
P 8 VS I CAL REVI EW D VOLUME 2, NUMBER 6 15 SEPTEMBER 1970

Nonlinear Hadron Couylings from Divergence Conditions.
I. Pions a,nd Nucleons
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It is shown that chiral-dynamical models for the pion-nucleon system can be obtained simply by requiring
that the source function in the pion Geld equation be expressible as a complete divergence. Both nonderiva-
tive and derivative pion-nucleon couplings are considered. The nonderivative-coupling case yields models
with onecouplingconstant, while the derivative-coupling case leads to models involving two coupling
constants. Since our approach avoids the use of chiral symmetry, it does not raise the problems associated
with a broken symmetry. It is also suggested that the nonlinear pion-nucleon coupling, arising from the diver-
gence condition, might very well represent a fundamental coupling rather than merely an effective coupling.

I. INTRODUCTION

~ ~

~

HEN. confronted with phenomena whose basic
nature is unknown, it is often helpful to search for

analogies with other phenomena that are better under-
stood. The theories of electromagnetic and gravitational
interactions have been developed to the extent where
they are considered to be in the latter category, and
are foun. d to have signihcant similarities. The funda-
mental basis of strong and weak interactions, on the
other hand, is not well known. The purpose of this
investigation is to explore the theory of strong interac-
tions by emphasizing an analogy between the meson
held equations and the electromagnetic and gravita-
tional field equations. We shall confine ourselves to the
interaction of pions and nucleons in this paper, while
other mesons and baryons will be included in sub-
sequent papers.

Since the source functions in the electromagnetic
and gravitational field equations represent the current
four-vector and the total energy-momentum tensor,
they satisfy the condition of vanishing divergence, and
it seems reasonable to look for appropriate divergence
conditions for the source functions in the meson field
equations. However, the source function in the pion
held equation does not carry any tensor index, and we
cannot demand that its divergence vanish. We shall,
instead, impose the requirement that for the pion-
nucleon system this source function be expressible as a
complete divergence, and thus the pion field equation
should be of the form

(Cl' —m')n =cl„J„g.

It is also natural to assume that the Lagrangian density,
which yields (1.1), should involve derivatives of the
lowest possible order.

In recent years Weinberg, ' Schwinger, 3 and others4
have proposed Lagrangian schemes with broken chiral

S. iV. Gupta, Phys. Rev. 96, 1683 (1954).' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).
' I. Schwinger, Phys. Letters 248, 473 (1967).
4For a review of Lagrangian schemes with chiral symmetry,

see S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531
(1969).
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symmetry, which seem promising in the light of experi-
mental results. We shall show that all the chiral-sym-
metry results together with the symmetry-breaking
terms for the pion-nucleon system can be obtained
simply as a consequence of requiring that the pion field
equation be expressible in the form (1.1). Evidently,
the field equation (1.1) can be written

l9p(Jpg cjp'R) = m % ) (1.2)

which can be interpreted as the well-known condition' '
for the partially conserved axial-vector current (PCAC),
if we regard J„q—B„n with appropriate normalization
as the PCAC current. Thus, in the present treatment we

regard the PIC condition as fundamental but completely
avoid the use of choral symmetry

Apart from its basic simplicity, our formulation has
the following conceptual advantages.

(1) The analogy between the pion field equation
and the electromagnetic and gravitational held equa-
tions suggests that the nonlinear pion-nucleon couplings
resulting from our treatment might represent funda-
mental couplings and not merely effective couplings.

(2) Since we do not make use of the broken chiral
symmetry, we are not faced with the question of why
and how this symmetry is broken.

(3) There is no temptation here to introduce the
scalar 0 meson.

We shall first consider the case of the nonderivative
pion-nucleon coupling in Secs. II and III, then con-
sider the case of the derivative pion-nucleon coupling
in Secs. IV and V, and subsequently establish the
relationship between them in Sec. VI, where the role
of the chiral symmetry will also be brieQy discussed.

We shall take c=k=i, denote the space-time coor-
dinates as x„=(xi,x~,xs, iso). treat the y„as Hermitian
matrices, and use boldface letters to denote isovectors.

' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
' Y. Xambu, Phys. Rev. Letters 4, 380 (1960).
'The fundamental role of the PCAC condition in the deriva-

tion of Lagrangian schemes for the pion-nucleon system has also
been recognized by other authors. See, e.g. , D. B. Fairlie and
K. Yoshida, Phys. Rev. 1'74, 1816 (1968); R. Dashen and M.
Weinstein, ibid. 183, 1261 (1969).
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An asterisk will be used to denote the complex conjugate
of a number or the Hermitian conjugate of an operator.

