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We give a relativistic description of composite particles which behave as nonrelativistic clusters in their
rest frames. We And that the relativistic form factor can be obtained from the nonrelativistic one by the
substitution S(t) =n&& "&&sSo(&t

~
/n), where a= t t/(4—cV~'), and where &r is the number of subparticles in

the cluster. An excellent one-parameter 6t to the magnetic form factor of the proton is found.

I. INTRODUCTION

l 'HERE are many composite systems which at low
energies are adequately described by nonrela-

tivistic wave functions. We think primarily of atoms
and nuclei but we can also include the elementary
particles if we accept a quark' or a parton model. '

Wave functions and nonrelativistic form factors are
frequently used in the calculation of high-energy
processes which involve one or more composites. ' It
has never been shown, however, how these wave
functions should be boosted to relativistic velocities
and how this a6ects the form factors which enter the
differential cross sections.

We give a relativistic description of composite
particles which behave as nonrelativistic clusters in
their rest frames. In this 6rst discussion, we treat
spinless particles and clusters only. We find that the
relativistic form factor S(t) can be obtained from the
nonrelativistic Ss(l tl ) by the substitution

where

and e is the number of particles in cluster A, M~ is
the rest mass of cluster A, and t (&0 for elastic col-
lisions) is the square of the four-momentum transfer.

In Sec. II we establish our dehnitions by introducing
the nonrelativistic quantities. Our main result is
derived in Sec. III by boosting the nonrelativistic wave
function. In Sec. IV we derive the simple substitution
law for the elastic form factors. In Sec. V we apply our
results to the magnetic form factor of the proton. We
find an excellent one-parameter fit. In Sec. VI we
compare our wave-function definition of the form factor
with the dispersion approach and compare the analytic
structures. Our approximations are emphasized in a
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critical discussion in Sec. VII, where we also indicate
some generalizations of the present work.

II. NONRELATIVISTIC CLUSTERS

Consider a spinless cluster A formed from m identical
spinless bosons. We describe A in its rest frame by a
wave function &P~(x, . . . ,x„). The x; are the three-
dimensional coordinates of the subparticles relative to
the c.m. We fix the c.m. at the origin by

g x,=0.

V;(Z, t) = (2&r) ' ds&7dett&'"'+'s *V (t&&q)' (7)

Bose statistics require &P to be sytnmetric under all
permutations m of its arguments

&p~(x t, . . .,x.„)=&p~(xt, . . . ,x„).
In this first study we assume that A itself be spinless;
therefore, &P must be rotationally invariant,

&pA (1&xi, . . .)Mn) =&pA (xt). . . )x~)

for all rotations R
To introduce the nonrelativistic form factor, we let

A have the total four-momentum p = (ps,p) and denote
the c.m. coordinates by (t,X). We describe the c.m.
motion by the plane wave

&t „"(X,t) = (2rr)
—s&' expl —

s(p&&t
—x p)j. (4)

In the nonrelativistic limit, the total wave function
is simply the product

&P„~(X,t; xt, . . ,x„)=&t&„."(X,t)&Pg(x, , . . ,x„) (5).
of the c.m. and internal wave functions.

Suppose A interacts with an external potential V;
which only acts on the jth subparticle. After this
interaction the cluster is in a state 8 and carries four-
momentum p'. The nonrelativistic matrix element for
this process is

n—1

(p'Bl V, l
pA)= d'Xdt II d'*;p, *(X,t)p *({,})

i=1

X V;(X+xft)P~"(X,t)&P~({x;}). (6)

We introduce the Fourier transform of V by
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Fxo. 1. The transition (A,p) -+
(B,p') as seen from an arbitrary
Lorentz frame. The shaded region is
the transition region. Fxo. 2. The transition (A,p) ~ (B,p') as seen

from the Breit frame.

We see that Kq. (6) may be written as

(p'a
I v; I pa) = (2~)- s, (—(p —p')2)

xv, (p"—p', p' —p), (g)

where we use the nonrelativistic form factor

»~'(lql') = ll d'*A *({x})~"*'V~({x~}) (9)

This function is independent of j by Bose sylIUnetry,
Kq. (2), and it is a function of q' alone by Kq. (5).

