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We discuss the creation of pairs of charged particles in an alternating electric Geld. The dependence on
the frequency is computed and found negligible. We obtain a formula for the Geld intensities required in
order to observe the effect E&nuopc/e sinh(%up/4nsc').

I. INTRODUCTION

OME experimentalists working on intense optical
lasers have raised the question of testing nonlinear

effects of vacuum quantum electrodynamics. In this
article we investigate the possibility of observing the
creation of pairs of charged particles (electrons and
positrons) in oscillating electric fields. One might think
of the collective effects of millions ( 2mc'/Aa&0) of
photons concentrated in a small volume and materializ-
ing their energy. On the other hand, Schwinger' long
ago computed the effect in a pure static field. It turns
out that the estimates based on his calculation are
totally adequate, and lead to the present inobserv-
ability of that phenomenon. The only possibility would
be to increase the available maximal fields by four
orders of magnitude. While this rules out the observa-
tion of the absorptive aspects of nonlinearities, it might
be interesting in the future to look for dispersive effects.

In order to reach the aforementioned conclusion, it is
necessary to estimate how much the production rate
depends on the frequency cop of the field. This appears
also as a challenging theoretical exercise, since it will
allow us to describe the transition between two extreme
domains. The first corresponds to a vanishing frequency
and, as we shall discuss below, yields a singular expres-
sion for the rate proportional to e ~«~. The second is
the case of very low intensities where the field induces a
weak perturbation in the vacuum sta, te. As usual in
such a, circumstance, we foresee that the response can
be expanded in powers of the perturbation. It is clear
that only very high powers will come into play, since a
number of the order of 2mc'/Ace& quanta is required to
create a pair. Hence one expects a rate of the order of
(g/g )4mc~/A(uo

' J. Schvringer, Phys. Rev. 82, 664 (1951);93, 615 (1954).

The magnitude of the fields Bp and EI appearing in
the above expressions can be understood as follows. In a
static situation, the work of the field on a typical dis-
tance of the problem (in our case the Compton wave-
length of the electron, 5/mc) and on a unit charge e
should provide the energy 2mc'; hence cEA/mc mc' or
E/Eo 1, with Zo=m'c'/ch. At the opposite end in
perturbation theory, we expand in powers of the vector
potential Z/(ao, times the coupling constant e, divided

by a momentum coming from the electron propagator
mc. Thus Ei cdomc/e. Let us add a remark on the

singular behavior for the static case. In the zero-
frequency limit, the e «~ behavior of the rate can be
understood as a quantum-mechanical barrier effect.
This is analogous to ionization, where for an electron
with binding energy Vp the rate is approximately given
by the square of the wave function at the exit of the
potential barrier. This can be roughly estimated as

Vp/eE

exp —2 dx 2m Vp —eEx

Vp
=exp —-', 2mvp ' '—

eE

In the present case the pairs might be thought as bound.
in vacuum with binding energy Vp~2mc'.

We present in Sec. II a summary of the main theo-
retical results of Schwinger' needed for the sequel. They
give a formal basis but require some elaboration to be
used for practical estimates. Section III is devoted to
the discussion of a number of simplifying approxima-
tions leading to tractable expressions. One wants to
elaborate a model which retains the main features of
the general case but nevertheless allows one to obtain
6nal expressions in closed form; Instead of estimating
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the effect for an arbitrary electromagnetic field varying
in space and, time, we will content ourselves with a
pure electric field oscillating with a frequency ~p. In
spite of the slightly unrealistic character of this assump-
tion, we expect that it retains the main features of a
more general situation. It is, of course, well known that
specific anomalies can occur; for instance, there is no
pair creation in a plane-wave field. ' Therefore, if the
rate predicted by the theory were more favorable, one
should pay more attention to the particular geometrical
characterization. At the present stage, however, we
present rather an order-of-magnitude estimate.

