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We study in pure quantum electrodynamics the scattering amplitudes at infinite energy due to multi-
photon exchange, with interactions among the exchange photons. Such processes, elastic or inelastic, lead
to logarithmic dependence on s. The ins dependence is found to be associated with the invariance of sub-
graphs under a boost along the direction of the high-energy collision. Theoretically, our results lead towards
a more efficient way of handling a large class of diagrams, and a better understanding of j-plane cut behavior.
We speculate that several features of our results generalize to hadron physics. Among these are features in
common with the limiting fragmentation hypothesis, and the appearance of pionization in a many-fireball
structure. Finally, in the absence of radiative corrections, we demonstrate that the e, e elastic scattering
amplitude can be expressed as an eikonal form, with x (b) being generated by the sum of all connected pieces.

I. INTRODUCTION

'ANY theories have been proposed to describe
high-energy hadron scattering at large s and

finite t. Among these are the Regge model and the
droplet model'; the droplet model is related to the
eikonaP and diffraction models. Recently, the droplet
model was generalized to qualitatively describe the
inelastic processes as well. In particular, a theory of
limiting fragmentations was proposed. ' Each of these
models has some experimental support. At present, it
is not clear whether one can single out a model which
is applicable to all processes.

These models are partially built on extrapolations
from nonrelativistic potential scattering theory instead
of relativistic first principles. It is of great interest to
know if these models can be understood through relativ-
istic field-theory calculations. Some progress has
already been made along this line. For example, Regge
behavior was shown to appear in a Xp' theory when
ladder diagrams in the t channel are summed. ' Recently,
Cheng and Wu' showed that the forward elastic elec-
tron-electron (positron), electron-photon, and photon-
photon scattering amplitudes in quantum electro-
dynamics with two-photon exchange at large s
increase linearly like sf(t) at fixed t This result .was
generalized to include multiphoton exchange processes. '
It was shown that the eikonal form emerges naturally
when all possible crossed ladder diagrams in the s
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channel are summed. ' ' We feel that it is important to
associate simple physical features with special sets of
diagrams. Thus, one may hope to construct a more
complete theory which encompasses more of the
observed features of high-energy collisions.

This paper deals with the high-energy behavior of a
large class of diagrams in quantum electrodynamics
(QED). A particular kind of diagram we study is shown
in Fig. 1(a). We are interested in the limit of large s
and finite l. The signaling feature of such diagrams is
that they do not have pure photon states in the t
channel. This is to be compared with pure photon-
exchange diagrams, which behave like sf(t) We shall.
see in general that at large s and finite t the diagrams
we studied contribute logarithmic factors of. s. The
derivation from pure sf(t) behavior is consistent with
previous work of Gribov and Pomeranchuk, ' who
showed on the general grounds of unitarity in the t
channel that sf(t) cannot be the true asymptotic
behavior of the elastic amplitude for positive t. Their
argument can be understood in the t-channel partial-
wave decomposition in which the expression sf(t)
implies a fixed pole at j=1. This fixed pole leads to
difficulty with elastic unitarity:

Because the right-hand side of (1.1) has a double pole
at j=1 while the left-hand side has only a single pole,
we are led to an accumulation of poles or essential
singularity at j=i. It was suggested that l-channel
unitarity might also imply the existence of a branch
point. Then, a cut which would put the essential
singularity on an unphysical sheet would be a satisfac-

7 H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23,
53 (1969); F. Englert et al. , Nuovo Cimento 64A, 561 (1969);
M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969).

8 See also the earlier work of M. Levy, Phys. Rev. 130, 791
(1963); R. Torgerson, ibid. 143, 1194 (1966). These two authors
showed that the ee elastic amplitude behaves like sf(t) and is
consistent with the eikonal form up to sixth order in e.

9 V. X. Gribov and I. Ya Pomeranchuk, Phys. I etters 2, 239
(1962).
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I'IG. 1. (a} General class of diagrams considered in this paper
at large s and small t. The bubble in the middle represents inter-
actions of the exchanged photons. (b) Simpler multiphoton
exchange diagram, which has been previously studied.

tory solution to this problem. " Such a branch point
would modify the simple power behavior in s, character-
istic of Regge poles, to include logarithmic dependence.

