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We discuss a type-(22) solution of the Einstein-Maxwell equations which represents the field of a uni-
formly accelerating charged point mass. It contains three arbitrary parameters m, e, and A, representing
mass, charge, and acceleration, respectively. The solution is a direct generalization of the Reissner-Nord-
strom solution of general relativity and the Born solution of classical electrodynamics. The external
"mechanical" force necessary to produce the acceleration appears in the form of a timelike nodal two-surface
extending from the particle's world line to inlnity. This does not prevent us from regarding the solution
as asymptotically flat and calculating the radiation pattern of its electromagnetic and gravitational waves.
We 6nd as well a maximal analytic extension of the solution and discuss its properties. Except for an extra
"outer" Killing horizon due to the accelerated motion, the horizon structure closely resembles the Reissner-
Nordstrom case.

I. INTRODUCTION
' 'N this paper we discuss a three-parameter family of
~ - solutions to the source-free Einstein-Maxwell field
equations. These solutions will be referred to collect-
ively as the charged C metric, following the terminology
of Ehlers and Kundt. ' The C metric is a particularly
interesting solution for many reasons. Aside from the
Kerr metric, it is the only metric with fewer than three
Killing vectors which it has been possible to analyze
fully. It bridges the gap between the Schwarzschild
and Reissner-Nordstrom solutions, which are com-
pletely understood, and two large classes of solutions
which are familiar but not as well understood, the
Weyl2 and Robinson-Trautman' solutions. It provides
new examples of many items of current interest: Killing
horizons, trapped surfaces, incomplete geodesics, non-
simply-connected topologies, as well as gravitational
(and electromagnetic) radiation and null hypersurface
boundaries at conformal inanity. In addition to all
of this, the C metric has a clear and unambiguous
physical interpretation as the combined gravitational
and electromagnetic field of a uniformly accelerating
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~ J. Ehlers and W. Kundt, in Gravitation, an Introduction to

Current Research, edited by L. Witten (Wiley, New York, 1962).' H. Qfeyl, Ann. Physik 54, 117 (1917).See also T. Levi-Civita,
Atti Accad. Nazi. Lincei, Rend. 27 (1), 3 (1918); 27 (2), 183
(1918);28 (1)) 3 (1919).

3 $. Robinson and A. Trautman, Proc. Roy. Soc. (London)
A265, 463 (1962).

charged mass. In contrast to Misner's description4 of
Taub-NUT space as a "counterexample to almost
anything, " we might describe the charged C metric
as an example of almost everything.

The vacuum C metric has a long and interesting
history, which we will briefly review. It was 6rst dis-
covered by Levi-Civita" in 1918 as the "soluzioni
oblique" case of his static degenerate metrics. Levi-
Civita found the class of metrics having a timelike
Killing vector &' orthogonal to a three-space whose
Ricci curvature tensor is of the form'

sR s=nst'Itv+pb'v

It turns out this is equivalent to the requirement that
the 6eld be static and that the Weyl tensor be type
f22). In fact, the two repeated principal null vectors
l' and e of the Keyl tensor are just the null linear
combinations of P and rt', modulo normalization con-
ditions. 7 The intrinsic geometry of these vector fields
will play an important part in our analysis.

The C metric was rediscovered by Newman and
Tamburino' in 1961, by Robinson and Trautman' in
1961, and again by Ehlers and Kundt' in 1963, but no

C. Misner, in Jectures in Applied 3llathematics, edited by
J. Ehlers (Interscience, New York, 1967), Vol. 8, p. 160.

T. Levi-Civita, Atti Accad. Nazi. Lincei. , Rend. 27, 343 (1918).
6 Although the four-dimensional Ricci tensor vanishes in

vacuum, the three-dimensional Ricci tensor 'R q does not vanish
(except in Qat space).

Usually one of l or n, l say, is chosen to be parallelly propa-
gated: l'V' J =0. The normalization of n~ is then axed by requiring
/n =1.

E. Newman and L. Tamburino, J. Math. Phys. 2, 667 (1961).
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interpretation for it was suggested. Robinson and
Trautman were the first to recognize one of the interest-
ing features of the C metric, however': "The Riernann
tensor contains the r ' term which seems characteristic
of radiation. The metric, however, admits a hyper-
surface-orthogonal Killing field. The solution might,
therefore, be described as both static and radiative. "
The apparent paradox in this remark is dispelled when
we note that the metric is by no means static near
infinity because the Killing vector f' becomes spacelike
there.

