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It is assumed that the Veneziano model in some ways represents a good approximation to the scattering
amplitude and as such already contains the effects of numerous coupled, inelastic channels. This hypothesis
is used to calculate the absorption parameters for pion-pion scattering below 2 GeV using a partial-wave
dispersion relation, where some simple forms for the phase shifts are assumed. The results are compared with
other analyses and extended to the case of pion-kaon scattering. Some implications of these results are
discussed, and the problem of the presence or absence of the Pomeranchukon is outlined.

I. INTRODUCTION

INCE the introduction of the Veneziano model,}
numerous attempts have been made to produce a
modified version which satisfies unitarity.>=® The result
of this work has been various unitarizing schemes which
apparently give good agreement with the data. How-
ever, none of the methods so far proposed are free from
one or more serious failings such as violation of crossing
symmetry or analyticity, the appearance of infinities,
and frequently even the inability to satisfy unitarity.
In view of these shortcomings it is worthwhile
stressing that the unitarization procedures are largely
independent of the Veneziano amplitude and would
unitarize any suitable function of two variables. Their
ability to satisfy the data therefore must lie in the fact
that the physical scattering amplitude (which contains
all unitarity corrections) apparently has nearly linearly
rising trajectories and fairly narrow resonances, just as
suggested by the Veneziano model. The unitarization
schemes are successful not because they change the
model so much, but because they change it so little.
Thus except perhaps for the Pomeranchukon we may
suppose that the Veneziano amplitude is itself a good
approximation to the scattering amplitude and, as such,
it already contains the effects of all coupled processes
both in the direct and crossed channels. The question
we might then ask is not how to unitarize this model
but what unitarity, or inelastic, effects are already
contained in it.

The purpose of this paper is to extend the predictive
power of this representation in just this manner, and
to estimate the inelastic effects which are inherent in
the Veneziano amplitude for pion-pion scattering. This
particular process is considered partly because of its
simplicity, with equal masses and no spin, but also
because of its implications for theoretical and phe-
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nomenological studies. For instance, it is usually
assumed that the condition of purely elastic unitarity
holds some way above the first inelastic threshold.
However, since 7w is an annihilation channel coupling
directly to the vacuum, one would expect inelastic
effects to be of the utmost importance at high energies.
It would be desirable therefore to be able to calculate
such effects and to estimate where they might start to
be dominant. To do this in terms of the Veneziano
model, we must first define what we mean by its being
a good approximation to the scattering amplitude.
Clearly in the physical region the model cannot repro-
duce the detailed analytic structure, since it contains
no branch-point singularities, only poles. However,
away from this region the over-all effect of these poles
could be very reasonable.® Starting from this assump-
tion, we can calculate the low-energy inelastic effects
using a partial-wave dispersion relation, where the
left-hand cut contribution represents the general effect
of the crossed-channel reactions and as such should be
well approximated by the Veneziano model. In Sec. II
we calculate these contributions in precisely this way
and attempt to test their validity by comparison with
other derivations. In Sec. III some fairly simple as-
sumptions are made concerning the behavior of the
partial-wave phase shifts, and the corresponding ab-
sorption parameters are determined. The results of this
calculation and their implications in phenomenological
studies are outlined in Sec. IV, and extended to include
pion-kaon scattering. Finally in Sec. V some remarks
are made concerning the presence or absence of the
effects of the Pomeranchukon.
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Fig. 1.

T16. 1. s-plane singularities of the partial-wave
Veneziano amplitude.

6 The analogy with a photograph seems very apt: From a
distance it looks like the real thing; only when we get close do we
see the individual grains.
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Fic. 2. Functions B;I(s) determined
from the Veneziano amplitude for =
scattering.
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II. CONTRIBUTION TO LEFT-HAND CUT

The Veneziano amplitude for pion-pion scattering
with isospin I can be written as?

Vi(stw) =erB(s,)+B:B(su)+vyiB(taw), (1)

where

3 3 —1
alz"'fz 2 ) ﬂIz'—f2 -2 ] 71=_—f2 0 ) (2)
0 0 2
ra-— Ir(l—
Blay) = (1 —a(x))I( d(y)), @

I'(1—a(x) —a(y))

and a(x) is the degenerate p-fj trajectory, assumed to
be of the form

a(x)=ap+a'x.

