PHYSICAL REVIEW D

VOLUME 2,

NUMBER 7 1 OCTOBER 1970

Pion-Nucleon Scattering and Production in the D,; State*

ArtHUR I. MILLER] AND EArRLE L. LoMoN
Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachuseits 02139
(Received 6 March 1970)

A model of the coupled 7V, pN, N, and A channels is adjusted to the =V scattering and pion production
data below 700-MeV pion laboratory kinetic energy. A very good description is obtained of the complex
D3 amplitude below 700 MeV, simultaneously with a good fit to the structural details of pion production
in the 400-700-MeV energy interval. In computing the pion production distributions, the only addition
made to the Dy3 contribution is a phase-space background accounting for 20-509%, of the production cross
section. The maximal interference effects between decaying resonances are investigated. Also reported are
attempts to fit the data without the ¢V channel, but with the wN or higher threshold channels. The cross
sections for p, A, or w production predicted at 1.0-1.5 BeV are consistent with the higher-energy data: Too

much ¢ production is predicted.

I. INTRODUCTION

ION-NUCLEON scattering data below 1 BeV are
now sufficiently detailed to have determined
reasonably accurate and unambiguous complex partial-
wave amplitudes.’=® The body of data on 77N final
states has also been growing*” and includes enough
information on momentum, mass, and angular distribu-
tions to allow an approximate analysis of the two-
particle correlation and isotopic and angular momentum
contents at several energies.® Consequently, models or
theories of the pion-nucleon interaction should now be
required to explain simultaneously—or at least be
consistent with—the elastic scattering amplitudes and
the structure of the three-body final states.

We here present a model for the Dy; (T'=3%,J=%)
pion-nucleon partial wave which satisfies the above
requirement.

When the pion laboratory kinetic energy FEj is
between 500 and 700 MeV, the resonating phase shift
613 and inelasticity #3 are accurately described. In the
same energy range, by adding a phase-space background
of 20-509, to the Dy; contribution, we obtain a good
description of all observed distributions from the
7~ +P — n+7r+N reactions. Both the =7 and =V
barycentric mass distributions are well described.

At lower energies the Dy3 contribution to the inelastic
cross section becomes less than that of .S and P states,
and we can no longer expect the Dy; state alone to
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dominate the structure of the 7wV distributions. The
model is also not expected to give an accurate pre-
diction for 8;3 near elastic threshold, as it neglects the
long-range character of the pion-nucleon force. In fact,
the predicted value of 615 falls below the experimental
analysis at low energy, as would be expected from the
neglect of a long-range force. The long-range character
of the interaction can be added to the model without
difficulty, as should be done when S- and P-wave
channels are also included.

When E.>700 MeV the Fy; and D15 phase shifts are
becoming large, rising towards resonance. Consequently,
it is expected that the phase-space approximation, used
in calculating the 7wV distributions for all but the D;;
amplitude, will cease to be adequate. This is borne out
at 646 MeV by a forward-back asymmetry in a pion
angular distribution which is the only deviation from
our predictions.

The chief characteristic of the model used is that it
treats the coupling of the =V, pNV, ¢V, and wA channels
nonperturbatively. There would be little value to
a perturbation treatment in the resonance region.
Furthermore, the p, 0, and A resonances are handled as
decaying particles with their experimental mass dis-
tributions as given by a Breit-Wigner form.

The model used for the coupled-channel problem is
that previously used with #V and pN channels to
explain the Dy3 resonance.’ That was then extended to
include the 7wA channel’® to describe previously un-
explained features of the =w/V states. It is a simple
boundary condition model (SBCM) in which a homo-
geneous boundary condition is imposed on the wave
function at short range, with no exterior interaction.

This is a simplification of the full boundary condition
model (BCM) which includes potential-type long-range
interaction. The BCM has been shown!! to be a general
representation for strong interactions with the usual

analyticity and unitarity properties. It is indicated
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1246 A. I.

that the boundary condition matrix tends to a constant
for strong interactions.

The long-range potentials are predicted by particle-
exchange diagrams and are of significant strength.
However, the effects being examined here (the Di;
resonance and resonance-production thresholds) are not
expected to be very sensitive to the detailed range
dependence. They vary strongly with total energy
rather than with momentum transfer. The long-range
characteristics do matter near elastic threshold, where
our model is inaccurate in its present form. The long-
range behavior also determines the relative size of
higher-angular-momenta partial waves. Thus to accu-
rately describe all partial waves with a few parameters,
a field-theoretical potential tail should be included.!?

The effect of a coupled channel below its threshold is
in general® increasingly attractive and it may readily
induce a resonance.? Above threshold, the energy
dependence of the coupled-channel contribution to the
elastic amplitude decreases, and a strong inelasticity
sets in. Under these conditions, the only type of reso-
nance produced is the very inelastic type in which the
phase shift does not rise through 4, but drops rapidly
instead.

The strongest resonance-producing effect is expected
from channels whose thresholds are closely above the
resonance, and which can be produced in low-angular-
momentum states. In the case of the Dy; resonance, the
natural candidates are the p/V and oN channels. The
first can be produced in an .S state and the other in a
P state. The w meson will affect the elastic behavior in
a similar manner to the p meson, and will also be con-
sidered. The only other threshold in this vicinity is that
of the pion paired with the N’(1470), which has the
same quantum numbers as the nucleon itself. It follows
that the #V'(1470) system is also in a relative D state
when coupled to the 7V pair in the Ds; state. Therefore,
although the threshold for #/V'(1470) is nearly 100 MeV
below the p/V threshold, it is expected to have a much
smaller effect in our energy region. In the three-body
final-state analyses of Ref. 8, the #V/(1470) system is
determined to be present, but is much more likely to
originate from the #/V pair in S or P states. We do not
here consider its coupling to the Dj; state.

All lower-mass channels will strongly affect the
inelasticity, but not the elastic resonance. The only
low-mass channel relevant here is that of the 7A system,
which has long been known to be present in the final-
state distributions. The wA channel is also produced in
an S state. There is therefore good reason to limit the
program to coupling the «V, mA, pN, ¢, and wN
channels. The decays of the p and ¢ mesons play an
important role in our energy region, causing dipion
correlation. These correlations always peak at the upper
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end of the mass spectrum, as required experimentally,
because of the high mass of the p and ¢ meson peaks.

We here show that the data can be adequately
described without the w/V channel. It is also shown that
the fit is not as good, but has many of the main features,
if the oV channel is omitted but the w/N channel is
included. Of course, the physical system may have
important coupling among all five channels, but the
absence of a one-pion-exchange diagram may make the
7N — wN coupling less important than the p or o
production.

Previous models have failed in one or more of the
following aspects: (i) They have been incorrect in the
predicted behavior of the partial-wave amplitudes in
this energy region'; (ii) they have failed to explain the
dipion correlations in the several charge states'®; (iii)
they have failed to describe the 7V correlations.? ¢ The
model presented here is, as will be described below, good
in all these respects.

In addition the model must not require unrealistic
coupling strength to the isobar channels, which would
predict unreasonable high-energy resonance produc-
tions. The present coupled-channel model guarantees
that the experimental shape of the resonances is pro-
duced at high energy. In addition one can check the
predicted magnitude of partial-wave production of
resonances in the region where the resonance peak is
above threshold, but where low-angular-momentum
partial waves should dominate (1.3-1.5 BeV in the
present case). A consistent model of the predominant
low partial waves should predict a substantial part of
the experimental production cross section for each
resonance, but must not exceed the experimental value.
The present model is also successful in this respect for
the p, w, and A production but requires some modifica-
tion of the ¢V channel at high energies.

II. STRUCTURE OF MODEL: ELASTIC AND
PRODUCTION AMPLITUDES

The general Schrédinger equation for an N-channel
two-body interaction is

2

d2
- ——2\1f+<U—I— >\I/=K2\I/, (1)

ar r?
where ¥ is a column matrix of wave functions ;
(i=1, ..., N) for each channel and K? is a diagonal
square matrix with diagonal components K,?, in which
#K; is the 7th channel momentum determined by the
total barycentric energy W and the channel masses
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2 PION-NUCLEON SCATTERING AND PRODUCTION: ..

M ;4 and M ;5 (putting %= ¢= 1 in subsequent notation):
W= (K&+M;a?)" '+ (KM 7). (2)

£2 is a diagonal matrix with diagonal components
Li(L;+1), and the interaction is represented by the
NXN matrix U, whose components may be nonlocal
operators. At low energies U becomes (2M;r/#)V,
where V is the Schrodinger potential operator and the
reduced mass MiR=MiAMiB(M¢A+M¢B)—1.

Field theory indicates that at long-range U may have
a simple, nearly local, representation. At short range the
form of U is expected to be difficult to derive and to
have the full complexity of a nonlocal energy-dependent
operator. The BCM suggests!! that the short-range
effects of U can be replaced approximately by a homo-
geneous boundary condition at the interface 7o between
nearly local and strongly nonlocal behavior:

d
re—V={¥(ro), 3)
7o

where f is a constant N XNV matrix.

