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Bethe-Salpeter wave functions. Our discussion has also
shown how a superconvergent dispersion relation could
come about without the need to introduce spurious
mesons.

Clearly we cannot expect perfect agreement with
the data yet because we have oversimplified. There is a
spurious essential singularity at /=4M„', due to our
G-aussian approximation, which is not valid for large x.
This point in the timelike region is, of course, in the

physical region for Pp~ leptons. This and the small
discrepancies with the data for small q' can be remedied

by the selection of a more realistic wave function,
perhaps with an exponential tail. In the following paper
we give a formal treatment of the spin problem and
present the definition of the electromagnetic form
factor of the nucleons in a quark model. In a future
paper we hope to present detailed calculations which
include all the known vector mesons p, co, and P.
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We extend our relativistic description of composite particles to the case of clusters of spin--, particles.
From this, explicit expressions for the nucleon vector current form factors are derived. We find that the
nucleon's electric form factor has the form

G~(t) =~ 'So(—t/n) g q'G, &'(t),

where So is the nonrelativistic form factor, o.= 1 —t/4M', and q' is the charge and G;t, '(t) the electric form
factor for the ith quark. A similar expression is obtained for the magnetic form factor.

I. INTRODUCTION

N the preceding paper, ' we discussed spinless com-
~ - posite particles which behave as nonrelativistic
clusters in their rest frames. Here we generalize these
results to include spin. In particular, we derive explicit
expressions for the nucleon form factors.

We derive a substitution law for the relativistic form
factors which permits us to obtain them from the non-
relativistic form factors. We apply these results to the
quark model of the nucleons and find for the proton
electric form factor,

G„s(t)=n—'S„p q'G g'(t)
i=i

where 5„ is the nonrelativistic strong-interaction form
factor of the proton, t";b' is the electric form factor of
the ith quark, qi is the charge of the ith quark, and

rx = i —t/4M, '.
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A similar expression holds for the magnetic form
factor.

In Sec. II, to define our notation, we review brieRy
the description of elementary relativistic particles with
spin. This is generalized in Sec. III to the case of rela-
tivistic particles with an arbitrary complex internal
structure. In Sec. IV we consider particles whose
rest-frame structure is described by a wave function.
In Sec. V we relate the matrix elements of transition
operators to the form factors. We derive our formulas
for the form factors in Sec. VI. The proof of two
mathematical relations is delegated to Appendices A
and B.

II. RELATIVISTIC SPINNING PARTICLES

Let the ket
I pjrea) denote an elementary-particle

state with four-momentum p, spin j with s component
m in the rest frame, and other discrete quantum
numbers a.' 4 These states have the inner product

We denote an inhomogeneous I.orentz transformation
by (A,h). Let L„denote a pure Lorentz transformation
that takes the rest-frame vector p=(( )'p~', )0into p.

' E. P. Wigner, Ann. Math. 40, 39 (1939); V. Bargmann and
E. P. Wigner, Proc. Natl. Acad. Sci. (U. S.) 34, 211 (1966).

4T. Werle, Relativistic Theory of Reactions (Wiley, New York,
1966).
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Then

A(p) =(Ls„) 'Al. „
is aii element of the p little group corresponding to A.

Let D .'(R) denote the spin- j representation of the
rotation group. Then, as is well known, there is a
unitary representation U(A, h) of the inhomogeneous
Lorentz group defined by

U(A, h)l p, j,m, a)=e '~ '"IApj m', a)D ~ '(A(p)), (3)

where summ. ation over all allowed m' is understood.

III. COMPOSITE PARTICLES

The kets IPjma) can be written as tensor products

IPjma)=IP)al jma). (4)

The kets
I P) describe the c.m. motion; the nets

I jma)
describe the rest-frame structure of the particle. In the
simplest case, this structure consists of only spin and
unitary spin. In the more general case of a bound
cluster, it may be more complicated. We describe it by
aket IX).

The particle is then described by the tensor product

I p»=
I p&l»,

with the inner product

&P'»'I P») = &P'I P)&x'I x) (6)

In the rest frame the rotations are the only allowed
Lorentz transformations. We assume, therefore, that
there is a unitary representation of the rotation group
V(R) which acts on

I
X).Now we can define a represen-

tation of the inhomogeneous Lorentz group by

U(A, h)
I p X)=expL —iAP h]IAp&8 V(A(p)) I». (7)

IV. WAVE-FUNCTION CLUSTERS

Of special interest are composite particles which can
be described in the rest frame as a bound cluster of e
subparticles. We assume the subparticles have spin —,'.
Let the ith subparticles be located in the rest frame at
the vector position x;. Let the s component of its spin
be o.i and its unitary spin u;. We fix the c.m. to be at
the origin by

