); S. Solimeno, P, Di Porto, and B. Crosignani,
J. Math. Phys. 10, 1922 (1969).' A. M. Dyhne, Zh. Eksperim. i Teor. Fiz. 38, 570 (1960) )Soviet
Phys. JETP 11, 411 (1960)).' E. Schrodinger, Naturwiss. 14, 664 (1926).

I. A. Malkin and V. I. Man'ko, Zh. Eksperim. i Teor. Fiz.
55, 1014 (1968) )Soviet Phys. JETP 28, 527 (1969)]; coherent
states in this problem for the nonrelativistic states have been
also considered by R. Bonifacio (unpublished)."G. C. Darwin, Proc. Roy. Soc. (London) 11'7, 258 (1928).» E. H. Kennard, Z. Physik 44, 326 (1927).

» I. A. Malkin, V. I. Man'ko, and D. A. Trifonov, Phys.
Letters 30A, 414 (1969; Zh. Eksperim. i Teor. Fiz. 58, 721 (1970}
/Soviet Phys. JETP (to be translated) g.
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varying electromagnetic Beld and we obtain an exact
solution in terms of a function which satisfies a linear
differential equation describing classical motion. The
evolution of adiabatic invariants is calculated in Sec. VI.
The results of the previous sections are generalized to
the case of a particle with time-dependent mass in
Sec. VII.

II. INTEGRALS OF MOTION IN
QUANTUM MECHANICS

First we shall consider the question of how many
integrals of motion there are in quantum mechanics.
The answer to this question is known. However, some-

times there is certain misunderstanding, especially
when one deals with a complex quantum system. It is
known that for a classical system which has n degrees
of freedom there are exactly 2n independent integrals
of motion. One may choose n initial coordinates and
n initial momenta as these integrals. All the other con-
served numbers may be expressed in terms of these
integrals of motion. The correspondence between

quantum and classical mechanics demands that for any
quantum system with n degrees of freedom there
should be 2n integrals of motion too. They commute
with the operator iB/Bt II It i—s an. obvious fact, but
if one looks in any textbook for the two integra, ls of
motion for the one-dimensional quantum oscillator with
constant frequency, H=co(atu+2), the answer will be
diS.cult to hand. These two integrals of motion are

2 (ae'"'+ ate '"') —'(ae'"' —ute '"') It is more convenient
to consider one non-Hermitian invariant ae'"'. The real
and imaginary parts of it are the two integrals of
motion. These integrals are linear forms with respect
to coordinate and momentum operators and are

physically interpreted as initial coordinates in the phase
space. Thus for any Schrodinger equation with any
potential (both constant and time-dependent), there
must be 2n linear integrals of motion. There is an
interesting problem of the connection between adiabatic
invariants and exact invariants. "If one has the tirne-

dependent potential, the quantum numbers are known

to be adiabatic invariants. "It follows from the above
that the quantum numbers are exact invariants. If one

had the initial quantum numbers they wouM determine
the state of the system for any time. This becomes very
apparent if one proceeds to construct the coherent
states for the quantum system. We shall illustrate this
statement by the examples of an E-dimensional
oscillator and a charge moving in a magnetic Beld. The
adiabatic invariants of all orders may be obtained by
expanding the exact invariant in powers of ~/&u', where

or is the characteristic frequency. Thus for any quantum
system there must be adiabatic invariants correspond-

ing to the exact invariants. If the exact invariants are
non-Hermitian and linear with respect to the coordinate
and momentum, this should be taken into account

"M. Barn and V. Fack, Z. Physik 51, 165 (1928).

when one considers the adiabatic invariant, which in
this case contains the phase factor. These ideas will be
considered in greater detail in another paper.

0,(&'&+2)+=EN, h=c=1
where

g= 2—~/~Lq(~f1)~/~+ jp(/Mfl)
—&/q

&t= 2 "'(q(M&)'/' ip(—/III') '/ )-
are lowering and raising operators:

La,a') = 1.

(2)

Then the eigenvalues of energy are E„=Q(n+~~) and
the energy eigenstates are constructed by means of the
operators (2):

where f0) is a vacuum: a f0)=0, (Of0)=1.

afn)=n"'fn 1), a" fn)=(n+—I)"'fn+1). (5)

Coherent states are introduced by Glauber2 as
eigenstates of the lowering operator a:

8 A =0! A ) (6)

where n is a, complex number. One can easily check that
the normalized eigenstate

f n) is given by

I~) =exp(-2 l~f') 2
n=o (~!)'/2

(7)

This form shows that the average occupation number
of the state fn) is given by a Poisson distribution with
mean value

f
(n

f
n)

f

'= ( f
n

f
'"/n!) e & &'. (g)

The coherent state fn) may be obtained from the
ground state

f 0) by acting with the unitary operator

D(n) = exp(nut —n*a), fn) = D(n) f
0). (9)

This operator acts as a displacement operator upon a
and u~:

D '(n)uD(n) =a+n. (10a)

The following formula holds:

D(~y)D(n2) =D(~x+n2) exp/i 1mb'~~*)). (10b)

III. COHERENT STATES FOR ONE-DIMENSIONAL
QUANTUM OSCILLATOR WITH

CONSTANT FREQUENCY

Since in what follows it is necessary to use the
problem of the quantum oscillator, we shall briefly
review the results referring to the coherent states of a
constant-frequency oscillator. A similar discussion of
these results is given by Glauber. '

The wave equation for the one-dimensional harmonic
oscillator has the form
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(13)

and for an arbitrary state
I f), we get

I f) =(1/~)
I
~&f(~*) «p( —s I

~
I
'&d'~

(14)

f(~*)= &~ I f& exp(l I
~

I
') .

Moreover, coherent states form an overcornplete set
of functions in the sense that if we have any convergent
sequence of complex numbers n„—+o.o, the coherent
states fn ) themselves form a complete set."Thus, in
general, expansion (14) is not unique. Equation (14)
gives a unique expansion if the expansion amplitudes
f(n*) depend analytically upon the variable n*. This
holds, for example, if

I f) is a coherent state, and
Eq. (14) gives in this case the expression for any given
coherent state in terms of all of the others:

I &&
= (I/~) I ~& expf ~*~—s(I ~

I
'+

I ~l '& jd'~ (»)

The time-independent states fn) are those character-
istic of the Heisenberg picture of quantum mechanics.
The corresponding Schrodinger states take the following
form:

In)s, = In exp( —iQt)) exp( —s'iQt),

Furthermore, we shall work only with In&s, and denote
it as fn&.

The packets Iu& describe the most classical states of
the quantum oscillator. They represent as close an
approach to classical localization of the particle as is
possible; in the coherent states, the uncertainty relation
reaches its minimum

where
(»)'(~~)'=-:,

(»)'= &P') —&P)' (~c)'= &P'& —&P&'.

(17)

The expectation values of the coordinate and momen-

"K.Cahill, Phys. Rev. 138, 1566 (1965).