On the other hand, we are confronted with a non-
trivial mathematical problem. We observe that under
our assumptions we have to solve a slightly unfamiliar
scattering problem in which the role of the usual con-
figuration variable is played by time. This comes about
as follows. We have to study the time evolution of a
system where a pair is created. Now an antiparticle can
be thought of as a wave packet moving backward in
time. Thus we have a scattering wave which for large
positive time has only positive frequencies, while for t
large and negative it has some negative-frequency
amplitude. As shown below, it is precisely this back-
ward amplitude that we must try to Gnd. Conditions
are such that the quasiclassical approximation is valid:
We have a rapidly oscillating phase with a frequency of
the order of the energy gap as compared to a slowly
varying amplitude, the rate of variation of which is
of the order of eE/mc. The dimensionless ratio of these
two quantities, eEh/m'c', is assumed to be small
compared to unity. This justifies the use of a version
of the WKB approximation which resembles some work
done in the context of the ionization problem. ' The
work is now reduced to the evaluation of some tricky
integrals by the steepest descent method which lead to
the final formula (48). This formula yields the required
smooth interpolation between the static and perturba-
tive regimes. Finally, in Sec. IV we discuss our result
and show that the effect can only be observed for field
intensities E&E„with

A(pp/mc'
cE,A/m'c'-—

sinh(A(pp/4mc')

This estimate proves that, in the foreseeable future,
the frequency plays a negligible role, and that the experi-
mentally obtainable fields are four orders of magnitude
too small.

II. THEORETICAL BACKGROUND

The pair creation rate will be expressed in terms of
the solution of a one-body Klein-Gordon or Dirac equa-
tion in the presence of a source. The particle current is
coupled to the vector potential A„(x) of the external,
c-number, electromagnetic field. At time —~, the state
of the system is the vacuum

~
0); no particle or field is

present. Then the electromagnetic field is turned on
adiabatically and switched off at large positive times.
Pair creation will have occurred if the modulus of the
vacuum-to-vacuum S-matrix element is smaller than
unity. More precisely, if we can write

[(0~5~0)~'=e p(
— 1'x t(x)),

w(x) will be interpreted as the probability of pair
creation per unit volume and unit time.

It is now necessary to distinguish between fermions or
bosons. The final results will be indexed by Ii or 8
according to whether they refer to Dirac or Klein-
Gordon particles.

A. Dirac Particles

The S-matrix element is given in standard units,
A=c=1, by

Sp(A)—= (OiSi0)

=(0~ V'exp ie d—4x j(x) A(x) ~0), (2)

where the current is expressed in terms of the free Dirac
f'ield +(x) as

and V denotes the time-ordering operator.
The first step is to establish the formal expression

S,(A) = det (G 'Gp) = expLTr In(G 'Gp) j (4)

where the propagators Gp and G are

Gp= G=-
P—m+ip P eA(x) m—+ip—

The symbols det and Tr refer to the product of the four-
dimensional Dirac space and an ~ '-dimensional space
indexed by a space-time coordinate. The canonical
operators I' and X satisfy the commutation rules

[X„,P.7=ig„„.

We introduce now the scattering operators satisfying

The general theory is due to Schwinger. ' In this
section we present a summary of the necessary results.
The derivations are omitted except for the case of a
constant field.

2A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, Zh.
Eksperim. i Teor. I'iz. 50, 844 (1966};51, 309 (1966} /Soviet
Phys. JETP 23, 924 (1966};24, 207 (1967}j.

T=eA+eA T,
P m+ip—

E=eA+eA I',
I'-es-~e (6)
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and the state-density operators

p(~) = 22r(P+2)2) 8~(Pp) f](P2 2—)22) . (7)

Making use of unitarity and of some algebraic identities,
it is shown in Ref. 1 that

~Sp(A) ~2=exp[ —Tr ln(1 —Tp(+&T]&( &)g.

Therefore, the pair-creation rate is

wF(*) =tr(xlln(I —2'p(+)rp( )) lx),

in which tr refers to the trace on Dirac indices alone.

B. Klein-Gordon Particles

In the case of spin-zero bosons, we note the analogous
formulas:

Sp(A) = [Det (G 'Gp)g '= exp[ —Trln(G 'Gp)$, (4')

where

Gp= G= (5')
P —222 +jp (p —pA)2 —2)22+jp

Defining now

P'=Gp ' —G '=e[A($) P+P A($)j e'A'(x)—
the scattering operators are given by

C. Constant Field

Let us first use expression (4) for fermions. It can be
written

lnSp ——Tr ln (P eA —m)—
P—m+ie

1.
=Tr ln (P—eA+2)2)

8+m —ie

To obtain the last equality, use has been made of the
4&4 matrix C such that Cy„C '= —y„~. Adding the
two forms of lnSp, we get