In the simplified form (the SBCM) used for this
application it is assumed that U= 0 for »>r,. It follows
from Eq. (1) that the components of ¥ are combinations
of spherical Hankel functions. All the scattering infor-
mation is now contained in Eq. (3). Specializing to the
four-channel problem (and treating them as two-
particle channels for the moment), the explicit form is

o
l//: |’ @
¥o(r)

where ¢¥p(r), ¥,(7), ¥a(r), and ¢,(r) are the wave
functions for DyswNV, S13pN, S13A7, and P30V channels,
respectively (all normalized to unit flux).

In the SBCM, one has

¥p(r)= (4rK)~ [ 2@ (Kr)+S1sp2V(K7) ], ()

with Sy3=113¢%%13 and K= K for the incident channel,
and

¥(r)=

Voa(r)=(4rK ) )7 28 ,,a(M 5,8)p0 V(K p a7) ,  (6)
Yolr) = (4K o)~ 12S (M 1)1V (Kor) M

for the production channels, in which
B =2 ™) =12,  ©)

where the %1, (Z) are the spherical Hankel functions.!”
From Eq. (2), one has

K, o= QW) [W2— (M, ~+M)?]H2
X[W2—(M,,,—M)*]12 (9)

17 As defined by P. M. Morse and H. Feshbach, in Methods of
Theoretical Physics (McGraw-Hill, New York, 1953), Pt. I.
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and

Kp= QW)= [W2— (M s+u)*]*?
X[W2—(Ma—p)*]"2, (10)
where M is the mass of the nucleon and p is that of the

pion. The S-matrix components .S; are obtained by
solving Eq. (3), in which

fo  fo» foa fpe
=l % 4 | v

fDo O 0 fa'

Note that the resonance channels are not coupled to
each other. The indirect effect of such coupling on the
observables of interest is comparatively unimportant.
For simplicity and to reduce parameters, such coupling
is omitted here.

One may obtain ¥, ¥4, and ¥, in terms of ¢p from
the last three linear equations represented by Eq. (3),

Ss= —dr fpil fi+ 0L (K To) ]
Xyp(ro)/brwy V(K:To) (12)

when 7= (p,A,s), and inserting this into the first linear
equation, one obtains

ro dp(r)/dro= fess(W)¥n(ro), (13)

in which L(z) is the orbital angular momentum of the
channel,

0.7(2)=—2¢L V' (2) /¢ (2), (14)
and
fal=fom %, ——12 (15)
B Jit6:H(KiTo)
In our case L(z)=(0,0,1), so that one needs only
05-(Z)=—iZ and O (2)=—iZ+i(Z+i)"1. (16)

Since the A, p, and o particles decay, they therefore
have variable masses, distributed according to the decay
width T'; about their central mass M as given in Table
I. This distribution is obtained from high-energy pro-
duction experiments and is experimentally compatible
with |\,(M;) |2, where \;(M;) is a Breit-Wigner ampli-
tude, as expected for a resonating system. We use the
relativistic Breit-Wigner forms!®

ZVillzgili+1/2Mi“li

(B2 — M)~ (0 2/ M) g3*/3:4) s+

N(M ;) = an

TasLeE I. Central masses and widths of resonances and their
relative angular momenta to recoil particle.

Ms=1236 MeV T2=120 MeV Ly=0
M,= 765 MeV T,=105 MeV L,=0
M.= 720 MeV T, =200 MeV Lo=1
M.= 783 MeV To= 0 Lo=0

18 J. D. Jackson, Nuovo Cimento 34, 1644 (1964).
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where ¢;/* is the momentum of either decay particle in
the resonance center-of-momentum (COM) system

ga*= (2Ma) 7' [M > — (M A+-p)* ]

X[M 2~ (M —p)*]H?,  (18)

@po"=GM 0" —p)'?, (19)
and

gi*=q*(M), (20)

and /; is the orbital angular momentum of the decaying
resonance. The normalization /V; is obtained from

A7f1 =/ 1>\,(M¢) [ 2dM ; (21)
MiT

integrated from threshold M7= M4y and M, 7= 2u.
The numerator of A; includes the quickly varying
kinematic factors appropriate to the high-energy reso-
nance-production amplitudes.'®

This distribution of masses can be accommodated in
our coupled-channel problem,®!® by coupling indepen-
dently to the continuum of channels designated by the
resonance mass: Each element of Eq. (4) becomes a
continuum column matrix ¢,(M ;,7), and the off-diagonal
elements of the f matrix [Eq. (11)] are replaced by the
continuous distributions \;,(M) fp;. As before, in Egs.
(12), (13), and (15), the solution is

Si(M;)=—4nfpn:(M )

X[ fit0r@t(Kiro) ]_1—-}01) (o

— (22)
1. P (Karo)

when i=(p,A,0), and ¥p is given by Eq. (13) with

IN(M )| %M ;

(V) =fo— ety
Jest(W)=fp 1.=p2,:A",fD /Mini+0L(i)+(]<i70) 9

with K; now a function of M ;, as well as of W, as given
by Egs. (9) and (10).

It is important to note that for large W the kinematic
dependence of Eq. (22) on M; is dominated by \,(#;),
so that the mass distribution predicted for high-energy
resonance production is automatically correct.

V= [ Na(M ) |2dM o

Refots(W)=fp~—fa DA2/
efett(W)=fp—faf Kar b a?

m-p
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W—n

* N, %M, M L(Koro)*fot (14 Fo) JINe(M o) | 2dM
_.po2 / _fDﬂ2 /
—M Xp07+fp 2u
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TFrom Egs. (5) and (13), one easily obtains

) Jottp2 @ (Zo) —Z o2 @' (Z0)
Sis=1n136708= "( > (24)
Sosip2 @ (Zo) = Zopa W' (Z )
with Zy= K7y, K real, from which
1—n132= —4 Im ferrSol (Re ferr—As)?
+(Imfers—82)*T7",  (25)
where the “barrier penetration factor”
822201(152(20) ‘—2 (26)
and
Ay=[Rep:M(Z,) Regs™'(Zo)
—Iquz(l)(Zo) Il]l(f)z(l),(ZO)]Sz. (27)

As Eq. (3) is unitary, one also has the relation that
the total inelastic cross section

2w )
oi(W) = —(1—n1?)
K2

211. W—mg
=— 3 |.Ss(M,W)|2dM ;
K2 i=p,A,0 ﬂ“T
= X (W), (28
7=p,A,0

where m; is the mass of the third particle in the final
state, m;=(u,M ,M). It is important to note that in
treating each channel independently, the unitarity rela-
tion, Eq. (28), does not include interference effects
between different channels. For example, a p/N system
and a 7A system may decay into exactly the same rrV
configuration for suitably related M ,, M, and decay
and production angles. In that case, the observed
inelastic cross section will contain contributions from
S, (M ,)Sa(M4) which are not included in Eq. (28).
The model is therefore not automatically unitary when
interference terms are significant, a point to which we
shall return later.

When W>m+M;, there is production of the reso-
nance and K; is real. If W<m;+M,, then it is con-
venient to use the real variable

Xi= —iKi= QW) [ (mi+M )2 — W22
X W2 — (mg—M )?]12.

Using Eq. (16) the explicit forms of Refer; and Im foss
[for use in Egs. (24) and (25)] are

(29)

= | Na(M4)|?dM ) /W~M{A,,(M,,)[2dM,,
T T JelDs -
2

XaroF fa N

(Koro) = (Koro)* (1= fo*)4-(1+ o)
[Xoro+11IN(M 1) | 2dM,

— pg 30
/ /W—M (Xor0)*+Xoro) A4 fo)+ (14 /o) G0
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wnd W (Karo) a0 | (K )|
=t (Karo) | Na(M o) | 2d M =M (K 7o) | N, (M )| 2dM
Imfeff(W)=—fDA2/ a70) [ Na(M 4 A Pg/ (K gro) |\, (M )\ %M ,
mtp (KA70)2+fA2 2u . (Kp70)2+fp2
W—M (Ko7 )3|)\g(M,,) l 2dM 4
—fD,ﬁ/ - . 61
w (Kor)—=(Koro)?(1— 1)+ (14-1o)?

From Egs. (24) and (22) we obtain the amplitudes
needed to predict elastic and inelastic data. As the M,
and I'; are the standard values obtained from high-
energy experiments, there are only eight parameters to
be fitted to the lower-energy data considered here. The
eight parameters are 7o, fp, the three f;, and the three
fDi, 1= (p,A,O’).

III. THREE-BODY FINAL-STATE DISTRIBUTIONS

The above BCM amplitudes describe stable and
unstable two-particle states. However, the experimental
information on the detailed distribution of the decay
products (rw7wN) should also be compared with the
model. The model is extended to this comparison by
taking into account the resonance decays. The decay
amplitude has the angular distribution in the resonance
COM determined by ¢;, the decay particle spins and the
polarization of the resonance as produced. In the
resonance COM the magnitude of the particle mo-
mentum is determined uniquely by the resonance mass
M ;. The resonance COM coordinates are dependent on
the varying resonance mass, making it necessary to
convert each partial amplitude to a common coordinate
system (the over-all COM system) before adding up the
components. This is accomplished by inserting the
proper Jacobian for each transformation.

Different resonance production amplitudes can inter-
fere when they decay into common 77V final states. We
will return to the interference effect later. It is a small
effect, and ambiguous. We postpone its consideration so
that the dominant effect can be more clearly presented.