In general, the amplitude V;(s,t,) has simple poles at
values of the Mandelstam variables s, ¢, or #>4m,?;
its partial-wave projection V;I(s), therefore, will con-
tain terms involving Legendre functions of the second
kind, Q:(z0), arising from the ¢- and #-channel poles. By
considering the discontinuities of such terms it is seen
that ¥/ (s) has the s-plane singularities shown in Fig. 1,
i.e., simple poles at s>4m,? and cuts along the negative
s axis. Taking the point of view that V/(s) is a good
approximation to the partial-wave amplitude 4,7(s) at
least outside the physical region, it should be possible
to approximate the left-hand discontinuity of 4;(s) by
that of V;(s). That is, we can write

1 r Imd4,1(s") 1 r ImV, (s
BIE—/—I——ds’z—/—l( i, @)
L L

T s'—s T s —s

where L represents the range of the left-hand singu-
larities. However, because of the analytic structure
shown in Fig. 1, the last integral is just [ V! (s) —poles ]
and as such can be easily estimated at least for low

values of s. Clearly it is impractical to subtract off the
infinity of physical region poles associated with VI (s).
Nevertheless, since we shall require a detailed knowl-
edge of Bi(s) only up to center-of-mass energies 4/s=2
GeV, it is sufficient to subtract off the first ten poles.
The resulting approximations to B;!(s) are shown in
Fig. 2. Subtracting off the next ten poles produces less
than a 0.019, change in B, (s) over this range.

It is worth noting that this calculation of B (s) is
similar to the procedure outlined by Atkinson e al.”
However, the motivation in the present paper is very
different. We are not trying to impose elastic unitarity
onto the Veneziano amplitude ; rather we are attempting
to deduce the effects of the full unitarity condition in
the direct and crossed channels which are inherent in
the assumption that the Veneziano model is a good
representation of the scattering amplitude.

Since the basis of the calculation is the determination
of BJ(s), let us first compare it with some other
derivations.

The left-hand cut in partial-wave amplitude arises
from the singularities in the crossed channels, and we
can write

1 G 2
discd 1 (s)s<o= — / ar Pl(1+—-—>
s—4J, s—4

XBrr[Red "' (¢,5)+(—1)" Red /' ()], (5)

where 4, and 4, are the absorptive parts of the ampli-
tude in the ¢ and # channels, respectively. The
Veneziano amplitude can again be used to approximate
these functions in the following ways. Phenomeno-
logically® it has sometimes proved useful to lose some
degree of crossing symmetry in the Veneziano model
and to give the trajectories in the physical region an
imaginary part, i.e.,
a(t) =ap+a't+b6(t—4m,2) (dm,2—1)'2. (6)
7D. Atkinson e al., Trieste Report No. ICTP/69/34 (un-

published).
8 B, Peterson and N. A. Tornqvist, Nucl. Phys. B13, 629 (1969).
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With this modification to Egs. (1)-(3), the absorptive
parts A, and 4, in Eq. (5) can be calculated in terms
of the discontinuities across the ¢- and #-channel
singularities. Alternatively, in the respective physical
regions it is possible to relate 4,/(¢,s) and 4,7 (u,t) to
the ¢~ and #-channel amplitudes through the unitarity
condition. These functions can then be determined in
the regions required for Eq. (5) by analytic continuation
or by a partial-wave decomposition. In this case the
unitarization procedure of Lovelace? is used to calculate
ImA,Z(t) and ImA,?(u) for t,u>4m,.2 <4 with both
mr and KK intermediate states,

It is found that both of these methods provide very
similar results for the discontinuity of 4,7(s) given by
Eq. (5) at least for low negative values of s. In calcu-
lating B,f(s) from Eq. (4) using these solutions, it is
found that the integrals diverge, which was to be
expected. However, if we introduce a cutoff which
effectively parametrizes our ignorance of the shorter-
range forces, values for B;(s) can be obtained which
have the same shape and are within 69, of those shown
in Fig. 2. We believe this provides some degree of
corroboration for the values of B;’(s) given by the
straightforward Veneziano representation. We shall
now use these functions to investigate the necessary
inelastic effects in low-energy pion-pion scattering.
Further corroboration for our Veneziano model ap-
proximation to B;’(s) will be sought by a comparison
of the effect with results from other calculations.

