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Pion-Nucleon Scattering and Production in the D» State*
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(Received 6 March 1970)

A model of the coupled m X,pE, 0E, and vr 6 channels is adjusted to the AS scattering and pion production
data below 700-MeV pion laboratory kinetic energy. A very good description is obtained of the complex
Dla amplitude below 700 MeV, simultaneously with a good fit to the structural details of pion production
in the 400—700-MeV energy interval. In computing the pion production distributions, the only addition
made to the Dl3 contribution is a phase-space background accounting for 20—50/& of the production cross
section. The maximal interference effects between decaying resonances are investigated. Also reported are
attempts to Qt the data without the o-E channel, but with the ~E or higher threshold channels. The cross
sections for p, 6, or co production predicted at 1.0—1.5 BeV are consistent with the higher-energy data: Too
much 0 production is predicted.

I. INTRODUCTION
'
+ION-NUCLEON scattering data below l BeV are

now suf6ciently detailed to have determined
reasonably accurate and unambiguous complex partial-
wave amplitudes. '—' The body of data on ~xE final
states has also been growing' 7 and includes enough
information on momentum, mass, and angular distribu-
tions to allow an approximate analysis of the two-
particle correlation and isotopic and angular momentum
contents at several energies. ' Consequently, models or
theories of the pion-nucleon interaction should now be
required to explain simultaneously —or at least be
consistent with —the elastic scattering amplitudes and
the structure of the three-body Anal states.

We here present a model for the D~~ (T=-,', J=$)
pion-nucleon partial wave which satishes the above
I cqull cmcnt.

When the pion laboratory kinetic energy Ez is
between 500 and 700 MeV, the resonating phase shift
8i3 and inelasticity pig are accurately described. In the
same energy range, by adding a phase-space background
of 20-50% to the D~~ contribution, we obtain a good
description of all observed distributions from the
7i. +P~7r+7t+X reaCtiOnS. BOth the mw and xX
barycentric mass distributions are well described.

At lower energies the Di3 contribution to the inelastic
closs scctlon becomes kss than that of 5 and I states
and we can no longer expect the Dl3 state alone to
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dominate the structure of the 7rxE distributions. The
model is also not expected to give an accurate pre-
diction for bj3 near elastic threshold, as it neglects the
long-range character of the pion-nucleon force. In fact,
the predicted value of 8~3 falls below the experimental
analysis at low energy, as would be expected from the
neglect of a long-range force. The long-range character
of the interaction can be added to the model without
difficulty, as should be done when 5- and P-wave
channels are also included.

When Eg& 700 MeV the Fl5 and Dl5 phase shifts are
becoming large, rising towards resonance. Consequently,
it is expected that the phase-space approximation, used
in calculating the m~X distributions for all but the Dla
amplitude, will cease to be adequate. This is borne out
at 646 MeV by a forward-back asymmetry in a pion
angu1ar distribution which is the only deviation from
ouI' pl cdlctlons.

The chief characteristic of the model used is that it
treats the coupling of the xE, pS, o.E, and zrh channels
nonperturbatively. There mould be little value to
a perturbation treatment in the resonance region.
Furthermore, the p, 0, and 6 resonances are handled as
decaying paI'tlcics with thcll cxpcI'lIncntal IIlass dis-
tributions as given by a Breit-signer form.

The model used for the coupled-channel problem is
that previously used with mE and pE channels to
explain the Dia resonance, ' That was then extended to
include the mA channel" to describe previously un-
explained features of the vrmE states. It is a simple
boundary condition model (SBCM) in which a homo-
geneous boundary condition is imposed on the wave
function at short range, with no exterior interaction.

This is a simplification of the full boundary condition
model (BCM) which includes potential-type long-range
interaction. The BCM has been shown" to be a general
representation for strong interactions with the usual
analyticity and unitarity properties. It is indicated

9 H. Goldberg and E. L. Lomon, Phys. Rev. 134, B659 (1964).
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that the bounda, ry condition matrix tends to a constant
for strong interactions.

The long-range potentials are predicted by particle-
exchange diagrams and are of significant strength.
However, the effects being examined here (the Dgg

resonance and resonance-production thresholds) are not
expected to be very sensitive to the detailed range
dependence. They vary strongly with total energy
rather than with momentum transfer. The long-range
characteristics do matter near elastic threshold, where
our model is inaccurate in its present form. The long-
range behavior also determines the relative size of
higher-angular-momenta partial waves. Thus to accu-
rately describe all partial waves with a few parameters,
a field-theoretical potential tail should be included. "

The effect of a coupled channel below its threshold is
in general" increasingly attractive and it may readily
induce a resonance. ' Above threshold, the energy
dependence of the coupled-channel contribution to the
elastic amplitude decreases, and a strong inelasticity
sets in. Under these conditions, the only type of reso-
nance produced is the very inelastic type in which the
phase shift does not rise through ~~a-, but drops rapidly
instead.

The strongest resonance-producing effect is expected
from channels whose thresholds are closely above the
resonance, and which can be produced in low-angular-
momentum states. In the case of the D~3 resonance, the
natural candidates are the pN and O.N channels. The
first can be produced in an S state and the other in a
I' state. The co meson will affect the elastic behavior in
a similar manner to the p meson, and will also be con-
sidered. The only other threshold in this vicinity is that
of the pion paired with the E'(1 74)0, which has the
same quantum numbers as the nucleon itself. It follows
that the mlP(1470) system is also in a relative D state
when coupled to the m-N pair in the Di~ state. Therefore,
although the threshold for s.S'(1470) is nearly 100 MeV
below the pN threshold, it is expected to have a much
smaller effect in our energy region. In the three-body
final-state analyses of Ref. 8, the m-1P(1470) system is
determined to be present, but is much more likely to
originate from the ~N pair in S or I' states. We do not
here consider its coupling to the D~3 state.

All lower-mass channels will strongly affect the
inelasticity, but not the elastic resonance. The only
low-mass channel relevant here is that of the md system,
which has long been known to be present in the Gnal-
state distributions. The mA channel is also produced in
an S state. There is therefore good reason to limit the
program to coupling the m-N, mA, pN, oN, and wN
channels. The decays of the p and r mesons play an
important role in our energy region, causing dipion
correlation. These correlations always peak at the upper
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end of the mass spectrum, as required experimentally,
because of the high mass of the p and 0- meson peaks.

We here show that the data can be adequately
described without the coN channel. It is also shown that
the fit is not as good, but has many of the main features,
if the ON channel is omitted but the coÃ channel is
included. Of course, the physical system may have
important coupling among all Ave channels, but the
absence of a one-pion-exchange diagram may make the
7fE —+arE coupling less important than the p or 0.

production.
Previous models have failed in one or more of the

following aspects: (i) They have been incorrect in the
predicted behavior of the partial-wave amplitudes in
this energy region"; (ii) they have failed to explain the
dipion correlations in the several charge states"; (iii)
they have failed to describe the mN correlations. ' "The
model presented here is, as will be described below, good
in all these respects.

In addition the model must not require unrealistic
coupling strength to the isobar channels, which would
predict unreasonable high-energy resonance produc-
tions. The present coupled-channel model guarantees
that the experimental shape of the resonances is pro-
duced at high energy. In addition one can check the
predicted magnitude of partial-wave production of
resonances in the region where the resona, nce peak is
above threshold, but where low-angular-momentum
partial waves should dominate (1.3—1.5 BeV in the
present case). A consistent model of the predominant
low partial waves should predict a substantial part of
the experimental production cross section for each
resonance, but must not exceed the experimental value.
The present model is also successful in this respect for
the p, co, and 3, production but requires some modifica-
tion of the o-N channel at high energies.

II. STRUCTURE OF MODEL: ELASTIC AND
PRODUCTION AMPLITUDES

The general Schrodinger equation for an N-channel
two-body interaction is

where 4 is a column matrix of wave functions f;
(i=1, . . . , iV) for each channel and E' is a diagonal
squa, re matrix with diagonal components E;, in which
hE; is the ith channel momentum determined by the
total barycentric energy 8' and the channel masses

'4 M. G. Olsson and G. B. Yodh, Phys. Rev. 145, 1309 (1966)."R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 109,
1723 (1958).

1' L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 12/, 283 (1962);
127, 297 (1962); P, Carruthers, Ann. Phys. (N. Y.) 14, 229
(1961).
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M;z and M;ii (putting A= c= 1 in subsequent notation): and

ro e=fe(ro), (3)

where f is a constant X)&X matrix.
In the simplif(ed form (the SBCM) used for this

application it is assumed that U =0 for r& ro. It follows
from Eq. (1) that the components of 4' are combinations
of spherical Hankel functions. All the scattering infor-
mation is now contained in Eq. (3). Specializing to the
four-channel problem (and treating them as two-
particle channels for the moment), the explicit form is

0n(r)

~(„) &.(r)
A(r) '

4.(r)
{4)

where Pr)(r), P,(r), Pq(r), and )j,(r) are the wave
functions for D~avrA, Sr3pÃ, S~shz, and PI3oE channels,
respectively (all normalized to unit flux).