1
lnS(& ——

2 Tr ln [(P eA) —2)2') — — (10)P' —m'+ae

and from the identity

"ds
(peep esse)

s

which incorporates the correct i e prescription,

—2 Re lnSp= deg w(g) = —Re de@

T= V+V T
P' —2)2'+2p

T= V+V- T,P' —m' —ie

and the density of states

(6')

~tr(~
~

4
is(P2—ms) &i [(P seA)2 —ms]

~
g)

— (12)

Hence the rate wF(x) reads

wF(x) =Re tr
p S

)((Z~
'

[(ePseA)2 W—(me/2&e F]—&is(P2-ms)
~

+) (13)l r

p(p) = 2&r[]p(Pp) (&(P2—2222) . (&')

The square modulus of the amplitude is

where O' F=—o-&"F„„,with the usual conventions

P""=2i[y"sy"7 ) F„,= B„As BsA„—
~Sp(A)

~

2=exp[+Tr ln(1 —Tp(+)Tp( &)j. (8') In the case of bosons, (4') yields directly

And, 6nally,

w~(~) = —(~l»(I —2') (+)2') (-)) I*). (9')

Expressions (9) and (9') are interesting since they
involve on-shell matrix elements. All the singularities
of the perturbation expansion are explicitly extracted
and, in particular, the thresholds are in evidence.
Expressions (4) and (4'), which at 6rst sight might seem
more appropriate, do not have these properties. Never-
theless, for the case of a constant field, which is an
exactly soluble model, ' we shall start from (4) or (4').
A unitary transformation will reduce the problem to a
one-dimensional harmonic oscillator. For the case of an
oscillating 6eld, studied in Sec.III, we shall be interested
in recovering the constant 6eld result at a zero-frequency
limit. That is why we present this calculation in some
detail.

lnSp ———Tr in( [(P—eA)' —222'7(P' —2)22+2p) '), (10')

and, after some manipulations similar to the ones above,

dS
ws(2:) = —2 Re

p S

)((g~ pi(e[PeA) —m ] pis(P2 —ms)
~g) ($3s)

In fact, if one wants to compute the imaginary parts,
instead of the real ones, of the integrals (13) and (13'),
one has to remove a logarithmic divergence at s=0.
This is done by a subtraction at s=0, the logarithmic
divergence being absorbed, as shown by Schwinger, into
a renormalization of the fields and charges. But for the
real part the calculations are straightforward.

Pair creation does not occur in a pure magnetic 6eld.
This is clear since a constant fjLeld cannot transfer energy



ii94 E. 8 REZ I N AN D C. I TZ YKSON

to a charged particle. It is the acceleration due to the Hence
electric 6eld that enables particles to leak through the
2m potential barrier. Hence the physically relevant case
can be taken to be the one of a pure electric field. We
then choose the gauge as

2(2o-) '

"ds- eE 1-
sin(sm') . (19b)

s' sinh(eEs) s

A (x) = (0, 0, 0, —Ego) .
The following identities hold:

tr exp(-,'iescr F) =4 cosh(seE)
and

(P eA—)' = (P') ' P,' (P—'+eE—X') '

oE2 ~ n7rm2

res ———P —exp-
7r' eE

(20a)

For this constant-field case, z J; and x~ are, as expected,
x independent. The integrals (19a) and (19b) are easily
performed by contour integration, and the final for-
mulas read

(15)

I'OI'3
=exp —i P' '—/, ' —e'E' Xo 2

eE

~Eo ~ ( 1)n—1

'Mg =—
2vr & n

N7rm'

exp — . 20b

joOp'3

Xexp i . (16)

Denoting by co and p the eigenvalues of I'o and I',
respectively, we thus have

(*I exp(isL(P eA)' —m'j'r—
I x) = (2~) dcodco'

3

X d'pexp i (co —co') t+ ——s(pp+m')
eE

X (co
~

expLis(Po' —e'E'Xo')]
)
co') . (1l)

The integrals over po and pc are readily done, and we
find

(z
~
exp(isL(P —eA)' —m'])

~
x)

m-eE

e
—ism2

'LS

dM

„(2m-)'

X (co
f expLis(Po' —e'E'Xo') 7 [ co) (18)

The last integral over ~ is the trace of the evolution
operator of a "harmonic oscillator" with a pure imag-
inary frequency. We compute this trace by summirig
over the discrete levels:

dco(oo
I expLcs(P oo —e'EoXo )]

00

=P expL —(2n+1)seEj =
0 2 sinh(seE)

Using this result in (13), we get

(2o-)'

~ ds-—eE coth(eEs) —— sin(sm'), (19a)
s S

where the 1/s term is the zero-Geld subtraction which
appears in (13). For bosons, a similar expression holds
with the spin factor 4 cosh(eEs) of (15) replaced by —2.