The t-channel iteration of two (e.g.) multiphoton
processes, as in Fig. 1(b), leads to processes with one
(e.g.) bubble in the middle, joining to the initial and
Anal particles by exchange photons. From the above
arguments, one might expect that Fig. 1(a) might give
logarithmic dependence on s at large s. Indeed, it was
shown in. Ref. 11. that the lowest-order bubble diagrams,
Fig. 2, of a charged scalar-meson theory lead to an
amplitude with s lns dependence. It was mentioned in
this reference that the individual diagrams actually
behave like s' at large s. The cancellation and final
sins dependence come about in a way that is not
obvious. A similar calculation was carried out recently
by Frolov, Gribov, and I.ipatov" in quantum electro-
dynamics, with similar s lns dependence.

One of the purposes of this paper is to give a natural
explanation of this lns dependence, and to extend and
refine the consequences of diagrams of the type of
Fig. 1(a). We shall discuss the general characteristics of
such diagrams, including more qualitative discussions
of their l-channel iteration and multiple exchange.

A few of the possible generalizations of our result to
hadron physics are the following. (a) For elastic
scattering, we 6nd the presence of lns factors in the
amplitude. Since QKD is a more realistic theory than
Xqb', our results might lead to a more realistic way to
calculate the effects of cuts and the nature of the

"See, e.g. , Proceedings of the Vga' Regge Cut Conference,
edited by P. M. Fishbane and. L. M. Simmons (Univ. of Wisconsin,
Madison 1969).

"H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).
"G.V. Frolov, V. N, Gribov, and L. N. Lipatov, Phys. Letters

313, 34 (1970).

Pomeranchon. " (b) We may divide inelastic scattering
into two categories. In the 6rst category, inelastic
products are formed at the external vertices. In our
model, it is natural that such diagrams factor and
become independent of s. This picture has much in
common with the hypothesis of limiting fragmentation'
recently proposed by Benecke, Chou, Yang, and Yen.
Extra lns factors are again introduced into the ampli-
tude by bubbles in the middle. In the second category,
the bubbles "evaporate" particles at low momentum
in the rest frame of the bubble. These are so-called
"pionization'"4 products. This picture, which is con-
sistent with, but not required by, limiting fragmenta-
tion, is a picture of a hierarchy of "6reballs, '"' separated
energetically from one another by terms depending on
lns. In particular, the number of such hreballs grows
like lns, giving multiplicity of 6nal particles which
grows naturally like lns. Of course, an actual inelastic
process will be a combination of these categories.

Our paper is summarized as follows: In Sec. II we
give the kinematics and general formulation of diagrams
of type of Fig. 1(a) for the elastic process in quantum
electrodynamics. In Sec. III we discuss the lowest-order
bubble in detail, hnding a result which agrees with that
of Frolov ef a/. " In Sec. IV we extend our results to
other types of bubbles. In Sec. V we briefly discuss
multiple exchange of bubbles, and the characteristics of
the resulting eikonalization. The general considerations
are extended in Sec. VI to include multiparticle produc-
tion processes. In Sec. VII we discuss l-channel iteration
and the possible consequences of our results for hadron
physics. In the Appendix, the general eikonalization for
s-channel iteration of a "connected piece" is derived.

II. KINETICS AND GENERAL FORMULATION

In this section we want to show how the appropriate
use of in6nite-momentum techniques at high energy
can simplify a scattering problem. In. particular, we
shaH show that it is possible to remove over-all s

+

FIG. 2. Simplest two-photon —+ two-photon bubble, consisting
only of a fermion loop. Gauge invariance requires the considera-
tion of the three Feynman diagrams shown.

"For an earlier attempt at this problem, see M. Gell-Mann,
M. L. Goldberger, and F.E.Low, Rev. Mod. Phys. 36, 640 (1964).

'4 See M. Koshiba, in Proceedings of the Third International
Conference on IIigh-E~nergy Collisions (Gordon and Breach, New
York, 1969}.5 summary of the latest progress in cosmic-ray
physics can be found in the Proceedings of the Teeth International
Conference on Cosmic Rays LCan. J. Phys. 46, No. 10, Pts. 2—4
(1968)j.
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dependence up to logarithmic terms. When a scattering
process proceeds by exchange of more or less compli-
cated units, there is a na. tural kind of factorization
which simplifies thi. s problem. We shall first concentrate
on elastic scattering with exchange of the "bubble"
shown in Fig. 3(a), but we shall also indicate in this
section how our formulation generalizes.