III. INELASTIC EFFECTS IN PION-PION
SCATTERING

The pion-pion partial-wave amplitude A4,(s) is
normalized so that

A (s)=[s/(s—4m,*) J*
X{n! (s) exp[2i6,7 (s) ]—-1}/24, (7)

where §;7 is the phase shift and 5/, the absorption
parameter, provides a measure of the inelastic effects
present in a partial wave, i.e., n=1 corresponds to
purely elastic scattering while =0 represents complete
absorption.

To determine these absorption parameters, we shall
primarily consider a once-subtracted dispersion relation
for the partial-wave amplitude such that

s—4 ImA (s)ds’
Red(s)=A(4)+ /
7 Jr (s —s)(s’—4)
s—4

© ImA(s')ds’
+—P

—, (8)
T ¢ ('=95)(s"—4)
where, for brevity, we have dropped the /, I indices,
and s is written in units of (pion mass)% Then, using
Eq. (7), this can be written as an integral equation for
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7 in terms of B(s) and 6(s):

%(—5—> 1/27, sin26=A4(4)+B(s)—B(4)

’

s—4 r° 1—ncos2d / sTo\ V2
+ ‘—*‘P/ > ds’ ) (9)
xS 25—y —s)\y —4

where the functions B(s), given by Eq. (4), are deter-
mined from the Veneziano representation as described
in Sec. II. The phase shifts, however, cannot be given
directly by the Veneziano amplitude and we must use
the values suggested by recent phase-shift analyses or
assume some simple forms for them. For instance, it is
worth noting that Lovelace’s identification of the
Veneziano amplitudes as K-matrix elements,? such that

Al (s)=VI(s)/[1—ipu(s)V:I(s)]

s \1/2 ) B
:<—~—> (expid,?) sing,7, (10)

§s—

where p;(s) is a phase-space factor,> produces phase
shifts apparently in good agreement with experiment
below the first inelastic threshold. It is plausible that
these elastic model phase shifts §; are still a fair ap-
proximation to the physical ones, 8,7, for some distance
above this threshold even in the presence of inelasticity,
although at higher energies it would seem unlikely that
this would be the case.? To allow for this ignorance of &
at higher energies, we rewrite Eq. (9) in the form

17 s \'? s—4
7<_—> 7 sin26— A (4) —B(s)+B(4) — ——P

2\s—4 T
A1 1 —9y cos2d / s\ M2
X/ ) ds’=N\X(s),
4 2(s’——s)(s'——4)\s’—4
s<A; (11)
where
s—4 @y s \12 ds’
X(s)= /(1 > -
7 Ja \s'—4/ (§—=4)(s—s)
and
0<N<1;

that is, we give the integrand in Eq. (9) A times its
maximum value above some point A;=2 GeV.

The values of 7;7(s) are now calculated from Eq. (11)
by assuming that §;7(s) is indeed well approximated by
8.£(s) for s<A; Instead of solving this equation by
matrix-inversion techniques, which build up large
errors because of the discontinuity at Ay, a five-param-
eter function is assumed for 5. An extensive search on
the space of these parameters reveals which values of
7(s) are compatible with §(s) and B(s). If the left-hand
side of Eq. (11) lies within the limits of the right-hand

9 Generally the phase shift § will increase by = as it passes
through each resonance position. Analyses of meson-baryon
scattering, however, suggest that phase shifts as a rule lie between

2. Such evidence as there is indicates that this is likely to hold
for meson-meson scattering also.
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side as \ is varied from O to 1 for all s<Aj, then 7 is
taken to be an acceptable solution. The range of these
solutions is shown in Fig. 3 for 3¢, 7¢, and . In the
case of I =2 amplitudes, it is found that this calculation
is compatible with no large inelastic effects in the region
considered.