III. RELATIVISTIC CLUSTERS

In the relativistic case we expect the total wave
function to be of the form

pg" (sxg, . . . ,x„)=y„"(s)tpg&(xg, . . . ,x„), (10)

where s= (t,X) is the c.m. four-position. Here f~&({x;})
is some sort of single-time internal wave function. The
x; here are relative coordinates in a frame which will

be determined below. We expect P~" to depend on p
since the internal spatial structure will be Lorentz
contracted in the direction of motion.

We assume now that the matrix element of the
potential (scalar interaction) can still be written as

(p'alv, lpga)= dsg d'x, p~*"(»{x,})
i=1

X l't(X+xt t)4'~"(»{x~}) (11)

This amounts to assuming that when the c.m. is at
the point (t,X), the jth subparticle is at (t, X+x,)
where it interacts with the potential. The interaction
is therefore assumed to be instantaneous. This is a
physically reasonable approximation, and we show

below that it is optional if we take the xi in the Breit
frame.

In Fig. 1 we show how the cluster A goes over into
8 in an arbitrary Lorentz frame. The clusters are
moving in the directions of p and p', respectively, and
are Qattened in the direction of motion by Lorentz
contraction. The interaction region AJ3 (shaded in

Fig. 1) varies rapidly with time as the two flat struc-
tures pass through each other. Therefore, we can not
in general speak of an instantaneous interaction in such
a frame.

In Fig. 2 w'e have drawn the same transition seen
in the Breit frame. This is the center-of-momentum
frame for the two four-vectors p, p'. In this frame
0 = ((m~'+p')"' p) and p' = ((m~'+p')"' —p). The

two clusters are moving in opposite directions, each
being very Sat. In this frame the interaction is clearly
more nearly instantaneous than in any other.

By the above we can interpret the four-vectors

$,= (O,x;) as the relative coordinates of the jth sub-
particle in the Breit frame. The c.m. of the cluster is
located at s= (t,X), so the jth subparticle is actually
at s;=s+$,.

We assume in the following that the subparticles
are all bound in the cluster 2 and that their relative
motion within A can be neglected (impulse approxi-
mation). In this approximation each subparticle is
moving on a world line W; parallel to p as shown in

Fig. 3. I.et 8'p denote the world line of the c.m. The
Breit-frame coordinate $, at which the interaction
occurs is therefore the point of intersection of 8'; with
the hyperplane t =s'.

Each world line is specified by knowing s and the
four-vector q, which goes perpendicularly from 8'p to
lV;. From Fig. 3 we see that

where

is the matrix that projects out four-vectors orthogonal
to p.

Let Z~ be the hyperplane orthogonal to p which

passes through s. The vectors q; give, in the Breit
frame, the positions of the subparticles in Z„relative
to s.

Let p be the pure positive timelike vector
p=((p')'~', 0) and let L~ denote the pure boost which
takes p into p,

L~p= p.

The frame in which p =p is the rest frame of cluster A.
There is a one-to-one correspondence between the

FIG. 3. The world lines of the cluster A as seen in the Breit
frame. W'0 denotes the world line of the c.m. s. The jth subparticle
moves along 5";.
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p= (EA) P)
q=p'.-p =(E —E';2p)

p'=(E —p)

It can easily be shown that in the Breit frame

L(p'+ p)-']"'d'&. &(&. (p'.+p)) =&'*-(22)
Ili the Breit frame, the 6 function constrains $1, to

be (O,xi,). Let us also introduce H„by
FIG. 4. The kinematics in the Breit frame.

four-vectors g; in Z„and spatial vectors y; in the
rest, frame given by

H~fi, =VP(L„'6(p) (i) .

Now we ca,n write Eq. (19) a,s

n—1

(23)

(O,y~) =I-u 'n~ (14) .5-(p', p) = L(P'+P)&"-""II «'~ «~' (P'+P»

The configuration of the subparticles is given in the
Breit frame by the four-vectors $= (O,x,). Combining
Eqs. (15) and (12), we see that the same configuration
is determined in the rest frame of 3 by the vectors

where
X|Pa'"({H„&i,})e '&~' "i'&"|P~({H $a}), (24)

n—I

(O,y, ) =L. 'Z(p)(o, x,). (15) (25)

n—1s, (p', p) =- II d ~„p "(vp{L,„-~(p)(o,x,)})