Using the operator D(n), one can easily obtain an
explicit formula for In&:

I &=(Q/ )"'exp(-L(-'Q)"'v- 3'
+l( '—

I
I')& (11)

Employing the representation (7), the scalar product
may be easily calculated:

&~l&&=expL~*0—l(l I'+ III')j,
I&-l~&I'=-p(- I--~f')

The coherent state tends to become approximately
orthogonal for n and P which are suKciently different.
But they do form a complete set:

turn carry out a harmonic motion with amplitudes
fn I

(2/MQ)'t and fnf (2MQ)'~', respectively Lsee (2)g.
In the complex plane 0., this is a motion along a circle
with radius fn I

and frequency Q. We recall that the
motion of a classical oscillator in the complex plane of
n=2't'Lq(cVQ)'~'+ip(3EQ)-'t'j is a motion along a
circle with radius fnf and frequency Q. Thus the
quantity I

a
I

determines the classical amplitudes of the
oscillations of the quantum oscillator, and the phase
q (o.) is the classical phase of the oscillations of the same
oscillator. However, the quantum oscillator in the state
In) in the language of classical mechanics corresponds
to the motion along a circle in the phase plane of a whole
set of classical oscillators each of which oscillates with
its own amplitude, which determines its energy.

IV. N-DIMENSIONAL TIME-DEPENDENT
QUANTUM OSCILLATOR

A. Invariants

The Hamiltonian of this quantum system is

N pI s

H = Q +-',3fI,Qs'(t) gg,
'

k=1

where qs are canonical coordinates, ps are their con-
jugate mornenta, Qs(t) are arbitrary continuous func-
tions of time, and MI, are mass parameters. For the
sake of simplicity, we shall take 35~=1, i.e., we shall
use new coordinates M~'~2q~ which we also denote as qI, .
The wave equation is

8'———p Lp '+Q '(t)g 'j 4'=0, A=c=1.
8$ 2 It,=1

(19)

d2 I—
I e.f+Q, s(t)

I e,
l

— =0. (23)

B. Coherent States

One can observe now the manner of construction of
coherent states for the E-dimensional time-dependent

In accordance with Sec. II, there must be E independent
(non-Hermitian) invariants, and one can make sure
that the operators

A (t)=i2 I
e (t)P —e (t)q j, k=1, . . .,X (20)

where ez(t) are special solutions of the equations7

'dry
es+Qs'(t)es=0, es=

I es I expl i — I, (21)
I„I ) '

commute with the operator i8/Bt Hand, thus, are-
invariants. The following commutation relations hold:

I As, A4tj = bg, ,(, LAs, A Q= 0. (22)

Equations (21) are equivalent to the nonlinear ones4
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&k/o

I n; t) =g (zzp!cger't2)-'t2
k=1D(n) =g exp(nkdrt —nt*.$r), n=(nl, . . .,n~) (24)

quantum oscillator, i.ee ) the normalized eigenstates of functions of the Hermite polynomials, "
invariants (20). We de6ne the unitary operators

where nk are arbitrary complex numbers, and construct
the normalized vacuum state

N Zek

[0;l&=it '" ' exp r'), A (0;e)=0 (25)
k=1 26k

v2nr.
t)=H zr l«e-k ' tezpx

—2ekl

-"+I-.I

' . (26)
2 6k

Since A t are invariants,
I n; t) obeys the Schrodinger

equation and this may be checked by direct differentia, -

tion of In; t) The foll.owing formulas hold:

Ar le; t) =ng„ln; t), - (27)

which obeys the wave equation (i8/R H) IO—; t) =0.
By acting upon vacuum (25) with unitary operator

(24), we get the required coherent states

g exp gk H~k . 33

These formulas are the trivial generalizations of
Husimi's results for the one-dimensional oscillator. ' We
observe that the coherent states In;t) and the eigen-
states of Ite, In; t), for the 1V-dimensional oscillator are
obtained as the product of the corresponding states for
the one-dimensional oscillator. It is apparent that the
coherent states for the one-dimensional time-dependent
oscillator are solutions of Gaussian type, i.ee) of the
following form: an exponential of a quadratic. Gaussian
packets for a time-dependent oscillator were erst found
by Husimi 5 who also found the Green's function for
this system. In terms of coherent states, this Green's
function for our system can be easily obtained as
zr "Jdtt(n) In q2 t2)(n '

qr, tl I:

tr(q2 t2 ql, tl)

= II (2 2
I &;; I

»np ) "' expl — Q, ,Q,
sinyq

' ' )

(5;tI;t)=H ..pL&
* —l(l I'+I&.I2)j, (2g)

Xezp —,'i COtyt, .(Q2, 22+Qte, i2)

N

In;t)(n; tldtz(n)=1, dtz(n) =g dznz, . (29)
XN k=1

The coherent state
I e; t) is a generating function for the

eigenstates of the Hermitian operators Ik =A ktA k .

I
n t) =exp(- l I nl 2)

where

+-,'il Qr, 2' ———Q, ,'--—I, (34)
dt2 dtl 1

Q~;2.2=tt2I e2(tl. 2) I

q = (tel ",g~)t20 Ot1 la ~ eQk ka ~ aQN nm

X Z In; t), (30)
(zzl! . zzzz!) "' In order to elucidate the physical meaning of the

coherent sta, tes ln;t) and of the invariants Aq(t), let
us consider their limits for constant frequencies Qk. For
simplicity we shall suppose that Q(t) =Qte' for t(0, and
Q~(t) =Qz:t for t~~, where Qte' t are constants. Then.
for the limits t —+ W ~, there exists a complete set of
coherent states

I n; i) and
I g; f), and of orthonormalized

energy eigenstates In;i) and Im; f), and the transition
amplitudes between these states may be calculated.
The general expression of the transition amplitude
connecting an initial state li) and a final one

I f) is
given by the matrix element

(31)Ikl n; t) =zzk
I n; t), (m; t n; t) =~..

where

11= N]) ~ ~ )SN

and zzt, are positive integers. The eigensta. tes In; t) are
constructed by means of inva, riants A k as follows:

zz (g„t)o&
In; t) =g Izz„t) =g — I0; t),

~=i (zz„!)»2
(32)

2.'= (fl t-), (33)
~ 0

and their explicit form may be obtained from the "gateman Manuscript project, pligher Transcengenta) pgnc-
explicit form of

I n; t), if we recall the generating tzons, edited hy Erdelyi (McGraw-Hill, New York, 1953), Vol. II.
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where ~t —+~) is the t —+~ limit of the state ~t), which
has as its t +—~ limit the state ~i). We are free to
choose the initial conditions for the solutions of Eqs. (21)
or (23) in order to get correct limits as t ~ ~—of the
states ~n; t) and ~n;t):

e„(—~ ) = (Q/, ')—"-"exp(iQ2't),
(36)

c2(—~ ) =i(Q&') '/' exp(iQ&'t) .