While the above analysis provides some order-of-
magnitude results for the absorption parameters, it
does not give any very definite values for them. How-
ever, such values can be found if we make a slightly
more stringent assumption about the phase shift 8§,/ (s).
At low energies let us suppose that we still have §=§,
but this time we shall assume that after the first reso-
nance & approaches w and stays close to that value
thereafter. This again appears to be very plausible, by
analogy with meson-baryon phase shifts, for instance.
Also, from the above calculation it appears that 7 is
close to unity for some distance above the first resonance
position. If we represent this situation by

Bll(s)=6ll(s)} , s<As (12)

nl(s)= 1

and
51I(S) =, S>A2
where A» is taken as 1% times the resonance width

above the first resonance position® then Eq. (9)
becomes

s=4 e A=n(s) 5\
Y(s)= 3
- / 22(3,_3)@,_4)\5,_4) +Y()=0, (13)
where
Y (s)=A(4)+B(s)—B(4)
s—4 % 1—cos2 /s’ 12
. (14
= P[; (s’—s)(s’—4)\s’——4> as)

This can be inverted to give

2 s—4y\ 1/2
’7(3)=1+—(s——A2)1/2<___>

N

0 Y (s')ds'

as (8" —A) V(5" —s)
10 The phase shifts are taken to go smoothly to = at this point.

(15)
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The resulting values for the absorption parameters for
the I=0 partial waves are shown in Fig. 3. For the
I=2 nonresonating partial waves we fix A, at about
1 GeV and put 82=0 for s>A,. In this case we find
from Eq. (15) that the contributions to %2 coming
from B(s) and the integral over the phase shift in Eq.
(14) tend to cancel. This is contrary to the situation in
the /=0, 1 amplitudes where these contributions
reinforce one another. The resulting 7=2 inelastic
cross section therefore is found to be small in the region
considered, which is perhaps not surprising if at such
energies inelastic cross sections, like elastic ones, are
dominated by direct-channel resonances.

The important contribution to the integral in Eq.
(15) comes from the lower values of ¥ (s”). Thus the
fact that B(s) is only determined up to about 2 GeV
is not critical. Giving B(s) some asymptotic behavior
such as constant or slowly decreasing produces very
little change in the values of . In fact, in the numerical
calculation we let B(s) tend to a constant.

Clearly the values of § and 5 given by Eq. (12)
represent to some extent an idealized situation. As s
increases above As the higher resonances will generally
produce anticlockwise circles in the Argand diagram.
However, it is probable that these circles could be
quite small and 6 will not vary too much from its
assumed value 7. Such variation as there is will produce
sharp fluctuations in the absorption parameters near
the resonance energies but we believe that the over-all
magnitudes of » given by Eq. (15) can still be a fair
approximation to the physical situation.

Finally, let us mention one further method which has
been used to investigate inelastic effects in partial
waves, namely, the N/D equations. Since in this
section we do not wish to make any assumption about
which coupled channels are important, we cannot use
the multichannel approach of Bjorken" and instead
must consider the single-channel N/D equations of
Frye and Warnock.’? Here in principle the partial-wave
amplitude can be determined by a knowledge of B(s)
and the absorption parameter 5(s). We believe we have
a good approximation for the function B(s); therefore
it should be possible to determine the forms of 5(s)
that are compatible with the e or p resonance param-
eters, for example, given by the Veneziano model.

However, as always, there is the ambiguity of CDD
(Castillejo, Dalitz, and Dyson) parameters whose
presence is determined by the asymptotic behavior of
the phase shift. Without such parameters it seems
impossible to produce either an S- or P-wave resonance
with any resemblance to the e or p for any absorption
parameters which are not pathological. This is perhaps

