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Polarization Theorerns in Pion Photoyrodnction*
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Stichel s theorem relating the state of linearly polarized photons and spin-parity of t-channel exchanges
in pion photoproduction is reexamined and generalized. For two specific initial and final nucleon polariza-
tion configurations, an exact theorem valid for all photon energies is proved.

INTRODUCTION

INEARI. V polarized photons of low energies
& ((1BeV) have for a long time been used as

an effective method to pin down the spin-parity of
s-channel nucleon resonances in pion photoproduction. '
At higher energies, the description of the process as
proceeding through a series of direct-channel states
becomes very complicated. But at suKciently high
photon energies we enter the region where we believe
we can understand the pion production as being
initiated by Regge exchanges in the t channel.

As first pointed out by Stichel, ' there again exists a
simple relation between the polarization of the incoming
photon and the spin parity exchanged, now in the t

channel. Kith the photon polarized normal to the pro-
duction plane, the amplitude is, to the leading power in

s, dominated by natural parity states P= (—1)~; with
polarization parallel to the plane, unnatural parity
P= (—1)~+' dominate.

Today it is possible to obtain high-energy linearly
polarized photons from electrons impinging on suitably
oriented diamond crystals. With this in mind, we have
reexamined Stichel s theorem. Using the helicity formal-
ism of Jacob and Wick, 4 we prove that the theorem is
independent of the spin-parity of the final nucleon
state to the leading power in s. Also we show that it is
valid to all orders in s when both initial and final
nucleons are polarized in the same direction normal to
the production plane, or when they have opposite
helicities. The only assumption made in this later case

q

~$8 N(

P)

is that nz ' can be neglected with respect to mN', which
is very reasonable.

In the last part of this paper we derive the same
theorems now making use of the more transparent
I'"eynman —van Hove model' for the process. Besides the
simplicity of this approach, we also obtain a physical
understanding of the approximations involved in prov-
ing the theorems, an understanding partially lost in the
complicated crossing of helicity amplitudes between the
s and t channels.

HELICITY FORMALISM

In the pion photoproduction process y$1~mE2,
where X1 is a spin-2 nucleon and the 6nal nucleon E~
can have any spin-parity J~, we let the incoming photon
with helicity ~I and momentum k move a,long the
s axis in the c.m. system. The produced ~ meson comes
out at an angle 8 and with momentum q as in Fig. 1.

The helicity states of the photon have polarization
vectors

e~ =- W (g-,') (e.+ie„) .

Plane-polarized photons with the electric vector per-
pendicular or parallel to the production plane have
polarization vectors c& and z», where

«= &o= &(V )(&+o+& )-
e„=e.=- —(Q-,')(e+—e ) .

In terms of the s-channel helicity amplitudes
foq, q„q, '(6), where Xo ——&1 and Xr ——+o, the corre-
sponding cross sections for unpolarized initial and final
nucleons can be written as

oui(tl') =q 2 ~ fo A2, r xi' —fo &,2,—r xx'~

FIG. 1. Center-of-mass coordinates for photoproduction process.
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In order to Reggeize, we need the corresponding
t-channel helicity amplitudes fz,z, , o&,o'(8), where 0 is the
scattering a,ngle in this channel. Using the crossing
matrices of Trueman and Wick, ' which take a relatively
simple form since the photon is massless and the pion

' L. van Hove, Phys. Letters 243, 183 (1967); R. P. Feynman,
Caltech lectures, 1967 (unpublished).' T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

1278



spinless, we get

fo&„,1.1,'(8) = A, ,l,"'(xl)A, ,I,'(xo)fo-l, ,l, 1,'(8) (4)

Inserting this into Eq. (3) and using the orthogonality
of the d functions, the expressions for the two cross
sections take the following form:

ol(8) 0 + I f».»»+fo —I.»» I

=2 Ifol, » +fo I, l *,'I',

o (8)=l 2 If».&1' fo-l, »»'I'

=2 I fo I» " fo -I-I—"i '.