TasrLe II. Isotopic-spin coefficients for the production and
subsequent decay of the resonances.

Reaction ‘ aa, an, ap Qg
rpporhat b (7 (187 @t (g
T +p—a+n+p  —3 3 — (3 0
7 +p — +10+n — 1 0 —(3)"12

wico]
it o]

(1) 1r“'+p — Ayre —> 7T1+IV/+7TQZ

'/
N\ T /m,
1 //"rg 2
= -+
\
N N\ N7
\ \
iy “m, LAY
v 7 "\ T
N N
P o
-+ -+
\\ \
N \T" N \1r

F1e. 1. Modes of resonance production included in this model.

The process 7N — mmsN is investigated in the
context of the SBCM by summing the graphs of Fig. 1.
If the graphs are summed incoherently, then we have
a unitary model that neglects interference. Some results
for a three-channel unitary model have been given in
Ref. 10. In Sec. IV the maximal interference effect will
be obtained by summing the graphs of Fig. 1 coherently.

Incoherent results are presented here, in particular,
the Q value (missing mass) and angular distributions
in the over-all COM system for the reactions (i)
™+ p — r+rt+n, (i) 7+ p — 7+ p, and (iii)
7+ p — w04 7%+n. Charge independence is assumed in
obtaining the contribution of each decaying resonance
to each of the final charge states (i), (i), and (iii). This
requires only the insertion of the appropriate isospin
“geometric” factors listed in Table II. The geometric
factors are simple bilinear sums of Clebsch-Gordan
coefficients, one Clebsch-Gordan coefficient in each
product coming from the resonance formation and the
other from its decay.

The fully differential form of each incoherent contri-
bution according to the model of decaying resonances
described above is first given in terms of the variables
natural to the process indicated by each diagram.

Aoy =5 Tr{(4n?/K¥aa,*| Sa,(M s,) | 2P 5 [A1( QD) mo5 STP3 L AL D) 25 1A DdQedM o}

= (OZA12/1671'K2) ISAl(MAl) I 2(1—’—3 COS201(1>)d91(1)d92dMA1.

(2) 7r“+30~>A27r1—'>7r2+N'+1r1:

(32)

Boy=1 Tr{(4r2/ KD an,2| Sa,(Ma,) | 2P3= [ Aa(@®)mr1; STP3[As(Q2®) 15 STdQ P dQdM 4}

= (QA22/167FK2) [ SAz(MAz) ] 2(1+3 C05202(2))d92(2)d91dMA2.

(33)
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) 7 +p— pN' — mtmt-N":

d*o3=3 Tr{(4r?/K»a,?|S,(M,)| 2Py p(Q1,®),N'; SIP3-Lp(Q,2 O N'; S]du,: OdQudM ,}
= (0,2/167K2) | S,(M )| 2(143 c05201,5®)dQy s OdQydM .

4) 7 +p—oN' —> mtmt+N":

d5os=1 Tr{(4n?/ K?a,2| S,(M )| 2Py, N () ; P1P3Lo,N' () ; P1d% 2 PdQndM o}
= (@,2/161K?) | So(M ,) | (143 c08*0)d 2 Ddyd M .

The solid angles of the first pion, second pion, and
nucleon in the over-all COM system are Qy, Qs, and Qu,
respectively, while in the center of mass of the reso-
nances i=(1,2,3,4) — (A1,Ag,p,0) they are 19, Q@
and Qy @, respectively. In all cases, the 2z axis is in the
direction of the incoming beam.

The orbital and spin projection operators!® for the
production of each final state from the Dj initial state
are denoted by P;- (resonance, third particle; relative
orbital angular momentum of resonance and third
particle) and their Hermitian conjugates. The (% trace)
operation accounts for the average over initial and sum
over final nucleon spins. After the trace is taken, the
resultant operator depends in each case on only one
solid angle, indicated in brackets following the reso-
nance or particle from whose distribution it arises. The
other part of the system is in an .S state, and its angular
distribution is constant in the COM system chosen.
The P operators are normalized by

% Tr/dﬂ,,dﬂgdﬂ., (PJ+PJ‘) = (J+‘%) 6JJ' y (36)

where Qq, Qg, and Q, are the solid angles appropriate to
the description of the three-particle final state. Table
IIT presents the relevant projection operators.

The singly differential cross sections with respect to
missing masses or the angle of one particle are obtained
by integration of Egs. (32)-(35) over the remaining
variables, after transformations which separate the
variable of interest.

A. Incoherent Q(=xN) Distributions

Defining the Q value in the usual way as the bary-
centric energy of the pair of particles less the sum of
their rest masses, Q1=Q(mN)=(Ms—~M—pu), we
obtain the following contributions to do/dQ: from
each diagram.

(1) As Eq. (32) is already in terms of dMa=d(Qs, by
integration over ©; and Q, one obtains immediately

doy 2
- = _aAlzlSAl(MAI)I2'

dQ, K2

(2) The value of Q; is determined by the angle
between w3 and V. In the A, COM system, & is in the

(37)

18S. Ciulli and J. Fischer, Nuovo Cimento 12, 264 (1959).
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(34)

(35)

opposite direction to ms, so that Qi is equally well
determined by 612, the angle between m; and m
(in the A, COM system). The transformation in Eq.
(33) of the integration variables 2, and @; to the in-
tegration variables cos 6;®, cos8,¥, cosfi2®, and ¢;®
is easily accomplished. As the Lorentz transformation
from the over-all COM system to the A; COM system
is along the m; direction, we have

= dQl(z) ) (38)

so that one need only transform from the integration
variable ¢a1@P=¢:P—¢1@® to cosb®. This trans-
formation and its Jacobian are given in Appendix C in
terms of over-all COM angles. One need only replace
62 by 6:®), etc., to obtain the appropriate expressions
for the present case. It follows from Eq. (33) and the
above transformation that

d20'2

dMA2 d C05012(2)

aA22
= [Saa(Mar)|?
16w K?

2T 1
X/ de @ / d cosfs® (143 cos?0,®)
0 -1

cos (812(2)—02(2))
+/ 2 d cosf;® (sin%y® —cos?6,®
005 (612 (2402 (V) .

— 08201242 cosh; @ cosfz P coshy®)~1/2, (39)

where a factor 2 arises from the fact that 6:,® goes
from its minimum value |6;®—6,®| to its maximum
value 6;®+6,® and back again to its minimum, while
¢12® goes from 0 to 27. Equation (39) can be directly
integrated to give

(12023 a422(1r/K2) l SAz(MA2) I 2(lMA2 d cos&lg(” . (40)

With this choice of variables the integrand depends
only on M,,. It is now convenient to transform to the
over-all COM system, where the dependence on
can be expressed in terms of ¢», the momentum of .
Equation (40) becomes

dM s,

®
1 J(q:®]q2)

m
BPoa=an,—|Sa,(Ma,)|?
K2

dgs

(41)

X! dQ1 d cosbys.

A1
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TasirE III. Angular projection operators for initial state J =%, I =2,

Quantum numbers of Ref. 19

Notation of Egs. (32)-(35) A jor L ls Projection operators
Py LA (@1 ®),72;5] 1 H 0 (4m)=32[o-5: V0 —3(0-2) (2-3: V)]
P8 (@®),m1;5] 1 3 0 (4m) ™20 5@ —3(0-2) (2-3:®)]
Py[p(@:®),N';S] 1 1 0 (4r) g0 ~3(0-2) (¢-3:)]
Py{o,N'(Qn);P] 0 1 1 (4r)—32[g¢-P—3(0-2)(2-P)]

As ¢;®=¢,*, the relationship of M4, to ¢-V is given
by Eq. (18). On the other hand, ¢; is related to M4, by
Eq. (10); remember that ¢go=Ka,. The momentum and
angular transformations are given in Appendix A. The
above Jacobian J of the Lorentz transformation depends
only on ¢»® and cosf12® and is given in Appendix B.
By numerical integration of Eq. (41) with respect to
cosb1s,

do’g dzo'z
—_— = —d C05912,
dQl dQl d COS@m

one obtains the contribution of process (2) to the Qi
distribution.

(3) The angular dependence of Eq. (34) can be ob-
tained from that of Eq. (33) by substitution of Q,® for
Q@ and of Qy for Q. It follows that by Lorentz
transforming Qx to Qx® and changing to the variable
cosfon® from ¢x®, one obtains a result analagous to
Eq. (39). Then by integration over ¢, cos:®, and
cosfy @, one obtains the analog of Eq. (40):

d*; =01p2(7"/K2) |Sp(Mp) [ M ,d cosbon @,

(42)

(43)

whose integrand is independent of cosfay®. By trans-
forming into the over-all COM system, one can again
take advantage of the relationship between M4, and g,:

2 27[' 2 de 3)
Los=a, ;,;ISp(Mp)l e J(q2®1qs)
dQ2
X dQ1 d cosay, (44)
A1

where M, is related to ¢:®¥=¢,* by Eq. (19), and the
new Jacobian J depends only on ¢:® and cosfay @ and
is given in Appendix B. In this case one integrates
Eq. (44) to obtain

d20'3
d cosOsn .

dos /
40, | dQyd cosay

(45)

(4) In making a Lorentz transformation from Qy to
Qn @, the frame velocity is in the direction of the
nucleon, so that Qy® =Qy, as well as dQy®=dQy.
One can then follow the analog of the procedure used to
obtain Eq. (43), i.e., change to the variable cosfan®
from ¢y —¢2® and integrate over ¢;@®, cosfy®,
and cosfy ™, obtaining

QPos=a2(r/K?)|S.(M ;)| 2dM 5 d cosboxy@®. (46)

As Eq. (46) can be obtained from Eq. (43) by replacing
the subscript p with o and the superscript (3) with (4),
we can immediately obtain the analog of Egs. (44) and
(45) by the same replacements.