II. METRIC

One obstacle to better understanding of the C metric
has been an unfortunate choice of parametrization. The
result is that the straightforward limits of the solution
do not lead to familiar metrics. The metric is usually
given in the form'

ds'= (x+y) '(Fdt' F'dy' —G'dx' —Gdk~), —(2)

where

F=F(y), G=G(x),

and Ii and G are related by

The charged version' of Eq. (6) satisfying the source-
free Einstein-Maxwell equations is obtained simply

by replacing Ii and 6 by quartics:

G= 1—x'—2mAx' —e'A'x', F= —G(—y) . (8)

Thus, the charged metric has just three arbitrary
parameters, m, e, and A. We assume from now on that
m, e, and 2 are positive.

The coordinates (t,y,x,z) are adapted to the timelike
Killing vector P=A5o', the nondegenerate eigenvector

of the three-space Ricci tensor, and the space-
like Killing vector |'=So . The form of Eq. (6) shows

explicitly that the solution is static, time reversible,
and axially symmetric. Thus, it is a Weyl solution. By
analogy with the method used by Finkelstein and
others" on the Schwarzschild metric, we may seek
instead null coordinates adapted to one of the two

principal null vectors l or n . Define retarded co-
ordinates I and r by

Au=t+ F 'dy,

Ar=(x+y) '.

The metric then assumes the form

With these conditions, the vacuum field equations
are satisfied by any cubic polynomial of the form

ds2= Hduo+ 2dudr+ 2Ar'dudx r'(G 'dx'+—Gds') (10)

H= —A'r'G(x —A 'r ')
A'r'G (x)+ AUG—'(x)+ (1+6mA x+6e'A'x')

2(m+2e—'Ax)r '+e'r ' (11).
G(x) = ao+arx+a&x'+aox'.

The constants ap, . . . , u3, however, are not all signifi-
cant. To see this, consider the eGect of the coordinate
transformation

x=Acox+c&, y=Acoy —cr.

The vector l generates a family of null hypersurfaces
cV+(u) on which u= const, and r is an affine parameter
along l . The C metric is, therefore, a Robinson-

(5) Trautrnan solution. We have

In general, this will give a metric with the same form
as Eq. (2) but with an over-all constant conformal
factor A 2 and also with a different set of parameters a;.
(Thus, any one of the C-metrics can be mapped con-
formally on another. ) We might fix A =1 and use Eq.
(5) to set one of the a's to zero and one to unity. Levi-
Civita' chose to put as ——1 and a2 ——0. In this form the
metric has no Rat space limit, since it turns out that
the Weyl tensor does not depend on the remaining
parameters.

A better choice, as will become apparent, is to use
the entire freedom in Eq. (5) to set ai=0 and ao= —ao
=1.The new metric is

t,= V u= (1,0,0,0),
l~= Bx'/Br = (0,1,0,0),

(12)

n~= (1,—,'H, 0,0) . (13)

resulting in

ds'= Hds' 2dodr 2Ar—'dedx r—'(G 'dx'+—Gds') (15)

We could just as well have defined an advanced null

coordinate e by

ds'= A '(x+y) '(Fdt2 F'dy' G'dx' G—dz')— —
and a family of e=const null hypersurfaces Ã (o)

(6) generated by I .

with

F= —1+y'—2mAy', G= 1—x'—2mAx'.

W. Kinnersley, thesis, California Institute of Technology,
1969 {unpublished).

"D.Finkelstein, Phys. Rev. 110, 965 {1958);A. S. Eddington,
Nature 113, 192 {1924).
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III. FLAT-SPACE LIMIT

To gain insight into the nature of the solution, it is
very helpful to look at the invariant components of
the gravitational and electromagnetic fields. The
curvature invariant" turns out to be

(16)

The electromagnetic Geld also has l, e as principal
null vectors, and its invariant is

Cg ——-'F bl eb

= —,'v2er —'.
The remaining 4'~'s and i~'s of Newman and Penrose
vanish.

Both Eqs. (16) and (17) have poles at r=O, and
both fall o6 to zero asymptotically as r —+~. In this
sense, we are justiied in regarding r as a radial co-
ordinate. The parameter m appears in 42 the way a
mass would appear, and e resembles a charge. "

In order to understand the role played by the param-
eter A, the best case to examine is m=e=0, A/0,
because according to Eq. (16) this is the flat-space limit.
What we must study in this limit is the geometry of
the principal null vectors l and e by means of the
coordinates intrinsically related to them.

Since G now reduces to

G= 1—x',

a trigonometric substitution is suggested. We therefore
let

x= cose) 3'= p.