II. LAGRANGIAN FORMALISM WITH NON-
DERIVATIVE PION-NUCLEON COUPLING

In order to examine the restrictions imposed on the
I agrangian density for a pion-nucleon system by the
divergence condition, we begin by considering the
general nonlinear form'

where

L=LO.+Lox+L. +L x, (2.1)

Lp!!= 2(Bppp'8!!pp+srt pp'pp),

lpii —— N(y 8+—M)iV,

(2 2)

(2 3)

I..=a.(pp')+b(pp')B, pp B,pp+c(pp') (pp B„pp)', (2.4)

I- ~ MNn——(imp~—pp)N. (2.5)

Since (yp~ pp)'=pp', the function n can be expressed as

n(imp~ pp) =s(pp')+2tt(pp')yp~ pp, (2.6)

and thus L involves the five unknown Hermitian
functions a(pp'), b(pp'), c(pp'), s(pp'), and t(pp'). It is the
most general isospin-invariant Lagrangian density
with nonlinearity in the pion field such that L is at
most bilinear in the derivative of the pion field, and
I ~ contains no derivative coupling. Because L must
reduce to the free Lagrangian density Lo„+Loz in the
absence of interaction, it is required that

a(0) =a'(0) =b(0) =s(0) =0, (2.7)

where a prime denotes differentiation with respect to
the argument, which is m'.

The above Lagrangian density yields the nucleon
field equations

8+y„=MN(1+s+2ityp~ pp),

p„B„!V= M(1+s+2i typ~ —pp)N,

where P is required to be a constant rather than a,

function of ~' because the terms bilinear in the nucleon
field in (2.9) do not involve any derivative of the pion
field. Substitution of (2.10) into (1.1) gives

( ' —m') pp =P(B„N)iy„y,~N+PNiy„y, ~B„cY

+2d (pp ' 8!!pp) pp+ dB!!(pp ' 8!!pp) pp

+ (d+2e') (pp B„pp)B„pp+e 'pp, (2.12)

so that, on simplification with the help of (2.8),

(1—e) 'pp = 2MP(1+s)Niyp~cV 4MP—tNLV pp

+2d ('z'8!!'7p) pp+dB!!(pp'Bppp)pp

+ (d+2e') (pp. B„pp)B„pp+m'pp. (2.13)

t(o) =f, (2.15)

so that f can be interpreted as a coupling constant
that specifies the first-order pion-nucleon coupling in
(2.5). The constant P is then given by

By obtaining the value of 'pp from (2.13) and
substituting it into (2.9), we obtain

2gs'(1 —e)+2(1—2b —2b'pp') tP]MNEpp

+2$t(1 —e)+(2b —1)(1+s)PjMNiyp~!Y
+4/t'(1 e)+b'(1—+s)PjM (Nip, ~ ppiV) p:

+$2a'(e —1)+(2b —e)m'+2b'm'pp'jpp

+f4b'(1 —e)+(2b —1)(d+2e') j(pp B„pp)B„pp

+$2(c—b') (1—e)+ (2b —1)d+2b'd pgpB„( pBp„pp) pp

+2'' (1 e)+(2b —1)d'+b' —(d+2e') +2b'd'~' j
X(pp 8 pp)'pp=0. (2.14)

The above equation can be satisfied only if the co-
efficients of the terms involving XlV~, Xip5~lV,
(Nip p~ pptV) pp, pp, (pp B„pp)B„p.p, 8„(pp B„pp)pp, and
(pp B„pp)'pp vanish separately The . solution of the
resulting differential equations leads, as shown in
Appendix A, to the following relationships.

Let us put

and the pion field equation P=f (2.16)

( ' mp)~=2Ms'NVpp+4—Mt'(¹yp~ miV)~

+2MtNiy, ~Ã 2a'pp+2c'(pp 8 pp—)'pp

+4b (pp ' Bp'z) Bppp+ 2 (c b )Bp (pp ' 8!!pp)pp

+2b'(pp 'pp) pp+2b 'pp (2.9)

In order that (2.9) be expressible in the form (1.1),
J„p must evidently be of the form

(1+s)'+4tPpp' = 1 (2.17)

while the functions a, b, c, d, and e can be expressed in
terms of f, s, and t as

The functions s and t are not determined uniquely, but
they satisfy the relation

J„p pNiy„y p~cV+d——(pp') (pp B„pp)pp+e(pp') B„pp, (2.10)

with

1 —2a'/sr'' = s'/2 ft, —

1 —2b=tP/fP

(2.18)

(2.19)

P = const, e(0) =0, (2.11) c= (t4—,'s")/2f Pt'pp', (2.20)
'It is understood that the I.agrangian density consists of

ordered products of 6eld operators, although for simplicity we
have omitted the ordered-product notation. See S. N. Gupta,
Phys. Rev. 10/, 1722 (1957). e = 1 —(t/ f) (1+s) . (2.22)

d=(2/f)L ' —'(+ )j, ( )
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III. SPECIAL NONDERIVATIVE-COUPLING
MODELS