The value of do/dQ, is now obtained by the addition
of do;/dQy for i=(1,2,3,4). The integrations are con-
siderably simplified by the absence of angular depen-
dence in the intermediate Eqgs. (40) and (43) and the o
analog, Eq. (43). This simplicity has come about in
spite of the production polarization of the A and p, and
the P-wave production distribution of the ¢ resonance.

do/dQ; is obtained by interchange of the subscripts
1 and 2 in the above formulas. This amounts to the
interchange of aa,? with aa,?

B. Incoherent Q(=1ws) Distributions

For Qrr.=(M,,,—2u), the contributions of processes
(1) and (2) to do/dQx. differ only by a2 In either case
the value of Q. is determined by cosf1,® so that it is
convenient to make the transformations and integra-
tions that lead from Egs. (33) to (40). Following that,
one must transform from the integration variable M,
to the nucleon momentum P, rather than to ¢, as P
determines M, or M,. Making the appropriate trans-
formations, one obtains, from Eq. (40),

doy T dM a,
— = —aAlzlSAl(MAl) l 2 ](P(l) IP)
dQrr K2 AP
dP
X l d cosban, (47)

while dos/dQx- is obtained by the interchange of indices
1 and 2. The momentum and angular transformations
are given in Appendix A, the required kinematic
relations are in Egs. (9) and (18), and the Jacobian is
in Appendix B.

As M, and M, are equivalent to M ., the contribu-
tions of processes (3) and (4) are obtained by integration
of Egs. (34) and (35) over all variables other than M,
or M,:

d0'3,4 21!" . S M .

;;Q—; ""I?zamv i poo ) |2
Addition of the four contributions of Egs. (47) and
(48) gives do/dQxr.

(48)
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C. Incoherent Angular Distributions

The pion angular distribution in the over-all COM
system contributed by each of the four processes is
obtained from Egs. (32)—(35). The first process yields an
isotropic distribution in #,. Recognizing that Sa,(Ma,)
is independent of Q;®, the integration over ;™ and
¢ in Eq. (32) is easily performed to give

doy T
I =01A124“ /ISA1(MA1) | 2dMA1. (49)
d cosfs K?
do ™ i aA22
= st [ S0 Mt [ [1ssc.1
d cosbs K2 8K?
a,? am,
+o= [ [1s.0001
{K? dgs®

+§£//!&(Mal2

AND E. L. LOMON 2

For processes (2)-(4), Egs. (33)-(35) are manipu-
lated similarly. In the expression for dbs; (i=2, 3,4)
the transformation dM;— [dM;/dg:®|dg.® is fol-
lowed by the transformation dgs?dQ2,® — J(q,®|qs)
Xdqyddy. The momentum and angular transformations
are listed in Appendix A, and the Jacobians J in
Appendix B. Integration over d; for process (2), dQly
for processes (3) and (4), and over ¢» and ¢ (there is
no ¢» dependence) for all three cases yields do;/d cosfs.
We collect these results together with that of Eq. (49):

dM a,

J(q2(2), ! q2) (1+3 C08292(2))qud91
dq2(2)

'](qg ® I qz) (1+3 C05202 (3))dCI2dQN

aM,

dga®

J(02® | qa) (143 cos20x)dgadQy . (50)

The equation for the nucleon angular distribution in the over-all COM system is derived by the same procedures

as the one for do/dQs, and we shall only write the result:

do T

dcosly K

IV. INTERFERENCE OF DECAY PROCESSES

Interference effects are obtained in adding the ampli-
tudes, rather than the cross sections, of each of the
four production processes for the same three-body
kinematic variables. These amplitudes are given af the
position of decay by the initial expressions of Egs.
(32)-(35), in which the modulus and trace operations
are only formally indicated. Insofar as the resonances
are produced over a finite range and propagate a finite
distance before decay, extra phase factors are introduced
that are not included in our formalism. The appropriate
average over the space-time displacements would,
because of the oscillating phase, decrease the inter-
ference terms. By ignoring this additional phase, one
obtains an upper limit on the interference effects,
bounded by the given production phase and, most
importantly, the experimentally known Breit-Wigner
resonance phase of the decaying particles. We are
content with this upper limit for the present as we find
the interference effects to be small. Previous calculations
of interference effects made the same approximation
although large interference terms were predicted.!4

The amplitudes as expressed in Egs. (32)-(35) are
each appropriate to a different phase space. To compute

=y / |S,(M,) %M 4 ——a? (143 cos) / |So(M,)|2%dM,
2 2K2

PO [
8K? A2( Ay

dMA2
dP®

‘(1+3 cos20y ) J(P® |P)dPdQ;.  (51)

the interference of a pair of processes each of the pair
of amplitudes must first we transformed to a common
phase space. One dimension of this space must be the
variable with respect to which the differential cross
section is derived; in this case dMs,=d(;. The other
four independent variables may be chosen at will for
each pair of amplitudes. The choice is discussed below.
The Jacobian of the necessary transformation of the
variables of the ith process when paired with the jth
process (i, j=1, ..., 4) is denoted as J;(i7). From Eqs.
(32)-(35), one then has
(@)= 2n/K)aS«(M ) Py-()[T:(if) ]2, (52)
The contribution to the cross section of the interference
between the ¢th and jth process is then given by

d(fij
a0

where v;; is the chosen set of four independent variables.

The trace operation is relevant only to the products
of the projection operators. As previously noted, each
of these operators depends on only one direction which

= /d“yii Tr[Red (i) A4;(51)], (53)
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we now label with a unit vector # such that

B=g® or PO, P=g® or PO,

B=g® or §,®, (54)
and
#=P.
As a result,
3 TrP3=+()) Py~(4)
= (64r%)1[71-14+-3(F-8) (-8)], (55)

where £ is a unit vector in the beam direction.

In each case one can choose 7 (=1, 2, 3) such that
the direction of Lorentz transformation to the over-all
COM system from the indicated resonance COM system
is the direction of #. For instance, in considering #!-#*
the choice is ;@ and §,®, for #1-#3 it is P and §;®,
and for #1-#4it is P and P. It follows that !-#* depends
only on §i-g» and therefore only on 61, the angle
between the pions in the over-all COM system; #!-#*
depends only on 61y, the angle between the first pion
and the nucleon in the over-all COM system, and so on
for each pair, the full relations being given in Appendix
C. The J,(ij) discussed below have, apart from the
transformation from azimuthal to relative angles given
explicitly in Appendix C, an angular dependence arising
from the above Lorentz transformations depending on
the same relative angles.

The dependence of the interference term between the
first two processes on cosfy; and cosfs is entirely in the
term (#1-2)(£2-8). The integration over cosf; and cosé, is
easily performed, as in Appendix C, leaving only a cosf;.
dependence [(¢2—¢1) has been replaced by the cosfi.
dependence]. There is no dependence on ¢; so that the
¢1 integration is trivial. A similar reduction to an
integral over the relative angle in the over-all COM
system is possible for each pair. The four-dimensional
integral of Eq. (53) is easily reduced to a one-dimen-
sional integral.

An example will illustrate the formulation of J,;(i7).
Consider doss/d(Q:, in which the integrations can be
reduced to a numerical integral over cosfiy, where 61y
is the relative angle between the first pion and the
outgoing nucleon in the over-all COM system. The
steps which lead to the integration variables cosfy,

Ay DM sy —> | dM /AP ® | PP @d0y
— [dMa,/dP®| J(P®|P)d*Pd

180

126 |—
108 |~
Sis
g0}~

72~

36|~ o/"

| 1 | { I 1 ! [
300 370 440 510 580 650 720 790 860 930 i00C
EL (MeV)

(@)

0.9
Q.8 —~
07}
0.6—
i3

05—

0.4 —

0.2 —

| L | | 3 | 1 | 1
300 370 440 510 580 650 .720 790 860 930 1000
Ev(MeV)

(b)

F16. 2. pAc model fit to (a) 813 and (b) #13. The data points
designated by O are from Ref. 1, and those represented by X
are from Ref. 3. The model parameters are fp=35.55, f,=0.40,
fa=2.80, f,=0.0, fp,=2.47, fpa=2.40, and fp,=7.0.

cosfy, ¢, cosbiy, and My, are as follows: The phase
space for A, [Eq. (33)] is (noting the equivalence of
Q@ and Qy @)

- IdMAz/d,P(z) I ](P(2) ] P)J(¢N,¢1f C0501N,¢N)d1) d cosfy d cosfy d cosbiy doy
— |dM,/dP® | J(P®|P)J (¢n,¢1| cosbin,dn)|IP/3g2| costyy
X |dge/dMa,|d cosOy d cosby d cosbiy dpndQ1