11T, D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
12 G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963).
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not surprising if, as we believe, a resonating phase
shift tends to w rather than zero. In this case it is
sufficient to introduce one CDD parameter ¢ such that
the N/D equations become®®

s—4 2 2ReN(s)
ReD(s)=14cs— ——P f —
™ 4 1+7](5/)
s’ —4\1/2 ds’
X< > (16)
s (s —=s)(s'—4)
and
2 1 = 2ReN(s
U ReN(s)=B(s)(1+cs)+ P V)
1-+1(s) r Ja 149()
sT—AN\V2 5" s—4 7
X< ) []3(.&’)—~—~—B(S)J, (17)
s s’ —s s’ —4
where
p Bt lP ©1—n(s')s s )1/2d, 18)
() =Bs T /31 2(5’—s)<s'—4 <

One parameter is also sufficient if the N/D equations
are used to impose unitarity only on a finite range of
the right-hand cut, 4<s<si, provided that §(s;) <.
With this extra degree of freedom! it is possible, using
absorption parameters very similar to those given by
Eq. (15), to produce a p resonance of mass 760 MeV
and width 130 MeV and an e resonance at 700 MeV
with a width of 300 MeV. Some of the higher resonances
can also be anticipated by allowing some sharp struc-
ture in the corresponding 7(s). This has the effect of
producing small resonancelike circles in the Argand
diagram. However, the widths, elasticities, and even
the masses of these resonances are not sufficiently well
known to fix this detailed structure in 7(s). This, of
course, is just a restatement of the problem of assuming
the behavior of §(s) which we have discussed above.

IV. DISCUSSION OF RESULTS

In Sec. ITI we used the Veneziano model to calculate
the low-energy absorption- parameters, using partial-
wave dispersion and some simple assumptions about
the phase shifts. In this section, as a test of our analysis,
we compare these values of the absorption parameters
with those obtained by other analyses. Unfortunately,
the experimental values are difficult to obtain accurately
since they involve the detailed study of several partial
waves from pion-production data which are themselves
not too well determined. Even so, one analysis by Oh
et al® has suggested the values shown in Fig. 3. These
are within the range allowed by Eq. (11) but suggest

13 D. H. Lyth, University of Lancaster report (unpublished).

14 For s waves there is an extra subtraction constant which we
take from the Veneziano model.

15 B. Y. Oh ef al., Phys. Rev. Letters 23, 331 (1969).
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lower values for 72° and larger values for 7¢° and 7!
than those given by Eq. (15).16

To obtain a further comparison, we can make some
estimate for these parameters by calculating the cross
sections for the processes 7w — KK, wr— mw, and
mw — 4r which, it is often supposed, are the more
important contributions below 2 GeV. For the first two
processes, we consider the exchange of the lowest-mass
particles plus the contribution from direct-channel
bound states and resonances,'” with the couplings and
widths given either by experiment, where known, or by
the Veneziano-pole residues. The four-pion amplitude
is approximated by a single-pion-exchange graph
alone.'® With the normalization corresponding to Eq.
(7), the absorption parameters are related to these
amplitudes by

1— I:,,”I(s):]2=4 Z ] All(s)rﬂ'—ml 2) (19)

where a=KK, mw, or 4r as allowed by isospin. The
resulting values for ;! are again shown in Fig. 3.

It will be noticed that these values are not too
different from those obtained from Eq. (15).. The
oscillations in 7,7 correspond to the higher resonances
which we have effectively ignored in that equation.
However, we believe the results of Eq. (15) can still
represent a very good over-all approximation to n.
This view is further reinforced by comparison of our
results with those of Griss,”® who has used finite-energy
sum rules to study Regge behavior in a “unitarized”
Veneziano model. His solutions, particularly those with
complex trajectories, have values for »;f which are
similar to ours. It is also interesting to note that several
of these solutions have the phase shifts tending to =
as we have already assumed.

16 Tt is widely believed that the p’ (if it exists) is very inelastic,
suggesting a rather larger value for 1—»,! than that of Ref. 15.
17 The ‘details of this calculation are similar to those given by
P. W. Coulter and G. L. Shaw, Phys. Rev. 138, B1273 (1965).
See also J. Fulco, G. Shaw, and D. Wong, 7bid. 137, B1242 (1965).
18 The four-pion cross section is found to be relatively small.
19 M. L. Griss, University of Illinois report, 1970 (unpublished).