The divergence condition provides the four relations
(2.17), (2.18), (2.19), and (2.20), which are to be
satisfied by the 6ve functions a, b, c, s, and t appearing
in the Lagrangian density. Therefore, all these functions
can be determined only by choosing one of them in some
appropriate manner. We shall now discuss three special
models such that in each model one of the functions
a, b, and c vanishes. This simple procedure, as we shall
see, yields all the rn.odels considered by Chang and
Gursey. '

all the required functions, and lead to the results

L ~ ——M—P(1 4f—' 22)"' 1j—NcV

2fM—N2y2~ 22tV (3.10)

L = (tn2/4f')L(1 4f—'22')'/ 1+—2f'22'g
—2f'(1 —4f'22') '(22 8 22)' (3.11)

J —fN2~ ~ ~N 4f2(1 4f2~2)—1 /(2~. g ~)~
+L1—(1—4f2222)'/2)B 22. (3.12)

This model was suggested by Gell-Mann and Levy, ' and
further developed by Weinberg and by Brown. '

Model C
Model A

We first consider the model obtained by putting

If we put
c=—0, (3.13)

a=—0.

Then, according to (2.18),

—s'/2ft = 1

ol', oil llslllg (2.17),

L1—(1+S)2j 1/2S' = —(1/+222) f
which gives, in view of the condition (2.7),

s cos=(2f/22 )—1 (3.2)

it follows from (2.20) that

-'s"= t' or ——,'s' =t'

where, in addition to t(0) =fwe have used the condition
s (0) = 2f', wh—ich is obtained by differentiating (2.17)
with respect to m' and then putting ~'=0. The above
relation becomes, on using (2.17),

$1—(1+s)'j—'s' = —(1/2222),

which gives, when integrated with the condition (2.7),

and, on using (2.17) again,

t = (1/2+222) sin(2 f/222) (3.3)

2= —2f2~'(1+f2~2) '

and, on using (2.17) again,

t =f(1+f2222)
—'.

(3.14)

(3.15)
Substitution of (3.2) and (3.3) into (2.19)—(2.22)
gives all the functions appearing in I. ~, I. „and J„2,
alld thus

L ~= —MLcos(2f+222) —1jN/V
—M(1/+22')sin(2f+22')Niy2~ 22/4' (3.4)

L~~ =-', $1—(1/4 f2222) sin'(2 f/222) j
X)Bp22'~y22 (22'8 22) /22 j (3 5)

J„2=fNiy„y2~N+(1/222) [1 (1/4f+222)—
Xsin(4f+22 )jL22'8 22 —(22 8 22)221 (3.6)

After determining the required functions with the
help of (3.14) and (3.15), we obtain

L ~ 2Mf'22'(1+——f'22') 'NN 2Mf(1+f'2—2') '

XNiy, ~ 22/V, (3.16)

L = 'm2I 222 -(1/f')—ln(1+ f2222)7

+2/1 —(1+f2222) 2j(e/„22 8„22), (3.17)

J„2 fNiy„y2~iV ——2f'(1+f'22') —'(22 8 22)22

+L1—(1—f2~2) (1+f2~2) 2j&.~ (3 18)

Model 8

To obtain another model we require that

so that (2.19), together with (2.15), yields

and, on using (2.17),

(3.7)

This model is related to the work of Schwinger discussed
in Sec. V.

Besides the above three models, we have been able
to And two other reasonably simple models correspond-
ing to d=0 and s'=const, respectively. The values of s
and t for these models are

s=(1+4f'222) '"—1 t=f(1+4f'22') "'
f.r d=O, .nd

g — 2f2222 t —f(1 f2~2)1/2

g —(] f42~2)1 2 /] (3.9)

Again, the above values of s and t enable us to determine

' P. Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967).

for s' =const. The derivation of L 2/, L, and J„2from
the above values of s and t is quite straightforward.