In terms of these coordinates, the metric of Eq. (10)
with m= e=0 becomes

FxG. 1. Uniformly accelerating worldline 9 in Minkowski
space. Typical advanced and retarded null cones N (v), N+(u)
are shown, together with their intersection Z (u.,vl. Intersection of
N+ with the horizon Ko(t =s) is also shown.

ds'= (1—2Ar cos8 A'r' si—n'8) du'+ 2dudr

2Ar' sin8dud8 —rs(d—8s+ sin'8d ys) . (20)

Equation (20) is a fiat-space metric closely related to
ones discussed by Newman and Unti. "The transfor-
mation required to cast Eq. (20) into a Minkowski
coordinate system is

t= (A '—r cos8)sinhAu+r coshAu,

z= (A '—r cos8)coshAu+r sinhAu,

S =r sine cosy,
y=r sin8 sing,

(21)

"E.Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
"These identihcations are shown to be correct in the weak-held

limit and several other important special cases. However, when
either of the products mA or eA is large, the asymptotically dehned
Sondi-Sachs mass and charge difter from m and e. Since the rela-
tions are quite complicated, we have chosen throughout to keep
m, e, and A as the parameters, in order that G may be written in
a simple closed form."E.Newman and T. Unti, J. Math. Phys. 4, 1467 (1963).

t=A 'sinhAn,

z=A ' coshAN,
S=y=0.

(22)

This is one branch of a hyperbola with constant acceler-
ation A, parametrized in terms of its arc length N. S'
divides the (t,z) plane into two regions: the region 8= 0,
or z $ (A

p
which we shall ref er to as the north pole,

and the region 8=~, or P—t'&A ', which we shall call
the south pole.

We can eliminate 8 and y from Eq. (21) to obtain

(t—A ' sinhAu)' —(z—A ' coshAu) —x'—g'=0. (23)

which does in fact imply that

ds'= dt' —dy' —dx' —dP.

Provided A )0 and r)0, the (u,r,8, q ) coordinates cover
only the half-space t+P) 0. The locus r=0 is a time-
like curve 8' given by
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gA

.3

a second lobe with it so that Z+ is shaped like a sym-
metrical dumbbell.

We conclude that, save for the two exceptions
mA = 0 and eA =mA ) (12) '~', the spacetime always
contains a nodal timelike two-surface.

V. HORIZONS

0
0 .2

FiG. 5. The (uzA, eA) plane divided into various regions by
and b straight lines R, S, and T. In regions

+ s a teardro in region I, a teardrop with a negatively curved

V theG ss t fZ
~ ~

s are ossible for given nz, e, an
+

hil IV 't is negative near the south
ran es for x exist. In region, e aus

po . d 1 ng the vertical axis m =0 and
r here ositive, w e in i is

pole. Solutions with no node occur a ong
along the dashed portion of R.

The natural prototype for any discussion of horizons
is the null hypersurface r=2m in the Schwarzschild
solution. There are several definitions of the word
"horizon" currently in use, but their common intent
is to point to hypersurfaces in other space-times which
share certain features of this Schwarzschild sphere.
Penrose'~ defines an "event horizon" as the boundary
of the asymptotic region from which timelike curves
may escape to infinity. An event horizon is always a
null hypersurface, and frequently there may be more
than one present. For example, the completed Reissner-
Nordstrom solution' has many separate asymptotic
regions (when m) e) and all surfaces labeled by'—' '~' are event horizons. Event orizons
obviously can exist even in space-times which ac
Killing vectors, but finding them is difficult because
it requires complete knowledge of the integrated

restricting attention to local behavior of the geodesics.
A "Killing horizon" according to Carter is a nua null

h persurface invariant under all isometrics of theregion II it will be a tealdlop with a poition neai)

south poe h g g . g
gio an, Gha o r

all othe, then the su faces whe e $ c,=0 are Killingx in these rego, boh y g 3 op

oo di t of E . (6) gi b $'=A8o dinfinite tail.
The vector f is everywhere space i e.i e. This makes theThere are a number of special cases w hich deserve

mention. A=O comprises the Minkowski, Schwarzs-
child, and Reissner-Nordstrom metrics. ~„e

0, — 0 and the Gauss curvature—x', x= coso, p= sin, an
GE=——G" of Z+ is constant. Z+ is, therefore, a sphere

F
——

2

Yp Yy
in this case.

mA &3-3~', GFor the vacuum C metrics, e=0. If mB&3 ',
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Z+ again has an infinitely ong ai .

18 J. C. Gr es nd D. R. grill, Ph s. Rev. 120, 1507 (1960);

"ii. C rt, I. M th. Ph . 10, 70 (1969).functions (with appropriate modulus) of g.
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search for Killing horizons trivial since we merely need
to find the zeros of B= ] $,. We will see later that they
coincide with the event horizons.