In the SBCM, one has

y.(.)=(4 K)- Ly, (K.)+S„q, {E,)j, (3)

with 5~3—=gj3e"~» and E—=E~ for the incident channel,
and

|t,,o(r) = (4irK, ,o) '~'S„g(M, o)yo(')(E', or), (6)

P.(r) = (4irK.)
—'"5.(M.)yi(')(K.r)

for the production channels, in which

W= (K;o+M;~o) '('+ (K;o+M;I)') '".
Z' is a diagonal matrix with diagonal components
I.;{I.q+1), and the interaction is represented by the
XXX matrix U, whose components may be nonlocal
,operators. At low energies U becomes (2M, s/A') V,
where V is the Schrodinger potential operator and the
reducedmassM;a=M;~M;))(M;g+M;s) '.

Field theory indicates that at long-range U may have
a simple, nearly local, representation. At short range the
form of U is expected to be dificult to derive and to
have the full complexity of a nonlocal energy-dependent
operator. The BCM suggests" that the short-range
effects of U can be replaced approximately by a homo-
geneous boundary condition at the interface ro between
nearly local and strongly nonlocal behavior:

f& fr)o
f&o fI
fr)o,

i fD, 0

fDo, fD~
0 0

fg 0
0 f

Note that the resonance channels are not coupled to
each other. The indirect effect of such coupling on the
observables of interest is comparatively unimportant.
For simplicity and to reduce parameters, such coupling
is omitted here.

One may obtain P„fo,, and )j, in terms of fD from
the last three linear equations represented by Eq. (3),

S'=- 4~fD'Lf—'+~c(')+(K.To)j '

&An(ro)/4c(') "'(K'To) (12)

when i (p, d=, ,o), and inserting this into the first linear
equation, one obtains

ro 4D(r)/«o=f. r((~')4o(ro), (13)

in which 1.(i) is the orbital angular momentum of the
channel,

~~+(Z) = -Z4~"'(Z)/4 i")(Z),

D'2

f.«(W) =fn
f;+0;+(K;To)

(15)

In our case 1.(i) = (0,0,1), so that one needs only

e.+(Z)= —iZ and e,+(Z)= iZ+i(Z+') '—. —(16)-
Since the 6, p, and fT particles decay, they therefore

have variable masses, distributed according to the decay
width F; about their central mass 3'; as given in Table
I. This distribution is obtained from high-energy pro-
duction experiments and is experimentally compatible
with

~
X,(M;) ~, where X;(M~) is a Breit-Wigner amph-

tude, as expected for a resonating system. Ke use the
relativistic Breit-signer forms"

PT'.l
j2q

.ks+1j2~,—ls

X„(M~)= —,(17)
(M,' M;o) i I', (M,o/—M,)(q;—*/g;*)"'+'

Ko.= {2'W) 'LW' —(Mg+)(o)'1'"
&&LW' —(M& —u)'3'~' (10)

where M is the mass of the nucleon and p is that of the
pion. The 5-matrix components 5; are obtained by
solving Eq. (3), in which

Pc(")(Z)=Zhz(")(Z) (m=1, 2),

where the hi, (~)(Z) are the spherical Hankel functions. "
From Kq. (2), one has I.g ——0

I.p ——0
J,=1
I.„=0

Mg =1236 MeV
Afar= 765 MeV
M.= 720Mev
JIf„= 783 Mev

I'g ——120 MeV
I p=105 MeV
F =200 MeV
I'„= 0

E„,.= (2W)-'LW' —(M, .+M) '$'~'

)& LW' —(M —M)'j'" (9)

(g)
TAar. K I. Central masses and widths of resonances and their

relative angular momenta to recoil particle.

'7 As defined by P. M. Morse and H. Feshbach, in Methods of
Theoretica/ Physics (McGraw-Hill, ¹wYork, 1953), Pt. l. ' J. D. Jackson, Nuovo Cimento 34, 1644 (1964).
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where q;* is the momentum of either decay particle in
the resonance center-of-momentum (COM) system

q.*=(m, )-)Lm, o —yr+, )2]1/2

&&5/V" —(/V —p)']'", (18)

I'rom Eqs. (5) and (13), one easily obtains

/'«0 "'(& ) &o—'"'(&
))~13=g13~2i818

f.((42"'(Zo) Z—ohio""(Zo)

with Zo= Ero, IC real, from which

(24)

and

(1/V 2 2) 1/2 (19) 1—2/12' ———4 Im f,((82$(Ref,(1 A2) —'
+ (Imf.«—82) ']—', (25)

(7;*=—(7;*(lif;),

and. /i is the orbital angular momentum of the decaying
resonance. The normalization 2V; is obtained from

where the "barrier penetration factor"

&2 —Zo
I @2(Z0) I

(26)

t ~,PS,) ~2'; (21)

LRe(t)2 (') (Zo) Re(t)2 (') '(Zo)

Im()4 (') (Z()) Illlyo (') '(Zo)]82 . (27)

As Eq. (3) is unitary, one also has the relation that
the total inelastic cross section

integrated from threshold Sf'~'=3f+p and Mp, ~'=2@.
The numerator of A.i includes the quickly varying
kinematic factors appropriate to the high-energy reso-
nance-production amplitudes. "

This distribution of masses can be accommodated in
our coupled-channel problem, ' "by coupling indepen-
dently to the continuum of channels designated by the
resonance mass: Each element of Eq. (4) becomes a
continuum column matrix $,(/V;, r), and the off-diagonal
elements of the f matrix LEq. (11)]are replaced by the
continuous distributions X,(M;) fD, . As be'fore, in Eqs.
(12), (13), and (15), the solution is

when 2=(p, A,a), and pn is given by Eq (13) w.ith

f.«B') =fn 2 fn''—
z=p 2~, (r

~
~;(/V, ) ~

od/V,
(23)

or, fi, -i-er, (;)+(IC,ro)

with E; now a function of 3/I;, as well as of W, as given
by Eqs. (9) and (10).

It is important to note that for large 8' the kinematic
dependence of Eq. (22) on /V, is dominated by X;(M,),
so that the mass distribution predicted for high-energy
resonance production is automatically correct.

S;(/V;) = 42rfn;X;(7V,—)
kn(«)

&& Lf'+el (')+(K'«)] ' —, (22)
4r, (;) ")(K*&0)

2Ã
«2%') = —(1—n»')E'

Q2 i=p, a, ~
~S,(/V, , W) ~'de,

i=p, h, (r

a,(W), (28)

where mi is the mass of the third particle in the final
state, ;2=22(/cVlpf). It is important to note that in
treating each channel independently, the unitarity rela-
tion, Eq. (28), does not include interference effect.s
between different channels. For example, a plV system
and a 7rd system may decay into exactly the same 7i-mX

configuration for suitably related HEI„AI~, and decay
and production angles. In that case, the observed
inelastic cross section will contain contributions from
S,+(JV,)Sa(3Eo) which are not included in Eq. (28).
The model is therefore not automatically unitary when
interference terms are significant, a point to which we
shall return later.

When 8'&nz;+35/;, there is production of the reso-
nance and E; is real. If 8"(nsi+3II;, then it is con-
venient to use the real variable

—(2'/') —
1L(2/2 +1V,) 2 II/ 2]1/2

)& PV2 —(2/2, —.V;) ']'". (29)

Using Eq. (16) the explicit forms of Ref,«and Imf„ff
Dor use in Eqs. (24) and (25)] are

~
Xg(1V0)

~
2d3E0

fofr)o'
w—o Xaro+ f0

~
X~(jt/Io)

~

od3Ea
Ref.«(II') =fn f0fD/

' — — fr)0'—
m+p (K0«) +f0

~X(/id)~'m

(K,ro) '+f,'
~—~

L( K )rfo2+(1+f.)] ~
X~(/V~)

~

2diV

(K.ro)' —(K.&0) '(1—f')+ (1+f ) '

Lx.r,+ 1]
~
Z.(/V. ) ~

'd/V.
(30)

— (X'o)'+(x'o)(1+f )+(1+f )

~
/, (/V, ) ~

'd/V,
fr).'—

W—2r ~oO&+ fo
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Imf gg(W) = f—»g2
~ & (Ki&ro) I xi&(iVg) I'de z

From Eqs. (24) and (22) we obtain the amplitudes
needed to predict elastic and inelastic data. As the 3f,
and F; are the standard values obtained from high-
energy experiments, there are only eight parameters to
be fitted to the lower-energy data considered here. The
eight parameters are ro, fi&, the three f;, and the three
fi&;, i=(p,h, )0.