"L.S. Brown, Phys. Rev. 163, 1802 (1967).
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IV. LAGRANGIAN FORMALISM WITH DERIVA-
TIVE PION-NUCLEON COUPLING

Ke shall now reinvestigate the Lagrangian formalism
of Sec. II by giving up the condition that I. ~ contains
no derivative coupling and assuming instead that I ~
contains a single derivative of the pion field. Thus, we
retain the Lagrangian density of Sec. II except that
I= ~, given by (2.5), is replaced by

( ' m—')33=B„tPiNiy„y3~N+P3Niy„~X33cV

+Pzzz(Nip„p, ~ mlV) 5+2d'(33 B„zz)333

+dB„(33 B„zz)33+(d+2e')(zz B„zz)B„33+e 333. (4.5)

The total divergence terms appearing in (4.4) and
(4.5) have the same structure, and they can be simplified

by using the nucleon field equations (4.3) and the
commutation property of the isospin matrices

&- 3z =ni(333)Nzy„yz~ B„331V+nz(333)Nzy„~ 33XB„33N

+u3(333)(zz B„zz)Nip„p3~ zziV, (4.1)

L~ A, ~5=2i~XA,

along with the standard vector identities such as

(4.6)

with oq, o.~, and o,3 unknown Hermitian functions of m'.

In addition, we must now include analogous terms in
the general form of J„3, which becomes

J„3=pi(333)¹p„pzclV+pz(333)Nz&„~X33iV

+p3(333) (¹y„pz~.33N) 33

+d(mz) (zz B„zz)33+e(333)B„zz (4..2)

The Lagrangian formalism yields the nucleon field
equations

BgNyp =NLM niz'yp yz'c 'Buzz uzz+p'3 ' KXBpzz

u3(33 ' Bp R)z'yp'y'z 0' 335, '

(4 3)
'ypBpA =

. [M niz ylj, yrjz'Buzz nzzygC ''RXBpzz

u3(33 B„~—)z"y„'yz~

and the pion field equation

( ' —m')33

=B„(ni¹y„yz~iV+nzNiy„~ X33N

+n333(Nip„pz~ zzlV)5 233(ai'N—ip„yz~ B 33A

+nz Nip„c mXB„3ziY+n3'(m B„zz)Nip„yzs 'all7'
+n3Nip„~ XB„AN n3Niy„yz (~ zz—)B„331V

nzVzy—„y,(33 B,~)~1V

—2a'33+2c'(m B )'33+334b'( B3333)B 33

+2(c b')B (zz B—„zz)33+2b'(33 '33)33

+2b 333 (4 4)

~X(~XB„33)=(~ B 33)33—(~ zz)B zz

(~ 33)33XB„33=(~ 33XB„zz)33
—(zz B 33)~Xzz jz33~XB„zz. (4.7)

Thus, it is possible to express (4.4) as

( ' mz)33=—2MniNiyz~Ã+2Mn3(Niy3~ 33N)zz

+ (2ui az ——2aiuz —2nznzzz ) (zz B~zz)Nz'y~'y 3%iV

—(2n, ' —n3 —2ain. —2nznzzzz) (¹y„y3~B„33N)zz

2(uz uz +nla3) (Nz'yp'3 '33XBpzzN)zz

+2 (uz nz +ain3) ('Jz ' B 33)Nz'yp'3 X331V

+2(uz+nl +uz 33 )Nz'yp'3XBp331V
—2n'33+2c'(33 B 33)333+4b'(33 B ~)B zz

+2(c—b')B„(zz B„zz)~+2b'(33 Cj'zz)m+2b 333 (4 8)

and (4.5) as

(1 e) 3—33 =2MpiNzy3~N+2Mp3(Nzy3~ zziV)33.
+2 (pi' —nipz —nzpzzz') (zz B„zz)¹y„yz~lV
+2 (pz' —nzp3+nzpz) (33 B„zz) (Nzy„yz~ zzsV) zz

+ (p,+2nzp, +2n, p333') (Nzy„yz~ B„~N)33

+2(nzpz —nzpz)(Nzp„~ 33XB„33)V)33

+ (P3+ 2niP3 —2nzPi) (Nzy„y..~ 331K)B,zz

+2 (pz' nzpz+—nzpi) (33 B„33)Nzy„~XzzÃ

+(P3+2n,P,+2nzP333')Nzp „~XB„zzN

+2d'(33 B, 3)3zzz+dB( 33B„33)zz

+ (d+2e') (33 B„zz)B„33+m333 (4.9).
On the other hand, substitution of (4.2) into the
divergence condition (1.1) gives

By obtaining the value of +333 from (4.9) and sub-

stituting it into (4.8), we find

$2Mpz(1 —2b) 2Mni(1—e)5(Nip—3~N) +$2Mp3(1 —2b) —4Mb'(pi+p3333) 2Mnz(1 —e)5 (Niyz~—331K)zz

+L2(pi' —nipz —nzpzzz') (1—2b) —(2ni' —n3 —2niuz —2u zn3)3(331 e) 5(zz B„z—z) (Nzp„yz~iV)

+L2 (p3 pu+z33pu)( 13—2b) —2b' (2pi'+pz —2nzpi+ 2p3''33 —2nzp333') 5 (33 B„zz) (Nz yq'yz 3 .zzlV) 33