The coordinate r has been restricted to the range
0&r& oo by the presence of infinite curvature at r=0;
x has been restricted to a closed interval x~&x&x~ to
ensure the proper signature. From Eq. (9), we see,
therefore, that y has a lower bound depending on x,
namely, y&y&—=—x& at the north pole, and y&y2=——x2

at the south pole (see Fig. 6). Small y corresponds to
large r. The zero at y=y& we will call the "outer
horizon" Ko. It always exists whenever 2+ is closed.
It does not completely surround the source, since it
extends to r= ~ at the south pole. We expect it to
correspond to the null hyperplane t= z encountered in
the discussion of Qat space. A typical two-surface
E+P3'.o will closely resemble the paraboloid of Fig. 1.

In regions IV and V, Fig. 5, 6 has four roots, and
therefore, we will find horizons 3'.& and K&. On I'+ they
coalesce and throughout regions I, II, and III no inner
horizons are present. In the limit of small A, this tran-
sition takes place at t.=m as is well known from the
Reissner-Nordstrom solution, since I' approaches the
origin with a slope of unity. When we take the limit
e=0, K2 shrinks to join the singularity at the origin.
Figures 2, 7, and 8 show H plotted as a function of r

r = const

X

Fro. 8. Function 8(r,gl plotted for the charged case. Second
inner horizon has appeared. Behavior of Bfor large r is essentially
the same as in Figs. 2 and 7.

and 8 for the Oat case, the charge-free case, and the
general case, respectively. The horizons are clearly
shown, as well as the peculiar behavior near the south

pole.

VI. MAXIMAL EXTENSION

FIG. 7. Function II(r,x) plotted for the case e =0. Surface bends
down sharply near r=0, producing an inner "Schwarzschild"
horizon.

Even when the Rat-space limit of the C metric was

being discussed, it was apparent that the solution was

geodesically incomplete and that an extension would

be necessary. The original time-symmetric coordinates
of Eq. (6), being analogous to Schwarzschild coordinates,
cover only the static region P.'&t'. The advanced and
retarded coordinate systems of Eqs. (10) and (15)
each extend this patch across one horizon. Thus, the

(u,r,x,s) coordinates covered the half-space t+Z)0.
By analogy with the Kruskal extension of the Schwarzs-
child metric, the natural remedy is to fill the remaining
half-space with a, second (time-reversed) copy. This
Ineans that instead of one accelerating particle we are
actually dealing with two (see Fig. 9). In fact, this

step has been shown to be necessary in the accelerating
particle solution of classical electrodynamics, the Born
solution. There the motivation was to avoid a singu-

larity of the type 8(z+t) as well as a violation of the
field equations. "In order to make the field continuous
across the interface, the second particle must carry an
opposite charge. The possibility of a mutual interaction
of these charges does rot arise since nowhere do their
fields overlap. The field of the first is retarded, while

the field of the second is purely advanced. In the

~0 T. Fulton and F. Rohrlich, Ann. Phys. (N. Y.) 9, 499 (&960).
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Fro. 9. Qualitative picture of the charged C metric extended to
include both uniformly accelerating worldlines. Outer horizons
3Cp have the topology of two intersecting planes, while the inner
horizons 3'.1 and K2 completely surround either particle.

general relativistic solution, we will also need to discuss
extensions across the inner horizons, and. for this
reason we now turn to a less intuitive approach.

%e wish to perform the u and e extensions simul-
taneously. Consider again the principal null congruences
I and m . Together they generate a family of "principal
timelike two-surfaces" T (x,s) given by x= const,
s= const. In fact, T(x,s) happen to be the orthogonal
trajectories of the spacelike two-surfaces Z'(N, v). We
may seek an extension of T using the block-diagram
technique. "This is possible in spite of the fact that T
is not totally geodesic. The only geodesics which remain
in T are the two families of null generators.

The horizons intersect T in null lines, dividing it into
a collection of well-behaved coordinate patches or
"blocks." The blocks are glued together along their
horizon boundaries in all possible ways, keeping the
timelike coordinate running vertically in each block and
ensuring that 0'2 is smooth" across each horizon. The
results of this procedure applied to the C metric are
shown in Figs. 10—12 for the cases in which G(x) has
two, three, or four roots.