We want to consider an elastic process in QED. For
our specific example, we consider e e sca,ttering with
two-photon exchange as in Fig. 3. The cross-hatched
blob s along the electron lines include all possible
radiative corrections, while the cross-hatched bubble
in the middle of the diagram describes photon-photon
scattering for off-mass-shell photons. Although it is not
necessary for the general features described in this
section, we would like to make here the distinction
between "primitive" and "nonprimitive" bubbles. We
define a primitive bubble as one which cannot be
separated into two bubbles by cutting internal photon
lines only. This definition is illustrated graphically by
Fig. 3(b). The distinction is important in extracting
the particular behavior in lns arising from the photon-
photon scattering.

The scattering amplitude for the process shown in
Fig. 3(a) is

A-~(p. ,p)B-~ "(P,C)c"(V P.)

p =p 0+p —c xp l cx —Qg

pa =pa)

p ~=p ~0
p

&3
clap p &2+ir4'2

(2 &)

where boldface vectors are now always vectors in the
1-2 plane. The form for p

' comes from the mass-shell
condition for particle a, where p "=vs' is the electron
mass squared. By construction, the new variables p, '

remain finite a,s s —&~. In this frame, p transforms to

p+' =p+/V's =p+/p. +,
p =p~

p—= (Qs)p—

(2.5)

asymptotic behavior of the amplitude in the limit of
large s but finite t.

Wc Iiow turn to thc questlo11 of thc collvcnlcnt flame
for the evalua. tion of various pieces of the amplitude.
The general principle involved is that it is most conven-
ient to boost to a. frame in which the appropriate
variables are finite as s~~, as was discussed at soIne
length in Ref. 16.For example, let us consider A p (p,p).
The appropriate frame for studying this quantity
is a frame which moves along the three-axis with
particle a, called the "standard frame" for particle a.
This frame is characterized in the infinite-momentum
language" by

For those readers not familiar with the infinite-Tnomen-
tum boost techniques, the transformation defined by
Eq. (2.4) Lor (2.5)j may be regarded as a scale trams

formatior4 whose sole purpose is to make the fina. l

integration variables p' 6nite at s= ~. In particular,
p+' has the simple physical meaning of the fraction of
the total longitudinal momentum p,+ going into the
photons, p+/p, +. It is known that this is a. convenient
parametrization for the description of high-energy
scattering.

Now we can express A p(p„p) in terms of p
' and p'.

This is trivial, because A„p transforms like a tensor:

Ze ZeZC

d'P d4q

X — — , (2.i)
(2ir)4 (24r)4

where p~, p2, q~, and q2 are four-momenta of the excha. nge
photons. A p and C„„are the partial amplitudes for the
blobs associated with the colliding parti. cles a and c,
while 8 p. „„ is the partial amplitude associated with
the photon-photon scattering bubble. p is a fictitious
photon mass. " In the center-of-mass frame, the 1-2
plane is defined by the momentum transfer k—= (k",k').
U P=-,'(p ~+p r), the average momentum of particle
a, lies in the plus-s direction of magnitude I', then

A++(p. ,p) =sA+ (p', p')

A..(p.,p)=(4)A. .(p', p'), ~=&, 2

A+ (p. ,p) =A+ (p',-p'), -
A (P.,P) = (I/v") A-(P',P'), -
A—(P.,P) = (&/~)A —(P',P'),

(2.6)
p.r ——P+—,'k,p„=P——,'k,

(2.2)
p„=—P+—,'k ) p,g

———P——,'k.

X
pi p +44 P2 —p, +4c gi —p, +$E (jg —

I4 +46.

For very large incident energy ( P) and finite k= ~k ~,

the conventional invariant variables are

s= (2P)' t = —k' (2.3)

In this paper we are, in fact, only interested in the

"This fictitious photon mass reminds us that we must still
treat renormalization properly. We treat this in the standard way.
Evaluate the answer by first introducing proper regulators and
counter terms, then letting the regulator masses M ~ ~ . The
result is independent of M and is the final answer with renor-
malization taken into account.

Notice that A (p ',p') remains finite as s ~~, whereas
in the c.m. frame A (p„p) becomes infinite. This change
of variables performs the very important service of
explicitly removing s dependence.