Xe"' " "'0 (Vp{L' '~(p')(O» )}) (19)

This is independent of j because of Eq. (2). We show
now that it can be written in the manifestly covariant
form

&a~ =~a~((p' p)')—
Let $i, be an arbitrary four-vector

$i = ($a', 4)

(2o)

(21)

Summarizing, we repeat that y; is the vector part
of the rest frame coordinate of the ith subparticle. It
is obtained from the vector part of the Breit-frame
coordinate xi by the transformation which connects
the two frames (15). We assume now that both ob-
servers can describe a given matter distribution, each
one in his own frame, by a probability amplitude
which is a function of the three vectors only (single-
time formalism). Both observers see the same distri-
bution but each describes it in his own coordinates.
Therefore, we identify

0~'({x'})=0~({y'}), (16)

where |Pz& is the probability amplitude for the moving
observer and tf ~ is the wave function in the rest frame.
The coordinates x, and y, are connected by (15).
Substituting (15) into (16), we see that the moving
observer must use the wave function

p, ({x,})=p&(Vp{J.;is(p) (O,x,)}), (17)

where VP denotes the vector part of the four-vectors
in parentheses.

Prom Eqs. (7), 10), and (11) we find that we can
write

(P'Ill I'
I p~)=(2 ) '~ (P',P)I'(P' P), (»)—

where the relativistic form factor is, using (17),

The rotational invariance expressed in Eq, (7) implies
that |pz({y&})is a function of the scalar products y,y;
alone,

tt. ({y.})=4({y' y~}). (26)

For an arbitrary vector $&, we can compute the Lorentz
scalar product

p Lu '~(p)4=Imp ~(p)t~
=p ~(p)&~=O. (27)

Therefore,
I- ~(p)~.= (O,H.~.) (28)

H„~& H p, = —(I.„-'s(p)~&,I.„-'s(p)~ )
= —~'~(p)ti, (29)

which is a manifestly Lorentz-invariant term.
Introducing Eqs. (26) and (29) in (24), we see that

n—1

~-(p,p)=L(p+p) «-- II «~, ~«, (p+p»

X4*({—(a&(p')$i})e *'"' """
X4({ b~(p) 6}) —(3")

This is manifestly I orentz invariant, and we see that

Sax(p', p) =Sax((p' —p)')

is a function of the four-momentum transfer only.

IV. ELASTIC FORM FACTORS

Of special interest is the case 8=A which applies in
elastic collisions.

The kinematics of the Breit frame are shown in Fig.
4. We take the s axis along P. The x and y directions are
then not aAected by the boost operators J~ and 1.„.
We can therefore represent these boosts as 2)&2

Thus I.~ 'A(p)gi, has a zero time component and can
be written
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matrices acting on the t, s coordinates alone. Thus,

(32)