=75(23) d cosfy d costy d cosbiy d pndQ1, (56)
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and the phase space for 4; [Eq. (34)] is

AU PdQydM , — |dM ,/dg:® | d3q1 PdQy
— [dM ,/dg;® | J(q1®|q1)d*q1dy
— |dM ,/dg:® | J(@1® |q1)J (d,1| cosbun,bx)dgs d cosfy d cosby d cosbiy d p
= |dM ,/dg:® | T (1| Q1) J (b,¢1] cosOiw,dn)| 9g1/3gs | cosyy
X |dge/dM 4| d cosOx d cosby d cosbin d pndQr
=J3(23) d cosfx d cosby d cosbry dpndQ1. (57)

The other J;(ij) are evolved in a similar way. The result is that

K? dUint
— =aA1aA2/(Z COSﬁlg Re[SAl*(MAJ)SAQ(MAz):IgAl(” 'QAQ(?)
2w dQx
dqs AM ay QM py/0q1 172
‘ [ (‘“) J(@:® g/ (q:® “h)]
AM a, dQI(D d(]2(2) aQ2 012
N . . d(]z dM3 172
+aAl/d cosOany Re{Sa, (M a)[apS,(M35)PD - 4o +a,S,(Ms) PO —P]}[ —_— J((I2(3)lq2)]
AM a, dge®

+an, / d cosiy Re{Sa* (M a)[apS,(M5)P® . 41 +a,S,(M)P® . P}

HdMA2 dM3/8P> (8(]1)
aP® dq1(3)\892 o1v NG/ 61y

) RS H LS TP 4o aMs; dq.
o 0 ’ . ]
+aa / cosfay Re[.S,*(M)So(Ms) 1P 2 dgs® dM a,

(igh
dMAl

1/2
J(P<2>|P>J<q1<3>lq1>]

J(Qa®1qs). (58)

In the above, M ; replaces the common kinematical values of M, and M ,.
The expression for doint/dQs is obtained by interchanging the coordinates for the first and second pion. This

means in effect the interchange of the Clebsch-Gordon coefficients.
To obtain doiny/dQxxr, the chains of transformations (56) and (57) are altered so that dQ., replaces dQ1, which

requires that dP — |dP/dM3|dQ.» while dgi,» — |(3q1,2/IP)dP/dM 3| dQ.~, where the appropriate angle is held
constant in the partial derivative. The result is

[(2 da;nt
e =0[A1(¥A2/d COSBIQ Re[SAl*(MAl)SAz(MAz)]ql(1)'92(2)
27 dQrr
dP |[|dM s, dM ay/0g\ /05 112
X! [ (—) <—> (@ ®{q)J (qz‘”lqz)]
aM s dQI(l) dq2(2) 0P/ 4, \OP/ 4y,

+aa, f d cosaon Re{Sa*(Ma)[apS,(Ms)PW. 4,3 40,8, (M)P®. P}

692 dP
|G, L

0P/ g dM s
“+an, / d cosiy Re{Sa,* (M a)[,S,(M3)P® - 4,3 4a,S,(Ms)XP® P}

641 dP dMA2
|58 il
AP/ gy AM 5

dMAl

1/2
J(q2®] qz)]

dQ2

1/2
J<q1<3>|q1>] . (59

dql
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The p-o interference term vanishes, because of its
orthogonal angular dependence. The equivalent to the
last term of Eq. (58) lacks the factor

I (dMa/dQ2(3)) (JQ2/dMA1) ] .

The inverse Lorentz transformation J(qz|g:®) may
be performed, leading to

1
f d cosfan® P-§,® =0.
-1

Equations (58) (and the trivial change for the Q.
dependence) and (59) contain the results of this section.
When calculated for the model S;, they yield upper
limits for interference effects. The spatial distribution
of the decays will decrease the physical interference
effects.

We have not given the expressions for the resonance
interference effects in angular distributions. We expect
them to be small, and the angular distribution data do
not have sufficient accuracy to test small effects. The
interference effects between partial waves will be much
more important in fitting angular distribution data, and
we are not able to examine those until the other partial
waves are treated in such detail as the present Dis-
channel calculation.

V. DATA FIT AND PREDICTIONS

The choice of coupled channels has been discussed in
the Introduction. In particular there is a need for chan-
nels with higher thresholds than the obviously important
A system to produce the Dy3 resonance. Furthermore,
the high-mass peaking in the #+7— and the =~% bary-
centric mass distributions indicates the contribution of
at least one boson with 7> 0 that decays into two pions.
This requires the pN channel, as the only appropriate
system in the correct mass range, to be coupled.

This minimal three-channel (xN,pN,7A) system was
fitted to the data in Ref. 10. The complex D;3 amplitude
was accurately predicted, and the qualitative features
of the 7V and 7= barycentric mass distributions in the
three-body final state were qualitatively explained.
However, the dipion mass peaking was much too pro-
nounced, and too much branching to the 7—#° channel
was predicted. In addition, the wV barycentric mass
distribution was insufficiently sharply peaked, indicat-
ing that the proportion of the 7A channel was too small.

The deficiencies of the above three-channel model are
most easily removed by the additional coupling to a ¢V
channel, if the ¢ meson is a I’=0, J?=0* dipion, with
about the p mass, decaying strongly into two mesons.
Recent evidence 2:2! corroborates the existence of such
a meson, with a very large width, with the parameters

2" % Malamud and P. E. Schlein, Phys. Rev. Letters 19, 1056
(1967).

21 M. Feldman ef al., Phys. Rev. Letters 22, 316 (1969); G. A.
Smith and R. J. Manning, Phys. Rev. 171, 1399 (1968).
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FiG. 3. Cross section generated by the pAc model for #~+p —
7~ +at+n from the initial Di; state. The references are W.
Perkins ef al., Phys. Rev. 118, 1364 (1960); B. Barish et al., ibid.
135, B416 (1964); J. Kirz et al., ibid. 130, 2481 (1963); and
V. Kenney et al., Bull. Am. Phys. Soc. 8, 523 (1963).
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Fic. 4. Cross section generated by the pAs model for
7 +p — 7 +a%+p from the initial Dy state. The references are
B. Barish e al., Phys. Rev. 135, B416 (1964); V. Kenney ¢ al.,
Bull. Am. Phys. Soc. 8, 523 (1963).
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F1c. 5. Cross section generated by the pAc model for
7~ +4p — 1¥+x0+n from the initial Dy state. The experimental
points are from C. A. Bordner ef al., in Proceedings of the Twelfth
International Conference on High-Energy Physics, Dubna, 1964
(Atomizdat, Moscow, 1966), p. 38.
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Refess of the pNV and ¢V channels combined must be
approximately the same as the p/V contribution alone
in the three-channel model. However, the smaller
barrier penetration factor decreases the ¢ production
[Egs. (25) and (26)] relative to the p production for the

56 —

agf-

4 1 | I — N
(o] 28 56 84 12 140 168 196 224 252 280 ol / N
Q{7 n)MeV =

@ e 7

= 1 1 1 1 1 I | 1
[ 36 72 108 144 180 . 216 252 288 324 360
Q7" n) Mev

(a)

1 1 ! I ! ] 1 ! L R ]
[¢] 28 56 84 12 140 168 196 224 252 280
Q (7*n) Mev

(b)

)

g}% ! 1 ! . ]
= 0O 3 72 108 144 180 26 252 288 324 360
818 Q7 *n) Mev
(b)
49 —
42—
! I I | I | I [ ] s
0O 30 60 9 (20 50 180 20 240 270 300
Q (r-mrtiMev
(© o> 28— -
s - /,,N ‘~\\
Fic. 6. Parts (a), (b), and (c) contain the Qan), Q(x*n), 5o, | pred N
and Q(z~7*) distributions, respectively, of the psA model at =!® e L NN
558 MeV (Ref. 5). Phase space is represented by the dashed curve, e o \
while the dotted curve is obtained from the Dis-state boundary- 4= s e AN
condition model. The solid curve illustrates the model curve plus ; pre \
an appropriate amount of phase-space background such that the W
area under this curve is the experimental cross section. The phase- e \
space background is 36%, of the total. | ! | | | I | I ]
036 72 108 144 B0 216 252 288 324 360
QT Mev
(©

given in Table I. The pNV and ¢N channels share the

strength needed to cause the Dj; resonance. F1c. 7. Parts (a), (b), and (c) contain the Q(z™n), Q(r*n),
The D h hift 81 d ds chiefl R It and Q(=~=*) distributions, respectively, of .the pAc model at 646
13 phase shift 813 depends chiefly on Refers. MeV (Ref. 4). The curves are as defined in Fig. 6. The phase-

follows that in the resonance region the contribution to  space background is 23% of the total.
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same coupling strength. Therefore, to obtain the correct
inelasticity parameter 713 more A coupling is required.