Similarly, we wa.nt to study C,„(q,p, ) in the standard
frame of particle c. Since particle c has a large minus
component and small plus component, take as new

"S.J. Chang and S. Ma, Phys. Rev. 180, 1506 (1969); 188,
2385 (1969); thereafter referred to as I and ll.
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dp
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FiG. 3. (a) Fermion-fermion scattering with two exchanged
photons interacting once, i.e., with a single bubble. The cross-
hatched blobs are primitive, by which we mean that they contain
no pure photon states in the t channel. This is illustrated in (b)
for the vertex blob and the bubble in the middle. (c) shows the
left-hand vertex blob isolated in its standard frame. Note that
the exchange photon lines have no plus component.

p," are finite in the standard frame c. However, one
knows that the variables in different regions are the
same momentum variables scaled differently. For
example, p

' in the standa. rd frame a is related to the
c.m. variable p through p = (1/Qs)p '. Hence, a
finite p

' in the standard frame a leads to a small

p =0(1/Qs) in the c.m. frame. Conversely, a finite

p+ in the c.m. frame implies a small p+'=0(1/Qs) in
the standard frame.

As s~~, we may ignore the 0(1/Qs) teims and
replace all the small variables, p+', p, q+, and q ", by
zeros. We have checked explicitly in lov er-order
diagrams that the neglect of these 1/gs terms does
not affect the leading term in the amplitudes. In
complicated diagrams in which a direct verification is
not at present possible, we justify ignoring these 1/gs
terms by requiring that the remaining integrals be
finite and s independent. The full amplitude is finally
described by the remaining set of 6nite integration
variables p, q, p ', p+, q, and q+" and by the finite
external variables p, ' and p,".The remaining variables
p+', p, q+, and q

" are small [0(1/Qs)] and are
replaced by zero. In terms of the finite variables, the
volume factors in momentum space are

d'p 1—(dp+dp 'd'p),
(2') ' 2 (24r) 4+s

variables

and
(2.7)

de
(dq+"dq-d'rl).

(2ir) 4 2 (2ir) 4+s

(2.10&

q
"=(1/Qs)q, 41"= il, q+" ——(Qs)q+. (2.8)

The leading part of the tensor C„, is

The photon propagators are, in terms of the new
variables,

C (q,p, ) = sC (q",p."). (2.9)

C (q",p,") remains finite as s —+~.
Since A++ and C are larger by Qs tha, n other

components, the only components of the bubble in the
middle we need to consider in the s —&~ limit are
8L,++(p,q). The original c.m. variables p and q are
most suitable for describing B.

We have thus seen that the natural variables for
describing different pieces of the partial amplitudes are
scaled differently in the + and —components. Trans-
verse momentum varia, bles are scaled in the same wa, y
in all these reference frames. For instance, we have seen
that A e is best described by the finite variables p, '

and p' (i.e., p, and p in the standard frame of particle a),
while C„„should be described by q" and p," (i.e., q and

p, in the standard frame of particle c). From the
analysis of lower-order calculations, one finds that the
dominant contribution to the amplitude comes from the
integration regions where all these naturally scaled
variables are finite. Thus p, ' and p' are finite in the
standard frame a, p and. q are finite in the c.rn. frame
(this point will be discussed in detail later), and q" and

O' I '+ie (p+p—')/&s p' I '-+«— —

(2 11)
p'+4 '+0(1/&s)

'

q' —p, '+4'e rl'+44'+0(1/gs)

We shall ignore the 0(1/gs) terms in the exchange
photon propagators. This is equivalent to ignoring
the contribution of the potential poles in our calcula-
tions. It is known from explicit lower-order calculations
(up to e')i7 that the potential poles do not contribute if
diagrams with photons permuted in all possible ways
are included. Whether this is true to all orders in e'
and in all possible bubble diagrams is not known. We
shall assume it is true in this paper; we hope to study
this point more carefully in the future.

"The cancellation of potential poles in P @' theory and in QED
was shown by A. N, Chester, Phys. Rev. 140, 885 (1965);
R. Torgerson, ibid. 143, 1194 (1966).



CHANG A&D p M F'I s HBAN E

Putting everything together, we find that Eq. ~ . ~~,2.1
becomes

dp (lp+ d(g

~++(P-',P') — — & —;++—(Pq)
4x 4m.

d p
C (q",P,")

ze
(2.12)

~&2++2 P22++2 q12++2 q22++2

where p, q are loop momenta, pi=p+-, k, p2=p —2,
and qi ——q+-', le, q2 ——q

—2k. For general (Sf+Dr)-photon
h 3I E&2 as in Fig. 4, there

(M+lV) Qs factors from each large vertex anare ~~ s
(3II+lV —2) 1(gs factors from the loop integra

'
te rais. Thus

there is always a single s factor left over. (See also our
O' ' '

Sec. IV.) Similarly, when any blob or
bubble is broken up into primitive components, i.e.,
when primitive ub bbles are iterated across a diagram,
there is a single s factor over-all.