III. THREE-BODY FINAL-STATE DISTRIBUTIONS

TAsr. E II. isotopic-spin coef6cients for the production and
subsequent decay of the resonances.

Reaction

(2)
—1/2 (]8)

—1/2

1
3
1

1
3
.1
3

The above SCM amplitudes describe stable and
unstable two-particle states. However, the experimental
information on the detailed distribution of the decay
products (&r&rÃ) should also be compared with the
model. The model is extended to this comparison by
taking into account the resonance decays. The decay
amplitude has the angular distribution in the resonance
COM determined by 4;, the decay particle spins and the
polarization of the resonance as produced. In the
resonance COM the magnitude of the particle mo-
mentum is determined uniquely by the resonance mass
M;. The resonance COM coordinates are dependent on
the varying resonance mass, making lt necessary to
convert each partial amplitude to a common coordinate
system (the over-all COM system) before adding up the

components. This is accomplished by inserting the
proper Jacobian for each transformation.

D16cI'cIit I'csoIlancc pl oductlon aIIlphtudcs caIl lrltcl-
fere when they decay into common vr7/E final states. We
will return to the interference eRect later. It is a small
CRect, and ambiguous. We postpone its consideration so
that the dominant effect can be more clearly presented.

PIG. 1. Modes of resonance production included in this mode]. .

The process mX —+ m-~vr2Ã is investigated in the
context of the SBCM by summing the graphs of Fig. j..
If the graphs are summed incoherently, then we have
a unitary model that neglects interference. Some results
for a three-channel unitary model have been given in
Ref. 10. In Sec. IV the maximal interference effect will
be obtained by summing the graphs of Fig. 1 coherently.

Incoherent results are presented here, in particular,
the Q value (missing mass) and angular distributions
in the over-all COM system for the reactions (i)

+p ~ m+7r++r&) (u) 'vr +p ~ '&r +K +p, and (ul)
m +p —+ n'+ 7r'+n. Charge independence is assumed in
obtaining the contribution of each decaying resonance
to each of the Anal charge states {i), (ii), and (iii). This
requires only the insertion of the appropriate isospin
"geometric" factors listed in Table II. The geometric
factors are simple bilinear sums of Clebsch-Gordan
coe@cicnts, one Clebsch-Gordan coefFicient in each
product coming from the resonance formation and the
other from its decay.

The fully diRerential form of each incoherent contri-
bution according to the model of decaying resonances
described above is first given in terms of the variables
natural to the process indicated by each diagram.

(1) &r +p —+ 6»r2-+ m. &+cV'+&r2.

d'0&= —,
' Tr((4&r'/K')«, 'ISi, ,(iVi, ,) I'2';-+[3&(Q&&'&),m2, S]P;-[i&&(Q&"&),m2, S]dQg&' &Qdd 2iVp, }

= («,2/16m K')
I Sz,(i',) I

'(1+3 cos't&& &'&)dQ& ~'&d QgdiVg„.

(2) &r +P —+ 62&r& —»ri+X'+or&.
d"02= —' Tr({4m'/K-')« 'ISg (i',) I

'8;-+[kg(02'")z&,. S1P*-[i4(Qi ")p&, SjdQ2"'dQ&d/V i„}
= («,'/16xK')

I Sq, (/V4 ) I
'(1+3 cos'82 "&)dQ, ~'&dQ&diVi, , (33)
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(3) sr +p —+ plV' —+ srl+srs+E'.
d'oa ——'-Tr((4&rs/E')n 'I Sp('J&d'p)

I
'P. -+[p(QI s&s&) lV' SjP;-[p(QI, s&'UV'; S]dQI, sos&dQ~d3II, }

= (n, '/16&rEs)
I S,(lV,) I

'(1+3 cos'8l, s&s&)dQI, s&'&dQ»re, .

(4) ~-+P ~ olV' ~~I+~s+Ã:
d'os= —' Tr{(4&rs/E')n '

I S,(3f,) I
sP,* +[oÃ-'(Qrr); PjP; [o,A"'(-Qlr); PjdQl, s "&dQ&rdkVo)

= (n '/16~Es)
I S.(Ild ) I

'(1+3 coss8~)dQi, s&"dQ&rd3E,

(34)

The solid angles of the first pion, second pion, and
nucleon in the over-all COM system are Q», Q2, and Q~,
respectively, while in the center of mass of the reso-
nances s (1=,2,3,4) —+ (EI,I4,p, o) they are Qi"' Qs"
and Q~('), respectively. In all cases, the s axis is in the
direction of the incoming beam.

The orbital and spin projection operators" for the
production of each final state from the D.; initial state
are denoted by P; (resonance—, third particle; relative
orbital angular momentum of resonance and third
particle) and their Hermitian conjugates. The (s trace)
operation accounts for the average over initial and sum
over Anal nucleon spins. After the trace is taken, the
resultant operator depends in each case on only one
solid angle, indicated in brackets following the reso-
nance or particle from whose distribution it arises. The
other part of the system is in an 5 state, and its angular
distribution is constant in the COM system chosen.
The Pg opera

opposite direction to srs, so that Ql is equally well

determined by 8»2&'), the angle between x» and m-2

(in the I4 COM system). The transformation in Eq.
(33) of the integration variables Qs&s& and Qi to the in-

tegration variables cos 8»('), cos8&(') cosl9»2('), and qb»&')

is easily accomplished. As the Lorentz transformation
from the over-all COM system to the h2 COM system
is along the x» direction, we have

(38)dQ» ——dQ»&'),

so that one need only transform from the integration
variable Q2»

&2) =—@2(»)—P»(') to cosa»2&2). This trans-
formation and its Jacobian are given in Appendix C in
terms of over-all COM angles. One need only replace
82 by 82&", etc., to obtain the appropriate expressions
for the present case. It follows from Eq. (33) and the
above transformation that

d&I&s& d cos8s&s& (1+3 coss8s~'&)

tors are normalized by d 02
IS~ (&id~) I'

dMpm d cos0»2&2) 16m'E2
dQ dQpdQ„(Pg+Pg)=(J+ —,')Sing, (36)

»

where Q, Q~, and Q~ are the solid angles appropriate to
the description of the three-particle final state. Table
III presents the relevant projection operators.

The singly differential cross sections with respect to
missing masses or the angle of one particle are obtained
by integration of Eqs. (32)—(35) over the remaining
variables, af ter transformations which separate the
variable of interest.

A. Incoherent Q(osÃ) Distributions

Defining the Q value in the usual way as the bary-
centric energy of the pair of particles less the sum of
their rest masses, Ql =—Q(srllV) = (Mo, , 3I p), we- —
obtain the following contributions to do/dQI from
each diagram.

(1) As Eq. (32) is already in terms of ddt, =dQI, by-
integration over Q»&') and Q~ one obtains immediately

do'» 21]
— = —n~ 'IS~ (lM~ ) I'.

dQI E'

(2) The value of Ql is determined. by the angle
between x» and E. In the 62 COM system, E is in the

'9 S. Ciulli and J. Fischer, Nuovo Cimento I2, 264 (j.959).

cos (8].2&&)—Hp(~) )

2 d cos8l"' (sin'8s "'—cos'8l"'
Coa(812 &'&+&2 ('))

—cos'8l &'&+2 cos8I&s& cos8s&'& cos8&s&s&) '", (39)

where a factor 2 arises from the fact that 8»2&') goes
from its minimum value

I
8i"'—8s "&

I
to its maximum

value 8»'2)+02&') and. back again to its minimum, while
pisi & goes floII1 0 to 2sr. Eqllatlon (39) can be directly
integrated to give

X dQI d COSHIs. (41)
, d3fg,

ds = q I( /E') ISg,(Hats„) I
sdMr&, d cos8ls&'&. (40)

Kith this choice of variables the integrand depends
only on Mq, . It is now convenient to transform to the
over-all COM system, where the dependence on Qi
can be expressed in terms of q2, the momentum of m.2.

Equation (40) becomes

deaf g,
d' os ——ng, s—ISg,(Mg, ) I' J(qs&'&Iqs)E' F2&')



PION —NUCLEON SCATTERING AND PRODUCTION 125i

TAaLE III. Angular projection operators for initial state J=$, l =2.