I'IG. 5. The photon-proton vertex
under the assumption of p dominance
is represented by the product of the p
propagator (1—t/m '} ' and the
strong proton form factor 5(t}.

~~~r r r r r r &

where M~ is the rest ma. ss of the cluster A and E~ is
its energy in the Breit frame. Also,

The boost I.„ is obtained from L„by exchanging
A ~8 and p+-+ —p. Also, I.„'=I.„=I.„.Now from
(13),

which becomes

The dispersion along the s axis in the Breit frame,
As', is therefore

d s'= (Mg/Er, )Ds,

where As denotes the dispersion in the rest frame. By
the uncertainty principle the momentum scale factor
hp' must be changed by

0p' =Ap(Eg/M~) .

The nonrelativistic form factor S'(q') should be a
function of q'/(hp)'. Therefore, we expect the rela-
tivistic form factor to be a function of

Similarly,
H, &~ = (0; ~~,yn, (&~/M~)su)

H~ 4=(0;*~,y~, (&~/Ma)sa) (34)

If now @—:A, the form (30) can be slmphfled con-
si.derably. %C get V. PROTON ELECTROMAGNETIC

FORM FACTOR

&&exp(2ip p s;). (35)

This can be related to the nonrelativistic form factor
by the substitutions

s~= (M~/&~)sa', ~a=~~', y~=y~'.

The energy in the Breit frame is related to the momen-
tum transfer by

As a simple application of our results, we show how
the proton electromagnetic form factor as computed
fI'om GRusslan wRvc functloIls ls modlflcd ln R wRy
which greatly improves agreement with experimental
data

In the three-quark model, the wave function of the
proton ls often written as

P(xg,x2,x,) =tV expL ——,'u'(xP+x22+x32) j, (43)

vilth thc constI'Rlnt x3 = —xy —xg. This GausslRn foITQ

is preferred because the quarts are assumed to be
bound in very deep potential wells. For such a deep
well, the ground-state wave function is well approxi-
mated for small distances by a Gaussian. This would
be the exact solution for a harmonic-oscillator potential.

The nonrelativistic form factor corresponding to this
wa,ve function is

Eg = (M~'+-,'q')'t' and q' = —q' =t.

Therefore, we And the simple substitution law

S»(t) =n&' "'~'Sg,P([tl/n),
with

a =-1 t/4M~'—

(37)

(38)

(39)

S'(q') =expL —q'/(«') 3, (44)

a Gaussian in
l q l

. The photon-proton vertex is shown
in Fig. 5. Neglecting spin and relativistic corrections,
we expect the proton magnetic form fa.ctor to be given

by
G, (t)/t = (1—t/m, ')-'S"(t) .

Note that for elastic scattering, 1&0.
This result has a simple interpretation. In the Breit

fl RBlc thc wave pRckct, which dcsc11bcs the ln ternal
con6gul ation of the cI.ustcl ) ls coBt1.acted 1A thc 2

direction by a factor (1—P')'"=M /L~~~. The overlap
integral shouM therefore be decreased by (Mz/Eg)" ',
a factor M/E, coming from each s integration,

Here p is the proton magnetic moment and we have
assumed that the photon couples to each qua. rk only
through the p meson. 4 Equations (44) and (45) predict
an exponential decrease of G»(t) with ltl. This con-
tradicts the experimental information which is closely

4N. M. Krojj, T. D, I,ee, and B. Zumino, Phys. Rev. 15'7,
13't6 (196't).
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)51 I I I l I I I t I 4 I I t l I 4 I 4 l I I I I l I metric distribution. Using (44), we find

(r') = 4I
' or (x') = 1/3a'.

It is suggestive to take

(50)

D
I&x

LO

a. K

f SLAC data

0,5 t I I I l I I I I I I I I I l I I I I l I I I I I

0 5 )0 )5 20 25
-t(GeV/c)2

FrG. 6. Comparison of Eq. (47) with the SLAC data
(Ref. 5) and the dipole ht.

represented by the empirical form5

~-(t)/t -(1—t/o 71) ' (46)

If instead we apply our relativistic corrections to
the strong-interaction form factor in (44), we find

(x') =35„',
the Compton wave length of the nucleon. This gives
in (50), a'= t33f~',—which is the value found from the
data (48). The interpretation is straightforward. The
quark form factor gives the nucleon a dimension M„',
while the 6 propagator, representing in a simplified
manner the effect of the meson cloud, increases the
nucleon's effective diameter.

VI. ANALYTICITY

According to dispersion theory, ' the form factor S(t)
should be analytic in t, with a cut on the positive real
axis from a lowest threshold t=ta to +aa, and with

possibly some poles between t =0 and t = tp.

We claim that this behavior can be obtained by a
proper choice of wave functions. We prove this for the
subparticle numbers m=2 and v =3. The generalization
to higher e is straightforward.

For two subparticles, we have

—1-
Xexp 1— . (47)

6u' 4M„'
S,(q') = d'x e' 4'*I It (x) I

2 (51)