The advantage of using Eq. ~~2. 12~~~2 12~ rather than the
original c.m. amplitude of Eq. ~,'2. 1~ is that as s~~ all

the pieces oof (2.12) become separately finite except
for possible logarithmic terms from the photon-p o on

scattering piece'. uThus one can treat one factor at a
~ ~

time This kind of factorization of the amplitudes into
s-independent partial amplitudes is a general resu t.
In the example we are studying, the first factor is

dp
~++(P~ ~P )

4x

A actually depends only on the transverse and minus

components of p and p. The p+ ' is fixed equal to
unity an p+ is zd p

' is zero. In terms of the decomposition

z this first factor is represented graphical ypp hp+)prp —J~

as in Fi . 3 (c). This partial amplitude can be evalua e

without knowing the 8 .++ or C par s. s'

conclusion applies to the 8 .++8 . and C factors.
We shall refer to parts 3++, 8 .++, and C as
kinematically decoupled.

The contribution due to the bubble in the middle,

(/P+ lfff——B—;++,
4x 4x

leads to extra lns factors as s —+~. In fact, a Regge
cut which would mean extra lns factors, is required by

Fio. 4. Single-bubble dia-
gram with 3E photons attach-
ing from one side and lV from
the other. M+X must be even.

~ ~ ~

(q )
( ) (q ) (&«&))))q41 5i

~cI'a

FIG. . u tip e- u. 5. M l
'

l -b bble diagram for fermion-fermion scattering.
er ~ bubble all ofNote that not all the photon lines attach to every u e,

which are taken to be primitive here.

the Gribov-Pomeranchuk theorem. ' In particu ar, if all
the cross-hatched blobs of Figs. 3(a) or 4 are primitive,
a single lns factor results, as we shall show in detai .
The existence of the lns term in the lowest-order ox
diagram of a charged scalar-meson theory was estab-

hed b Chen and Wu" through explicit calculation.
In this paper, we wish to present a simp e p ysica
reason w y is sh this s Ins structure emerges naturally or

~ ~ ~

a/l single primitive bubble diagrams, and its coe cient
can be identified straightforwardly.

The extra lns factor in our calculation is related to the
invariance property of the bubble amplitude B .++
under acceleration along the three-axis. This invariance
property implies that the integrated bubble amplitude
contains a longitudinal phase-space factor lns in the E'

able to many-bubble processes as well as to the inelastic
processes. We shall discuss these points in detail in
Secs. III and IV.

The factorization of the amplitude into finite (up to
factors of lns) kinematically decoupled parts is quite
general. To apply this to an E-bubble case, as in Fig. 5,
let us use the convention that the bubbles are drawn
from right to left according to increasing values of the

This kind of representation makes sense only at very
large s (hence very large lns), when separation between
bubbles in lnp+ space is larger than the extent of the
bubbles themselves in this space. (When bubbles are
primitive, they have only finite extension in the lnp+
space."Thus it is sensible at this stage to demand that
all bubbles be primitive. This fixed the logarithmic
dependence that a single bubble contributes as lns. )

For the above graphical representation, and for terms
leading in lns, photons attaching from the right to a
bubble have coupling y+ and photons attaching from
the left to a bubble have coupling y . Any diagrams
with a wrong plus or minus p matrix at a vertex is at
least an order of lns smaller. This can be verified from
the Lorentz transformation laws of the bubbles. Dia-

'g This can be seen in two ways. First, we find from explicit
calculation (see Sec. III) that the primitive bubble amplitude by
itself is finite and does not contain further logarithmic divergence.

d s shown in Refs. 6 and 8, the only leading diagrams
e into twofor large subenergy are those which can be separate

parts by cutting only photon lines.
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dII (»+2)+x c .. . ){r, +'),p.)(II

X42r~( 2 q(2N+2) —)

X(2~)'&"'( 2 q —k), (2 13)

where a]i p's are q's are c.rn. variables. The subscr)pts
e 2m+1 label all photons associated with the mt

bubble, and superscript i (and j) describes
)

describes the ith
( d. 'th) photon in the above group(s) of photons.an j

t e factIn eriving e, td the above result, we make use o t
that the leading term in B... ,„„... " „„..., ... ", or