The above choice for e2( —~) leads to the following
limits for the invariants:

A 2(—~ )=A 2'= 2 '/' exp(iQ2't)

q„(Q„/)1 2+Zp„(Q„/) —1/2g (37)

It is clear, then, that ~n, —~) and ~n; —~) will coin-
cide with the initial states ~n;i) and ~n;i), which are
constructed by the operators A&' in the same manner
as tn; t) and ~n; t) are constructed by the operators
A/, (t). We give the expression for the initial states
related to the constant frequencies 01,".

defined in these coordinates, which is apparent from
Eq. (20). Now for the cV-dimensional oscillator the
phase space is 2E dimensional, and in the time-
dependent coordinates p2', q2', &=1,. . . ,A', we get the
classical motion on a 2Ã-dimensional sphere with the
radius ~n~. The initial point of this motion is deter-
mined by 2.V real numbers and we have S complex
integrals of motion nl„k=1, . . . ,S, the eigenvalues of
1V non-Hermitian invariants A /, (t).

where

A, (t) = (,(t)A, fy&„(t)(A„f)t, (39)

$2(t) =-,' exp( —iQ/, ft) [e2(Qg, f)"'—i~/, (Q2f) "'j,
(40)

2/2(t) = —22 exp(jQ&ft)L$2(Q2f)'/'+ j22(Q2f) '/'j

C. Transition Amplitudes

Let us now turn to the calculation of the transition
probabilities (35).We shall need the following expression
for the operators A2(t) in terms of the final operators
AI, f', related to the constant frequencies QI,f ' 4:

i/2

&(exp ——,'QI, ' q~ — o, f,e '"" —~iQ~'t
QI„-'

&(exp(-2'(ni'e """'—n ~ 2)) (38)

The commutation relations (22) require

which is clearly satisfied. The general solutions of
Eq. (21) for constant Q/, f (in the limit t~~) may be
written in the form—

(Q 1/2r) 1/2-1/2

~n;i)=g
k=1 2 ~S~ l

Xexp L
—',Q&'q22 —i(/2&+2') Q&'t)H„„(q&(Q&') '/'),

—exp(iQ2ft) — —exp( iQ2ft)—.
(Q f) 1/2 (Q f)l/2

(42)

which are again the products of the corresponding
states for the one-dimensional oscillators. The final
states

~ y; f) and ~m; f) are given by the same equations
(38) with the replacement Qi'~Q2f. The coherent
states for a time-dependent oscillator describe most
classical states in a similar manner to the coherent
states for the oscillator with constant frequency. We
have discussed in Sec. III the physical meaning of the
eigenvalue n2 of the operator A2', k fixed; ~n/,

~

deter-
mines the classical amplitude of the oscillations in the
phase plane (p/„q2), and the phase 22(ni) is the classical
phase of the oscillators of the same oscillation. Classical
motion in the phase plane (p/, (2Q2') '/2, q2(2Q2')1/2) is
along a circle with radius ~n2/, . Since A2(t) is an in-
variant, it follows then that its eigenvalue o.j, in the
state ~n2, t) is connected with the p2, q/, coordinates of
the initial point where the classical motion has started.
Of course, for a varying Qz(t), this motion is more
complicated, but if we introduce the time-dependent
coordinates

q2'= q~(~ ~~
~

2'") ', pa'= 2 "2(( ~2
I p2 —q~d

~
~2

~
/dt),

the classical motion along a circle with the radius
~
n/, j is

Therefore, the transition amplitudes that we shall
calculate are completely determined by these constants

f& and 2//, Lsince the solutions of the wave equation are
given in terms of e2(t)j.

We will also use the compact (82) and noncompact
(b2) parameters:

cos8 =1—2i2/2/P i', cosh'„= i&„i'+i 2/ i'. (43)

In the case of the one-dimensional time-dependent
oscillator, the noncompact parameter cosh' has been
used in Refs. 3 and 4. The solutions ~n; t) and ~n; t) for
the E-dimensional oscillator are the products of the
solutions for the one-dimensional oscillators and, there-
fore, the transition amplitudes for the lV-dimensional
oscillator are products of those of the one-dimensional
oscillators.

The transition. amplitudes for the one-dimensional
quantum oscillator between the energy eigenstates
were obtained by Husimi. ' Now we shall derive formulas
for the transition amplitudes between coherent states.
As a matter of fact, they are essentially obtained in
Ref. 5, but some supplementary transformations must
be made in order to arrive at our formulas (we give the
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results for the Ã-dimensional oscillator):

j. gI,
* 2

T.&=g (Ps)-"' «p —ns' +n~y~*-
Ib=1 ~~a (s

gk—(ps*)'——In~ I' —
I ps I'

4
(44)

where m, n are of the same parity. So

l/2

T. =(m; jIn;t —&~)=g
ms!b

&&expLi-,'(ms —n/, ) q „,—i-,'(m/, +ns) q (,g

+J ( s+ s)/s "'"(coss8s) (49)

N
T&

k=1

-(~ s/2(„)ns t/2-

nk! p/

&«xp ——
I vs I

'+(v.*)'—
b-

Having the transition amplitudes between coherent
states, we may obtain all the rest by simple diGerentia-
tion. In the case of the quantum oscillator, this differ-
entiation is especially simple if we again recall. the
generating function of Hermite polynomials. "For the
transitions In;i)~ I y; f) and Ia;i) ~ Im; f), we get
immediately

This matrix element is an integral of the type

H (nx)H„(Px)e "dx, —

ep!
IV„=Q — IP, „„("'""/'(cos-'8 ) I'.

t.=)ms!I(
I

(50)

well known in the literature (see, for example, Ref. 16).
In another form for the one-dimensional oscillator,

this amplitude was obtained by Husimi. ' For the
transition probabilities, we have

-(r/s/2 ps)
ms- r/s

T==rr
ms!4

exp — ns —
I
as

I

This is a generalization of the results for the one-
dimensional oscillator. ' The possibility of expressing
the transition probability of the one-dimensional
oscillator in terms of I.egendre polynomials was noted
in Ref. 17.

D. U(N, 1) Symmetry

)&H„.(46)
-(2bgk) "'-

The function T & expL-,'(IaI'+ IyI')j is known to be
the generating function for Legendre polynomials.
indeed (see 11.5.1 in Ref. 15)

exp a'—+ay*——(y*)'—

It is well known" that the X-dimensional oscillator
with equal and constant frequencies has as its invariance
group the compact group U(1V). All the wave functions
corresponding to an energy level realize an irreducible
representation of this group. The dynamical symmetry
which collects all the levels into one irreducible in6nite-
dimensional representation for such an oscillator is
known to be the U(X, 1) group. " One can easily
generalize these two statements for the S-dimensional
oscillator with time-dependent frequencies. Indeed, if
we take E' operators

T; I,——A;tAI„ i,k= i, . . .,X (51)

CX + r+v

-p(-'p~t) Z I

—— J'. 2), (47)
~=a p! 7r ,=nk n

where

(= (—cosrs8, sinsr8cosq„—sins8sinq„), cos-,'8=1/I &I;

or, in another form (p+q= m p q= n), the—right-hand
side of (47) is

they commute as the generators of the group U(1V):

)Ti,k~Tm, nj Ti,n4, m Tm, s5i, n, ~

These operators commute with the operator i8/Bt H. —
So the wave functions belonging to the main quantum
number 3I=nr+ns+ +niv realize the irreducible
representation of the group U(N) with the highest
weight (M,0, . . . ,0) as well as for a stationary oscillator.
One can construct the additional operators, commuting

m, n=o

nn(~W)m
—expI i-,'(m —n) q „—i-,'(m+n) q,j

XJ'(~ )/s(m "»'(cos-,'8), (48)

"P.A. Lee, J. Math. Phys. 46, 215 (1967).
"V.S. Popov and A. M. Perelomov, Zh. Eksperim. i Teor. Fir.