The most peculiar aspect of the diagrams is the
appearance of the boundary at conformal inanity. 23

The various T surfaces differ somewhat and this re-
quires some explanation. The timelike boundary points
I+ and I appear only on the T surface x=x&. As we
cross from one T to the next letting x decrease, con-
formal infinity bows down more and more. Finally at
x= x2, the spacelike boundary I~ appears and the blocks
become completely severed. This behavior is more
closely related to the surfaces we have chosen to extend
than the space-time itself. To understand what is

happening, it is helpful to examine the T surfaces in
the Oat-space limit, where they become surfaces of con-
stant &p and 0. Prom Eq. (21), T(0, q) is given by

t' —z' —I x seep+A ' cote)'= —A ' csc'0. (32)

This is the equation of a timelike elliptical hyperboloid
in the three-space (t,s,x) It is a ru. led surface generated
by two families of null straight lines (the l' and n' '

congruences) and contains both branches of the hyper-
bola t' —z'= —A ' 5=0. For 8=0 or m, T reduces to
either the north pole or south pole region of the (t,z)
plane. Kith the exception of these two, all the surfaces
become null surfaces as t —+~. To reach the timelike
future, e.g., along a path x, y, z= const, one must cross
all the T surfaces and eventually approach the north
pole, which explains the appearance of I+ there.

Extensions such as these are not unique since there
is often great freedom in choosing the global topology.

r "0 f=0

FIG. 10.Block diagram showing the extension of a solution lying
in region I of Fig. 5. T1 and T& are the two distinct types of co-
ordinate patches (conformally compactified). Null boundaries at
conformal infinity are represented by double lines, while the zigzag
lines represent the infinite curvature encountered at r =0.

"M. Walker, J. Math. Phys. (to be published).

FIG. 11.Block diagram extension of the vacuum C metric (e=0).
In this case, G has three roots and three different blocks are neces-
sary: T1, T2, and T3. Singularity is now in a region where both
Killing vectors are spacelike.

2' Most extensions which have been studied (including the pres-
ent ones) are analytic. Analyticity is, however, a much more
severe restriction than necessary. Compare H. Bondi, in Lectlres
om GET, edited by S. Deser and K. W. Ford (Prentice-Hall,
Englewood Clips, N. J., 1965), Vol. I, p. 420.

"R.Penrose, Proc. Roy. Soc. (London) A284, 159 (1965).
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Usually one selects the simply-connected topology of
the universal covering space as the natural choice.
However, when identifications can be made in the
manifold without destroying causality, it may be
preferable to do so. In Fig. 13, we have wrapped up
Fig. 11 by identifying all of the asymptotic regions.
This amounts to regarding the two accelerating particles
as opposite mouths of the same wormhole.

In certain regions, 2'(cc,e) may be trapped surfaces. '4

The trapping occurs because r decreases along all
future-directed null geodesics orthogonal to Z, leading
eventually to the singularity at r=0. Trapped surfaces
exist inside the inner horizon in the case with three roots
and between the two inner horizons in case there are
four roots.

Fo'r the C metric, it is rather easy to obtain the
integrated form of all null geodesics. Let k be an afhnely
parametrized tangent vector to a null geodesic. First
integrals" result from the presence of two Killing
vectors, and also from the conformal Killing tensor

' 21~'ccs& which exists for all type-(22} solutions. "In
the coordinates (cc,r, cc,s), we find the solution

k'=(H '(E+R) —R—AP r 'I' G 'J ) (33)

FIG. 13. Here the dashed
lines of Fig. 11 have been
identified and the surface has
been wrapped around like a
cylinder. Topology is not S'
)&S')(R, however, since on the
nodal surface 8 pinches in to
coincide with Xp and severs
the diagram.

Stippled region not in T.
where
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and E, J„and J are constants of the motion. The con-
stants E and J, are associated with the two Killing
vectors, while J comes from the conformal Killing
tensor. Physically they are the energy and angular
momentum of a test particle traveling along the
geodesic. YVhen J=J,=O, the geodesic lies entirely in T.

Equation (33) may be used to demonstrate that none
of the null geodesics in our extended solutions can be
further extended. There are just three ways in which
a null geodesic can leave its coordinate patch within a
finite parameter length:
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FIG. 12. When G has four roots, the extension is considerably
more complex. An observer starting at the asterisk could reach
any point in the region bordered by heavy lines but no others.
The extension we show is not simply connected. The universal
covering space would require an infinite number of sheets (and
hence an infinite number of journal pages to draw).

"R.Penrose, Phys. Rev. Letters 14, 57 (1965).
"First integrals of the null geodesic equations may also be

obtained using the fact that the metric, Eq. (6), is conformally
decomposable (see J. A. Schouten, Rcccc Calc hcs (cScpringer,
Berlin, 1954), p. 287$, and that null geodesics are conformally
invariant. The theorem of Ref. 26 has not been proved in the
Einstein-Maxwell case but is probably still true.

