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relation (14), taking into account the experimental
errors in frr/f f+ (0) . Fo.r details see Ref. 13, Chap. VI,
Sec. 4. (e) The fact that we explicitly avoided a Gold-
stone I~: meson is clear; if we had indeed the I~: meson
as a Goldstone boson, i.e., F„=O(1),"and correspond-
ingly m„2=0(P,), then the graphs where a x meson is
exchanged would have been of the same order as the
graphs we separated out in Fig. 1 and not of order
O(X'). Therefore, in the case that we have indeed a
Goldstone ~ meson, the results (5) and (6) would be
changed by extra contributions where a a meson is
exchanged. The diagrams are given in Figs. 5 and 6.

Thus we are faced with ~E and 1~x decay and annihi-
lation processes, so the modified equations (5) and (6)
are not very interesting. The main point is that in
case of a ~ Goldstone boson, the Ademollo-Gatto

(0~ Vp+' (0)
~

(k))=—iF,kp.

theorem is invalidated by these I~: terms. Alternatively,
one can derive in this case an Adler-Weisberger sum
rule for f+'(0) using the commutator

(~'(p) I
LF""7' "3

I ~'(p)) = (~"(p) I
&'I ~'(p) )

There, f+(0) is equal to 1 plus a correction of order 1,
since F„=O(1).

The only way to distinguish the two cases is to have a
precise experimental value for f~(0), i.e., a precise
value for the Cabibbo angle.
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We present evidence that a double-peaked resonance implies two nearby poles of the S matrix rather than
the interference of the resonance with a background where singularities are relatively far away.

'T was suggested by two of the authors' tha, t it is
& - possible for a single, inelastic resonance to exhibit
a double-peaked structure. In the example given in
Ref. 1, it was demonstrated that a non-Breit-Wigner
form for the inelasticity p could generate a. form for 6,
via the Ball-Frazer mechanism, which results in a
double-peaked resonance. Within the framework of
the analysis presented there, it was impossible to say
if the example actually corresponded to having only a
single resonance interfering with a background whose
singularities are relatively far away or whether there
were really two nearby poles of the Smatrix. ' 'Since then
we have attempted to generate double-peakedstructures
corresponding to a single resonance by using multi-
channel ND ' models and by using the inelastic single-

* Supported in part by the National Science Foundation
Technical Report Xo. 70—8.' P. Coulter and G. Shaw, Phys. Rev. Letters 21, 634 (1968).

2 By a "double-peaked structure" we mean that there is a dip
in the middle of a peak in the cross section as in Fig. 2. We do not
refer to the dips that frequently occur in nuclear-physics problems
near a resonance due to coherent interference with a complex
background.' By resonance we mean a peak in the cross section which is
associated with a pole of the amplitude on some unphysical sheet.
For a discussion of enhancements not associated with poles of the
S matrix see G. Calucci, L. Fonda, and G. C. Ghirardi, Phys. Rev.
166, 1719 (1968).

channel Frye-Warnock equations. We have not suc-
ceeded in our efforts to find a physically meaningful
example of a double-peaked resonance which can be
explained as a single inelastic resonance. We conclude
that a double-peaked structure in a single partial
wave must be due to the coherent interference of two
resonances.

We first tried to produce a double-peak resonance
within the multichannel ND ' framework. The non-
diagonal, unphysical cut terms were approximated by
a single-pole term; for the diagonal interactions, we
used four poles in the fi.rst channel and two poles in
the other channels. We worked with models containing
up to four channels where one of the channels was used
to produce a bound state which gave rise to a resonance
in the other channels when the interchannel coupling
was turned on. Despite considerable effort in adjusting
the input parameters, we were unable to produce a
double-peaked structure in which there was only one
resonance pole.

The reason for the failure of the ND ' model to give
the desired effect could be that the potential term is not
sufficiently complicated. We decided to assume a
double-peaked structure and then compute the form
of the potential term. We present an example of such
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a calculation for an S wave in which g has a Breit-
Wigner shape and 6 is modified from a Breit-Wigner
form in Figs. 1 and 2, so that it barely exhibits a
double peak. Since g and 8 are assumed to be known
in the physical region, we can compute the potential
term 8(s) in the physical region by using
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where I' denotes a principal-value integral and s~ is the
elastic threshold. The accuracy of the calculation can
be checked by inserting 8(s) in the Frye-Warnock
equations4 to recompute A:
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A =cV/D = (tie"' —I)/2fp—=T/p.

p is a kinematical factor and s~ is the inelastic threshold.
We assume a Breit-Wigner amplitude (l =0)

T =ra/pns' s i(ra+r—r)]—, (3)

where I'E is the elastic width given by

r, =&,( ss ) ~.

If we also assume

(6)

I'r=yr(s sr)' t', — (&)

where I'~ is the inelastic width, then 3 has no left-hand
cut and 8 is zero. Then we modify A as presented in

Fig. 1 from a Breit-Wigner form. We obtain, using

Eq. (1), the nonzero 8 given in Fig. 3, which is still
small by comparison to 8. Using this 8, we solve the
Frye-Warnock equations (2)—(4) and obtain an output
amplitude which agrees with the input amplitude to
within 1% and reproduces the double peak.

Unfortunately, we only know 8(s) in the physical
region. In order to continue 8 away from real s to
examine its singularity structure, we fit 8 using a
Pade approximant

m—1 m

8(s) = P a„s"/P b„s".

Pro. 1. (a) Inelastic factor resulting from the Breit-Wigner
amplitude t Eq. (4)j versus s. We use units 5 =c=1.The parame-
ters are s~=4, s~ ——6, y~=1, pl=1.189, $=(s—s~)'", I'=12.
(b) Phase shift (solid line):

01+0.1/I (s—12)'+0.5]9,
where BBg (dashed line) is the phase shift resulting from the
Breit-Wigner amplitude, in degrees.

~25

The computed form of 8(s) is shown in Fig. 3. Since 8
changes sign three times, we must at least consider

20 28 32

4 G. Frye and R. Warnock, Phys. Rev. 1/0, 478 (1963),
I o. 2. Plot of

~

T ~' versus s showing the doubled-peaked struc-
ture resulting from g and the solid line 8 given in Fig. 1.
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FIG. 3. The crosses show potential term computed from the solid curves in Fig. 1, using the dispersion relation, Eq. (1). Solid line
shows the Pade-approximant fit fEq. (9)j to this potential.

a = 11.87+1.59i, b = 12.01+0.29i. (10)

8 has two pair of complex-conjugate poles near the
resonance. If we use Eq. (9) as input to the Frye-
Warnock equations (2)—(4), we again obtain the graph
shown in Fig. 2.

m=4. The numerical fit to Fig. 3 is

(s —12.70) (s —12.01)(s —10.95)
8(s) =0.0039 —, (9)

(~—~) (~—~*)(~—&) (~—&*)
where

If the poles in 8 had been on the left, then this solu-
tion might have made sense physically. However, since
the poles are so near the resonance, the example is
entirely unrealistic. Using more parameters to 6t 8
does not eliminate the nearby poles. If the dip in the
resonance is made more pronounced, we obtain even
wilder behavior in B(s). Although we have not ex-
hausted all possibilities for producing double-peaked
structures in a single resonance, we regard it as highly
unlikely that such structure can be due to anything
but two coherent resonances. ' '