56, 1375 (1969) LSoviet Phys. JETP 29, 738 (1969)).
'8 E. Hill and H. Jauch, Phys. Rev. 57', 641 (1940).
"A. O. Barut, Phys. Rev. 139, 1433 (1965).
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with i'/Bt H—:

T~+i,;=A;(Q A;tA, )"',

TI,„~+i——A i,
—t(Q A,tA,+1)"', (53)

By direct calculation one can verify that the follow-
ing operators are invariants:

A (/) = exp', ~ cv(r)dr
28

7 iV+1, Ã+1 p A j~Aj 1 ~

The (1V+1)' operators T,s, n, /= 1,2. . . ,%+1, defined

by Eqs. (51) and (53), form the Lie algebra of the
noncompact group U($, 1):

L&-,p, 2', ,«j= &-,i4, v
—&., «~-, i (54)

So, all the solutions of Schrodinger equation (19) realize
one ladder representation of the noncompact group
U(E, l). This is the same representation as for a
stationary oscillator. We will say that the dynamical
group of the X-dimensional oscillator is the U(E, 1)
gl oup.

For a stationary oscillator this group does not com-
mute with the Hamiltonian but it commutes with the
operator i8/Bt H, bei—ng the invariance group of the
Schrodinger equation with time.

«(&) = I
«

I
exp c(e/~) I «(r) I

'~r (59)

Equation (58) then produces4

Xp«(t) (p,+ip„) —uV «(/) (y —ix)j,
(57)

t

B(t) = — exp 'i —-co(r)cfr
2~1/2

XL«(t)(p„+ip,) i3—1 «(/)(x c'y—)j,
where &u(t) = eK(t)/3I, and «(/) is any particular solution
of the equation

«+ Q2([)«0 Q2(() —i~2(f)+ («2/ilI12) g(t) (58)

The operators (57) commute with the operator icI/cjoy —H
in consequence of A=8=0. In order to get the time-
independent commutation relation of the operators
A, At and B, Bt we choose the special solutions of (58),

V. MOTION OF CHARGED PARTICLE IN TIME-
DEPENDENT ELECTROMAGNETIC FIELD

A. Invariants

d' (e ' 1—
I
«I+Q'(&) I «I —I—

dP &M
(60)

We shall consider a particle of mass M and charge e The following commutation relations hold:
moving in a classical electromagnetic field with a
potential

A(t) =-,'L3'. (t),rj, q = (e/2Mc')x(t)(x'+y'), (55)

where r is the position vector, X(/) is an axially sym-
metric magnetic field, and X(t), K(t) are arbitrary
continuous functions of time. The scalar potential y
corresponds to an axially symmetric, time-dependent
uniform charge density equal to —(e/2~Wc')X(/). We
choose the axis s along the 6eld K; then A, =O. The
motion along the axis s is then trivial and we shall
ignore it and treat only the motion in the xy plane.
The Hamiltonian for such a system is

H = (1/2M) f(p, —eA,)'+ (p„—eA „)'j+e&p,
A= c= 1. (56)

The spin-dependent part —pg,X is dropped, since what
follows does not depend on it. The potential (55) obeys
the Maxwell equations for any continuous functions
K(t), X(t) if only they do not change very fast in com-
parison with the speed of light so that we may ignore
the radiation field. In practice this requirement is
almost always fulfilled. The electromagnetic potential
(55) is usually chosen for describing the electromagnetic
6eld of a solenoid. "

~ L. D. Landau and E.M. Lifshitz, Qgantlm Mechanics (Perga-
mon, New York, 1965).

«(—~)= (2/X, )"' expPicd, t),
=

gal%

(62)

The reason for such a choice will be given later. Under
the initial conditions (62), the t-+ —~ limit of the

For oppositely charged particles, the lowering and
raising operators A,B and A~, B~ change their places.
For simplicity we suppose e)0. In Ref. 4 there was
found one Hermitian invariant E(f) which may be
expressed in terms of our operators as

E'(/) = At(t)A (/)+-,'.
Because of the axial symmetry of the electromagnetic
potential (55), the s component of the angular momen-
tum is also an integral of motion and it too may be
expressed in terms of our operators (57):

1.,=B~B—A tA .

In order to elucidate the physical meaning of the
invariants A(t) and B(t), let us consider their limits
(at t + —~) for a con—stant magnetic field. Here we
suppose that K(t) =X,, p(t) =0 if t(0, so that Q(t) = lcd;
if t(0. In the limit t —+ —~, we choose as a solution
of Eq. (58)
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displacement operators

A;= (-,'M p);) ') ' exp(imp, t) [y—yp —i(x—x,)j,
(63)

B,= (-,'Mip;) "'(xp i—yp),

where xp= px+p„/Mp);, yp ——py
—p, /Happ; are the well-

known' "coordinates" of the center of the orbit of a
particle moving in a constant magnetic Geld X,;.

lt is apparent from Eq. (63) that the eigenvalue of
the invariant 8; determines the coordinates of the
center of the orbit in the xy plane, and the eigenvalue
of the operator A;exp(ipp;t) determines the current
coordinates of the center of the packet. Hence the
invariant A; itself is connected with the coordinates of
the initial point, where the motion has started from.
Now it is obvious that the time-dependent invariants
A(t) and B(t) are connected with the initial conditions
of the motion. For classical motion there are four inde-
pendent integrals of motion in consequence of the four
degrees of freedom (motion in the xy plane), and the
same situation holds in the quantum case.

B. Coherent States

In the same manner as coherent states were intro-
duced in Sec. IV for a time-dependent oscillator, one
may introduce coherent states for a charged particle
moving in a time-dependent; electromagnetic field of
the type determined in Sec. VA. In this case we have
two lowering operators A(t) and B(t) and the coherent
states will carry two indices:

p[ :(I I—'+Ipl')j

oo AQ

zz), zz2 p (n)!n2!)

where u, p are arbitrary constant complex numbers.
Here

D(u) = exp(uAt —u*A), D '(u)AD(u) =A+u,
(68)

D(P) =exp(PB' P—*B), D '(P)BD(P) =B+P,

which commute with each other: [D(u),D(P)j=0. The
coherent states lu, p; t) may be constructed explicitly
by acting upon the vacuum.

e "' iVe
~o,o; &

—=;", , g"), )=,+, y»)
26

with operators (68):

t'e ~)P ( 3IIp

l,zz; z) zz~ )n(z=z)loo; z)=I - 'exp~ z )I'")
k 2p

)&exp[ '(Iul'+Ipl')

+(e"'/I pl)(pfe *' +~E*e *")
—~pe-'&~++~ )j (7o-)

where

y~(t) = (e/M) I [p(r) I
'wX(r) jdr.