P x;=0.
i=i

The total ket is

lp(x;, n;, a, ;i=1, . . . , n}&,

with the inner product

&P', (x*',~*',a''}
I P, (x*,a*,a'}&

n

=2P'b"'(p —p') 2 e- II b-, ,-.,'b-;, -.,
perm' j=1

n —1

X IAP, (A(p).;, ,'.. }&Il D.. .."'(A(p)) (!1)
i=1

Not all combinations of the kets (9) will necessarily
correspond to physical states. We construct the physical
states as follows: Let (0'~ (l,m; xi, . . . ,x„)} be a set of
wave functions carrying angular momentum 1, m. Let
&xi x„

I
ss, ) be a Clebsch-Gordon coefficient for

coupling the e spins together to give total spin s, s, .
Let (lm, ss,

l jm) be the coefficient for coupling f and s
together and let (ai a„l a) be the coefficient for
coupling together all the unitary spins. Then we can
interpret

n —1

IP,A,JMa)=-p Q d'x; p p +~(im, x, x„)
~ ~ an msz

X &n, n.
I
ss.)&lmss,

I
J3II)

x&a," a. la)lp, (x,,~, ,a,}& (12)

as a physical state provided that we take the mass
square p' equal to the one appropriate for a bound state
of spin J, s component M, unitary spin cs, and internal
state A.

V. TRANSITION OPERATORS

To calculate scattering, we will need to know matrix
elements of the form

&P',B,j'm', a'I ji,"(0)
I P,A,jm, a) . (13)

Here ji,"(x) is some field operator carrying a tensor
index p and an SU(3) index b. This operator can be
written quite generally in terms of cluster kets as

n n'

j~'(x) =Z II II d'x' d'X~ d'p
i=1 j=1

X&~"(P,(x' ~' a'} (y»*» }) d'P'l P' (s» b}&

X(p,(, , }I *'"' "'*, (14)

where Z is an unknown function with the right support
and transformation properties. The sum in (14) goes
over all the discrete quantum numbers.

We will derive here a simple approximation for
jiI'(x) guided by the Breit-frame impulse appioxi-
mation of I. We make the additivity assumption

n

j '( )=2 j "()
i=1

Herea jis aperinutationof the subparticles; e =(X!) '
foi Bose statistics, sgns (Ã!) foi Fei.'Illi statistics, and
whatever is appropriate if sonic of the subparticles are
distinguishable.

We define U(A, h) on these kets by

U'(A, h)
I p, (x;,n;, a;}&=exp[ i—Ap hj



A. L. LICHT AND A. PAGNAMENTA

where jb;I' acts only on the ith subparticle. Each such
j&;~ can in turn be written as a sum of operators I'&;l"

which change kets of momentum p and mass m into
kets of momentum P' and mass m':

~ '(*)=2 d'p't(p")h(p"- ')
mm'

ized. to
u (P)u'(P) =~-e. (23)

In the p, p' Breit frame

u (p')u (p) =G(t,m', m)b. p, (24)

where G is a complicated function of t=(p' —p)' and
the masses. In the particular case when p'2= p2,

d'p 0(p') $(p' m')—P~„l (p', p) e '&~' —»*
G(t) = (2m)-'L(p'+ p)']'I'= (1—t/4m')'~' (25)

16 In general, we can write

As in I, we assume that the transition p ~ p' takes
place instantaneously in the p, p' Breit frame. Then

n—1

Jg;~(p', p)....=u (p')A„... {p',p)ue(p), (26)

where Aq, i' is a tensor built out of the p', p, and the y
matrices. We claim that

~ "{p',p) = II &'~ »"((x(},p', p), (17)
i~~"(*)= Z d'P 0(p")&(P"-m") d'P e(p')

mm'

where the integration is over the spatial coordinates
of the subparticles in the Breit frame. We assume
that E&;" changes only the SU(6) coordinates of
the ith subparticle. As in I, there will also be a factor
expL —Z(p' —p)p, ] in E, where $,= (O,x,).

Following the argument in I, a particle located at in
the Breit frame has a rest-frame coordinate

y'=~P(L. '(4 p(p -5')/p—')}
=UP(L„'$,) =H„$,.

Collecting all this, we assume that

"( ) =Z Z d'P' tt(p")~(p" ") d'P e(P'-)
i mm'

x 5(p' —m') Q II d'xj, expL —i(p' —p) (x+$;)]
n'naa' k=l

X
I
P' (Xn r ~' &')) II ~-; -,~.,'.,

Xh(p'-m')(L{p'+p)']'"Ã(t m'm)?')"-'

x 2 II «. ~(~'(p'+p))
n'na'a &=1

Xexpl: —~(P' —P) (~+4)] I
P' (H'&~' &') )

X II "(p') '(P)~-,'-,( "(P')A ".'(P', P) (P))'

X&P(H.4 ~)l
is Lorentz covariant.