In the last step of these two equations, we have made
use of pallty lnvaI'lance.
Qi' Application of the parity operator to the pion-photon
helicity states gives

I'I Im; z„o&=(—1)s+II IM; —&,0&. (t)
Using this relation, we can find states with natural
parity I' = (—1)s, -

I
IbI; 10)+—- Im'; 10)—IIbI; —10&, (g)

and states with unnatural parity I'= (—1)s+I,

I m; 10& =
I II'; 10&+ I m; -10&.

A Jacob-Wick' expansion in the t channel,

fo I,», '(8) =p (2/+1)I'0 I,» —;ldll'(«»8), (10)

and letting cos8 be very large, we 6nd

d~ I' -du—l'= —2LI(&+1)7 "'
X»n8doro (cos8)s,

dsr I'+d-ul'=+2[&(&+1)7 '" (14)

X(M/sin8)didos (cos8)s '.
Since cos8 s, we see from Eq. (12) that to thelead~ng

power in s the cross section for photon polarisation normal
to the production plane is dominated by naturaL parit-y

exchange, and for parallel polarisation, unnatural parity
dominates Th.is is Stichel's theorem. It also follows that
the theorem holds for pion photoproduction with any
nucleon isobar in the f'inat state

It is obvious that the theorem would be exact to all
orders in s if the nucleons had instead been scalar
particles.

In case the 6nal nucleon has spin-parity J~= ~+ and.
the same mass as the target nucleon, we can prove a
more restrictive theorem. Inserting the crossing relation
Eq. (4) 1Ilfo flic amplitudes ellfellllg oi and o'll, and
carrying out the summations, we get

fok 15 ~fof.—if
=-+coso(xi~xi)(fo-l, -,*~f01,: )

+sin-', (xlwxo)(fo-i, —;—~fol, —;—),
fo —,*,1 f'~ fo o, ——1 —k'

=- —sin —(xi&xi)(fo I,;,'~ fol, ,')

+coso(xi~x, )(fo I,;,~f01,;=; ).
The crossing angles Xl and X~ are given by Wang. ~

Making the approximation m '/m~'-—-0, we find the
following relation between them:

where X= X2—~~, gives partial waves J.'~ which now can
be expressed in terms of amplitudes carrying natural
and unnatural parity from Eqs. (8) and (10),

~01,1 -' O(~01,10~ +F01 1 —' )

~D—1,10-,'0(FDI 10-' ~01,10f ) .
The helicity amplitudes entering the cross sections can
now be written as

fo I,» ,'+fo —1,10-,"-
=0 Z (2I+1)LI"01,1, +(A 1'—dl 1')

+~01,» ) (dl-I +4.I')7,
(12)

fo I,» t fo —1,12!;

=-'; 2 (2&+1)LFo l, lo*,' (&4 I'—A I')
J

+I"0 I,» +(d I'+4, I')7. —

Now, using the recurrence relations for the d functions,

dsr~is(cos8) =tI(I+1)7 lt'

M 8
cosH

sin8 80

Looking back at Eq. (15), we see that this implies that
not all the previous t-channel helicity amplitudes will

contribute. In particular, the s-channel combination
corresponding to parallel photon polarization and
nucleons with opposite helicities is given by a pure
unnatural spin-parity combination in the t channel.
This is our new theorem, valid to all orders in s. H/"ith

photon polarization parallel to the production plane and
with initial and final nucleons of opposite helicities, only
unnatural spin parity excha-nges contribute to the cross
section.

FEYNMAN-VAN HOVE DESCRIPTION

According to this model, ' the amplitude for the
relevant process (Fig. 2) is given as a sum over spin-I
meson exchanges,

A(s, t) = Q A s(s,t),

' Ling-Lie Wang, Phys. Rev. 142, 1187 {1966).
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V»»~ = (Me»»g»g ke»»»gg)k—e») . (22)

This vector has to be contracted with a vector on the
nucleon side. From Eq. (21) we have two possibilities
for this vector:

a» =u2u&(p&+P2)»»

b„=n2yqgy.