(")8 (n+" The naturalinstance, is ~2'~28. .. ++... "
variables for the eth bubble are, in analogy to the one-
bubble case,

q-""'= (1/v'~-) q-""',
q(2n+1) ~ q(2n+1)

q(2n) ~ ~ (2n)
)

(2n+))) (1/Qg )q i2a+))

(2.14)

~'s is the t ical plus component of the mth

Th do i tbubble measured in the c.m. frame. e om'

contribution of the eth bubble comes from the integra-
(2n) (2n+1)tion region where the variables q ", q

The {s„}satisfy"

QS)&QSI»QS2&) &)V'SN))2)22/QS. (2.15)

After ignoring terms of order O~ qs„+~„(( )/s ) or 0(1/lns)
smaller, we have

q
(2 ) ' —[q I2 ) ' q (2 ) Pj

(2n+1)r I P ~i2a+1) ql2n+l)rj

' S. Weinberg, Phys. Rev. 150, 1313 (1966).
f e call "~/s„' the typical minus component of"y2 "V

erations of the M ndelstam cut diagram
le in the c.m. system, t en s„ i

increases. In studying iterations o e a

he usefulness of standard frames for(1.969)j similarly discovered the use u ne o s a
stu ysnga -cd 3-channel iterated exchange process. They a so n a
use of these variables leads naturally to ln pns de endence.

grams belonging to the same Feynman diagram but w& tn
different ordering in the inp+ space (see Fig. 6) must be
counted as different diagrams in our representation.
This is analogous to Weinberg's infinite-momentum
rules, "where different time orderings of a single Feyn-
man dia ram are taken to be distinct diagrams.

the scattering diagram of Fig. 5 for E primitive bubbles
as

dqii'= —A ... (P.,(q '})
2 N+1 r 41).

dg 2+
x e ... „,. .., (),, ),),. ))(11——'

X42rl)(p q2+')42rl)(Q q: )

Fxo. 6. Two connected two-
bubble diagrams of the same order
in the coupling. In our kinematic
region the side from which a
photon attaches to a bubble is
important, so that (a) and (b)
represent not a single diagram, but
two diagrams which must be con-
sidered separately.

(bj

We now transform the bubble contributions to each of
their respective finite frames. For each of the + (or —)
tensor indices we pick up a factor Qs„(or 1/Qs„) from
this transformation. For each of the integration
variables dq & )= (1/gs )dq I")' (or dq+I")), wehave a
factor 1/Qs (or gs ). Putting all these factors together,
we find that all intermediate gs„ factors cancel. The
only factors remaining are one Qs from u e an
one gs from bubble C, giving

S

~++-+(p.', {q —}') II —4-~(Z q -")

dg2+' dg3 ~

)& 2-- —.„,'"ii)„"),)e ))(II—
'

X42r~( Z q2+")42r~( Q q2 ")

dg'(2N+2)+c—"-({q(2N+2)+'},P") II
4m

—28 dq
X42r~( 2 qI2N+»+") II

(all internal photone) q2+ 2 (2 ) 2

X(22r)'5"'(p q —k). (2.17)

The dependence of the functions 3, 8 C on the
transverse momenta has been suppressed. ote that
ill lg. rl0 aF' 5 t all the photons emitted from 2 are neces-

2.13 asari y conne'1 connected to B.Also note that as in Eq, a
27r 2four-dimensional 8 function 42rb(p q+)42rl)(p q )( 21)

Xf)(g q—lr) must always be included between two
bubbles. The effects of this 6 function were already taken
into account in writing Eq. (2.1) for a single two-
photon ~ two-photon bubble.

As we shall explain in Sec. V, an E-bubble diagram
'll in general give rise to a factor (Ins)N. This

summing repeated bubbles. Finally, the generalization
of the work. of this section from elastic processes to

I.inelastic processes is sketched in Sec.

III. LOW-ORDER CALCULATION

I S II we mentioned that the s lns dependence ofn ec. , w
the amplitudes emerges naturally if one reabzes a
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p=(p, p p)

p„=~a p, o)

p

(o, q q, )=q,

'q1, i-

(a)

pp

q1 pi

r 2 comes from the fact tha" P+where the facto o
] to the volumed ne ative. » ana ogyboth positive and

n th e U sua] cal cu ation of the transi-factor apprearlng in
translatlo»ltion probability, the

~

]ns factor re ec s
s ace.he bubble amplitude in the Inp+ pinvariance o t e

er in Sec. VI.)(We discuss this Po'nt
in rac tice, we

compute the s lns o
'

f other high-orderof spinor ED. The calculation o o er
bubbles will be brieRy sketched.