The eigenstates In~, np, t) of the operators E and L. are
orthonormalized:

(n),np,' t
I
mg, mp,

' t) = 8„, ,8„,

Then relation (64) yields

(u,p; t
f
u', p'; t) = exp[u*u'+ p*p'

——:(luf'+lu'I'+
I
pl'+

I
p'I')& (»)

so that the coherent states lu, P; t) are normalized but
not orthogonal.

One may introduce coherent states with respect to
one of the operators 3 or 0. Let us consider the eigen-
states of the invariants E and 8:

(At) zzz(B) ) zz2

In„n„ t) = — lo,o; t),
(ng!np!) "'

Aloo;t)=Bloo;t)=o

(65)
E Inr, p; t) = (n)+ ,') I nr, p; -t),

Bln), p; t) =pin, ,p; t)

It is easy to verify that the functions

(72)

are solutions of the Schrodinger equation (i8/Bt —II)4
=0, and at the same time they are eigenstates of the
invariants E(t) and L: 1/2e

E lnr, np,.t)= (ng+-', ) fn), np, t),
L,

I
nr, n p, t) = (np —nq) I nr, np, t) .

(66)

pe
—iy-

The coherent states lu, P;t) are eigenstates of the
time-dependent invariants A (t) and B(t):

A fuP t)=uluP t) BluP t)=PluPit) (67)

The physical meaning of the eigenvalues u and P has
been discussed in Sec. VA. There are two unitary

)&exp i ff *+ Pge '~ in, ~+-PIPI' (73)---
2p lpl

obey requirements (72) and their scalar product is
given by

(n, ,p;tlt„p';t)
= ~-. ..exp[--:(IP I + IP'I ')+P*P'j (74)
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The coherent states ln, nz, t) may be constructed in the
same way: ln, nz, t)=D(n) IO,ns, t). The coherent states
(73) are the generating functions for the states

I nr, nz, t),
and one can obtain the explicit form of Inr, nz, t) by
expanding them in powers of the number P, as well as
by differentiation of ln, p;t) with respect to n and p
simultaneously:

where

I ( ) I
'd, &'= —(* '+y ') "'

qzr; ——tan-'(y/x) —y (t,), i=1, 2.
pie/

—&Is e I nz n2—
1 lz

ln, ,n, ; t) = z"&(-1)—& = — p'
(p+ ln, —n, l)! !, sl'

M~
+exp z p'+z(nz —ni) ~" zn—ry+ zn—zp

26

( ~
/ny ns[I — ~2

I (75)

This function is a generalization of the Green's function
of the Schrodinger equation for a charged particle in
a constant magnetic Geld. ' " The Feynman integral
method was used by Batalin and Fradkin22 to Gnd the
Green's functions of relativistic particles in constant
fields of a general type. Equation (64) shows that in the
coherent state ln, p; t) we have Poisson distributions
for the quantum numbers n1 and n2.

where p= —,'(ni+nz —
I
ni —nz

I ), to and p are polar
coordinates, and I.„'(x) are Laguerre polynomials.

The coherent states (70) form a, complete set:
I 2ny 2n2

—expl: —l(l I'+ IPI') j (8o)
S1 n2-t

(1, zr ) In P t)(nP tld'nd'P, =1,

and for the arbitra, ry state
I f) we have the expansion

If) =(1/~') In P t)f(n*,p*)

where
&&expL v'(Inl'+ IPI )]d nd P (77)

f(n*,p*) =(n P; tlf) expl4(l I'+IPI')j.

1
lnr, nz, t) =—

~2 (nr!nz!)"'
&«xpEk(ln "+IP I

')) In, P; t)d'nd'P (78)

This expansion is the reverse of the expansion (64).
Employing the explicit form of the coherent state

ln, p; t), the Green's function of the Schrodinger equa-
tion for a charged particle in a varying electromagnetic
field may be found as"

G(X2 y2 t2' Sr yl ti)

1
ln, p; ts)(n, p; til d'nd'p

X2

exp
I areal sin7 4e dts dti i

+a coty(Rr —Rs)'+LRr&Rsj, , (79)

For the states lnr, nz, t) we get the following expansion
in terms of coherent states:

In order, 'to elucidate the physical interpretations of
ln, p;t), let us consider their limit as t +~. In—this
limit under the choice (62), our coherent st.ates coincide
with the initial coherent states ln, p;i), which were
treated in Ref. 9, for a charged particle in a constant
magnetic field 3'.;. We note that our states ln, p; t) and
their limits

I n, P; t ~ —~ ) are in the Schrodinger
representation, while in Ref. 9 coherent states are time
independent and correspond to the Heisenberg picture.
The state

I pn; t ~ —~ )=
I
n p; i) is time dependent

and obeys the Schrodinger equation i 8/Btg=IIQ;

I n,P; i) = (3Au, /2zr) "' exp( ——,'i(o;t ——,'Mco;i t'*)

&«xpL —l(ln I
'+

I p I
')

+ (-'Mu) ) "z(.Pi'+ ing*e *"") inPe '"*'—j (8—1)

To within a constant factor, the invariant IC( Oe)—
coincides with the Hamiltonian H;:

II = co Z( ~)= (u (A "A +-'—)
where A is given by (63).Thus the eigenstates

I
nr, ns, z)

coincide with the well-known energy and the L, eigen-
states of a charged particle moving in a constant
magnetic Geld. " In the classical case the particle per-
forms simple motion along a circular orbit with the
center at (xs,ys). Since ln, p;i) is an eigenstate of the
operators A and 8

I
see Eq. (63)j, it is clear that the

expectation values of x and y coordinates carry out ap
harmonic motion with the amplitude lnl (2/Mzo, )'t'.
The coordinates of the center of the motion are
(2/Mcv, )"'ReP arid —(2/Mco„) "' ImP.

So the coherent states In,P;i) are the most classical
states for a charged particle in a constant field 3.';.' The

2' E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A219, 173 (1951)."I. Batalin and E. S. Fradkin (unpublished).
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"semicoherent" states
I ni, P;i) provide the best classical

approach for stationary energy eigenstates. In these
states the coordinates xo and yo of the center of the
packet orbit are determined simultaneously as exactly
as is possible in accordance with the uncertainty
principle while the coordinates x and y do not obey this
condition. This takes place only in the states In,P;i),
which are coherent with respect to both A; and B;
operators. In a similar manner the packets In,P;t)
describe the most classical states for a charged particle
in an axially symmetric time-dependent electromagnetic
field. Of course the coordinates x and y now carry out
a more complicated form of motion, not just simple
harmonic motion.