We conclude this section with two remarks about
Eqs. (20a) and (20b).

(i) Even with the most intense laser beams presently
available, m'/eE is a large number (see Sec. IV), and
the terms with n& j. are exponentially small as com-
pared with the first term. Therefore, the ratio between
the rates for charged fermions or bosons is essentially
a factor of 2 due to spin.

(ii) The oscillation in sign for the bosons shows that
the successive terms cannot be interpreted as the prob-
ability for the creation of I, 2, . . . , n pairs.

III. ALTERNATING FIELD

The aim of this section is to find practical estimates
for the rate of pair creation in an oscillating field. The
smallness of two typical parameters enables one to
approximate in a manageable way the previous theo-
retical formulas valid in an arbitrary field. We require,
of course, that the final expression agrees, in the zero-
frequency limit, with the constant-field result (20).
On the other hand, in weak fields we should recover the
predictions of perturbation theory. This means that
one has to find. an interpolation between a power law
in E and an exponential in E '. I.et us then introduce
our simplifying assumptions.

First we limit ourselves to frequencies Mo&(m. Further-
more, eE is assumed to be small compared to m'. Thus
terms in the expansion of the logarithm in (9) and (9')
with thresholds at energies corresponding to the creation
of 2, 3, . . . pairs can be safely ignored. This is also sup-
ported by remark (i) at the end of Sec. II, where we
observed that in the static case under the above as-
sumption, only the leading term in the probability
could be retained. Consequently, we replace the loga-
rithm in the expression for the probability by its 6rst
term. Then, as we learned from Sec. II, the spins of the
final pairs contribute essentially to a counting factor.
Therefore, we study the creation of charged bosons.
Furthermore, we limit ourselves to an oscillating field
constant throughout space. We expect that the space
variation of the field might produce similar effects.
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They are neglected for the sake of simplicity in this
order-of-magnitude calculation.

The vector potential is then chosen as

&(x)=(0,0,0,A(t)).

We assume A(t) to be periodic with frequency &ao and
adiabatically damped for large times. A straightforward
application of (9') gives for the probability per unit
volume

dW I dtp
I(— I& I )I' =(p'+~')'" (2&)

d V 2tr (2(d)'

The Tt, matrix occurring in (21) is the solution of the
integral equation:

and is bounded by

8E eE

(0 Bt +Pi ttt

in which 8 is the amplitude of the oscillating 6eld.
Therefore, the calculation wiH assume eB/ttt'((I; all

the existing laser beams satisfy this condition. The
%KB method suggests that we look for a wave func-
tion of the form

p(t}= (t)e-' «)+-p(t)e' &'),

with

x(t) = dt' «)(t') .

T„=V„+t/'„— — T„,
Po' «)'+i—,e

V„=—2eptA (X())+e'A '(X())

[Xp,PO]= i.
«& (e) —j),e, = (+ )ep( —eIn these expressions, y appears as a parameter. The

space-translational invariance has reduced the problem
to a one-dimensional I ippmann-Schwinger equation.
Time plays the role of the usual conhguration variable
and E'0 of its conjugate momentum. The matrix element

(—&Ol 2'pI«)) then corresponds to the backward scatter-
ing amplitude. In turn, this amplitude is related to the
asymptotic behavior of the solutions of the difterential
equation:

[+d'/dt2+(dt+ V„(t)]lt (t) =0.

+0

«& (e) —3)t t( )xp(=—2-'

In (28), P(t) has been replaced by two unknown func-

tions; we require that they fu16ll the condition

ne '~+pe')(=0.