Notation of Kqs. (32)—(35)

(n1(')), ;Sj
P) -gag (0 2

(')) ~I,.Sj
~&-pp (o;( )),x', ;sj
P)-L0.,1P(Q~);p)

Quantum numbers of Ref. 19
lI j or J l2 projection operators

(4~)
—3/2'. g1(1) 3(e.g) (g. g1(1))j

(4') '"Pe j2(') —3{e z) (8 j2(')) g

(4 ) '"pe j;(')—3 (e 8) (8.j;('))1
(4m) '"fe P—3{e.~) (9 f')]

F2
dQ& d cos82»& p (44)

ding,

where 3E, is related to 82&3&=—&7&* by Eq. (19), and the
new Jacobian J depends only on q2

"& and cos82»&&" and
is given in Appendix B. In this case one integrates
Eq. (44) to obtain

dQ.

d o3
d cos82~.

dQq d cos8~»
(45)

(4) In making a Lorentz transformation from Q&& to
0~'4), the frame velocity is in the direction of the
nucleon, so that 0~ (4' =0~, as well as d0~ (4) =d0~.
One can then follow the analog of the procedure used to
obtain Eq. (43), i.e., change to the variable cos8~~&4&

from p~ ("—p2 ' ' and integrate over p2 "', cos02 (",
and cos0~ '4), obtaining

d'o. =n '(&r/E')
I
$,(M,) I

'dM, d cos82+&'&. (46)

As q2"'=—q2*, the relationship of 3f~, to q2") is given
by Kq. (18). On the other hand, &7& is related to 3E&, by
Eq. (10); remember that &I&

——Xq, . The momentum and
angular transf ormations are given in Appendix A. The
above Jacobian J of the Lorentz transformation depends
only on q&"' and coso»") and is given in Appendix B.
By numerical integration of Eq. (41) with respect to
COSH] 2)

d02
d cosOy2 ~ (42)

dQ1 dQ1 d COS812

one obtains the contribution of process (2) to the Qq

distribution.
(3) The angular dependence of Eq. (34) can be ob-

tained from that of Kq. (33) by substitution of 02&'& for
0&(2) and of 0& for 0&. It follows that by Lorentz
transforming 0~ to 0~ (3' and changing to the variable
cos82~") from P~(", one obtains a result analagous to
Eq. (39). Then by integration over &&»2&3&, cos82&'&, and
cos8~&'&, one obtains the analog of Eq. (40):

d as=n (s./X ) ISp(MP) I'dM pd cos82N&'&, (43)

whose integrand is independent of cos8&~('). By trans-
forming into the over-all COM system, one can again
take advantage of the relationship between M~, and q2.'

7r dip
d'~ =, I s,yr, ) I

' -—- = J(q &"
I q )

As Eq. (46) can be obtained from Eq. (43) by replacing
the subscript p with 0 and the superscript (3) with (4),
we can immediately obtain the analog of Eqs. (44) and
(45) by the same replacements.

The value of do/dQ& is now obtained by the addition
of do, /dQ& for f=(1,2,3,4). The integrations are con-
siderably simplified by the absence of angular depen-
dence in the intermediate Eqs. (40) and (43) and the 0.

analog, Eq. (43). This simplicity has come about in
spite of the production polarization of the d and p, and
the P-wave production distribution of the 0. resonance.

do/dQ& is obtained by interchange of the subscripts
i and 2 in the above formulas. This amounts to the
interchange of ng, with ng,

X d co-.8a~, (47)
dM

while d0.2/dQ is obtained by the interchange of indices
i and 2. The momentum and angular transformations
are given in Appendix A, the required kinematic
relations are in Eqs. (9) and (18), and the Jacobian is
in Appendix B.

As 3f, and 3f are equivalent to M, the contribu-
tions of processes (3) and (4) are obtained by integration
of Eqs. (34) and (35) over all variables other than M,
or 3f

do 3,4 2X'—= —&r .'I (~&&. .) I'.
dQ, Z'

(48)

Addition of the four contributions of Eqs. (47) and

(48) gives da/dQ

B. Incoherent Q(~~m2) Distributions

For Q =—(cV,„—2y), the contributions of processes
(1) and (2) to do/dQ differ only by n&,.2. In either case
the value of Q is determined by cos8» "& so that it is
convenient to make the transf ormations and integra-
tions that lead from Eqs. (33) to (40). Following that,
one must transform from the integration variable Mq,.
to the nucleon momentum P, rather than to q2, as P
determines M„or M . Making the appropriate trans-
formations, one obtains, from Eq. (40),

d(Fy

diaz,

—= —~"I5,(~.,) I

'
dQ.. E' N'&"
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C. Incoherent A gt Angu axt A g 1 Distributions
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in E . (32) is easily per or

iS„(M„)i'dM„—=O.'g,2—
K2d cosOg

33)-(35) "'
transforrnat&on '

I;&dg & & ~ J(q2 '
the

transfo
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d the Jacohiansln APP
did for process did»ante ration over
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Append&x f
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d cos02
n' —

i
Sg—,(Mg, ) i

'dM g„+'=Ag1
E2

—~(q "',
I eg)(1+3 cos'02&'&)dq2dQ&IS~ (M~ ) I

S, M, — &'& g)(1+3 cos'02&'&)dqgdQ~

J 2 $2)(1+3 cos 0~)dg2ds' dQ» . (50)is.(M.)i' J(cl2&4& g2 - s' d».

as the one for do/

S, M, i'dM,n.2(1y3 cos'e~)
i S,(M.—— = —n„' iS,(M„)i'dMp+- n.E'd coso~ E

+
dg2
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we now label with a unit vector t' such that I 80

and

t'=g &') or P&') t'=~ &') or P
7

t3 —
g~

(3) or g
(3)

l44—

l26—

As a result,

I08—

—.
', TrP;-+(f)P;-(j)

where 9 is a unit vector in the beam direction.
In each case one can choose t' (j= I, 2, 3) such that

the direction of Lorentz transformation to the over-all
COM system from the indicated resonance COM system
is the direction of t'. For instance, in considering t't'
the chojce js jy and j2 for t't jt js P and jj
an. d for t ~ t jt jsI and P. It follows that t t depen. ds
only on j& j& and therefore only on 0», the angle
between the pions in the over-all COM system; t't3
depends only on 0~~, the angle between the erst pion
and the nucleon in the over-all COM system, and so on
for each pair, the full relations being given in Appendix
C. The J,(ij) discussed below have, apart from the
transformation from azimuthal to relative angles given
explicitly in Appendix C, an angular dependence arising
from the above Lorentz transformations depending on
the same relative angles.

The dependence of the interference term between the
first two processes on cos0~ and cos02 is entirely in the
term (i'z)(i2 z). The integration over cos8r and cos82 is
easily performed, as in Appendix C, leaving only a cosg»
dependence L($2 —d») has been replaced by the cos8»
dependence'. There is no dependence on p~ so that the

P~ integration is trivial. A similar reduction to an
integral over the relative angle in the over-all COM
system is possible for each pair. The four-dimensional

integral of Eq. (53) is easily reduced to a, one-dirnen-

sional integral.
An example will illustrate the formulation of J,(fj).

Consider da. q3/dQq, in which the integrations can be
reduced to a numerical integral over cosa~~, where 0~~
is the relative angle between the first pion and the
outgoing nucleon in the over-all COM system. The
steps which lead to the integration variables coso~,

r l l l

580 650 720 790
EL (MeV)

(a)

r

300 370 440 510 860 930 1000

10 -x
o

09—

0.8—

0.7 —'

)13

0.4—

0.3—

0.2—

Ol—

r r r

300 370 440 510
r

& r

580 650 .720
EL(Mev)

(b)

t

790 860 930 1000

cos0~, p~, cosa'~, and M~, are as follows: The phase
space for A2 LEq. (33)g is (noting the equivalence of
Qg&'& and Q~&'&)

FIG. 2. pea model 6t to (a) BI3 and (b) qI3. The data points
designated by O are from Ref. 1, and those represented by x
are from Ref. 3. The model parameters are f~=5.55, f, =0.40,
fz ——2.80, f,=0.0, fD, =2.47, fD&=2.40, and f&.=7.0.

do~ &'&dogdMg, ~
~
de, /dP &"

~

d'P "&dQg

—+ idMg, /dP~'&
i1

J(P&'& iP)d'PdQr
—+

~
de, /dP"'

~

J(P"'
~
P)J(p~,d g

~
cos8g~, g~)dP d cos8~ d cos8g d cos8g~ AN

—+ [de,/dP& &( J(P& &
1, P)J(qbg, @g] cos8uv, p~) r BP/Bq2r, 8,~

X
~
dq~/de, r

d cos6 d cos8q d cos8q~ d&dQi
—=J2(23) d cos8~ d cos8r d cos8y~ d Q~dQr, (36)
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and tile phase space fol 3 g LEq. (34)j 1s

dO& "&dQNdMn ~
I
dM, /de"'

I
d3rI1'3'do~

~ IdM, /dg&"'I J(q1"'Iqr)d'qrdfl~
~

I dM&/de& &

I J(q1 & Iq&) J($&&&,p& I
cos81~,$~)dq& d cos8N d cos81 d cos81&&&' d f~

I dM. /de&
"&

I J(q1 "& lq&) J(&~A1I cos8&~Au) I 8vr/8vml-. ~,

X Idg~/de, l
d cos8~ d cos81 d cos81~ d d~dQ1

—=J3(23) d cos8~ d cos81 d cos81~ dg~dQ&. (57)

The other J;(zj) are evolved in a similar way. The result is that

~+111t
=np ng d cos81. ReLSg *(Mg )Sg (M11 )jjr&1& jp~'&

21r dQ1

dq~ dMq, dlVq, Bqq
X J(q "'Iq)J(q "'Iq)

IDf~, I dpi "dq2 " Bq~

—1/2

d'02 dM3
+ay d cos8g~ Re(5g *(Mg )Ln 5 (M-}8&» jm'++n 5 (M3)P&'& P)) —— J(q."'