To prove it we must show that

U(h, h)J&~(*)U(h, h)-'=LC~" (A)]
—'l'&"(Ax+ti), (28)

where C is the appropriate representation of the Lorentz
group.

Using Kqs. (27), {11), and (A1), we find that
U(h, h)j&"(g) U(h, h) ' is of the form

du(p', P &) expl: —i(p' —P)(~+4)]

Xp (p', p). ...);&p,(H,4, }I, (20)

V ~"(p' p)- -")'=&p'~''o''Ii ~'"(0) I p~'a') (21)

is the matrix element of the tensor operator j&,& be-
tween single subparticle states extrapolated o6 the i
subparticle mass shell. The indices ni and ai always
refer to the ith subparticle, but in the following we will
drop the subindex i as was done on the right-hand side
of (20).

We show now that the expression (20) can be written
in manifestly covariant form. Ke note that'

L(P+P')']'" ""II d'4~((p+P') 4)=II d'*' (22)

when evaluated in the Breit frame.
Let u (p) be a Dirac spinor with four-momentum p,

s component of spin in the rest frame 0., and normal-

XexpL —zh(p' —p)h] ~AP', (Hq~ A)p'))

«A„«.,«,» I II De. ~ {Ap').--{P').e{p)

XDe '"*(Ap)Dp -"'(AP') (P')A "(P',P) '(P)

XDp~'"*(Ap), (29)

where dp, is a manifestly invariant volume element, and
where we have suppressed unnecessary indices.

Using (31), we see that

De "'(AP')u (P') u'(P)De "'"(AP)
A~

=us'(AP')S(A) S-'(A)u&(AP)
A~

j.=ue'(AP')
i u~(AP), (30)
&PC~"(A)] 'A "(Ap Ap' Ak)
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since, by construction, and by the properties of the p
matrices,

S(A)A&(p', p, g)S(A)
—'=LC~"(A)5—'A"(ttp'spa&). (31)

The assertion (28) now follows upon making the change
of variable p, p', $ ~A 'p 4 'p' A '$

VI. MATRIX ELEMENTS

In this section we express the matrix elemen. ts of the
transition operators between the states of Eq. (12) in
terms of the nonrelativistic form factors.

Let qP be the two-component spinor which generates
I by

VII. NUCLEON VECTOR FORM FACTORS

As an example, we work out the vector form factors
for the nucleon. We use the quark model. In this model
we have

l=0, B=A, j= ~, and v=3. (39)

For simplicity, we assume the spatial wave function
to be symmetric under all permutations of the quark
position vectors.

The wave-function part of the form factor is

(p'Aool pAOO);=n 'Sg( —t/n) (40)

and is independent of the quark index i. Here S is the
nonrelativistic form factor

Then we can write

u (p)= oi (32)
Sp(q') = II d'x,

l P~({x,})I
'e—'&'*' (41)

(u" (p')A...&(p', p)u (p));= (qp' B&.,.~y );, (33)

where Bz,;f" is a matrix operator acting on the spin and
SU(3) indices of the ith subparticle.

Let
I
ss,a) be that part of the rest-frame ket of the

cluster which carries just spin and SU(3) indices. The
operator 8 can be considered as acting on these kets.
We also introduce the form factors

&pBVm'I pAlm)

where the integral is to be evaluated in the p+p' Breit
frame. This is the spatial wave-function part of the
matrix element. Then

&p'Bj'm'a'Ii»~(O)
I pAjma)

&p'Bl'm'
I pAlm)z&j 'm'I l'm's's, ')

which is a function of g' only, because of the rotational
invariance of the wave functions.

We assume that the current operator jz,t" is diagonal
with respect to isospin and hypercharge. The single-
quark matrix element of Eq. (20) is then

(p ' 'I '"(o)lp ' ')= 't.;.; "(P)LF''(t)"
+iF '(t) o I'"q„M~ '5u *(p)

—. (4'2)

Here q&' is the b charge carried by the ith quark; t is
(p' —p)2=q2. F and F,2 are scalar functions of t

Expressed in terms of spinors qP' in the rest frame of A,

&P'n''a''I j ~'"(0)
I
Pn'a'&

= q, S...y" LG'(t), —iqX n(2M)-'G'(t)5y. (43)

G,'(t) =F,'—(q'/4m) FP,
G,2(t) =F + FP.