The vector a„contributes only by its y index which,
in turn, implies that the photon polarization eb will
contribute only through its component in the z direction,
normal to the production plane. However, the second
vector b„has a nonzero s component allowing e~ in the
production plane e&& =~„ to contribute. But the part of
the amplitude coming from e&f is small as seen when
writing out the spinor matrix elements,

I (e b)/("a) l=s-'v'( —t), (24)

P2
2

Here II(„)(,) is the propagator for a spin-J meson,
completely symmetric in its indices (t») and ()»), con-
tracting the vertex functions V~„~&~ and V{„)~~,which
are also completely symmetric in their indices. Gq& and
G~~~ are coupling constants.

V~„~& is constructed from the photon polarization ~„
and the momenta k„and qp and takes the following
forms dependent on the spin-parity of the exchanged
meson:

~'= (—1)': V(.)"={~~,-wk-et))e~(4~+g. )

(k..+ci..))"-, (19)

&=(—1)s+'. V(„)' ={Le„,(kq) —k„,(eq)j
X (k„,+q„,) (k„,+q„))„.(20)

Both are gauge invariant, as they should be. The other
vertex function V(„~~'~ is also easily constructed and, in
the simple case of a final —,

'+ nucleon, takes the form

&=(—1)' V ) ={uL~(p '+P ') (P '+P ')
+Pe.,(p.,'+p.,') . (p.,'+. p )j»)" (21)

In case of unnatural-parity exchange P=(—1)s+', it
contains an additional yl. Here, n and P are form factors.

Since the following proofs hold for each J separately,
we will only consider the case when J=l. We also
choose to work in the yx Breit frame, dered, as the
coordinate system where q= —k, and we let x be the
direction of the incoming photon as in Fig. 3. Then
k = (k; k,0,0) and qt)

= (co; —k, 0, 0).
In case of natural-parity exchange, the yx vertex

function Eq. (19) then reduces to

I'IG. 3. Coordinates in y~ Breit frame.

so that at high energies e~ will dominate the amplitude
for natural-parity exchange.

Similarly, we find that in the case of unnatural-parity
exchange, el& dominates the amplitude for large s.

For natural-parity exchange, the contribution from
e)) came from b, . In the approximation rn '/n)~'=0,
where Ip&I = lp2I =p and E)=E&=E, we have

=X"L(a.p»)o*+o.(~ p~)3)t) (25)

CONCLUSION

We have reexamined Stichel's theorem connecting
the photon polarization and the spin-parity of t-channel
exchanges in pion photoproduction. In the particular
case of photons polarized parallel to the production
plane together with certain initial and final nucleon
polarizations, we have proved that only states with
unnatural spin parity will contribute to the cross section.
In contrast to Stichel's theorem, this new observation is
valid to alj, orders in g.

From an experimental point of view, this kind of
photoproduction setup is difficult, but in principle there
is nothing preventing it from being done with the
present-day facilities. Hopefully, it would provide us
with new reliable information about the strong and
electromagnetic interactions.

If now the nucleons have opposite helicities, e.g. ,

(o"p,))t,= —x, , (a' p2))rm ——+x„(26)
where pq~s) qpt/2)p, then b, =0. Also, if both nucleons
are polarized normal to the production plane with spins
in the same direction,

g gXy —Xy ~ gzX2=X2 )

then again b, 0from=Eq. (25) since p) and p2 both are
in the plane.

So when the nucleons have opposite helicities or are both

polarised in the same direction normal to the production
ptane, e)) contributes only to unnatural parity exchang-es,

independently of the photon energy.
Obviously this last theorem can also be proved in the

helicity formalism but is not so easily come upon as in
the Feynman-van Hove description.
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