I q2}
, n3f g, d'q. (')

+n11„dcos81~ Re(Sg,*(Mg,)Lu pSp(M3)P &" j1"&+n,S,(M3}P1" Pj)

dye ding, Dig BP Bqg
x — — J(P"'lp) J(q "'lq )

dI dqy Bgg gq~ Bg2 gj~

dM3 dq2
+n„n. d cos8,„ReLS,*(M,)5,(M,)&P j2&" J(q "'I q ) &3g}

In the above, SI3 replaces the common kinematical values of 3E, and 3II .
The expression for do;„t/dQ2 is obtained by interchanging the coordinates for the 6rst and second pion. This

means in effect the interchange of the Clebsch-Gordon coeKcients.
To obtain do.;„&/dQ~, the chains of transformations (56) and (57) are altered so that dQ replaces dQ1, which

«qui«s th«dP ~
I
dP/dM3I dQ..w»le dpi, 2 ~ I (881,2/8P)dP/dMSI dQ... wh««he app«pria«angle is held

constant in the partial derivative. The result is

d&int——=ng, ng, d cos812 ReLSg, *(Mg,)Sg,(Mg,)]j,&'& j,&'&

2s dQ

dI', dMj, , ding, 8qg Bq2
x — J(qr "& lq )J(q."'lq )

dM dq &') dq &') 8I' 8I'

+ay, d cos82~ Re(Sg,*(Mg )La 5 (M3)P&'& jg&'&+u.S~(Mg)P&'& Pj)

8q2 dI' dMg i

— J(q "& lq.)
BI' g,„d3E3 I F2 I

+nz, d cos81» Re{5~,*(Mz,)La,S,(M3)P"' j&"'+u 5 (M3) XP"'Pj}
Bqg dI' ' d.M.g,

J(q "'lq1) (»)
gp e~~ (g~3
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The p-0 interference term vanishes, because of its
orthogonal angular dependence. The equivalent to the
last term of Eq. (58) lacks the factor

i (der/de&")(dg2/dM'g, ) i
.

The inverse Lorentz transformation J'(qr~qr'rt) may
be performed, leading to

io-

tt Perkins et at.
0 Ba ri sh et at,
0 Barish et at

Kirz et at.
~ Ref. 5
a R et. 6

Ref. 4
v Kenney et ai.

d cos82~(3& 2' j2~"=0.

Equations (58) (and the trivial change for the Q2
dependence) and (59) contain the results of this section.
%hen calculated for the model 5;, they yield upper
limits for interference effects. The spatial distribution
of the decays will decrease the physical interference
effects.

We have not given the expressions for the resonance
interference effects in angular distributions. We expect
them to be small, and the angular distribution data do
not have sufhcient accuracy to test small effects. The
interference effects between partial waves will be much
more important in fitting angular distribution data, and
we are not able to examine those until the other partial
waves are treated in such detail as the present D~3-

channel calculation.

t t t I t t t t t t t I l

500 340 380 420 460 500 540 580 620 660 700 740 780
EL (Mev)

FIG 3 Cross section generated by the pdcr model for 7r +p —+

7r +7r++n from the initial D13 state. The references are %.
Perkins et g/. , Phys. Rev. 118, 1364 (1960); B. Barish et ul. , ibid.
135, B416 (1964); J. Kirz et al. , ibid. 130, 2481 (1963); and
V. Kenney et al. , Bull. Am. Phys. Soc. 8, 523 (1963).

x Barish et al.

0 Barish et ai.
~ Ret. 5

Ref. 6

Ret. 4

V Kenney et ai.

io-

V. DATA FIT AND PREDICTIONS

The choice of coupled channels has been discussed in
the Introduction. In particular there is a need for chan-
nels with higher thresholds than the obviously important
xA system to produce the D~3 resonance. Furthermore,
the high-mass peaking in the ~+x and the m vr bary-
centric mass distributions indicates the contribution of
at least one boson with T&0 that decays into two pions.
This requires the pX channel, as the only appropriate
system in the correct mass range, to be coupled.

This minimal three channel -(re,pE,re) spstem was
6tted to the data in Ref. 10.The complex D~3 amplitude
was accurately predicted, and the qualitative features
of the mE and mw barycentric mass distributions in the
three-body final state were qualitatively explained.
However, the dipion mass peaking was much too pro-
nounced, and too much branching to the m m'p channel
was predicted. In addition, the vrE barycentric mass
distribution was insufIIciently sharply peaked, indicat-
ing that the proportion of the zA channel was too small.

The deficiencies of the above three-channel model are
most easily removed by the additional coupling to a 0.X
channel, if the 0 meson is a T=0, J&=0+ dipion, with
about the p mass, decaying strongly into two mesons.
Recent evidence ""corroborates the existence of such
a meson, with a very large width, with the parameters

"E.Malamud and P. E. Schlein, Phys. Rev. Letters 19, 1056
(1967).

~' M. Feldman et a/. , Phys. Rev. Letters 22, 316 (1969); G. A.
Smith and R. J. Manning, Phys. Rev. j.7'1, 1399 (1968).

0 (mb)6-

0 y t t t

300 340 380 420 460 500 540 580
E„(MeV)

1 I I I t t t

620 660 700 740 780

0 (mb)

1

570 "670
I

. ': 770 870
E„(MeV)

I

970, )070 = l l 70

FIG. 5. Cross section generated by the phd model for
+P ~ 7ro+~0+rI, from the initial D18 state. The experimental

points are from C. A. Bordner et al. , in Proceedings of the Tz~elfth

International Conference on IIigh-ENergy Physics, DnbNa, 1064
(Atomizdat, Moscow, 1966), p. 38.

FIG. 4. Cross section generated by the pro' model for
~ +p -+ m +~0+p from the initial DI3 state. The references are
B. Barish et gl. , Phys. Rev. 135, B416 (1964); V. Kenney et al. ,
Bull. Am. Phys. Soc. 8, 523 (1963).
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40
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bl 24

Ref,~r of the plV and 01K channels combined must be
approximately the same as the pE contribution alone
in the three-channel model. However, the smaller
barrier penetration factor decreases the 0- production
LEqs. (25) and (26)g relative to the p production for the
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Q (Yr+n) Mev
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~~~ 21—
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Q (Yr+n) MeV
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I I I I l I I I I

0 30 60 90 I20 150 180 210 240 270 300
Q (7r 7r+)MeV

(c)

Fro. 6. Parts (a}, (b}, and (c) contain the Q(w g}, Q(x+e),
and Q(x m-+} distributions, respectively, of the po.h model at
558 MeV (Ref. 5). Phase space is represented by the dashed curve,
while the dotted curve is obtained from the Dfg-state boundary-
condition model. The solid curve illustrates the model curve plus
an appropriate amount of phase-space background such that the
area under this curve is the experimental cross section. The phase-
space background is 36'Po of the total.

given in TabIe I. The pS and o-Ã channels share the
strength needed to cause the D~3 resonance.

The Dia phase shift 8~3 depends chiefiy on Ref,qg. It
follows that in the resonance region the contribution to

35—

b]g 21—

14

I

36 72 108
I I I

144 180 2l6
Q(7r Tr+)MeV

(C)

252 288 324 360

FIG. 7'. Parts {a), (b), and (c} contain the Q(vr I}, Q(~+n),
and Q(m x+) distributions, respectively, of the phcr model at 646
MeV (Ref. 4). The curves are as de6ned in Fig. 6. The phase-
space background is 23 j& of the total.
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same coupling strength. Therefore, to obtain the correct
inelasticity parameter g~3 more 6 coupling is required.