+L(p3+2nzpz+2azp333') (1—2b) —2b'33'(p3+2nzpz+2nzpzzz')+(2n, ' —n, —2nin, —2n, n333') (1—e) 5
X (Nip„pz~ B„mN)zz+t 2(nzP3 niP3) (1 2b)+2b'(Pz—+—2niPi+2niP333') —2(nz' —n.' —ninz) (1—e)5
X (Nzy„~ 33XB„331V)33+L(pz+2nip3—2azp, ) (1—2b) 5(Nzy„p3~ 331V)B„zz

+L2(P3' —nzP3+n3Pi) (1—2b)+2 (a33—nz' —ain3) (1 e) 5(zz B„33—) (Nzy„sx+lv)
+ t (pz+ 2nzpi+2nzpzzzz) (1—2b) —2 (n 33+a3+azzzzz) (1 e)5 (Nip„~ XB„~N)—I 2a' (e 1—)+ (2b —e)m'+ 2b'm—zzzzjzz

—L4b'(1 e)+(2b 1)(—d+2e')5(3—3 B„zz)B„33—L2(c—b')(1 —e)+(2b —1)d+2b'dzzzjB„(33 B„zz)33
—2Lc'(1 —e)+ (2b —1)d'+ b'(d+ 2e') +2b'd' 5( 333B„3333)333=0. (4.10)



NONLINEAR HADRON COUP LINGS FROM ~ ~ ~

(1+s)'+4Pii' =1,

s(0) =0, t(0) =f,

(4 11)

(4.12)

it is possible to express the functions u, 6, c, d, and e

again in terms of f, s, and t by means of the relations
(2.18) to (2.22). We also put

ni(0) =g, (4.13)

so that g can be interpreted as a coupling constant that
specifies the flrst-order pion-nucleon coupling in (4.1).
We are then able to express the functions o.l, n~, and+~
in terms of g, f, s, and t as

Again, as in Sec. II, the coeScients of all the terms on
the left-hand side of (4.10) must vanish separately.
Then, after solving the differential equations, as shown
in Appendix 8, we arrive at the following results.

By introducing two functions s(ii') and t(ii') such
that

Model 8'

This model, for which 6=0, corresponds to Model B
of Sec. III.By following the same procedure as described
above for Model A', we hnd

L ~ =gNiy„pi~ B„iiN—(1/2ii') $1—(1—4f'ii')"']
XNi~„' ~Xa„~N—(g/~s) $1—(1—4f ~&)-'I']

X (ii B„ii)Nip„pi~. AN, (5.3)

J,s =g (1 4f'ii—')"Nip„pic 2f'N—iP„~XiiN

+(g/-)~1-(1-4f -)"](N'.. .'-N)-
—4f'(1 —4f'ii') I"(ii B„ii)ii

+$1—(1—4f'~') Ii']B„ii. (5.4)

The model, obtained by taking @=0, corresponds to
Model C of Sec. III, and gives

ni gt/f ~

ni=s/2%
ni (2g/f——)L(1+s)t' —s't+st/2ii'],

and the functions pi, pi, and pi as

pi=g(1+s),
Pi= —2ft,
ps ———gs/ii'.

(4 1@

(4.15)

L„iI=g(1+f'ii') I¹y„pi~ B„AN
—f'(1+f'ii') —'Nip ~ iiXB iiN (5 5)

J„i——g(1—f'ii') (1+f'ii') —I¹ypi~N
—2f'(1+f'ii') —'Nip„~ XiIN
+2fg'(1+f' ii) I(¹y„y,~.i')ii
2f'(1+f—'ii') '(ii B„ii)ii

+L1—(1—f'ii') (1+f'ii') ']B„ii, (5.6)

Note the appearance of two independent coupling
constants f and g in the above relations.

V. SPECIAL DERIVATIVE-COUPLING MODELS

It is possible to obtain derivative-coupling models
corresponding to those described in Sec. III. However,
L ~ and J„i now acquire a more complicated form,
although I.„remains the same. The first two models
described below have not been derived before with two
coupling constants, while the third model has been given

by Schwinger.