The effect of those changes caused by the addition of
the oV channel is to decrease the dipion peaking at the
upper end of the mass spectrum in both the 7—7° and
«tr~n final states, because of the smaller total dipion
production. The peaking of the =#=n% final state is very

80
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H2 140

Q(7”p) Mev

(a)

224 252 280

N
N\,

.l \

T,

T

56 84 2 140

Q(m°p) MeV
(b)

168 196

224 252 280

120 150 180 210
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Fi1c. 8. Parts (a), (b), and (c) contain the Q(z7p), Q(x%), and
Q(x~x%) distributions, respectively, of the pAs model at 558 MeV
(Ref. 5). The curves are as defined in Fig. 6. The phase-space
background is 409, of the total.
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Fi1c. 9. Parts (a), (b), and (c) contain the Q(z~p), Q(x%), and
Q(z~= distributions, respectively, of the pAc model at 646 MeV
(Ref. 4). The curves are as defined in Fig. 6. The phase-space

background is 509, of the data.

much decreased, as required by the data, because the
T=0 o meson does not contribute at all. The dipion
peak in the =7~z final state is also broadened because
of the large width of the ¢ meson. At the same time, the
increased proportion of the wA final state sharpens the
N barycentric mass peak as required. The D;; complex

amplitude fit is further improved.

The best fit of the four-channel (wV,7rA,oN,oN)
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Fr16. 10. Parts (a), (b), and (c) show the =¥, #—, and # angular
distributions, respectively, of the reaction 7=+p — 7~ +=x+n in
the over-all COM system at 558 MeV (Ref. 5) from the pAc
model. The theoretical curve represents the boundary-condition-
model Dis-state curve plus 36% phase-space background, as
indicated in Fig. 6.

system that we have obtained is with

fp=5.55, fa=2.80, f,=040, f,=0.00,

fDA:2-4O, f])p=2.47, and fl),: 700, (60)
and a core radius #o= 0.5 ! as used in all these calcu-
lations.? 1 The results shown in Figs. 2-12 illustrate all
the effects of adding the ¢V channel discussed above.
The fit to the complex Di; amplitude (Fig. 2) is very
good except at energies well below the resonance, where
the neglected long-range potential should have an
important effect.

Figures 3-5 show the predicted contribution of the
Dy; state to the total #tan, 7%, and #%% cross
sections, o, as a function of energy. In all cases it is
seen that from 500 to 700 MeV the Dy; state accounts
for the major part of the cross section. The contribution
needed from other states is about 309 in each charge
state. Assuming a phase-space form for the background
(the proportion is determined by o7 and is cited in each
figure), and incoherent contributions from each channel
(as given in Sec. III), the three-body final-state dis-
tributions are compared with data in Figs. 6-13. Parts
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(a) and (b) of Figs. 6-9 show that we obtain a satis-
factory =V mass distribution although only 45% of the
decays take place through nucleon isobars at 646 MeV
and 389, at 558 MeV (this is several times as much
nucleon isobar as obtained in the three-channel case!?).
A very marked improvement in the dipion mass distri-
bution is obtained in part (c) of Figs. 6-9, illustrating
quantitative agreement. The angular distributions at
558 MeV (Figs. 10 and 12) are quantitatively adequate.
At 646 MeV (Figs. 11 and 13), the ratio

[2(0°)+0(180°) 1/=(90°)

agrees satisfactorily with the data, but the model does
not predict the observed asymmetry about 90°. This is
of course due to the presence of only one partial wave
apart from the incoherent phase-space background. At
this high end of our energy region, it is reasonable to
expect that the Di; and Fys partial waves are large
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Fic. 11. Parts (a), (b), and (c) show the =, #~, and » angular
distributions, respectively, of the reaction #=+p — 7~ +=xt+n in
the over-all COM system at 646 MeV (Ref. 4) from the pAc
model. The theoretical curve represents the boundary-condition-
model Dis-state curve plus 239, phase-space background, as
indicated in Fig. 7.
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enough to show up in angular interference effects, while
not necessarily being important apart from such inter-
ference effects. For this reason we do not believe that
the angular asymmetry at 646 MeV represents an
important deficiency of our model. When the Dys and
Fi5 resonances are treated in a similar way to the
present treatment of the Dy; resonance, the partial-
wave interference effects may be predicted.

The p, o, and A content of the final state is shown in
Fig. 14. At less than 850 MeV (below threshold for the
o and p resonance peaks) this content is reflected in the
7N and 77 mass distributions in Figs. 6-9. It is also
consistent with the proportions deduced approximately
from the Dalitz plots,%8 which imply that the amounts
of dipion and isobar production are approximately equal.
At higher energies, e.g., at E;=1397 MeV, our model
predicts p, o, and A production cross sections to be 0.48,
1.67, and 0.14 mb. Feldman ef al.?' determined the
7 +p—o+n (¢ — 27° mode) cross section to be
0.184=0.05 mb and the 7= p — A% cross section to be
0.2740.06 mb. Charge symmetry implies that only %
of the ¢ mesons produced decay into 2#°. Similarly, in

9.0

8l

T2~

Fic. 12. Parts (a), (b), and (c) show the »~, #% and p angular
distributions, respectively, of the reaction 7=4-p — 7~ +4n%+4p in
the over-all COM system at 558 MeV (Ref. 5). The theoretical
curve represents the boundary-condition-model Djs-state curve
plus 40%, phase-space background, as indicated in Fig. 8.

1259

7.0

6.3

— _,_J___l_J..VL_J__'l;X__L IO I S|
]—sz ! 00 02 04 06 08 10

S S OJ
K K -06 -04 K
10 08 cos. Hp

(c)

Fic. 13. Parts (a), (b), and (c) show the =~, =% and p angular
distributions, respectively, of the reaction 7~ +p — 7~ +=%+p in
the over-all COM system at 646 MeV (Ref. 4). The theoretical
curve represents the boundary-condition-model D,s-state curve
plus 509, phase-space background, as indicated in Fig. 9.

this experiment only 2/9 of the A production is visible.
Therefore, assuming charge symmetry, this experiment
implies that the total oV cross section is 0.54 mb and
the total Ar cross section is 1.22 mb. Our model for the
Di; partial wave predicts an inconsistently larger o
production and a consistently smaller A production.
Data?? at E;,=930 MeV indicate a A~r* cross section
of 6 mb, implying a total A production cross section of
12 mb, while the BCM consistently predicts 0.11 mb.

At E;=1150 MeV, Pickup e al.? find a p» cross
section of 3.1 mb while the BCM predicts 0.31 mb.
Most of the p and A production may well come from
other partial waves, but the cross section of Ref. 21
implies that coupling to higher-mass resonance states

22 As reported by A. Donnachie, in Proceedings of the Fourteenih
International Conference on High-Energy Physics, Vienna, 1968,
edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
p. 150.

% E. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev.
Letters 9, 170 (1962); D. R. O. Morrison, Phys. Letters 22, 528
(1966).
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FiG. 14. The (a) p, (b) A, and (c) o production cross sections
from the initial D;; state.

depletes the oV channel at energies above 1 BeV.
Candidates are the D;5(1680) and F15(1680) paired with
a pion, or the ¢ and 4 resonances paired with a nucleon,
or some of the already considered low-mass baryon and
meson resonances paired with each other.

The maximum ¢ width that is consistent with 6 and
1 has been found to be 300 MeV. The 6 and 5 curves
with I',> 300 MeV provide a poor fit to the data because
of the large amount of ¢ meson produced at low energies.

In Figs. 15 and 16, we display our best results for the
four-channel (zV,7A,pN,wN) model. There is consider-
able improvement over the three-channel model, but
the dipion spectra are still too sharply peaked. The w
meson does not contribute to the final states; its effect
is to decrease the amount of p meson and increase the
amount of A present. The predicted amount of w pro-
duction at 1150 MeV is 0.80 mb, consistent with the
experimental 1-4 mb for all partial waves.?

It is of course likely that the w/V channelis coupled to
the system. However, one-pion exchange is prohibited
by G parity in the 7V — w/N system, which may well
decrease its coupling compared to wV—pN and
7N — oN. It is therefore plausible that the 7wV, 7A,
pN, and ¢V channels dominate in our energy range. The
addition of some wlN coupling to =N, A, pN, and oV
channels would decrease the excessive ¢ production at
high energies. The substantial inelastic threshold cusp
shown in Fig. 15 is the result of the S-state stable-
particle production. Its experimental observation would
confirm this mode of w-meson production.

Another variation of the channels at our disposal is
a three-channel model which contains 7V, 7A, and olV.
Tigure 17 shows the good 815 and 713 fits. However, the
final-state distributions were unsatisfactory. Figure
18(a) shows the featureless Q(z~=?) distribution result-
ing from the zero coupling of the ¢ meson to this channel.
Figure 18(b) displays a much too peaked Q(z %) curve
due to an overabundance of A (529, compared to 409,
in the pAs model at the same energy). The good fit to
Q(r—=t) in Fig. 18(c) is to be expected in this model but,
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as demonstrated in Figs. 18(a) and 18(b), a poor fit is
obtained for the other distributions.

The final combination, which is a two-channel =V
and A, has been shown!® to be incapable of generating
the Dj; resonance (this model corresponds to a Ball-
Frazer mechanism).