The effect of those changes caused by the addition of
the o.Ã channel is to decrease the dipion peaking at the
upper end of the mass spectrum in both the vr 7rop and
vr+x n Anal states, because of the smaller total dipion
production. The peaking of the n. vr'p final state is very

2l

. . 40—
b fc

0 '36 72 IOB l44 IBO 2I6 252 288 324 360
Q(7r p) MeV

(a)

h

28—

I I . L I I

0 28 56 . 64 ll2 I 40 . l6B l 96
Q(7r p) Mev

224 252 280
b[

~I& 24—

b(~ I6— -'ii
0 36 72 IOB

28—

l44 IBP 2I6
Q (7r'p) MeV

(b)

I

252 288 324 360

0 28
I I I

ll2 I40 l68
Q(7r'p) MeV

(b)

I I 1-.-
~I& 2l

big w—

I I I I I

0 36 72 IOB l44 I80 2I6 252, 288
Q(a 7r') MeV

324 360

28—

~ 2l-
b(cf

r

I V

l80 2IO 240 270
I

0 30 60 90 l20 l50 300
Q(vr 7r') MeV

(e)

F~G. 8. Parts (a), (b), and (c} contain the Q(m p), Q(~'p), and
Q(m ~I)) distributions, respectively, of the pro model at 558 MeV
(Ref. 5). The curves are as dehned in Fig. 6. The phase-space
background is 40/o of the total.

F&G. 9. Parts (a), (b), and {c)contain the Q(~ p), Q(+p), and
Q(~ w') distributions, respectively, of the pro model at 646 MeV
(Ref. 4). The curves are as defined in Fig. 6. The phase-space
background is 50 jo of the data.

much decreased, as required by the data, because the
T=O a. meson does not contribute at all. The dipion
peak in the m+m=n anal state is also broadened because
of the large width of the 0- meson. At the same time, the
increased proportion of the ~h Anal state sharpens the
m E barycentric mass peak as requiI ed..The a~3 complex
amplitude fit is further improved.

The best fit of the four-channel (mXph, pX,oE)
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I I I I I I I I I I I
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(a) and (b) of Figs. 6—9 show that we obtain a satis-

factory nE.mass distribution although only 45% of the

decays take place through nucleon isobars at 646 MeV
and 38% at 558 MeV (this is several times as much
nucleon isobar as obtained in the three-channel case").
A very marked improvement in the dipion mass distri-
bution is obtained in part (c) of Figs. 6—9, illustrating
quantitative agreement. The angular distributions at
558 MeV (Figs. 10 and 12) are quantitatively adequate.
At 646 MeV (Figs. 11 and 13), the ratio

Lo(0')+ o (180')j/o(90')

I

-I,O -0,8

72—
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GOS 8»

I ~ I

OA 0.6 0,8 I.O

agrees satisfactorily with the data, but the model does
not predict the observed asymmetry about 90'. This is
of course due to the presence of only one partial wave

apart from the incoherent phase-space background. At
this high end of our energy region, it is reasonable to
expect that the D15 and F15 partial waves are large

o +~4,5

X6
b u)~ 82..7

6.5—

5,6—

49
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t
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GQS 8tt
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Fro. 10. Parts (a), (b), and (c) show the m+, ~, and m angular
distributloIIS rcspcctlvcly of thc 1cactlon K +p ~ x' +x' +R ln
the over-all COM system at 558 MCV (Ref. 5) from the pho-

model. The theoretical curve represents the boundary-condition-
model 018-state curve plus 36 j& phase-space background, as
indicated in Fig. 6.

l.4—
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system that we have obtained is with

fn = 5.55, fg = 2.80, fp -0.40, f,=0.—-00,
(60)

fog=2.40, fop=2.47, and fn ='l.00,

and a core radius so=0.5 p,
' as used in all these calcu-

lations. ' "The results shown in Figs. 2—$2 illustrate all
the effects of adding the o-E& channel discussed above.
The fit to the complex Dis amplitude (Fig. 2) is very
good except at energies well below the resonance, where
the neglected long-range potential should have an
important eGect.

Figures 3—5 show the predicted contribution of the
Dis state to tlie total 7I+» 1z&»» p, aiid» 7I s cioss
sections, O.p, as a function of energy. In all cases it is
seen that from 500 to 700 MeV the D13 state accounts
for the major part of the cross section. The contribution
needed from other states is about 30% in each charge
state. Assuming a phase-space form for the background
(the proportion is determined by or and is cited in each
figure), and incoherent contributions from each channel
(as given in Sec. III), the three-body final-state dis-
tributions aI'e compared with data in Figs. 6—13. PaI'ts

0.7—
I

-LO
I I I I I J I I I I I I

0.8 -06 -0.4 -0,2 0.0 0.2 0.4 0.6 0.8 I.O
cos 8»"

(b)

5A —g

b
8
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I I I I I I I l I I I I I I I I ! I I

-1.0 -0,8 -0.6 -04 -0.2 0.0 Q2 04 06 0.8 tO
cos 8it

FIG. 11.Parts (a), (b), and (c) show the ~+, m=, and I angular
distributiorts, respectively, of the reaction ~ +P ~ w +w++n in
the over-all COM system at 646 MCV (Ref. 4) from the pro
model. The theoretical curve represents the boundary-condition-
model D13-state curve plus 23% phase-space background, as
indicated in Fig. 7.
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enough to show up in angular interference effects, while
not necessarily being important apart from such inter-
ference eGects. For this reason we do not believe that
the angular asymmetry at 646 MeV represents an
important deficiency of our model. AVhen the D» and
Ii» resonances are treated in a similar way to the
present treatment of the D~3 resonance, the partial-
wave interference effects may be predicted.

The p, 0., and 6 content of the final state is shown in
Fig. 14. At less than 850 Mev (below threshold for the
o and p resonance peaks) this content is reflected in the
zlV and m.m- mass distributions in Figs. 6—9. It is also
consistent with the proportions deduced approximately
from the Dalitz plots, ' ' which imply that the amounts
of dipion and isobar production are approxi mately equal.
At higher energies, e.g. , at Eq=1397 MeV, our model
predicts p, 0., and 6 production cross sections to be 0.48,
1.67, and 0.14 mb. FeMman et al." determined the
22 +p~o.+n (o ~22r' mode) cross section to be
0.18&0.05 mb and the m: +p —+ 6 m' cross section to be
0.27&0.06 mb. Charge symmetry implies that only 3

of the 0 mesons produced decay into 2m'. Similarly, in

7.0
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FIG. 13. Parts (a), (b), and (c) show the ~, 710, and p angular
distributions, respectively, of the reaction ~ +p —+ 7I- +7I-'+p in
the over-all COM system at 646 MeV (Ref. 4). The theoretical
curve r~eresents the boundary-condition-model a&3-state curve
plus 50+& phase-space background, as indicated in Fig. 9.
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this experiment only 2/9 of the 6 production is visible.

Therefore, assuming charge symmetry, this experiment
implies that the total o.E cross section is 0.54 mb and
the total hx cross section is 1.22 mb. Our model for the

D» partial wave predicts an inconsistently larger 0-

production and a consistently smaller 6 production.
Data" at EJ.=930 MeV indicate a 6 ~+ cross section
of 6 mb, implying a total 6 production cross section of
12 mb, while the BCM consistently predicts 0.11 mb.

At El, ——1150MeV, Pickup ef a3." 6nd a p'n cross
section of 3.1 mb while the BCM predicts 0.31 mb.
Most of the p and 6 production may well come from
other partial waves, but the cross section of Ref. 21
implies that coupling to higher-mass resonance states

FIG. 12. Parts (a), (b), and (c) show the w, w', and p angular
distributions, respectively, of the reaction 7I- +p —+ ~ +71-'+p in
the over-all COM system at 558 MeV (Ref. 5). The theoretical
curve r~eresents the boundary-condition-model D»-state curve
plus 40% phase-space background, as indicated in Fig. 8.

"As reported by A. Donnachie, in Proceedings of the Fourteenth
Internctionat Conference on High-Energy Physics, Vienna, SPY',
edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
p. 150."E. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev.
Letters 9, 170 (1962); D. R. O. Morrison, Phys. Letters 22, 528
(1966).
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5-

O l

4JD
E

b2

p I

as demonstrated in Figs. 18(a) and 18(b), a poor fit is
obtained for the other distributions.

The final combination, which is a two-channel xE
and d x, has been shown' to be incapable of generating
the Dqa resonance (this model corresponds to a Ball-
Frazer mechanism).

The calculation of the maximal d,~62 interference
contribution to the Q, — + distributions, as given in

Eq. (59), shows that it has less than a 10% effect
(Fig. 19).This is in contrast to the result of Olsson and
Yodh, '4 which obtains all the Q(m. m+) peaking from

I—
0
SOO 475 650

Ei. (MeV)
825 IOOO 180 -——

FxG. 14. The (a) p, (b) 6, and (c) 0 production cross sections
from the initial D13 state.

depletes the o.E channel at energies above 1 BeV.
Candidates are the Dz5(1680) and P~~(1680) paired with
a pion, or the @and A resonances paired with a nucleon,
or some of the already considered low-mass baryon and
meson resonances paired with each other.

The maximum o- width that is consistent with 8 and

q has been found to be 300 MeV. The 8 and q curves
with I',)300 MeV provide a poor fit to the data because
of the large amount of 0- meson produced at low energies.