The b-vector form factor can now be written in the
Breit frame

ZZ'tnt'ttzaz'

X(lmss,
l
jm)(s's. 'a'I B»I'I ss,a). (35)

When p'=p"=M~', the spatial wave-function
simpli6es to

&p'A
I j,~(0)

I
pA&=n-'s, (—t/n)&xlB Ix&, (45)

where IX& is the rest-frame SU(6) ket and the com-
part

ponents of Bl' are

&p'Bl'm'I pAlm)
=n o "&~'Seg"(—(p' p)n '~', l'—m', lm),

where
n = 1 t/4Mg'—

(36)

(37)

B'= Q qg'Gg'(t)

3= —i(2M)
—' g qb'qXn'Gt, '(t)

(46)

and 5~~~ is the nonrelativistic form factor

Se~'(q, l' '
mt)m

d'x, Pe '((x,})f~„'((x})e '&'*". (38)

Here g is the momentum transfer evaluated in the Breit
frame. The Pauli matrix e' acts only on the spin
coordinates of the ith quark.
The vector operator

C= g q 'n'G~P(t) (47)

The proof of this is the same as for the corresponding
result in I. can, in principle, connect states with different spins.
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That part of C, C~, which connects only nucleon large negative q'. We shall show that, the above pro-

states of spin —,', must be proportional to the total spin cedure provides a significant improvement over the

operator dipole fit.
APPENDIX A

or=Pe; (4g)
Here we prove the relation

or
C~ =Dg (t) er. (49)

A(p')H„J=Hb„A(. (A1)

We obtain the proportionality factor D& by taking
the expectation value of the third component C3 in a
spin-up nucleon state

D.(t) = &-: —:~lc. l-: —:~)

The expectation value of the z spin of the ith quark
in' is

We have, by definition,

A(p')H„&=A(P') VP{L„'A(P')$} (A2)

= VP{A(p')L„-'A(p')(}, (A3)

since a, pure rotation commutes with VP (taking the
three-vector part). The right-hand side of (A3) can be
simplified step by step since

and this yields

Dg(t) = Q qb'b;Gb, 2(t).

(51)

(52)

(A4)A(p')L~ 'A(p')i=Le~ 'AL~ 'Au k

=J.p„'AA„(
= I-..-'AL~- p(p ~)/p'j
=L.. 'LA~ Ap(p ~l/p'-)3—

~.; G» "(t)= &P'2s'~ lib" (o) IP2»),
—(b/2~) qx (ls'~

I
~

I lsd )G» (t)
=&P l"~l~ (0)lpl »,

(53)

It is customary to define the b "electric" and "mag-
netic" form factors for 3 by

(A5)

which is all tha, t is needed to prove (A1).

APPENDIX B

Here we prove the transformation law for spinors

where all quantities are to be evaluated in the Hreit
frame. From this we get

aild
Ds.'"(A„)u (P) =us(AP)5(A)

u (p)D s'""(A„)=5 '(A)m~(AP),

(81)

(82)

GbA (t) o SA Q gb Gb' (t)
s=1

Gb~~(t) =n 'S~ —Q qb'b, GbP(t).
a

VIII. DISCUSSION

(56)

5(A)tb (p) =ut (A„)Cp, (84)

which were used in our proof of covariance.
We define the n~(p) in terms of boosted rest-frame

spinors by
~ (P)=5(L.)bb (P). (83)

The spinor 5(A)bt (p) is then some linear. combination
of the n (Ap),

We have developed a general method for writing
form factors for bound clusters of spin-~ particles.
Here we ha,ve applied the procedure to the quark model
of the nucleon to derive the vector current form factors
for the nucleons.

It should be borne in mind that these results rest on
the validity of a particula, r kind of impulse approxi-
mation. Namely, we have assumed that the transition
from the initia, l to the final cluster state takes place
instantaneously in the Breit frame. This seems reason-
able, but we have a,t present no way of testing this
assumption other than by comparing the results with
experiment. This requires as additional input some
information about the wave function.

In a future article we shall present the results of a
realistic calculation of the different electromagnetic
form factors of the nucleons. From our derivation it is
evident that our method is relevant in the spacelike
region and will give the most significant corrections for

with some coefTicients C~ . By (83) this is

5(A)5(L.)& (p) =5(L~.)~'(P)Cs-
Thus,

(85)

y'5(A) "y'= 5(A)—' (810)

5(Lb„) '5(A)5(L„)n (p)=ib (p)Cs, (86)

or, by (2),
5(A.)~ (P) =~'(P)Cs- (87)

Now, for p')0, 5(A„) is a representative of a rotation
and we choose the basis spinors n (p) so that we get
exactly

5(A ) (P)= '(P)Dp-'"(A ) (Bg)

which implies Cs =Dp '"(A„). Equation (84) is then

5(A)bb (p) =us(A„)Ds. 't'(A„) . (89)

Equation (81) then follows by the unitarity of the
D~ "' and the relation