C. Transition Probabilities

Let us now suppose the electromagnetic field to be
constant in the remote past and the remote future.
More precisely, let us suppose

SC(t) =X; p(t) =0
~(t)=X.„&(t)=0 as t~+~. (83)

po=—
2 0

I ~(t) —~,)dt.

This definition of Ay and By differs from the correspond-
ing definition of A; and 8; I

see Eq. (63)) by the phase
factor exp(~iso), and the same definitions for the
operators Ay and B~ were taken into account in Ref. 12.
The final states (related to the constant field Kt) a,re

Under these conditions, as 3 —+ W ~ there exist initial
and final coherent states and Landau solutions and the
problem of transitions between these states may be
solved. The transition amplitude connecting an initial
state Ii) to a final one

I f) is given by matrix element
(35). We have already chosen the solution of the
auxiliary classical equation (58) for the limit t + —~—
Lsee Zqs. (62)). The reason for this choice is to get the
condition IE(—~),B;)=0, so that in the limit
t~ —~ the eigenstates of E and L, would coincide
with the Landau solutions for a constant field X; and
coherent states

I n,P; t ~ —~), with the initial coherent
states ln, P;i) At the .liniit t~+~, the time depen-
dence of Q(t) produces amore general solution of Eq. (58)
and it is clear then that in general $E(~),Ht) AO, and

Ini, n2, ~) and la,P; ~) may be expanded in terms of
the corresponding final states. We shall use the following
definition of the final operators:

Ar= (23Ea)t)

Xe pL'( tt+vo))LP. + P.+l~ tb
84)

&t=(2~~t) "'
X p(—'

o)Lp,+'p.+-',~ (*—'))),
where

given by

lv, ~;f)

expL —k(i~,t+2u~rn *+
I v I

'+
I

&
I
'))

2'

A(-) = ~At+i/~t',
&(~)= nAt'+At,

(8&)

where the quantities $ and i/ are the t —+~ limits of
the functions

t

Xexp i qo —— (v(r)dr
2

g exp —.', cpo—
2

The commutation relations (61) require

(89)

which is clearly satisfied. The general solution of
Eq. (58) as t~~ may be written as

r= (2/Kt')'/'& exp(-,'Gott)

i(2/Xt) i/'i/ —exp( ——,'i&0rt), (90)

and since the solutions of the Schrodinger equation are
given in terms of the function e(t), all the transition
amplitudes are completely deterinioed by the parame-
ters ( and g. We shall use also the compact (0) and non-
compact (8) parameters,

cos0=1—2l~/pl', cosh'=
I )I + I el (91)

Xexp((2i3I~t)"'P@e'«+ip(*e '&"~&'+«/)

iy—be *"I-'), (85)
RS])822)

p!3fcut/2m-
=(—1)"i"'—

(p+ I
m, —~, l)!

XexpLi(m& mi)(p+pp))

Xexpk xcVu—fp z(rn —+~)(dft)

X(—~z,p2)Imx-mme/21. (ml —m2((1~& p2) (86)

~hereP k(~1+~2 IBzi rn9I), and(pand parepolar
coordinates.

The invariants A and B may be expressed in terms of
final operators (84) as follows:
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It is very useful to calculate first the transition ampli-
tude connecting coherent states In,P;i) and

I y, 8; f),
formulas for the Laguerre polynomials":

(a) n2~&n?, m &n;, i=1 2

T-,a"=b, ~; fl-,p;t—)
=('/&) e»l:—l(l~l'+

I
pl'+ l~l'+ I~I')&

~ »L(1/~)(-P"+P~*+ v* ~*~*.)j (92)

m], m2-
nl, n2

( 1)m?—n? n?1~~ t 1/2 (t'2)n??/m? —n?

n2!mi!

From the definition of the coherent states, it follows
that the amplitude T,p& ' is the generating function of
the rest of the amplitudes. For example, expanding the
right-hand sides of Eq. (92) in powers of y* and 8*, and
comparing with the relation

T-,a"=e»L —l(lvl'+ I
&I')j

2

Xp (ml —nl, n2—») g 2 96

(b) m2~& ni, m;&n,

fn2

1/2 (tn) m?(:k) n?—ml

ml? m2nl, n2

& nz2!ni!

we find

ml, m2

(+8)m? (g 8)m2

x p m?, m2 (93)
m?, m2=p (ml lm2 t) 1/2

(?P
OOJ ml —m2 ~ )~

kv

gp (n?—m?, np-n?i 1 2
I (97)

where P„("a&(x) a,re Jacobi polynomials and the con-
servation of the momentum 1„(n2—ni=m2 —mi) is
taken into account. In Ref. 12 amplitudes (96) and (97)
were expressed in terms of coshb= I)I2+ I?/I'. Both
Eqs. (96) and (97) are related to the positive
1.,=n2 —n~&~ 0. In the case of negative I.„one gets the
same Eqs. (96) and (97) with the replacement of the
indices 1+~2. For the transition probabilities, Eq. (96)
yields

X?', „- I. , '~~
—), n, (m, (94)

ml, m2
nl, n2

8$2nN3 n
t t

gm? —n?(] g)n2-n?+1
m] .S2 ~

y I
p (m?-n?, np-n?)

I

2 (98)

where l.„'(x) are Laguerre polynomials. Differentiating
Eq. (92) with respect to n and P in a similar way, we
obtain the amplitudes

X&o o"I "' "' — n&) n2

X&o,o"L ln2 "' —,Z(&2

where T,//P
P and Tp, pP"2 are given by Eq. (92) for

y= 8=0 and n=P=0, respectively. The transition
amplitudes for the "semicoherent" states may be got
in the same manner.

The transition amplitudes connecting the energy and
angular momentum eigenstates may be calculated by
expanding, for example, T,//m' m2 in powers of (2 and P.
For this purpose we have used the differentiation

where R= I?//$ I
'(1 Lin terms of the parameters 8 and (2

we have E= sin'(-,'0) = tanh2(215)$. The case (b), m„&n, ,
is described by the same Eq. (98) if we change
n, ~~m; i=1,2.

2. Now we shall discuss our formula for transition
probabilities, (98). The probability W„„? ' was
briefly discussed in Ref. 12. We obtained 8', ,„2 ' ' in
terms of the transition

I 0,0;i)~l 0,0; f):Wp p
——1 E. —

Our equations produce the following symmetries of the
transjtj. on probab&l&t&es: t/t/"n n ml, m2 —+ n n

m2, ml which
means that the transition probabilities do not depend
on the sign of I.„and 8" m'm'=Km m

"' "'. From
the general principles of quantum mechanics it follows
that the second relation holds if K(—t) =K(t), ?/?( —t)
=?/?(t), while we have found it va, lid for any K(t) and
p(t). This fact is a consequence of R being independent
of time inversion, because E.may be treated as a reQec-
tion coeKcient of a particle from the one-dimensional
effective potential, determined by Q(t), and then, as is
well known, "R does not depend on the time inversion.
Indeed, one can observe that Eq. (58) is analogous to
the one-dimensional Schrodinger equation if @re replace
t by x and 02(t) by 722(2:). Then, taking into account
Eqs. (62) and (90), we find that i?//P is the amplitude
of the reQex wave. The corresponding effective potential
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U(x) is determined by the Q(t) as follows:

Q'(x) = Q;2+2cVLU( —~ ) —U(x)j.
Here we suppose that the mass of the scattering particle
is again M in order to avoid new notation. Since Q'(l)
may be positive and negative, we have for the energy
of the scattering particle

a=Q,2/m+ V(— ) && L (x),

which is to be taken into account for the computation
of the reRection coe%cient E. This simple analogy
permits us to use for the calculation of R (or W, 2

'
=1—R) the methods which are well worked out in
quantum mechanics. We shall give some examples
(without derivation).