Equation (24) then gives

-'-' -p' =-I (t)/ (t)]( -'"-p'").This equation is simply the Klein-Gordon equation for
our one-dimensional problem. Ke look now for the
solution which behaves asymptotically as The following system is then completely equivalent to

the original equation:
)ft(t) ~e eet+ $eteet-

t ~+ tx) tf,(t) &te
t'eet— n = —[(d(t)/2'(t) ](n —Pe"'),

p=- —[ (t)/2 (t)](p—e "') (32)
The T-matrix elements are then related to u and b by
normalization factors prom the adiabatic switching assumption, M(t) v»ishes

when
I tI —p~; therefore, n and p tend to constants «r

large times. Furthermore, according to the previous
hypothesis n and p vary slowly in time. The phase e")(

oscillates very rapidly Rs compared to the variation of
n and p, since x=tp(t)((l «)(t)/«)(t) I. As a first step, we

can neglect these oscillating terms in (32). Taking into
account the boundary conditions, one 6nds

(—~
I
2"„I~) = (t'rv/~)b,

(M I
2".

I ~)= (f~/~) (o—&).
(26)

We notice now that ~ is a large energy, greater than m.
This fact suggests that we look at the classical approxi-
mation. More precisely, if we deke the "variable
frequency"

(22) The boundary conditions are

n( —~)= I, P(+ ~)=0. (30)

The identification with the asymptotic behavior (25)
yields

~(t) = [~'+V.(t)]"'
[ttt'+ p,—='+[pt eA(t)]']—"' (27)

the classical approximation can be applied if «)(t) varies
slowly, i.e., if the dimensionless ratio ~(t)/(d (t) is much
smaller than unity. This ratio is given by

aZ(t) [P()—eA (t)]
&02 (tm'+p«2+Qg —eA(t)]'}'('

(~l &.I~)

$M

cxp «(& '+V(e)1"—))—t,
(34)

"'(t)=L / (t)]'"
p&')(t) =0.

In tcIIQS of the T matrix, this means
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~(t )
p(t) = dt'=e —p~x i&'i

2p~(t')
(35)

1 we have /fiJ = /P( — ) J and, from

~P(—~)~. Thi c b
in or the robability [Eq. (21)7:serted in the expression for the pro a i i

2+" pi(t)
dt——e

—2i«')
2pp(t)

d p

(2m)'
(36)

rrect we canTo convince oneself t a eh t th factors are corre
est order in the field:extract from (36) the lowest or er

4~2 3/2

dV 3

nize the familiar result of the classical

k d tt i hi h
air creation There-terms means no pair

t f th F th'r to o one sepy .
. /32' her -1-dolve the second Eq. w

1 '(t), ' ' (33. Tby its approximate value e
solution reads

limit in Eq. (37):
Tip ~ t) —2iC (t)e—2iOte
r, p 2pi(t)

11Ql-
Q~QO T

=2m- g B(mip —20) (cp('.

d p P B(nppp —20)jc j
2

(27r)' p

(39 )
(2pr)'

= c, with c given byWe have set (—,'eE)cpa/ c,

+ dg sing [pp —(eE/&pp) coax

cosx'+p '+[pp —(eE/ppp) cosx2' SE

eE —1/2x
Ig' mp+p '+ pp ——cosxg exp — dS fs

Q)p

&m cop))1, the discrete summation
1 d h ob-

37ability per unit time and unit vo um
reads

m a direct calcu-ith the exact result from awhich agrees wit e
de6neapro a ii '

eb b'lity per unit time,lation. ' In order to
d its vector potentialnow that the field an i s v

essentially van sish outsi e e
The pair creation rarate+ is t en

dW 1 d'p

(39b)

Ttp .~(t)
dt e "«'& . (37)

p tp 2M(t)

1 —-'T, —,'T, we takeD the time intervaDuring

2 (t) = (E/Mp) cosMpt . (38)
Thus

cos~pp t = [m'+ p, '+(pp —(eE/p~p)cosp~pt)'

t

x(t) = dt'~(t') =at+ C (t)

4~«~
'

p
' '

the field itself with fre-C ~t~ is periodic as e
1' dfnd 0 is a renorma izequency ~p,' an

eE2~ dx

Mp27r

2pp(t) 7e
—"~&'id the periodic function [pi t pp eLet us expand t e peri

AS aa Fourier series:

+—2i+ (t) C eincept2$

2pp(t)

we can roceed to the largeUsing this expansion, we can proc

'
s re uired to extractd' s the mathematics req

'
Let us now discuss
useeful informatioe

'
n from (39).

or c contains a very ry rapidly oscilla-
/ o.fre uencies o

evaluation requires

h d

to e inte ated is pe io
th t2O/, i

&+ th f bmore& in the strip-i —+&Rex
2 2

d —gp, h that both its real andd —Sp, where xp is such t a o
imaginary parts are posi ive

2 2 1/2,—(eE/cop) cosxp ——~(m +pi

0(Rexp( —,'p. , 0(Imgp.

n even function0 since c is anWe have assumed pp), ' '
n

of pp.
'cit condition we can computeutec bp

po
yy

k 1 I dlhe cuts are ta en a on
h h lo y

d
ex onential in suc a wa

idl .tion the function ecr-2 other iree ion



M BY AN ALTERNATING FIELDPAIR PRODUCTION IN VACUUM B Y A
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In the vlclnl y ot f the singularities thc cxponentlal 18

stationary. ere or,. Th fore the main contrlbutlons o
1Dtcgl Rl come f1oIIl this 1cglon.

o 6nd the best contour, ere must study ln
detail the topology of the surface of e exp

the nei hborhood of xo theThis ls sketched ln Flg. 1.In the n g—x ) ' ex t (x—xp) 't'g. eintegrand behaves hke (x—xo) p
nd end in the valleys o owingcoDtoUr must avoid so RIld cD

kth two steepest descent lines.. These lines ma e ane
tvlo arts], I'l ~ The contour ls then made o. vr pRDg C 3Z'. C

u d F around —So. Furthermor,
'

e lf ci andR1OUnu Xo, RD

c = —cy RIldc2 are their respective contributions, c~= —c~,
therefore

c=2& Imcy,

E I
GPo

$0

c —e. p — d* wP+p '+ p ——t:osx)
o o

exp x"' 2i(p, '+m') '"—sinxo
coo~

2x'x 3(do

Through a change of scale, the la,st Integral can be
rvritten

dg—exp(y'&2) .
, 2my

T econ ourh t I" is depicted in Fig. 2. Through the map-
circuitI' is transformed into a positiveping N=y, z is

I" 2 C ntour on integration I'q around the'IG. . on
lane.branch point in the complex g p

around the origin with end points at —~.Hence

We de6ne Doer the real qua, ntities A and 8 through

Q)o

2- 1j2&0 el
dx m'+p, '+ p8 ——cosx

~

G)0 p

(41)

@&here A is posltlve. i%'th this notation and the evalua-
tion of c) 'we obtRlll thc anal cxpI'cssloIl

(27r)'

e ual-modulus lines of the function—(eE/ p) cosx') 1'") needed in
Eq. (39a). The integration contour consists o q an

se ofial oint in 42) is the exponential decrease
e '", vrhich indicates, as expected, t at apar
essential threshold factors the pairs tend to be emitted
edith small momenta.

Th' allows us to estimate (42) as follows.

by the classical equation of motion.
(ii) cos'8 is replaced by its average value, ~~.



u'g(u) is rnonotonically increasing:

FZG. 3. The CurVe g(y} = (4/'7i-) JP' dyr (1—y')/(1+y'y')g'".

p

X III'+pip—
e2+2

(slnhz)
Alp

Making the change of integration. variable y= (eE/Ipp)
X (III'/PI')'~' sinhx we obtain

2(m'+p ') ' — 1—y'

cE p 1+y'IP p'(m'+Pis)/c'E'

I,et us de6ne the function

. (44)

I ] y2 I/Q

g(s) = — dy —, (45)
1+SPyP

where the normalization is chosen in such a way that
g(0) = 1. Using formula (44) for A and replacing cos'8
by ~ as discussed above, we obtain

dp' exp
~(Iu'+p') Ipp

g
—(III'-+P') '"

eE eE

or, with III'+P'= (eE/Ipp)'u',

(eE)'

187l M p

xeE
du u exp — u'g(u) . (46)

G)p

In this last expression appears the essential parameter

y =mppp/eE,

which ls tile 1R'tlo of tile two small quantltles (pip/84)/
(eE/III'). Up to now we have not made any assumption
on its size. Under the integral sign in (46) the function