One important consequence of our results is that
below 1 GeV the absorption parameters are apparently
not too different from unity, so that the amplitudes
satisfy fairly closely the condition of elastic unitarity.
Above 1 GeV, however, this is no longer the case and
it appears that inelastic effects are very important at
least for the ‘‘nonexotic” channels. It should be stressed
that any theoretical or phenomenological analysis of
pion-pion scattering must allow for this contingency
if it hopes to explain the details of this process above
1 GeV.

It is also worth noting that the above remarks are
not confined to =w scattering alone but apply equally
well to mK scattering. To see this, we calculate the
low-energy generalized Born terms B’ (s) for the #K
scattering in the manner described in Sec. II.

The Veneziano amplitude for this process is

VI (s,t,u) =aIB (S,t) +BIB (uyt) ) (20)
where
3 _ -1
a=-r() 8=-r("), @
Blay) = ra —-g(x))l’(l*a(y))’ 22)

r(1—g(x)—a(y))

and g(x) is the K* trajectory.? The resulting functions
BI(s) are shown in Fig. 4. The corresponding absorption
parameters are obtained from assumptions similar to
those leading to Eq. (15) and are given in Fig. 5. It
will be seen that the parameters 5;//2, [=0, 1 are con-
siderably less than unity above 1 GeV, and it would
therefore seem important also to consider inelastic
effects in analyses of 7K scattering above this energy.
However, for the =% partial waves it is found that
the contributions of 7?2 coming from B2 and 6?2 in
Eq. (15) tend to cancel just as in the case of the =2
partial waves. We would thus expect inelastic effects
to be somewhat smaller for these processes, although
detailed results are dependent on the assumed behavior
of the phase shift.
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V. CONCLUSIONS

We have investigated in this paper some of the
consequences of assuming that the Veneziano model is a
good approximation to the scattering amplitude, and as
such already contains many of the effects of unitarity.
Clearly this assumption is likely to be better away from
the physical region where the model cannot reproduce
the detailed analytic structure of the amplitude. Con-
sequently we have had to rely on physical intuition to
provide us with approximate values of the phase shifts
in this region. Nevertheless, making only very simple
assumptions for these phase shifts, the resulting ab-
sorption parameters for = and also for mK scattering
turn out to be very reasonable. Indeed it should be
stressed that even values 0<9< 1 were by no means
assured. Moreover, although there is some apparent
discrepancy with one phenomenological analysis, the
shape of these parameters seems to be in fair over-all
agreement with some other estimates for them.

We would suggest that the source of this agreement
comes largely from the positions and residues of the
poles in the Veneziano model which combine to give the
contributions to the integrals over the left-hand cuts.
Such contributions, however, are controlled by the
unitarity condition in the crossed channels. Therefore,
agreement reinforces the idea that the pole parameters
in the Veneziano model already incorporate the effects
of unitarity.

In conclusion let us mention one further effect which
is usually associated with unitarity, namely, the

160
sim?)

1
140

Pomeranchukon. It will be seen that in our calculation
of the absorption parameters we have restricted our-
selves to fairly low s values, where the Pomeranchukon
is likely to be negligible, and, in the calculation of B, (s),
simple estimates suggest the Pomeranchukon contri-
bution should be extremely small. Nevertheless it is
very likely that it is the high-energy, Pomeranchukon
controlled, unitarity condition which produces the
almost linearly rising trajectories and corresponding
residues that are approximated so well by the Veneziano
representation. In this sense it is possible that the effects of
the Pomeranchukon are also contained in the Veneziano
moedel, even though it does not have the corresponding
J-plane singularity or correct asymptotic behavior.??
It must be noted, however, that the only way to test
this possibility in the present approach would involve
going to large s values and calculating numerous partial
waves, each of which would require a knowledge of the
phase shift and asymptotic behavior of the function
Bi’(s). Thus we are unable to say at present whether
the Veneziano amplitude represents an approximation
to the physical scattering amplitude with or without
the Pomeranchukon. Nevertheless we should emphasize
that such considerations are negligible for the calcu-
lations presented in this paper.
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