Model A'

When a=0, the functions 5, c, d, e, s, and (have the
same values as in Model A of Sec. III. Moreover, the
functions ni, ni, ni, pi, pi, and ps can be determined by
substituting the values of s and t, given by (3.2) and
(3.3) IIlto (4.14) alld (4.15) ~ We 'tllils obtain

L ~= (g/2 fbi') sin(2 fgii')Nip„pic B„AN
—(1/ii') sin'(fQii')Nip ~ iiXB„AN

+(g/ii') I 1 —(1/2fbi') sin(2 fQii') ]
X (ii B„ii)Nip„pi~ AN, (5.1)

J„i——g cos (2 f/'')¹iy„pi~N (f/Qadi') sin (2f—Qii')
XNiy„~ X AN+ (g/ii') $1 cos(2fQii') ]—
X (¹y„pi~ iiN) ii+ (1/~~') L1—(1/4 fQii')

X»n(4f&~')]L~'~ ~—(~ ~.~)~]

VI. CHIRAL SYMMETRY AND TRANSFORMATION
OF PION-NUCLEON COUPLING

Let us define a function U(iy, ~ ii) as

U =1+s+2it tiv ' % (6.1)

in terms of the functions s(ii') and t(ii') of Secs. II
or IV which satisfy the relation

(1+s)'+4tiii' =1. (6.2)

U*U = (1+s)'+4t'ii' = 1

so that U is unitary and

U '=U*=1+s 2ityi~ ii—(6 3)

"Such considerations have been advanced, e.g. , by J.Schvringer,
Phys. Rev. Letters 18, 923 (1967).

in agreement with Schwinger's results. '
It is, of course, possible to obtain additional deriva-

tive-coupling models as indicated in Sec. III.
The constants g and f appearing in the above models

remain unrelated unless additional considerations are
introduced into the formalism. " Moreover, since
L Ii can be expanded in powers of f', it is suflicient to
require that g and f' be real to ensure that L,ir is
Hermitian. We shall, however, for simplicity take f
itself to be real.
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It can also be established, with the help of (6.2), that By putting

U~'"= (I+,' s)--i/'&i(1+ ;'s)-"lyi~ ii, (6 4) &V
—U-i'~X' iV —E'U-'~' (6.12)

which implies that

(Ukl/2)+ UT//2 p Ukl/i UTl/2y (6 5)

Evidently, in the nonderivative-coupling case the
sum of (2.3) and (2.5) takes the form

Lo~+L,~= N(y —/1+M/1)iV. {6.6)

Tr(B„UB„U ') =8$Pr/„i~ B„ii

+{s"+4t'i''+4tt') (ii c/ n)'j

J~ Q~ + +g

gpss

where Tr denotes the trace of the products of isospin
matrices, and consequently, by virtue of (2.19), (2.20),
and (6.2),

—(1/16f') Tr(t/„Ur/ U—')
= —-'(1 —2b)c/ ii c/ ii+c(ii i/ i~)'. (6.7)

Thus, the sum of (2.2) and (2.4) can be expressed as

Jo,+L,= —(1/16f') Tr(B„Uit„U ')+I.', (6.8)

where

where the second relation follows from the first one by
virtue of (6.5), it is possible to transform (6.6) into the
form

Lo~+L /v —— E'—(y tt+M)iV'
—tV'y (U'/'8 U "')JP —(6.13)

which shows that the nonderivative pion-nucleon

coupling is equivalent to a special case of the derivative
coupling (6.11) corresponding to g= f. We have also

investigated the Lagrangian formalism by taking a,

mixture of the nonderivative and derivative pion-
nucleon couplings, and verified that the nonderivative

coupling can again be eliminated by a unitary trans-
formation so that the total pion-nucleon coupling is

of the form (6.11).
We conclude that (6.11) together with (6.8) provides

the most general form of the Lagrangian density for the
pion-nucleon system that satisfies the divergence con-
dition (1.1). However, the choice among the various
models discussed in Sec. V must await further theoret-
ical and experimental developments.

AppENDIX A: SOLUTION OF EQUATIONS FOR
NONDERIVATIVE-COUPLING CASE

or, in view of (2.18),

—d(~') . (6.9)

The vanishing of the coefficient of each of the seven
terms in (2.14) yields the differential equations

s'(1 —e) = —2(l —2b —2b'ii&) tP, (A1)

In the derivative-coupling case, the sum of Jo~
and L /r becomes, on the substitution of (4.14) into
(4 1),

Loi/+L /r = N(y r/+M)X+—(g/f)tiViy„pi~ 8 ~i/V

+(s/2ii')¹y„~ ii Xc/„i~/V+ (g/f) L2 (1+s)t'
—2s't+st/ii' j(ii B„n)Eiy„pi~ iilV, (6.10)

and it can be verified by direct calculation that (6.10)
can be put in the form

Loi/+L ~ —$(y r/+M)N-—
P(f+g)/2f july„(U—"'it„U ")E-

L(f g)/2f jVvy. —(U '"—~u U")» (6 11)

while Lo +L is again given by (6.8).
The relations (6.6), (6.11), and (6.$) exhibit chiral

symmetry except for the symmetry breaking term L',-which

disappears only if the pion mass is unrealistically assumed
to mumpish. i2

"Properties of the Lagrangian-density terms of the form (6.6),
(6.11), and (6.8) under chiral transformations have been dis-
cussed in Ref. 9. Also note that these authors use chiral sym-
metry for the determination of the symmetry-preserving terms
and the PCAC condition for the determination of the syrnmetry-
breaking terms.

t(1—e) = (1—2b) (1+s)P,
t'(I e) = b'—(1+s)—P,

(A2)

(A3)

It also follows from (Al) —(A3) that

2 (1+s)s' = —4(P+2tt'm'),
which gives

(1+s)'+4Pii' =1, (A10)

where the constant of integration is determined by the
condition that s=o for ~'=0.