These simplifications amount to multiplying the
result by a numerical factor. From Eq. (40) we get

xp ,'x+———4—s-inh 'L(ppp/cE)(IR'+ pp)1~'7. (43)

Then, the signi6cant quantity 2 is expressed as

,»l -I
~ &~0(.Z) (~2+2,2) I/2]

gh) =1—pv'+Oh"),
g(y) = (4/Iry) 1n(2y)+0(1/y) . (49)

In general g(7) ~(4/aery) sinh Iy is an almost uniform
approximation except for a factor of order ~sr for small y.
Hence

GE ~rg2
y(&1, m — --- exp

2m eE

The value for small y agrees indeed with the calcula-
tion of Sec. II apart from an inessential factor x, while
for large y (or cE/2mcpp((1) we find an amplitude of
probability proportional to the potential raised to a
power equal to the minimum number of photons neces-
sary to produce a pair, namely, 2414/Ipp. The general
formula (48) interpolates between these two extreme
situations.

The most optimistic data using presently available
optical lasers (frequency Ipp 3X10"sec ') correspond
to peak-fields of the order of 7X10"V/cm. These ex-
tremely intense fields can only be obtained in pulses
of order 10 sec and al e concentI'ated ln voluQles

10 cm . Our two small parameters are, under these
cll cumstances~

IIIpp/Iuc' 4X 10 ', eEA/III'cp 3X 10 4,

and, not too surprisingly, the parameter y is also small:

'r = 5$QJ pc/8E~ 10

indicating that the frequency plays no significant role.
Kith these numerical values the probability of pair
cieatloll ls zei'0 to R fRIltRstlc Rcclll'Rcy t ~exp( —10 )7.
Clearly the observation of the effect would require

u'a(u) & y'g(v) = —g(v)»1
up2 mp2 e+

This allows us to perform the integration and leads to
the Anal result

o.E' ~ms
w = ——— exp — g(y), (48)

2~ g(v)+2vg'(v)

where the smooth function g has been given in (45).

IV. DISCUSSION OF RESULT

In this section we discuss our final formula (48) and
make some numerical estimates using existing values
for the Geld and frequency.

The parameter y describes the transition from the
high-field, low-frequency limit (y«1: constant-field
case), to the low-field, perturbative regime (y))1). The
curve g(y) is represented in Fig. 3. One readily derives
from (45) that
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either an increase in the Geld, or in the frequency, or
both.

The condition for observing pairs in vacuum can thus
be summarized as

eE& m.m'g(y),

or, using the very good approximate form for g(y)
(4/n-y) sinh —'y,

5ZcdpC

sinh(A(so/4mc2)

Hence even if x-ray lasers would become feasible,
A&so/mc' would still remain very smal1 and the effect
could only be observed through a huge increase of the
intensity of four orders of magnitude.
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Neutron Polarization in ~-p Charge-Exchange Scattering at 310 Mev*
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We report the measurement of the polarization in the reaction m +p —+ x'+n at an incident-pion kinetic
energy (lab) of 310 MeV and at an angle of 30 in the c.m. system. The polarization was obtained from
measurements of the left-right asymmetry in the scattering of the neutrons from liquid helium at lab-scatter-
ing angles of 75' and 125'. The measured polarization is 0.24~0.07.

I. INTRODUCTION

HE experiment reported here was performed some
time ago as part of a program to obtain sufhcient

experimental data on pion-nucleon scattering at
T =310 MeV so that a unique set of x-X phase shifts
could be determined. Although this goal was only
partly realized, subsequent experiments and detailed
phase-shift analyses have established the m-E phase
shifts rather uniquely up to 1 GeV, and possibly up to
2 GeV.

Although the result reported here has been used in
some of the detailed phase-shift analyses performed
over the last few years, ' ' it has apparently been
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omitted in some of the others. ' ' Because of this, and
because our result has been omitted from a recent
compilation of pion-nucleon scattering data, ' we feel
that it should be properly published rather than only
be available in its present obscure form. ' '

Apart from the result of our polarization measure-
ment, the experimental technique of using liquid
helium as a polarization analyzer continues to be of
interest" "

II. MOTIVATION

In 1959 an extensive set of measurements was begun
on pion-proton scattering at an incident lab kinetic
energy of 310 MeV. Measurements were erst made of
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