The calculation of the maximal A;A; interference
contribution to the Q.-,+ distributions, as given in
Eq. (59), shows that it has less than a 109, effect
(Fig. 19). This is in contrast to the result of Olsson and
Yodh,* which obtains all the Q(z—#*) peaking from
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Fi16. 15. The pAw model fit to (a) 815 and (b) ms. The data points

are those of Fig. 2. The parameters of the fit are fp=06.42, f,=0.40,
fa=2.80, f,=1.00, fp,=7.0, fpa=2.40, and fp.,=6.20.
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F16. 16. Parts (a)-(f) represent the final-state Q-value distributions of the pAw model at 646 MeV (Ref. 4). Graphs (a)-(c) represent
the Q-value distributions of the »~z*» final state for which 43%, phase-space background was required. These curves are defined in
Fig. 6. The distributions from the #~#% final state [ (d)-(f)] have no phase-space background because the production cross section for
this reaction is higher than the experimental value. The solid curve represents the boundary-condition-model curve and the dashed
curve is phase space.
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1000

their large AjA, interference. All other interference
terms calculated in this maximal way are small, given
the experimental constraints on 6813, 713, and the reso-
nances. The actual interference effects are expected to
be even smaller. The data are not accurate enough to
discriminate such small effects.

VI. CONCLUSIONS

The good fit to the D3 complex amplitude and to the
mxlV final-state distributions indicates the adequacy of
our model in the region of 400-700-MeV pion kinetic
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energy. In particular, the Dy; state accounts for about
709, of the inelastic total cross section, and for all of
the structure in the ==V final states. Furthermore, the
four-channel (wV,rA,pN,0N) model adequately predicts
both the elastic and inelastic amplitudes of the Dis
state. The amount of coupling required to the A and
ol channels is consistent with resonance production at
higher energies. The coupling to the ¢/V channel appears

35r
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F1c. 18. Parts (a), (b), and (c) represent the (v™n%), (x™n),
and (r7~7%) Q-value distributions of the Ac model at 558 MeV
(Ref. 5). The curves are defined in Fig. 6. The Q(z~=*) and
Q(nn) distributions require 289, phase-space background while
the Q(z~#%) distribution requires 63% phase-space background.
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F16. 19. Maximal A;A, interference effect [Eq. (59)7] is included
in the dashed curve of the Qg+,- distribution at 646 MeV. The
solid curve and the data are as in Fig. 7(c).

to need some suppression at higher energies. The
dominance of just these channels is also expected on the
basis of mass, spin, and the allowed one-pion-exchange
mechanism. It has also been demonstrated that even
though the four models (wN,oN,Ax), (#N,oN,Am,oN),
(xN ,oN,Aw,wN), and (#N, Ar, oN) produced adequate
fits to § and 7, the deciding factor between them was the
final-state spectra. Only the (#N,pN, Amr, oN) model
fitted simultaneously Qrx, Q+n, 6, and .

The dynamical coupling model accounts for a signi-
ficant amount of data for its eight parameters. We feel
that its success is due to proper inclusion of unitarity
and inelastic threshold dependence, with approximately
correct range dependence. A better description of the
Dy state at low energies would require inclusion of a
long-range potential obtained from field theory. This
can be done without adding parameters to the model.
At higher energies, it would become necessary to include
the coupling to other channels. Interference effects
between decaying resonances should be calculated with
the spatial decay distribution taken into account, but
are of little importance.

Refinement of the description of inelastic final states
will also require that other partial waves be analyzed to
a similar extent as the Dss. This appears to be a feasible
program for the resonant Py, D15, and Fy; amplitudes.
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Together with the D;; amplitude these are likely to
dominate the =2 7V amplitude up to 1 BeV.
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APPENDIX A

In this appendix we shall indicate some relevant
kinematical relationships. The numerical calculations
leading to our results are carried out in the over-all
COM system, where q;4q2+P=0.

The resonance masses are defined as

Malt=—(P+q)?, (A1)
M= —(P+¢2)?, (A2)
M, *=—(q1t+q2)? (A3)

(where Py, g1, and ¢» are four-vectors), and are related
by the constraint equation

Mag+Map+M, 2= 22+ MW, (Ad)

Evaluating (A1)-(A3) in the over-all COM system, we
have

Ma,= (W2 —2 W)z, (A5)
Ma,= (W2 p2—2Wep)ll2, (A6)
M, o= (Wo+M2—2WE)!2, (A7)

where w; and E are, respectively, the energies of the 7th
pion and of the nucleon in the over-all COM system.
Evaluating (A1)-(A3) in the respective resonance
COM system, we have

Ma,= (@24 M2)V24 (g D24 p2) /2 (A8)
Mp,= (q2(2>2+M2)1/2+ <92(2>2+ﬂ2) 1z, (AQ)
M p,0=2(q:®* 4. (A10)

From energy-momentum conservation, we can derive
the following equations when 4, =1, 2 or 2, 1:

—3(M a2 —M2+u?)q;j costrazt (W+w;)[q: VM a2 —q;%(1 — cos®012) w* ]1/*

gi=

5 (A11)

M 24q2(1 —cos*fy,)
—1M 2P cosfoy=t (W — E)[ M 32q2®?— P*(1 —cos®bon)u* 2

g2=

: (A12)

M 2+P2(1—cos®0zy)

—3[M a2+ M*—p¥]g; cosOin= (W —w)) [M 2P O?— M?q;*(1—cos™y) I/
P= .

(A13)

Ma2+g*(1—cos™;x)
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The integration limits for the Q value and angular
distributions are quite complicated owing to the three-
body kinematics. However, the procedure for deter-
mining the integration limits is straightforward but
lengthy, so we shall only indicate how the A; Q-value
term is done. :

The term to be evaluated is [see Eq. (42)]

do o ope(May)
= / d costis f(Ma;cos612) (Al4)
dMA1 —1

(where dMa,=dQs,). The maximum and minimum
values of Ma,, i.e., W—u>Ma,>M~pu, determine the
minimum and maximum values of gs.

—%[MAlz—M2+u2:}Q2 cosfiot (W~w2)[ql(‘)2MA12-Q22(1 —COS2012)/J,2]1/2
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Solving Eq. (AS) for ¢s, we have

ge={[W?—(Ms,+w)?]

X[W2—(Ms,—w)* 31220 . (AlS)
Therefore, when Ma, = (Ma,)max=W —pu we have ¢2=0,
and when My, = (M4,)min=M+u we have

32= Qemax= {L(W+M+p)?—p?]

XLW —(M+w) P—p]}12/20 . (Al6)

We must now find the dependence of cos 612 on g,.
In Eq. (A11) set i=1 and j=2:

1=

For values of ¢; between zero and the value where
¢1=0, it is possible for 7; to have any orientation with
respect to my [ the positive sign in (A17) in front of the
square root is used in this range]. The value of g; for
which ¢;=0 we call ¢, which is

gre=A{L(W—p)*— (M +p)*]
XLW =)= (M —p)* T2/ 2(00 —p) -

For g2> gz, the velocity of r in the A; rest frame is less
than the velocity of A; relative to the over-all COM
frame. We then have the possibility that the argument
of the radical in (A17) can become negative, giving an
imaginary ¢i.

Therefore, when g»>¢s. we set the discriminant in
(A13) to zero and solve for cosfy; as a function of g2
(and therefore of M4,):

g(Ma,)= _D12922"‘91(1)2MA12]”2/#92-

The negative root is chosen in (A19) because when
¢2> g2, the first term in the numerator of (A17) is bigger
than the second term. Since ¢;>0 we must have
c0s#12< 0. The integration limits are

0<¢2< ¢z, g(Mu)=1,
[+sign only in front of square root in (A17)];

026< o< Qomax, g(Ma,) = —[u?qe®—q1V*M4,*1/uge,
[=sign in (A17)].

APPENDIX B

The following transformations are used to derive the
Lorentz transformation Jacobians when (3,7)= (1,2) or

(2,1):

(A18)

(A19)

a: =q;:+X;, (B1)
9:®=q:+X/P, (B2)
PO=P+Xyig;, (B3)

MA12_q22(1 —C082012)

(A17)
where
) witw;® E+E®
e —— =, (B4)
W—O)j+MAi W_wj—{—MM
X = (i ®)/ (W =L+ M5) (B3)

[the superscript (z) indicating the appropriate COM
resonance |.