According to (A2) and (A3), we have

t'/t = —b'/(1 —2b)

"According to Ref. 2, the above transformation can be inter-
preted as a redefinition of the nucleon field operator.

1—2a.'/m' = (1—2b —2b'ii')/(1 —e), {A4)

d=4b'(1 —e)/{1—2b) —2e', (A5)

c =b'+ ,'d(1 —2b —2b'~-')/(1 —e), (A6)

c'(1—e) = (1—2b —2b'n') d' —b'(d+2e') . (A7)

By putting ii'=0 in (A2), we find, in view of (2.7)
and (2.11),
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or
lnt=12ln(1 —2b)+lnf,

or, on using (81),

ni'/ni = —b'/(1 —2b),
where we have used the condition that b =0 and
t=f for m'=0, and thus

1—2b = t'/f'. (A11)

On using (AS) and (A11), we also obtain from (A2)

which has the solution

n, =g(1—2b)'~' ni(0) —=g

It then also follows from (81) that

(810)

e = 1—(t/ f) (1+s) . (A12)

The relation (A4) becomes, by virtue of (A1) and

(AS),
1—2a'/m'= —s'/2ft ) (A13)

while (A5) gives, with the help of (A11) and (A12),

d= (2/f)Lts' —t'(1+s)]. (A14)

By using (A11), (A12), and (A14), and simplifying

by means of (A9) and (A10), it is possible to express

(A6) as

Pi=g(1 —e)(1—2b) '", Pi(o) =g. (811)

By adding (83), (85), (87), and 2~' times (84), we

find

(Pi'+P1+P '~') (1—2b —2b'~') =0

or, (1—2b 2b'm') —being nonzero because it obviously
cannot vanish for ~'=0,

pi'+ pa+ ps'~'=o,

which can be integrated immediately to yield

or
c = —(2/f') (-',s"+tt'+t'~') (A15) pi+p»'= g, (812)

APPENDIX 8: SOLUTION OF EQUATIONS FOR
DERIVATIVE-COUPLING CASE

The differential equations resulting from the vanish-

ing of the coefficients of all the terms in (4.10) are given

by

Pi(1—2b) =ni(1 —e),

P, (1—2b) —2b'(P, +P,~') =n, (1 e), —
(81)

(82)

2LPi' —P1(ni+n»')](1 —2b)

=L2ni' —n1 —2n1(ni+n3~ )](1—e), (83)

c = (t ——s~2)/2f2t2%2 (A16)

It can also be verified that (A7) is indeed satisfied by
b, e, d, and c, given by (A11), (A12), (A14), and (A15).

where the constant of integration is determined by the
condition Pi(0) =g, obtained above. Substitution of
(811) into (812) gives

P1
——(g/~') L1—(1—e) (1—2b) '"], (813)

and a further substitution of (812) and (813) into (82)
gives

n1= (g/m') [(1—2b —2b'~')/(1 —e) —(1—2b)"']. (814)

According to (87),

P1+2nip, 2n,p, =0,— (815)

while (89) can be reduced, with the help of (81), to
the form

nip2 2n2pl+2n2'ir (nlp2 nipl)

(P1' p,+n—1P,)n(1 —2b)

-b'Lp, +2pi'+2P. ' '-2n'(pi+P1 ')]=0, (84)

or, in view of (815),

pi+2n1(pi+p»') =o. (816)

(P,+2n,P, 2n,P,) (1—2b)—=0, (87)

(P2' —n1P1+n~pi) (1—2b)
= —(ni' ni' nin—1) (1——e), (BS)

(P,+2niP1+2n, P,m') (1—2b)

=2(nP+ni+n11~') (1—e), (89)

together with the relations (A4)-- (A7).
By subtracting 2n2 times (81) and (2n2~'+1)

times (82) from (85), we obtain the simple relation

Pib' = —n, '(1—e)

LP3+2ni (pi+pi~') ](1—2b) —2b'~'Lp1+2n1(pi+ P1~')]
= —L2ni' —ns —2n2(ni+n»')](1 —e), (85)

(n,pi —nip, ) (1—2b)+O'LP2+2ni(pi+p, ~')]
= (n1' —n1' —nin, ) (1—e), (86)