26M. Walker and R. Penrose, Commun. Math. Phys. (to be
published).

(a) One of the components of k' may become in-
finite. This cannot happen to the s component because
I' must be real, and G —+ 0 requires J,=O. The u com-
ponent becomes infinite when II=0, and then the
geodesic simply passes on to the next block.

(b) The geodesic may strike the singularity at r =0.
The reality of both I' and R in this case requires
J=J,=0. Hence such a geodesic must actually lie in T.
At r =0, infinite curvature is encountered, and although
a geodesic of this type will be incomplete, it will also be
inextendable.

(c) The geodesic may try to depart across one of the
end points x=x& or x2. Again this can happen only if
J,=O. Such a geodesic must be continued as an in-
coming geodesic at an angle p' which is diametrically
opposite: q'= q&x. This is analogous to geodesics on
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VII. RADIATION

In the naive sense, we say that gravitational radia-
tion is present whenever the curvature falls off asymp-
totically as r '. In order to give this idea precise mean-

ing, we Inust specify in an invariant way both the co-
ordinate system to be used and the tetrad basis in

which the curvature components are to be calculated.
A suitable choice in these matters has been given by
Newman and Untiss (NU), to whom we refer the reader
for further details. NU coordinates can be introduced
in any space-time which is asymptotically Oat: they
are unique up to one of the BMS (Bondi-Metzner-
Sachs) transformations. However, since they are given
as an expansion in powers of r ', one should bear in

mind that they will usually be applicable only outside
some radius of convergence r =ra.

The coordinate transformation we use will be of the
foi m

g = U+0 (r ') r =Rr+0 (1),
(34)

x=X+0(r '), g = p, —

where U, E, and X are functions of I and x alone, and

I, r, S, and g are the NU coordinates. We require that
the components of the transformed metric obey the

following NU conditions:

g""=1+0(r ')

g" =o(1),
grx 0 (r

—1)

g**=r 'R—'(1—X')+0(r—')

g«=r 'R '(1—X') 'yo(r —')

(35)

Thus, the transformation has two tasks to accomplish:
It must remove the 0(r) term in g"' which is sympto-
matic of acceleration, and it must rescale the radial
coordinate such that the I=const, r=const surfaces

asymptotically become metric two-spheres. "Note that

2' R. Geroch, thesis, Princeton University, 1966 (unpublished).
' K. Newman and T. Unti, J. Math. Phys. 3, 891 (1962).
'9 More precisely, we require that the conformally related metric

(r) 'ds' reduce to that of a unit sphere when (r) '=0. This is
most easily seen from Eq. (6). If (r) '=«A (x+y)G '" sech(«t)
and sine=sech(set), then in the limit as (r) '~0, (r) ' times
the metric of Kq. (6) becomes —(d9'+sin'Ody'). Since t=Au
—J'G rdx (at infinity) from Eq. (9), this approach gives

a two-sphere which cross the pole. The presence of the
node gives no trouble whatsoever in this respect.

Thus, we see that the only incomplete null geodesics in
our extensions are inextendable and lie in T. To finish
the proof that we have found maximal extensions, two
further steps are necessary. One shouM check the be-
havior of timelike and spacelike geodesics, since in
some cases the completion of null geodesics alone does
not suKce. ' Also, one should exhibit Kruskal-type
coordinates which cover the corners where four blocks
come together. We have not confirmed these points
but have no reason to expect any difficulty in doing so.

these surfaces are quite distinct from the surfaces Z
discussed earlier.

When the transformation is applied to the C metric,
Eqs. (35) imply

where

U= («A ' sech&) G—'"dx+cr(X)

R=~ 'G'" cosh', X= —tanhx,
(37)

X =«Au «G——'dg+G (38)

C is s,n arbitra, ry constant, a,nd a(X) is an a,rbitrary
function representing the BMS freedom. We choose o.

to make U =0 coincide with I=0, and set C=O.
The curvature components must also be referred to a

new tetrad of basis vectors. The NU basis vectors l,
n' are related to u and r in the same ways that l, n'
are related to u and r (see Eq. (12)j. In particular, we
need the fact that

n'= r)x'/f)u+ ', f)x~/r)r-+0(r ') . (39)

The rotation required from l, n to t, n will be par-
ametrized as the resultant of three successive opera-
tions: a null rotation about /', followed by a Lorentz
boost in the t, n plane, followed by a null rotation
about n . If the usual parameters" which describe these
steps are u, X, and b, respectively, then

n n =X-'a'

Furthermore, from the known way" in which N& and
4~ transform under such rotations,

Q4 —6g2$ 2Q @2—2'—&g)

Combining Eqs. (34), (37), (39), and (40) with Eqs.
(12) and (13), we can solve for the parameters

a =-',v2«AR(1 —Xs)r~s&+0(1),

X '=R+0(r '). (42)

(The value of b may also be calculated but is apparently
irrelevant for obtaining the radiation. ) Equations (41)

'G'" coshx, in complete agreement with Eqs. (3p) and (38).
It also shows that the null hypersurface at conformal inanity has
the correct form for an asymptotically flat space-time (see Ref.
23).