We shall present in detail the derivation of J(q2®|q.).
The procedures for the other Jacobians are exactly

analogous.
The quantity J(q:®|qs) which transforms m; from
the rest system to the over-all c.m. system is defined as

GQQ(S) 0 COSGzN @
aola=(22) (22)
aq; fon 0 cosfan a2
6q2(3) d COSBzN(3)
e ®
9 cosban/ g, aqs o

The Lorentz-transformation direction is along the
recoil nucleon; therefore

P=W-MP®, (B7)
which also implies that
Ay =dy®. (BS)
[A similar situation pertains to Eq. (38).]
From (B2), we have
(g2®)2=go?+ (X %) 2P2+2g: PX 33 cosbay, (B9)
cosfan P = (gz cosban—+X23P)/q:® . (B10)

The derivatives in (B6) can now be obtained from
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(B9) and (B10):
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3g2® 1r (X 3P)
= — (Q2+PX23 COS@zN)+(PX23+Q2 C0562N)(— ) :| y (Bll)
392 (25 Q2<3) L 6(]2 0N
dge® 1r (X 3P)
( = 02PX 3+ (PX 5+ g2 cosbay) <~ ) :| (B12)
9 cosban/ ¢y  q2®L 9 cosOzn/ g,
3 cosfon® 11 /0(XsP) 3g,®
( > = Q2+( > —COS@gN(3)<—‘——-——‘> :I, (B13)
dcoslony /¢ gL d coston/ g, 9 cosban/ ¢,
9 cosfoy ® 1r (X ,P) dg,®
(‘—‘—_‘) = Q2+( > —COSQZN(3)< ) :l. (B14>
92 oy q2®L 992 /ouy 992 / ooy

Substituting (B11)-(B14) into (B6), we obtain

[}] 2 sin"’&m 8(X23P)
o) o )
ga® gz \0 cosfan/ g,

+cos()2N<a(X23P>) ], (B15)
b2n

i)
where o
I(X,%P) P
(— > =qoPws ‘(W —E+M 3)*1+<———)
dq2 (25 0q2/ 62y
w w
x {[x23<1+ ——)— ]
M 2M s
P2
e —— —I—X«j“} , (B16)
E(W—E+M5)
3(X23P) oprP w w
G~ Gaa) =0 50552
9 cosban/ g \O CcOsOsn/ g, M3 2M 3
P2

G ——— +X23} . (B17)
E(W —E+Ms)

The derivatives are evaluated from (A13) with i=1

and j=2.
The other relevant Jacobians are with ¢, j=1, 2,

. qi 2 sinzoﬁ B(X,-fg,-)
g:@ gi \0costi/ g,

A(Xg;
+C0§0ij< ( é—zi)-> }, (B18)
9gi 0i;

P \? sin“’@,-N a(Xqu_,')
() 2
P® P \Jdcosbn/p

9K ng;
+coso,-N( ()Z)q )> ] (B19)
0;N

where all derivatives are evaluated using (A11)-(A13).

APPENDIX C
Reduction to Relative Angle

In Secs. ITT and IV of this paper we consider integrals
of the form

2T 1 2T 1
/ / / / d cosfy dpad cosfp dpp f(0.45)
0 -1J0 -1

X[Ea-tz+3(ta-2)(E-8)], (C1)
in which 04, ¢4, 05, and ¢ are the polar and azimuthal
angles of two vectors g4 and qz in the over-all COM
system, and 645 is the angle between q4 and qz. The
unit vector f4 (f3) is either in the direction of q4 (q5)
or in the direction of q4® (qz4), the Lorentz transfor-
mation of q4 (qz) by the velocity corresponding to
—qp (—q4). The above Lorentz transformation trans-
lates to the COM system of the resonance paired with
the particle of momentum qz (q4). Fortunately, all
these four-dimensional integrals can be reduced to an
integral over 845 alone.

In proving the above assertion, we obtain first (i)
the Jacobian of transformation of the variable ¢z to
cosf4p. Then we establish (ii) that £4-75 depends only
on 645 and find the expression for 3(f4-2)(fz-2) as a
function of 84, 05, and 645. Finally (iii) the integrations
on cosfy, cosfp, and ¢4 are performed, and it is shown
that the integral of 3(£4-2)(f5-2) is equal to the integral
of £4-25. Consequently the integral (C1) is proportional
to the integral of f(845)4-5 with respect to cosf4z.

(i) The angular transformation is conveniently per-
formed in two steps,

¢B—> Pap=c¢p—4 (C2)

and
(C3)

¢ps—> COs04p.

The Jacobian of (C2) is trivially unity, and the range
of integration in ¢.45 remains 0 — 2x. The transforma-
tion (C3) is given by

cosf43=cosf4 cosfp—+sinf, sinfs cospas, (C4)
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from which one derives

J(¢pan|cosfas)

(o)
0 cosO4n/ 04,08

=[1—c08%04—cos?0z—cos* 45

= | (sing 4z sinf 4 sinfp)~1|

~+2 cosf4 cosbp cosfap 2. (CS5)

The transformation also implies changes in the
boundaries of integration. As ¢4 spans 0— 2w, 043
spans |04—60gp| to 64+65 twice. This implies that if
64 and 65 are held fixed,

cos(04—0B)

27
/ déppa— 2 /
0 cos(64+6B)

Below we actually perform integrations over 64 and g
first, and limits are appropriately interchanged.

(i) We treat the casesfa=q43/g4% andis=q5*/gs".
The other cases are obtained by an analogous but
simpler procedure. The Lorentz transformation for

Q4 is

J(¢ap|cosfap)d cosfag. (C6)

q48=q4+X45qz,
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with

X4B=(Eat+EsB)(W—Es+ EpP+Ec®)™, (C7)
in which E4, Eg, E4®, and Ep4 are the energies of the
particles with momentum q4 and qz in the over-all
COM system and the resonance COM system, respec-
tively. qz4 is given by an analogous formula to (C7).

The important property of X4 and X34 is that they
depend only on 64z; the above energies depend only on
the particle masses, W, and 64 5, as detailed in Appendix
A. From (C7) it also follows immediately that g4%
depends only 645, as does ¢z.

From (C7) one obtains

Ga®-G54= (4%qp4) Y qugs(14+-X45Xp4) cosfan

‘f‘XABQBZ"l‘XBAQAz], (CS)
which depends only on 645. It also follows that
(§a®-8)(@5*-2) = (qa®q5*)"

X [gagp(14+X 43X p4) cosfs cosz
+X48q5? cos?0p+Xpdga® cos?04]. (C9)

The expressions for §4-gp4 and (§a-2)(Gpt-2) are
obtained from the above by replacing X,4& with zero,
and ¢42 with ¢4, and so on for the other £, and i
combinations.

(i) We first integrate

2w 1 2 1
J1=/ / / / d c0s0 4dd ad cosfp dpp f(0a5)§a® ds?
o Ja1Jo Ja

1 2T 1
=2 / d cosfap f(048)4a% 54 / dpa f d cosf4 /
1 0 -1 cos(04B+04)

—1

1 1 cos(048—04)
=4r / d cosf4p f(OAB)QAB-QBA / d cosfa /
-1 ¢

It

Il

1 1
47r2/ dcosHABf(b’AB)QAB-QBA/ d cosf4
—1 -1

1

=87r2/ dCOS@ABf(eAB)QAB'QBA.
-1

cos(64B—04)

d cosfp J(pap|cosbas)

d cosfp

0s (04B+04)

X (1—cos?04—cos*0p—c0s?0 4542 cosf4 cosfp cosfap) /2

1 1 . y_COSBA COSOAB y=cos (0 4B—064)
4 / d cosOap f(f)AB)QAB'QBA / d cosb 4 51n‘1<—~——-——)
-1 -1

sinf4p sinf4

y=cos(64B+64)

(C10)
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Next we integrate [skipping steps similar to those in (C10)]

2T 1 2w 1
J=3 / / / / d cosf 4 dpad cosfp dbp f(BAB)(QAB-.’z‘)(QBA-ﬁ)
0 -1J0 -1

1 f(oAB) 1 cos(6AB—04)
=127 f d cosban {/ d cosfy / d cos8s J (¢pa5|cosbaz)
-1 -1 [

B
qa QBA 08 (04B+04)

X[qags(1+X48Xp4) cosfa cosfp+Xpiga® cos?4]

+
-1

" [qage(14+X 48X 54) cosfap+Xs2qa*+XaBqs%]

f(045)

1
=81r2/ d cosbap
—1 QABQB

1
=81l'2 / d COS@AB f(GAB)QAB'QBA=J1.

-1

cos(0.4B—04)
d cosfp / d cosf4 J(pap|cosbap)XaBqs? cos203}

0s(04B+64)

(C11)

Similarly, one obtains J1=J, when Z4 or iz is ¢4 or §s instead of §4? or ¢gs4. The integral in (C1) is twice the
integral J3, and only the integral over cosf4p remains to be performed numerically.
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We discuss some regularities in the baryon mass spectrum which have been suggested by one of us and

possible experimental verification of them.

N this paper we should like to call attention to

certain approximate regularities among the square
masses of the baryons with the hope that future
research can establish whether they are real or are the
result of numerical accidents in the limited data
available.

Our classification of states will be guided by the
three-quark model of “baryons” and the principle of
Regge recurrence. The statest of three quarks each of
spin + depend on the symmetry character of the state.
If it is symmetric, it is a 56 (consisting of a spin-
quartet unitary-spin decimet, *10, and a spin-doublet
unitary-spin octet, 28). If it is antisymmetric it is a
20 (spin-doublet unitary-spin octet, 28, and a spin-

* Work supported in part by the U. S. Atomic Energy
Commission.
1. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).

quartet singlet, *1). For the intermediate symmetry,
we have the double representation of a 70 =21, 28, 48, 210.

We next suppose that the over-all state is entirely
symmetric. If we add internal degrees of freedom, we
suppose that the lowest states are the s states, them-
selves symmetric and of zero angular momentum. Thus
our lowest states are

(56,0%) =28y/5™, *104/5™,

where the 2,7 give spin multiplicity @, unitary spin
multiplicity b, parity p, and angular momentum j of
the states. These, of course, are taken to be the funda-
mental octet and the lowest decimet (with A=1236).

We may expect this to recur on a Regge trajectory?®
by adding 2, 4, ... units of angular momentum (which

2G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961); 8, 41 (1962).