For the box diagram 7(a), the amplitude is
Wp

(b) (c)
o- hoton —+ two-photon bubble o 'g.e of Fi . 2 labeled

h th p thcarefully. Note that t e are z
(~)—

pv, ho

d'8'
—

TrLSp (Wg)y„Sp(W2)y.
(2n-)'

r lns reRects the longitudinal phase-space

develop the technique in detai an wor
tribution explicitly.

nsverse momenta is omi e(the integration over transv

dP+ dIff

,++(p,v)—,
4x 4m-

(3.1)

where

(Pi+~Pi~O) y P2+ Pl+ P+ y

(3 2)
q q; ) 2 ——— = — i=i 2,

Lorentz covariance imphes that

(e p e
—q;, =,q . (3.3)-(s~P ie '7 i P~Q) +———++(P+iV i PiV-&——,+it~ z+~e

nl be a function of p+q and (p, g),Hence 8,++ can on y e a u

&—++(p+ 0—'
p 9)=&—++(p+0 ~ p~Q .) (3 4)

Then,

dp+ dg
+(+p c)

4m 4m.

(3.6)
~i«p+

——--- —--~(p+~-, v, a)
4m pp 4s

—&( +C-; u, ti) (3.3)
4m p+ 4s.

n beis inde endent of p+, and canp
t ex licitly. It is a 6nite ac or,

1 h J' /
H we have to recomicall .However, we

is a natural cutoff em g'
utoff is supplied

1' d H I'dp /by the C part of the amp itu e. e

longer diverges, an y'd ields

d dp+-2 =2 Ins,

XSI (W3)y,Sp(Wg)yg j
d4$'

T-P(W, +m)&„(W,+m), .
(2~)'

X(W3+m)y, ( W4+m)y&j

X(DgD2D3D4) ', (3.7)

~ =S"—m'+i&, g=i 2 3 4j
Wg= W+pg, W2 ——W, W, = W+g, ,

W4 ——W+qg —p, = W—q, +p, , (3.8

P'= (P'+, u, ,O), C;= (O, rl, ,q; ),
and py+pg= gg,= g+qg ——(o,k,o).

The leading contribution correspon s
P =0.=+, and gives

&--,++"(p V)
=—

XTrL(Wr+m)y (W2+m)y~

X(W3+m)y (W4+m)y~f(DrDgDBD4)-'. (3.9

Since y+'=y '=0, we have

v+(W+m)v-= v+(—V.W+m)y
=p+y (y m,

v-(W+m)v+=v ( vW+m)v+. -—
reduces toHence the trace (the numerator)

1V~ ~=8 TrL(m+ Y W&) (m —
Y W&) (m+ 7 W&

X (m yW4)j-
=32((W, W,+m')(W, W4+m')

+ (Wg W4+m')(Wg W3+m')
—(W .W +m') (Wg W4+m') j. (3.11)

onl, and does not dependThe trace is a function of on y, an
or 8' . It is in fact quite straight orwar o

veri y . 8 '& is indeed a function ofverify from (3.9) that BL,++ i



2

ct . Note thatn through the product p+q . o e
'v W integration. We s a8( ) is formally div g in . . s gver ent after in . . s a

8( ~ 8('&, andSCC Rthat the sum o 8
enlence, we may rsand finite. For convenien, rs

g
regularized amp

'0

htudes 8&"g ~»
m lete our calculation.let 3f go to in6ni ynit after we comp e e

I' Rwe can evaevaluate 8 for
-= )."fixed p+

——1 (or, alternatively, q =
mo

'
to compute direct ymore convenient o

of s lns, which is

' dWqd2kV
pr (~)

327l-8

1

W+ Wi2+m')+ (1—8'+) (WP+m'

8'+ W42+m')+ (1—5'+) (W3'+m'

d'8'
2 2do!ds-n —V& &(xpWi +xnW2

(1 32+

~ ~ECTROD& NAMJM EI-ETU DEg lN QSCATTERING AM PL

~--, — "(p+=1,q-;p, e)——i++„4'
dq dWpdS' d'W

2(2n.)'