'0A. I. Janis and E. T. Newman, J. Math. Phys. 6, 902 (1965).

U +AGU. =R ', R„+AGR,= ,'AG.-R,

X.+AGX.=0 Rs(1 —Xs) =«-sG,

R '(1—X') =GX.'

where the subscripts are used to denote partial deriva-
tives. These equations have the general solution
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where a~ and b~ are the multipole moments. The resolu-
tion is obtained immediately when we realize that the
expressions in Eq. (45) are just the generating func-
tions for E~ (X):

(2222 —1)!!(—c)~(1—X')~~'

h, (c,X)=
(1. 2CX+C2) (2m+1) /2

= g CV'g"(X)
L=m

(47)

The form of the expansion depends on the size of AU.
For IAUI(1

and (42) imply

+4——3x2A'R'(1 —X') (222+2e2Ax)r '+0(r '),
(43)

C2 ——xAR'(1 —X2)"2er '+0(r ')

demonstrating that both gravitational and electro-
magnetic radiation are present.

To get a better understanding of the radiation, one
would like to have Eq. (43) expressed entirely in terms
of the unaccelerated coordinates u, r, and S. If possible,
one would also like to perform a resolution into the
various multipole contributions. It does not appear
feasible to carry out either of these steps in closed
form as long as we insist on working in the exact theory.
In the framework of linearized gravitational theory, the
situation is much simpler, and we now turn in that
direction.

To obtain 4'4 and C 2 correct to first order in mA and
eA, it is sufhcient to perform the coordinate transforma-
tion in zeroth order (i.e., flat space). There, NU co-
ordinates are merely the familiar null retarded co-
ordinates based upon a straight worldline. Given the
relation between (u, r, x, q) and Minkowski coordinates
as in Eq. (21), it is quite easy to verify Eq. (37) in the
fiat-space limit and to show moreover that

R= (1+2A UX+A'L") "'. (44)

Thus, dropping the bars, Eq. (43) simplifies to

+ =3mA'(1 —X')(1+2AUX+A'U') ""r '
(45)

C2 ——eA(1 —X')'"(1+2AUX+A'U') '"r '

l
Note that e contributes to 44 in Eq. (43) even when

222=0, but that this occurs only in second order. ) The
form of these quantities for a general retarded multipole
is"

2l(f 2) t g I+2

PP(X) — a((U)r ',
(2l)! BU

(l —1)! 8 '+'
C,= —2' I', '(X) — b, (U)r-',

(2l)! CIU

A comparison with Eq. (46) shows that a~, bq must be

polynomials in I of order 2l. If we conjecture that all
the integration constants are zero, the result is

a( ——(—2) '222A'U",

b(= —(—2) 'eA'U". (49)

This conjecture is confirmed by a lengthier calculation
of 'kp and C'p.

Solutions of this form occupy a very special position
in linearized theory. A general linearized 6eld is a
superposition of advanced and retarded waves. In
some cases, the distinction is irrelevant. Any static
solution, for example, may equally well be regarded
as an advanced or a retarded field. We will call such
solutions "hermaphroditic. " If we ask what is the
condition that a linearized multipole Geld be her-
maphroditic, the answer is that the moment must be a
polynomial in U of order 2l or less. Note that this is
quite a diGerent requirement than that of time sym-
metry. The oddest property of hermaphroditic solutions
is that they obey both the incoming and outgoing Som-
merfeld radiation conditions, yet both incoming and
outgoing radiation may be present.

Another apparent paradox is that Eq. (49) can be
shown to hold for 1=0 and 1 as well. The reason this is
at all strange is that in the usual linearized analysis"
the gravitational dipole moment can only be linear in
U', not quadratic as it is here. The disparity lies in the
fact that our NU metric will be singular even though
the %~'s are not. The shear 0', which appears at 0 (r ')
in g:"'- and g«, contains a dipole term"

0' = 222A 'U (1+2cos8)tan'( —'0) (50)

Hence both it and the news function 0 have poles at
0=x, contrary to the usual assumptions. One might
suppose this behavior is due in some way to the node;
yet in the linearized theory, one is working in Rat space
and the node is absent.