In the case of 02)0 for the Eckart potential, 2'

R= {coshLzrl(ro; —toy)g+ cos(zr' —8ylEzrzPB) 't')
X {coshI ~l(M +~y)3+ cos(~' —8~~'l'B) "') '

where 8 and/ are parameters of the potential. For the
barrier U(x) = Vo/coshstrx' and Q'(0, we have

This formula is not valid if R —+0. From the theory of
zeros of the Jacobi polynomials, " it follows that the
number of zeros of the transition probability
IV„, „, ' '(R) in the interval 0&~R&1 is equal to the
smallest of the numbers n~, n2, m~, and m2.

1 dQ(l)
— —=e(t), i e(l) i«1

Qz(t) dl
(103)

then to the first order of 0(t), the solution of Eq. (58)
is given by4

exp i Q(r)dr . (104)

In this limit g =0 and

D. Adiabatic Ayyroximation

If the frequency parameter Q(t) is changing adiabati-
cally from an initial value 0; to the final one Q~, i.e.,

R= COS2Pzr(1 —84lf Uo/trs)'tzj

X{sinh'(zrco;/2n)+cos'$-, 'zr(1 —8M Vo/4r')'t'j) ',
8&Up& o,'. )=exp i LQ(r) '~y j-dr-,

The adiabatic approximation (W„,,„,"'"'=1)is valid if
R«1 and n&n2E« i. One may come to this conclusion
if we expand kV„, ,„, l ' in series of the parameter R
(in the following formulas m, &~n;, i = 1,2, and L,)0),

W„, „z~'"2 =, 1 (2zzzzz—s+str+zzz+1)R+0(R),
mq.'m2.' Rm' "'

Pl ml, m2
%1, '02

zz, !nz! P(m, —zz,)!j'

(99)

where E= z (mz+nr+1) and sin' —,'8= R. Equation (100)
holds for m; —+4o. In the asymptotic equations (99)—
(101), the angular momentum L, is fixed and small in
comparison with rts and mz. For large (and positive)
L„one has

trzz2 ms
W 4441, 242 Rmr+~4(1 R)zz+&

&e, m,

20rms 1—R 1
X 1— . +0

i
. (102)

1+L„. R R2L2I
"C. Eckart, Phys. Rev. 35, 1303 (1930).
'4 G. Szego, Orthogonal Polynomials, revised edition (American

Mathematical Society, New York, 1959).

2S$02
X 1— — +zzt+zzs+1 iR+ . (100)

r1+mt —zzr

For high initial excitations (zzzzzzk &~1), the asymptotic
form (99) is not valid. For zzt, ztz —&~ (and L, fixed), we

may use the asymptotic form of the Jacobi polynomials"
and get

yl(~) =Ay exp z LQ(r) rzooyjdr—

B(oo)=By exp i t'Q(r) —,'ooyjdr—
0

(105)

where Ay and By are given by Eq. (84). This means, in
particular, that the initial coherent state ~n,P;z) with
f —+~ remains coherent with respect to the Gnal
operators Ay and By, here (n( and

( pj are again, the
moduli of their eigenvalues, but the phases depend on
the behavior of the electromagnetic Geld for all times.
In the language of classical motion this means that the
radius of the particle's orbit in the xy plane is changed
in accordance with cof, the center of the orbit is moved
along the circle with radius

~ P ~, and the classical phase
of the oscillations depends on the behavior of the
electromagnetic potential for all times. At this limit the
eigenstates !nr, zzs, 1~oo) di!Ier from the Landau
solutions by a phase factor.

There exists still one more case when the reflection
coefficient vanishes. Let Qs(t) =g 4(l) —g(l)/g(t), where
g(t) is an arbitrary function which obeys the conditions
g(W ~) = (-,'&o;,y) "'. Then Eq. (58) has an exact

and, as is to be expected, the reQection coeKeient
vanishes. Equation (98) in its adiabatic approximation
produces 8'„,, ,ml™=b.., .8„,, , in accordance with
the adiabatic theory. The invariants A(l) and B(t) in
this approximation have the following expressions as
their t —+~ limits;
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solu ti.on,

(e) =g(e) e V(e g '( )& ),
and, thus, E—=0.

VI. ADIABATIC IN VARIANT S AN D
THEIR EVOLUTION

A. N-Dimensional Oscillator

We have discussed the problem of the adiabatic
invariants in quantum mechanics in Sec. II. Now we
shall illustrate the statement that there are 2n adiabatic
invariants corresponding to the exact ones (n is the
number of the degrees of freedom).

For the X-dimensional quantum oscillator, we have
constructed 1V non-Hermitian exact invariants A)(t),
k = 1,2, . . . ,1V, which have as their t -+ —~ limits (for
constant frequencies 0)') 1V operators A)', &=1,. . . ,1V.

For the limit t —+'o (constant frequencies Q(~) there
are X operators A ~~ The difference of the operators
A ~' is determined as

we shall get A~j=0, which means that there are
non-Hermitian adiabatic invariants A ~' which corre-
spond to the exact invariants A&(t). One may construct
1V Hermitian (quadratic) adiabatic invariants (A) ')tA) '
which correspond to the exact Hermitian invariants
A ~~A ~, k = 1,. . ., Ã. The evolution of these quadratic
adiabatic invariants is given as follows (this is a trivial
generalization of the results of Ref. 17 for the one-
dimensional case): (a) If the initial state is coherent
In;i&, then

Ay

&~,'~, =2lv~l'+ —2 «he~, (11-')
o't((;

(b) if the initial state is an energy eigenstate In; i), then

~~'~,= I ~~ I
'(2+1/n~) (»3)

In classica, l mechanics the quantity E/0 is an adiabatic
invariant, and in the quantum case its analogous
adiabatic invariant (for the 1V-dimensional oscillator) is

N

J = g (Ag')tAg'+-'

(t~ IA" lt~~&-('IA. 'li&

(il A, 'li&
(106) The evolution of I for the initial energy eigenstate is

where
I
t —+ ) ) is the t —+~ limit of the initial state Ii).