We note that the relativistic corrections have the
effect of removing the objectionable exponential falloff.
Moreover, we see that the observed

I tI ' behavior of
the proton form factor can be accounted for by one
term

I tI ' coming from an intermediate meson, and
another one coming from the relativistic contraction
factor.

The result (47) is very close to experiment. ' In fact,
for large q', it is much better than (46). We can consider
it as a one-parameter fit and adjust a'. This has been
done in Fig. 6, which shows the 6t obtained for

23' '/3a'=2. 001 or a'=-'M' '

Then

It (*)=

I It (~) I

'=

dv tp(v)e ""r '"

Po

(52)

(53)

where pp=2pp and

e(t)= dvt dv2 tl(tt —vi, —vg) tp(vt) 4p(v2) . (54)

Consider, for some weight function tp(v), the wave
function

This gives

( 444') (1 t/444')—

We cannot expect detailed agreement yet since we ~(t )
have neglected spin and we have oversimplified the Sa(q') = 4tr dtt
photon quark coupling. po P +q

It is amusing to note that the value (48) for a' can
For I=2 we find (38) the relativistic form factor

make Fig. 6 a parameter-free prediction. The mean
square radius of the quark wave function is given by
(9):

(55)

(56)

S.(V')
I
"=o.

dg
(49) After some algebra this can be written as

+1(2 44tr2 lr(t4)dt'
S(t)= 1—,(57)

4ilrl' „(1—t'/4M') (t' —t)
On the other hand, (r') =3(x') for a spherically sym-

~ D. H. Coward et a/. , Phys. Rev. Letters 20, 292 {1968);P. N.
Kirk et al. , Stanford Linear Accelerator Center Report No. 6S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev.
SLAC-PUB-656, 1969, (TH) and (EXP) (unpublished). 115, 731 {1959).
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where
Pp

tp—
1.+tzp/4M'

where 8 is some unit vector. As t approaches the
positive real axis above 4' from above, this goes to

S(t+zp) e
—zm (1—n) /2(t/4Mz ]) (1—n) /z

(58)

This S(t) is cut from t =tp to +~. The cut from tp to
4M' is arbitrary. Its discontinuity depends directly on
the function. (r(/z). The cut from t =4M' to pp comes
from the Lorentz factor (1—t/4M')+'/'.

For three subparticles, the form factor is

n—l
XZZ d'x, ~f((xz})~'e'&"" '/~"&'"n x. (66)

i=1

S(t+ip) —S(t—ip) =0. (67)

The integral gives the same limit when the real
axis is approached from below. The Lorentz factor,
however, gives a factor of expLizr(1 —n)/2]. Thus,
when n is odd, n =2nz+1, we get, for t) 4MP,

Sp(ti )= dzxzdzxz e'z'*'~ $(xz,xz)
~

'.

We consider the wave function

(59) When e is even, m=2m, we find

S(t+zp) S(—t zp)—= —2z( —1)
~

t/4Mz 1~ (' "&/—z

Xintegral. (68)

f(xz,xz) = dv &p(v)e ""R—'/', —
(60)

where E= (xP +x z+ ~x, +x p~')"' Then

d/z (r(/z)e &eE ',

with o(/z) as given above (54). After doing some
integrations, we 6nd

"ds W(s)
Sp((l') =

so s+Q
(61)

where sp=3pp and

W(s) =

From this we get

(s/3)'/' 3 2 3/2

dl (r)(~ —
) (62)

where

S(t) =
W(s(t'))dt'

(1—t'/4M') (t' —t)
(63)

s(t) =—
1 t/4M'—

Sp

tp

1+sp/4M'

(64)

S(t) = (1—t/4M')(' —"&/'
ZZ d's;j |t ((xz}))

'

Xexp(iL —t/(1 —t/4M') j'/'Zl xz) I (65)

which has the correct analytic structure.
We observe from (63) that, for n =3, there is no cut

in S(t) above 4Mz. When n=2 there is a purely kine-
matic cut from the Lorentz factor (1 t/4M')+"'. This—
result is actually more general. It depends only on the
parity of e, because, in general, we have

We interpret the cut below 4M2 as due to the internal
structure of the cluster. Our wave-function approach
does give this cut. The part of the cut above 4' is
mostly due to cluster-anticluster scattering. Our form
factor could be corrected for this by using it as the
input term in a Bethe-Salpeter equation for the form
factor. ~ The singularity of 4%2 is, however, quite
distant from the region t&0 which is the one of interest
in our study of the nucleon form factor.

The t ' falloff of the electromagnetic form factor
comes from the combination of meson propagator and
wave function, each of which satisfies a dispersion
relation and goes as t '. If the product is rewritten as a
single dispersion relation, this implies trivially a super-
convergence relation.

VII. DISCUSSION

We have shown how the nonrelativistic definition of
the form factor can be extended into the relativistic
domain by Lorentz-transforming the variables of the
rest-frame wave function into the Breit frame and
rewriting the results in covariant form. This led us to
the substitution law (38). In. Sec. V we have used our
results to compute the magnetic form factor of the