In Figs. 15 and 16, we display our best results for the
four-channel (nlV, vrh, pX,coÃ) model. There is consider-
able improvement over the three-channel model, but
the dipion spectra are still too sharply peaked. The co

meson does not contribute to the final states; its effect
is to decrease the amount of p meson and increase the
amount of 6 present. The predicted amount of co pro-
duction at 1150MeV is 0.80 mb, consistent with the
experimental 1—4 mb for all partial waves. "

It is of course likely that the ~E channel is coupled to
the system. However, one-pion exchange is prohibited
by G parity in the m-S —+ co% system, which may well
decrease its coupling compared to m2V ~pS and
mÃ —& o-N. It is therefore plausible that the m.E, xA,
pE, and 0-X channels dominate in our energy range. The
addition of some cv37 coupling to mE, zA, psV, and cd
channels would decrease the excessive 0- production at
high energies. The substantial inelastic threshold cusp
shown in Fig. 15 is the result of the 5-state stable-
particle production. Its experimental observation would
confirm this mode of co-meson production.

Another variation of the channels at our disposal is
a three-channel model which contains mÃ, xh, and a.E.
Figure 17 shows the good 5~3 and q~3 fits. However, the
final-state distributions were unsatisfactory. Figure
18(a) shows the featureless Q(~ ~') distribution result-
ing from the zero coupling of the 0- meson to this channel.
Figure 18(b) displays a much too peaked Q(m rt) curve
due to an overabundance of 6 (52% compared to 40%
in the pro model at the same energy). The good fit to
Q(m ~+) in Fig. 18(c) is tobe expected in this model but,

162—

144—

108--

90—

l, 1 1 1 l I

300 370 440 510 580 650 720 790 860
E„(MeV)

I

930 1000

Lpx x fc

0,9—
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X
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O.I—

I I I & I I I I I
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FiG. &5. The p&co model fit to (a) b13 and (4) q13. The data points
are those of Fig. 2. The parameters of the fit are fr =6.42, f,=0.40,
f~=2.80, f„=1.00, fD, =7.0, fDq =240, and fz„=620.
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Fxo. 16. Parts (a)—(f) represent the 6nal-state Q-value distributions of the phoae model at 646 MeV (Ref. 4). Graphs (a)-(c) represent
the Q-value distributions of the m ~ e 6nal state for which 43'P0 phase-space background was required. These curves are de6ned in
Fig. 6. The distributions from the ~ +Op 6nal state I (d)—(f)g have no phase-space background because the production cross section for
this reaction is higher than the experimental value. The solid curve represents the boundary-condition-model curve and the dashed
curve is phase space.



A. I. M ALLER AND E. L. LOMON

126—

108—
Ba

energy. In particular, the DI3 state accounts for about
70'Po of the inelastic total cross section, and for ail of
the structure in the ~~X 6nal states. Furthermore, the
four-channel (7r&,~h, pcV, oE) model adequately predicts
both the elastic and inelastic amplitudes of the DI3
state. The amount of coupling required to the xh and
pÃ channels is consistent vrith resonance production at
higher energies. The coupling to the a.E channel appears

28—

36—

l I I I I I l.
300 370 440 5IO 580 650 720 790 860 930 IOQO

'
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Q {m 7r') MeV

I,O x -~&-
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f I I ~ I I I I I I

0 28 56 -84 I I 2 l40 168 l96 224 250 280
Q {7f' n) MeV

3QO %70 400 5!0 580 CX 720
EL {MeV)

(b)

t 1

790 860 930 1000 42—

FIG. 17. Acr model 6t to (a) bi3 and (b) gi3. The data points are
those of Fig. 2. The parameters of the 6t are j~=5.52, fq ——2.80,
f =0.0, fr=3.00, and f~, =9.0.

their large 6~62 interference. All other interference
terms calculated in this maximal way are small, given
the experimental constraints on B~~, gi3, and the reso-
nances. The actual interference effects are expected to
be even smaller. The data are not accurate enough to
discriminate such small effects.

~~a 28—

-'I- »—

I I I I I f I

30 60 90 120 150 180 210 240 270 300
Q (Tf 77') MeV

VI. CONCLUSIONS

The good 6t to the Di3 complex amplitude and to the
7rmA' Anal-state distributions indicates the adequacy of
our model in the region of 400—700-MeV pion kinetic

Fro. 18. Parts (a), (b)„and (c) represent the (w Q), (x n),
and (x m+) Q-value distributions of the her model at 558 MeV
(Ref. 5). The curves are defined in Fig. 6. The Q(x 7r+) and
Q(m I) distributions require 28'Po phase-space background while
the Q(~ ~') distribution requires 63% phase-space background.



P ION —NUCLEON SCATTERING AND PRODUCTION

Together with the Dgs amplitude these are likely to
dominate the T= 2 vrE amplitude up to 1 BeV.
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FIG. 19.Maximal b, &d ~ interference effect PKq. t'59}1is included
in the dashed curve of the Q + —distribution at 646 MeV. The
solid curve and the data are as in Fig. 7(c}.

to need some suppression at higher energies. The
dominance of just these channels is also expected on the
basis of mass, spin, and the allowed one-pion-exchange
mechanism. It has also been demonstrated that even
though the four models (IrE,piV, Anr), (7',/)E, A7r, oE),
{1r&,pX, &1r,(0Ã), and (~X, Am, 0Ã) prOduCed adequate
Gts to 8 and y, the deciding factor between them was the
final-state spectra. Only the (1',pX, Air, OA/) model
fitted simultaneously Q, Q N, 8, and I/.

The dynamical coupling model accounts for a signi-
Gcant amount of data for its eight parameters. Ke feel
that its success is due to proper inclusion of unitarity
and inelastic threshold dependence, with approximately
correct range dependence. A better description of the
D~3 state at low energies would require inclusion of a
long-range potential obtained from Geld theory. This
can be done without adding parameters to the model.
At higher energies, it would become necessary to include
the coupling to other channels. Interference effects
between decaying resonances should be calculated with
the spatial decay distribution taken into account, but
are of little importance.

ReGnement of the description of inelastic Gnal states
will also require that other partial waves be analyzed to
a similar extent as the D~3. This appears to be a feasible
program for the resonant I'~~, D~5, and F~~ amplitudes.

——,
' (Mg, '—M'+/I') q; cos812& (W+

APPENDIX A

In this appendix we shall indicate some relevant
kinematical relationships. The numerical calculations
leading to our results are carried out in the over-all
COM system, where qi+q2+P=O.

The resonance masses are deGned as

Mg, '———(P+qi) ',
Mg, '= —(P+qg)',

M, .'= —(q+q)'

(A1)

(A2)

(A3)

(wlleie Pi, qi, Rild q2 Rre foul-vectors)~ Rlicl Rie reiatecl

by the constraint equation

M/1, '+M/1, '+M p „' 2//, '+Mi+ ——lW'. (A4)

Evaluating (A1)—(A3) in the over-all COM system, we
have

Mg, ——(W'+/I' —2Wor1)'",

Mg, = (lV'+/I' —2W(di) '/',

Mp, ——(W2+M' —2WE)I/',

(AS)

(A6)

(A7)

where co; and 8 are, respectively, the energies of the ith
pion and of the nucleon in the over-all COM system.
Evaluating (A1)—(A3) in. the respective resonance
COM system, we have

(q (I)R+M2)1/2+(q (1)2+F2)1/2 (A8)

—
(q (2)9+M2) 1/2+ (q {2)1+~2)1/2 (A9)

2(q (3)1+,~2)1/2 (A10)

From energy-momentum conservation, we can derive
the following equations when i, j=1, 2 or 2, 1:

o) )[q (I)'M/I ' q'(1 c—os'812)/—1']I/'
(A11)

Mg,.'+ qP (1—cos'812)

——,'Ma'P cos82/( a (W—8)[Ms'q2 (')' —P'(1—cos'82v)/I'11/'
ps= f

M32+P '(1 cos'821{)—
——',[Mz, '+M' —p, ']q; cos8, ){&(W—co;)[Mz 'P ('"—3PqP(1 —cos'8 //) j'/'

Mg, '1q12{1—cos'8;w)

(A12)

(A13)
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Therefore, when IVq, ——(JVs.,),„=W —p we have qs =0,
Rnd when Ns„('JVs——, ,); =3I+p we have

Tile llltcgrRtloll llllllts fol' 'tile Q valllc Rnd RllglllRI' Solvlllg Eq. (AS) fol qs, wc llRvc
distributions are quite complicated owing to the three-
body kinematics. However, the procedure for deter- qs

——{[Ws—(jVII,+p)2]
mining the integration limits is straightforward but y[W2 (~ )2])I/2/2W
lengthy, so we shall only indicate how the dl Q-value

p

term is done.
The term to be evaluated is [see Eq. (42)]

d cos812 f(&by)cos812) (A14) q2 qsmox. ([(W+IV+ss) II ]
&& [(W—(~+~)]'—I ']}'"/2W (A16)

(where dIVq, =dQII, ). The maximum and minimum
values of 3IIs,„i e , W.—.p)Ms, ,)M+SI, determine the
minimum and maximum values of q2.