For lAU l) 1, one can show from Eq. (45) that all
moments are proportional to U '. In this domain the
solution is not hermaphroditic.

VIII. DISCUSSION

The evidence we have presented shows that the
charged C metric is the general relativistic analog of
the Born solution" encountered in classical electro-
dynamics. Most of the difficulties of interpretation are
inherited from this classical solution rather than from
relativity. As we have seen, they largely persist in the
linearized C metric in which the fields are merely
painted onto a Oat space-time.

Uniformly accelerated motion has sometimes been
confused with "runaway" motion, and we wish to

+4——+222A2( —AU)' 2PP(X),

42 ——geA( —AU)' 'EP(X).
(48)

3' Dipole here means that the term is a solution to Legendres'
equation for l=1, no=2.

3' T. Fulton and F. Rohrlich, Ann. Phys. (N. &.) 9, 499 (].960).
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point out that our solution is not an example of the
latter. For a runaway solution, the applied external
force is zero, whereas in uniformly accelerated motion
it is the self-force which vanishes. The self-force, ac-
cording to Dirac's analysis" is a Lorentz force which
arises from the particle s interaction with its own non-
singular advanced-minus-retarded field. For her-
maphroditic solutions, this difference is zero, and there-
fore, so is the self-force. Thus, we expect an external
mechanical force "Ii =md" will be needed to accelerate
the inertial mass of our particle. By "external force"
of course we mean any force which does not arise from
interaction with either the electromagnetic or gravita-
tional fields. In our solution the manifestation of the
force is a nodal timelike two-surface. It is similar to the
"struts" or lines of stress which have been invoked in
other Weyl solutions.

Our solution exhibits a clear resemblance to the
accelerating solutions of Bonnor and Swaminarayan"
(BS). We would like, however, to emphasize as well

the differences between them. The metrics they present
have two pairs of particles rather than one, although
BS point out that this feature is not essential. What is
essential, we feel, is the meaning of the term "point
particle. " Whereas our singularities in every way re-

semble the Schwarzschild singularity, the BS singulari-
ties are of the type first studied by Curzon. "This im-

plies that they are not surrounded by horizons and that
rather than being monopole particles they have a com-

plex multipole structure. The presence of four particles
corresponds to the way in which the nonaccelerating
Curzon metric can be made to accommodate several
"particles" strung along the symmetry axis and held

apart by struts. A further point of difference is that the
BS solutions are of type {1111},whereas ours is of

type {22}.One is tempted to conjecture from this
parallel that there would also exist Curzon-like analogs
to the other type-(22} solutions, in particular Kerr-
XUT space."

@ P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).
"W'. B. Sonnor and N. S. Swaminarayan, Z. Physik 177', 240

(1964).
3~ H. E. J. Curzon, Proc. Math. Soc, (London) 23, xxix (1924);

Z3, 477 (1925).
36M. Demianski and E. T. Newman, Bull. Acad. Polon. Sci.

14, 653 (1966).

Sicak'~ has derived the radiation pattern for the BS
solution in the limit in which the particle pairs are
quite close. His results and ours are again strikingly
similar. In his multipole analysis, however, the quad-
rupole term is absent. The particles investigated by
Bicak have equal and opposite masses, so we might
well expect a cancellation of this sort to occur.

Xone of the BS solutions are simultaneously free of
both nodes and negative mass. We do find several node-
free cases, as mentioned in Sec. IV. The ones for mA =0
we qualitatively understand since no external force
is necessary in this case. The ones for which mA =ed) (12) "' we do not understand. We suspect that for
such strong accelerations the particle interpretation
somehow breaks down.

The charged C metric does provide an interesting
counterexample to the widely held view that the radia-
tive Robsinson-Trautman (RT) solutions cannot repre-
sent the field of a bounded source. There is no doubt that
the type-(4} RT solutions must have angular singulari-
ties in the sense that%'4 has poles. For RT solutions of
other types, the situation is not as clear. We have ex-
hibited a three-parameter family of charged RT solu-
tions in which the singularity is much milder and
several cases in which the radiation is accompanied by
eo aegu3ar siegN)arity at al/.

We plan to discuss further the asymptotic properties
of the C metric using the conformal techniques of
Penrose, as well as analyze some of its interesting
singular limits in a future paper.

We conclude with the remark that our success with
the C metric leads us to hope that the remaining unin-
terpreted type-{22) solutions" may yield to a similar
analysis, thereby leading to a deeper understanding of
physical implications of general relativity.

Note Added in Proof. The C metric is also a counter-
example to the claim that all algebraically special fields
have zero Newman-Penrose constants.
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