The quantities 6&, may be easily computed if we
express A) ~ in terms of the operators A) (~ ) and A) t(~ )
I the reversed formulas of Eq. (39)j:

A)'= O'A((~) rt(A)'(~—) (107)

If the initial state is (a) coherent state In; i&, then

&~,= P—1—g) (~(*/(» );
if it is (b) energy eigenstate

I n; i), then

(lo8)

then g~ =0,

(,=e p(e [D,()—O, ']d ),
and Eq. (108) yields

&n ilA~'ln i&=(n; "IA"ln "&=O. (109)

In the adiabatic approximation we have to put'

t

„=0,—"'exp~) 0,.())~);

~r=P le&l'( 2qn+1)LP (2nq+1)P'. (114)

For S= 1 we get the results of Ref. 17 for the one-
dimensional quantum oscillator t4=2lgql', i.e.,
does not depend on the quantum number of the
stationary energy eigenstate.

A, = PA( ) ~Bt( ),
Br= —gAt(~)+PB(~) . (115)

B. Charged Particle in Electromagnetic Field

We have considered charged-particle motion in an
electromagnetic field of special type (55). For the
motion in the xy plane we have constructed two non-
Hermitian exact invariants A(t) and B(t), linear with
respect to the coordinates and momenta LEq. (57)j. In
accordance with the discussion in Sec. II, there must
be two linear adiabatic invariants which correspond to
the exact ones. These adiabatic invariants are A; and
B;. Indeed, let us calculate their evolution Lby a
formula quite analogous to (106)j. At first we reverse
transformations (87)

Ag, ——exp z Qk~ —Qp 7 d'r (110)

For the evolution of the operators A; and 8; we get, if
the initial state is (a) a coherent state

I n, P; i&,

n(P / ) ~ =P 1 „( /~) (—116—)'
It is clear, then, that if we define new final operators if it is (b) a Landau solution

I ni, n2, i),

(n„n, ;~ IArln„n„~)=(n„n, ;ilA,.ln, ,n„i&=0,
(n»n
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In the adiabatic limit g=—0, tra, vsformation of time:

Lp( )—'. ~3& ). (122)

It is apparent from Eq. (116) that if we define new We then consider a charged particle of mass 3/Ip and
final operators charge e moving in an electromagnetic field with a

potential

sj=s, e p s tp( )—', ,]d ),
0

, I
I'+I@I'+1

&~'~= Iv I'

,Ii '+ IPI'+1
(119)

—2 Re

we shall get for any initial state in the adiabatic limit
A~ =A~ =0, and thus, under this condition, we have
two linear adiabatic invariants connected with the
exact ones A(t) and B(t) The ev. olution of the quadratic
adiabatic invariants A;tA; and 8;~$;, which correspond
to the exact Hermitian invariants At(t)A(t) and
Bt(t)B(t), may be calculated in a similar manner:
(a) for the state In,P;i),

A' =A(t(t')), v
' = M(t(t')) v (t(t')),

HEI p

where

I
ni, n„. t) = expLio. „,(t)jIn, ,n, ), (123)

n„,= —(n, +-,')
CV(r)

and Int, ns) are eigenfunctions of the Hamiltonian H
and of I, for a particle of constant mass iVp in a con-
stant magnetic Q.eld 3C. The effect of varying mass is
reduced to a phase factor.

and thus all the results of the previous sections hold,
related to this electromagnetic potential. The case of a
particle of varying mass 3I(t) moving in a constant
magnetic field BC, p=0 is very simple. One can easily
check that the solution of the Schrodinger equation in
this case is

(b) for the state In ni, s),s

nt+ns+1 nt+ns+1
(120)

It is obvious from Eqs. (119) and (120) that in the
adiabatic limit (g = 0) for any initial state
= h~ ~ = 0. All evolutions depend on the quantum num-
bers of the initial states. The adiabatic invariant
I=A;tA;+ s' corresponds to the classical adiabatic
invariant E/pp. The evolution of I in the state Ini, ns, t)
is

ni+ns+ 1

2ni+ 1
(121)

and we see that 61 depends on the quantum numbers
ni and n2 (in the case of the one-dimensional quantum
oscillator, such a dependence does not hold).

VII. CHARGED PARTICLE WITH
VARYING MASS

All the results of the previous sections may be easily
generalized for the case of a charged particle with
varying mass.

The Schrodinger equation for a particle with time-
dependent mass may be reduced to the equation for a
particle with constant mass Hap by the following

VIII. CONCLUDING REMARKS

It should be noted that the known connection of
coherent states with magnetic translations" makes it
possible to obtain the Bloch wave functions for a charge
in a time-dependent magnetic held and to introduce a
quasimomentum representation for time-dependent
Hamiltonians. The mentioned correspondance of exact
invariants and adiabatic invariants shows that the
adiabatic invariants may be treated from a group-
theoretical point of view. For the 2V-dimensional
oscillator one will have the noncompact group U(X, 1),
and for a charge in a magnetic field one has the group
U(2, 1),ss both constructed from adiabatic invariants.

On the basis of these symmetries, one can interpret
the formulas for the transition amplitudes from a
group-theoretical viewpoint. The constructed coherent
states are very convenient in density-matrix calcula-
tions for the systems under consideration.
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APPENDIX TRANSITION AMPLITUDES
AND D FUNCTIONS

Using the definition of the D & function, "
{o„and ph are phases of the parameters 1) and p, and 8 is
defined by Eq. (91);

(b) L, &~ 0, m, )e, , i = 1,2

D, '(cos8) = (j+m)!(j m—)!
cos-'8) m+m

(j+m')!(j—m')!-

mI m2= COS~gRI 'Pt2

Xexp{i[(m m—') p„(—2j+1){ops)

XD„,„.'(cos8), (126)
X ( sln1 8) m—m'P . {m—m', m+m') (cos8) (124)

one can obtain the following expressions for the tran-
sition amplitudes between the energy and I., eigenstates
of a charged particle in a magnetic field:

(a) I„&O, m, &e,, i=1,2

T„„' '= (—1)
' cos18

Xexp{i[(m' —m) io„—(2j+1)p2]}
XD, '(cos8), (125)

where j=-', (ml+e2), m= 2(e1 m2), —m'= 2(ml —e2),

Whele j—2 (ml+e2) m —
2 (1el e2) m —

2 (e1 m2) .
The cases of positive L, may be obtained from (125)
and (126) by the replacement el~~e2, mr~~m2. These
expressions correspond to the k.nown result due to
Schwinger'" for the generating function of D,
functions. This generating function can be connected
with the transition amplitude (92) for coherent states

d lv, 8;f)."
If one puts into (92) {r=P, y = 8, and $ = 2$' and then

compares the amplitude T, » with the amplitude
(48) (for the case 1V= 1), it is seen that one can obtain
the relation [we take into account Eq. (52)]

m —n f) tccDm , n{ I l I+ )/2n, {I tl —n) /2 (COS8)m/2f

P„,"(2 cos—,'8) = (m+e)!
l=n—m [(-,'m+-', e+-'i)!(rm+21e ——,'i)!(-'m —-'e+-'t)!(-', m ——,'e ——',t)!g"'

(127)

where

if /, m —n are odd, odd or even, even
=0 if /, m —n are odd, even or even, odd.

From this discussion we conclude that the problems
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