By substitut, ing the earlier results into (815) and (816),
we can express n1 and P1 in terms of b and e as

n1=( / ~')L( —)( —b) ""—], (817)

p2= (1/2~ )L(1—e)'/(1 —2b) —1](1—2b)
—'~' (81S)

We have now found all of the nucleon functions in

terms of 6 and e. However, we have used only six of
our nine equations, because only a linear combination
of (83) and (84) has been used, while (86) and (BS)
have not been used at all. When the results for the
nucleon functions are substituted into (83), (84),
(86), and (BS), we obtain in each case the same rela-

tiollship bctwccn 6 an6 e glvcn by

1 —(1—e) '/(1 —2b)
=0,

(1—2b)~'
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which yields so that (B19) can be expressed in the form

(1—e)'/(1 —2b)+X(1—2b) m' = 1, (B19)

4f'= X, 1+s= (1—e)((1—2b) "'
& = f(1 2b—) 'i2,

(B20)

where P is the constant of integration. It is convenient
to introduce f, s, and t, defined as

By using (B20) and (B21) and remembering that
the relations (A4) to (A7) also hold in the present case,
the functions a, 6, c, d, and e can be expressed in terms
of s and t in the same form as in Appendix A. Moreover,
the functions ni, n2, n3, Pi, P2, and P3, when expressed
in terms of s and t, give the relations (4.14) and (4.15).
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In nonlinear Lagrangian schemes it is useful to transform the nonderivative pion-nucleon coupling into the
derivative coupling. The effect of such a transformation on renormalization constants and closed-loop
diagrams is investigated by direct calculations of the second-order nucleon and pion self-energies and the
fourth-order nucleon-nucleon interaction with the inclusion of the renormalization diagrams. By carefully
combining the contributions of appropriate diagrams, the complete equivalence of the nonderivative and
derivative couplings is demonstrated.

I. INTRODUCTION

' 'RANSFORMATIOX of the pion-nucleon cou-
plings' has recently been carried out for nonlinear

Lagrangian schemes by various authors. '' It is thus
found that the nonderivative coupling, given by

L ~= 2fMNiy, ~ m—N+2f'cVm'NN
2mf'3f~'Nip—i~ mN+O(f4), (1)

can be transformed into the derivative form

L N'= fNiy„y~~ B„~.V f'¹y„~~X 8„~N-
+2(1+m)f'(~ B„m)¹y„y,~ mN

+ef'm'Nip„y5~ B„~X+0(f'), (2)

where M is the nucleon mass, f is the coupling constant,
and the value of the dimensionless parameter m depends
on the choice of the Lagrangian scheme. 4 These schemes
also involve nonlinear pion-pion couplings which,
however, are not affected by the transformation and
will not be considered here.

The conversion of (1) into (2) essentially involves a
redefinition of the nucleon field by means of a unitary
transformation. The physical interpretation of the

' For the older work on this subject, see S. S. Schweber, Intro-
duction to Relativistic Quantum Infield Theory (Harper and Row,
New York, 1961),p. 301.' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).

'For a general discussion, see S. Coleman, J. Wess, and B.
Zumino, Phys. Rev. 177, 2239 (1969), and earlier papers quoted
there.

4 For instance, n takes the values —-'„0, and —1, respectively,
in the models referred to as A, B, and C by S. N. Gupta and
W. H. Weihofen, preceding paper, Phys. Rev. D 2, 1123 (1970).

resulting nucleon field is somewhat obscure, since it has
associated with it any number of pion fields, which

appear in the series expansion of the unitary trans-
formation function. Therefore, while there is general
agreement that the tree-diagram contributions remain
unchanged under the above transformation of couplings,
the situation with regard to diagrams with closed loops
is not entirely clear. It is also doubtful whether the
renormalization constants remain unaltered, because
the derivative coupling at least superficially appears to
be more divergent than the nonderivative coupling.

In order to clarify and reinforce the general theo-
retical arguments, we shall investigate the equivalence
of the nonderivative and derivative couplings by direct
calculations of the second-order nucleon and pion self-

energies and the fourth-order nucleon-nucleon inter-
action. As we shall see, the demonstration of equiv-
alence by direct calculations requires extensive
manipulations, and it brings out several interesting
features that afford a deeper understanding of the
relationship between the two couplings.

Besides using the standard notation m, X, and X for
the pion and nucleon field operators, we shall denote the
pion mass as m to distinguish it from the nucleon mass
M. We shall also take c=k= i.

II. NUCLEON AND PION SELF-ENERGIES

The second-order self-energy diagrams due to the
nonlinear pion-nucleon coupling are shown in Fig. i,
where the "leaf" diagrams LFigs. 1(b) and 1(d)j arise