proton. Our 6t which for large q2 is a double pole
agrees quite well with the data. If our t ' falloff is
confirmed, this would provev 6nite compositeness of
the proton. A steeper falloff would imply a higher
degree of compositeness (38).

In Sec. VI we have shown how to reconcile the
wave-function definition of the form factor with the
dispersion approach. We have shown that it is possible
to find wave functions such that the form factor has
the correct analytic structure below t=43E„2. To get
the right analyticity above 4M„2, one would probably
have to give up the single time formulation and use

7 D. Amati, R. Jengo, H. R. Rubinstein, G. Veneziano, and M.
A. Virasoro, Phys. Letters 2/B, 38 «'1968); M. Ciafaloni and P.
Menotti, Phys. Rev. 173, 1575 (1968).



A. L. LICHT AND A. PAGNAMENTA

Bethe-Salpeter wave functions. Our discussion has also
shown how a superconvergent dispersion relation could
come about without the need to introduce spurious
mesons.

Clearly we cannot expect perfect agreement with
the data yet because we have oversimplified. There is a
spurious essential singularity at /=4M„', due to our
G-aussian approximation, which is not valid for large x.
This point in the timelike region is, of course, in the

physical region for Pp~ leptons. This and the small
discrepancies with the data for small q' can be remedied

by the selection of a more realistic wave function,
perhaps with an exponential tail. In the following paper
we give a formal treatment of the spin problem and
present the definition of the electromagnetic form
factor of the nucleons in a quark model. In a future
paper we hope to present detailed calculations which
include all the known vector mesons p, co, and P.
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Wave Functions and Form Factors for Relativistic Composite Particles. II
ARTHUR LEWIS LICHT AND ANTONIO PAGNAMENTAt'

Department of Physics, University of Illinois at Chicago Circle, Chicago, Illinois) 61801
(Received 6 March 1970)

We extend our relativistic description of composite particles to the case of clusters of spin--, particles.
From this, explicit expressions for the nucleon vector current form factors are derived. We find that the
nucleon's electric form factor has the form

G~(t) =~ 'So(—t/n) g q'G, &'(t),

where So is the nonrelativistic form factor, o.= 1 —t/4M', and q' is the charge and G;t, '(t) the electric form
factor for the ith quark. A similar expression is obtained for the magnetic form factor.

I. INTRODUCTION

N the preceding paper, ' we discussed spinless com-
~ - posite particles which behave as nonrelativistic
clusters in their rest frames. Here we generalize these
results to include spin. In particular, we derive explicit
expressions for the nucleon form factors.

We derive a substitution law for the relativistic form
factors which permits us to obtain them from the non-
relativistic form factors. We apply these results to the
quark model of the nucleons and find for the proton
electric form factor,

G„s(t)=n—'S„p q'G g'(t)
i=i

where 5„ is the nonrelativistic strong-interaction form
factor of the proton, t";b' is the electric form factor of
the ith quark, qi is the charge of the ith quark, and

rx = i —t/4M, '.
* On leave froni the U. S. Naval Ordnance Laboratory, White
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A similar expression holds for the magnetic form
factor.

In Sec. II, to define our notation, we review brieRy
the description of elementary relativistic particles with
spin. This is generalized in Sec. III to the case of rela-
tivistic particles with an arbitrary complex internal
structure. In Sec. IV we consider particles whose
rest-frame structure is described by a wave function.
In Sec. V we relate the matrix elements of transition
operators to the form factors. We derive our formulas
for the form factors in Sec. VI. The proof of two
mathematical relations is delegated to Appendices A
and B.

II. RELATIVISTIC SPINNING PARTICLES

Let the ket
I pjrea) denote an elementary-particle

state with four-momentum p, spin j with s component
m in the rest frame, and other discrete quantum
numbers a.' 4 These states have the inner product

We denote an inhomogeneous I.orentz transformation
by (A,h). Let L„denote a pure Lorentz transformation
that takes the rest-frame vector p=(( )'p~', )0into p.

' E. P. Wigner, Ann. Math. 40, 39 (1939); V. Bargmann and
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