Ke must now And the dependence of cos 812 on q2.

In Eq. (A11) set 2= 1 and j=2:

——2'[M s„'—IV'+ p, ']qs c»8»+ (W—~2)[ql'"'~~ '—qs'(1 —«»'8»)&']"'
0

&Vs,s —qs'(1 —c»'8»)

For values of q2 between zero and the value where

q~=o, it is possible for 7r~ to have any orientation with

respect to Irs [the positive sign in (A17) in front of the

square root is used. in this range]. The value of qs for
which q~ =0 we call q2„which is

qs. = {[(W—I )'—(jV+s)']
X [(W—p)' —(jV—I )'])"'/2(W —I ) (Alg)

For q2& q2, the velocity of ~~ in the 5~ rest frame is less

than the velocity of h~ relative to the over-all COM
frame. YVe then have the possibility that the argument
of the radical in (A17) can become negative, giving an

llTlaglnMy gy.

Therefore, when q2&q2, we set. the discriminant in

(A13) to zero and solve for cos812 as a function of qs

(and therefore of Mq„}:

g(IV~, )= —[psq22 —ql &I&2jVgls]112/Ilqs. (A19)

Thc negative root is chosen in (A19) because when

qs) q2, the first term in the numerator of (A17) is bigger
than the second term. Since q~)0 we must have
cos8~2&0. The integration limits are

0& qs& qs„g(lies, I,)= 1,
[+sign only in front of square root in (A17)];

q„&q,&q,„... g(jV„)=—[p q, —qII I'jV, ,']/pq„
[asign in (A17)].

E+jv (&)

(34)
W —co,+IVs,

X =(a) +co Isl}/(W —E+cVs) (3S)

[the superscript (2) indicating the appropriate COM
resonance].

We shall present in detail the derivation of J(qs Is&
~ q,).

The procedures for the other Jacobians are exactly
analogous.

The quantity J(qs&s&~qs) which transforms Irs from
the rest system to the over-all c.m. system is dered as

which also implies that

The Lorentz-transformation direction is along the
recoil nucleon; therefore

APPENDIX 3 dQ~ ——d'Q~&'&. (38)

q I'& =q +X.'q.

q;Isl =q~+X;sP,

P I'I =P+XsI'g;,

(31)

(32)

(33)

The following transformations are used to derive the
Lorentz transformation Jacobians when (sj )= (1,2) or

(2,1):

[A similar situation pertains to Eq. (38).]
From (32), we have

(qsI'I)'=qs'+(Xs')'P'+2q PX 'cos8 (39)

cos82sr(sI (qs cos8»+Xssm)/qsls (310)

The derivatives in (36) can now be obtained from
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(89) and (810):
Bq2|'& j. B(XI',E)

(qm+EXg cosOg~) +(PX2 +qm cos82~)
8/2 g2~

(3) ~(2 82K

Bqm&'& 1 B(X2'P)
q2PXp +(EX2 +q2 cosOg~)

8 COS02~ @& g2 8 cos02g q2

(811)

(812)

8 cos02g

8 cos82@

1 B(XssP) Bq2&'~

qg+ cosOg~
8 cos&~ q2 8 cos82~

(813)

(814)

Substituting (811)—(814) into (86), we obtain

g2 sin 02~ 8 X2 E
~(qm"'le. ) = „, 1+—

g2 — g2 8 costII2~

APPENDIX C

Reduction to Relative Ang1e

In Secs. III and IV of this paper we consider integrals
of the form

B(Xp'E)+cos82pp, (815)
~2N-

2m 1 2m 1

d cosOA a/Ad cosOII dpi' f(OAp)

B(Xp'P) ) le
=q2Pco2 I(W —8+M8) '+-

Bq2 ) g,„ ~(2 &mx

P2
X- +X23, (816)

F(W P+M3)—
B(Xg'P) BE W W

X2I 1+

P2
X- +Xp' . (817)

E(W P+M3)—
The derivatives are evaluated from (A13) with I', =1
and J=2.

The other relevant Jacobians are with i, j=1, 2,

q; ' sin'8g B(X g;)
~(q""lq') = „1+~

~

gs gs 8 Cosesg gs

B(X &q)
+cosO@ ——,(818)

Bgs y;.

E sin OI~ B(XN~qI) )~P""I&)= . 1+
a cose;~),

B(X~'q )+cos8;~, (819)

where all derivatives are evaluated using (A11)—(A13).

Xl iA i +3(iA z)(i, z)g (C1)

in which 0~, p~, 0~, and @~ are the polar and azimuthal
angles of two vectors q~ and g~ in the over-all COM
system, and 8~~ is the angle between q~ and q~. The
unit vector iA (iII) is either in the direction of qA (qs)
or in the direction of qA~ (qsA), the Lorentz transfor-
mation of qA (q&) by the velocity corresponding to
—qs (—QA). The above Lorentz transformation trans-
lates to the COM system of the resonance paired with
the particle of momentum qs (qA). Fortunately, all
these four-dimensional integrals can be reduced to an
integral over 8~~ alone.

In proving the above assertion, we obtain. first (i)
the Jacobian of transformation of the variable P~ to
cosOAS. Then we establish (ii) that iA is depends only
on OAS and find the expression for 3(tA z)(iII z) as a
function of OA, OI1, and OA~. Finally (iii) the integrations
on COSH', cos0~, and p~ are performed, - and it is shown
that the integral of 3(iA z)(iII z) is equal to the integral
of iA. iII. Consequently the integral (C1) is proportional
to the integral of f(OAII)tA iII with respect to cosOAS.

(i) The angular transformation is conveniently per-
formed in two steps,

(C2)

@gg ~ cosg~~.

The Jacobian of (C2) is trivia, lly unity, and the range
of integration in P~~ remains 0 —+ 2'. The transforma-
tion (C3) is given by

cosOAB= cos8A cosOII+slnOA slnOII cosfAII ~ (C4)
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Next we integrate Lskipping steps similar to those in (C10)g

2n 2 2n' I

J2——3
0 —2 0 —2.

d cos8A d&Ad cos8B d8B f(8AB)(qA 'z)(qB 's)

=12m
f(8AB)

d cosg@g
gA. ga

d cos8@

cos (8AB—8A)

&os (~AB+~A)

d cos8B J(QAB i cos8AB)

XLqAqB(1+XA XB ) cos8A cos8B+XB qA cos 8A3

2

+ d cos8B
cos(6AB—ttA)

cos (8AB+&A)

d cos8A J(JAB i cos8AB)XA qB cos 8B

f(8AB)
d cos8„B fqAqB(1+XA XB")cos8AB+XB "qA'+XA qB'j

gA ga

d cos8AB f(8AB)qA qB"=A (C11)

Similarly, one obtains J'i ——J2 when tA or tB is qA or qB instead of qA or qB . The integral in (C1) is twice the
integral J&, and only the integral over cosa» remains to be performed numerically.
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We discuss some regularities in the baryon mass spectrum which have been suggested by one of us and
possible experimental verification of them.

' N this paper we should like to call attention to
- - certain approximate regularities among the square
masses of the baryons with the hope that future
research can establish whether they are real or are the
result of numerical accidents in the limited data
available.

Our classification of states will be guided by the
three-quark model of "baryons" and the principle of

Regge recurrence. The states' of three quarks each of

spin —,
' depend on the symmetry character of the state.

If it is symmetric, it is a 56 (consisting of a spin-

quartet unitary-spin decimet, 410, and a spin-doublet

unitary-spin octet, 8). If it is antisymmetric it is a

20 (spin-doublet unitary-spin octet, '8, and a spin-

* Work supported in part by the U. S. Atomic Energy
Commission.

i O. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).

quartet singlet, '1). For the intermediate symmetry,
we have the double representation of a 7'0 ='1, '8, 48, '10.

We next suppose that the over-all state is entirely
symmetric. If we add internal degrees of freedom, we
suppose that the lowest states are the s states, them-
selves symmetric and of zero angular momentum. Thus
our lowest states are

(~6,0+) ='gii2+, '103i2+,

where the b," give spin multiplicity a, unitary spin
multiplicity b, parity P, and angular momentum j of
the states. These, of course, are taken to be the funda-
mental octet and the lowest decimet (with 6=1236).

We may expect this to recur on a Regge trajectory'
by adding 2, 4, . . . units of angular momentum (which

' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters '7, 394
(1961);8, 41 (1962).