Di (W+—1)W ———Wi2 —m'+i e,

2 ——8' vv —WP —m'+i&,D2= 8'+

D3 8'+(W +q )———WP —m'+is,
D4 W„1)(W +———q ) W4' ~rP—

Hence) wc CRn write

(3.13)

4'
'

n W=(W„W,W ),f the parametrization = +,In terms o t e
we have

+yO.W3'+yPW4'+ns —,2 2 —2 (3 16)

=1) are Feynrnan parainameters, andwhere x, y (x+y=1 are ain

n—= 1—W+, P—=W+.

etweencorn lete symmetry eote that there is a comp e e e

(') by fixing q =1, an in e we w

h e otten the identical answer

a translationflI'st IHRklng R 1

W —+ W'= xPWi+xnW2+ynW3+y
=W+xpp+y a+yp(a —p .

Then the denominat tor becomes

dS'+O'W
p'(~)

2(2n.)'

W"+m'+ xyK'+npK" +xyn k',

K =Spy —/pe.K=nili —pilq,

'on for J( ~ isThe 6nal expression

(3 19)

(3.20)

1

= ——lr' in''+ — dxdn

dW q
i 2

de (DiDp) '

W~(W'+ )+(1—W )(W '+

d(q +8" )(DgD4) '

2xi

lF+ W4'+m')+(1 —8'p)(W3'+m'

similar to theiven here is very sim'' The calculation grve
scattering calculation gn 1ven ln e

brompton
16.

tuall d qtu t +W )j integrals canThe
hitg 1 ih

'll u i 11- 1. This wi a
lrlon

xcept for 0&8'+- . ' '
a se

feature o inf 6nite-rnomenturn ca cu a
Q 1~ wc have

3x

y —ln(m2yE)L(~, + ~,) {a,+a,+~,) —2Z$

s,—R)(s, .s,—E)+L1/(m'+~) 3L(&i

—a, .a,—R)(X, X,—E)j), 3.

is a f electron regulator r the' is a cutoff mass o e ecwhere 3f is a e ec
1/(old'+R) term ~ 0 as

R=xyK'+npK'2+xyn k',
n k,=-W —W' = —yK+nK'+ny

(.-)—=W —W'= —yK —pK' —y
=-W —W' =xK—pK'+xp

4=— —W'= xK+O,K' —xe

isa eared identica yThe quadratically i g isa eadiver cnt, part lsRppcR
the regu ator e

b athmlc diverge
hus thesimilar term appearing in Figs.
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final result does not depend on the regulator mass and
is finite.

Let us consider the contributions from Figs. 7(b)
and 7(c). The leading term is

The result is

J(~)+J(c)— (/g.—L8 ++ ' (p+
——1,q; p, q)

4x

8—,++ "&(P q) =—

with

d4t'V
.'&' "(D&D2DiD&) ', ( . 3)

(2ir)' dg dR' d'8'

2(2&r) ' DgDgD4

+8,.&'&(p.=l, q; p, q)j (3»)

i&i&~&= Tr((W&+m)y (Wq+m)y~
X (W,+m)q+(W, +m)q j

=-32W+IV (m'+Wg W4), (3.24)

dg
X ——+—,, (3»)

4m Dg Dg'

D,= B'-'—m'+i&, (3.25) where X&"=&V"=32W~W (m'+W2 W&) and

where N' is the integration variable. It is chosen to be
tV. . The tV, 's, i=1, 2, 3, 4, are related to t« through

f4'g ——8'+pg, tV2 ——H/, FV3 ——t«'+qi,
~'4= &«+qi+q2= H +pa+ p~.

The a,mplitude 8 ++&'(p, q) can be obtained through
the substitutloil q ~iq (2ol p&~ p2). Iil ailalogy to
J' ), we have

h
(—2&ri) ' d W+d, 'W

J(~)+J(c)—
4&r 2(2ir) '

&&32(W&'+m') (W2 W4+m')

D, '= (IV —qi)' —m'+is
= IV+(N' —

q .)—(W—qi)' —m'+i~.

The q integral is simple, and gives 2&ri/W+. A—gain
0& t/V & 1. After performing the t/V integral we finally+-

ave

J'"(p,q) = —8—.++'"(p+=1,q-; p, q) (3 2«)
„4x

W (W '+m')+(1 —14'+)(WP+m')

8 ,++"—'(p+, q--=1;p, q) -(3 26b)
4m

Of course, Eqs. (3.26a) and (3.26b) should lead to the
same result. We would like to point out that the only

(qi, q~) dependence in 8 ++ &b& &'& is through the
denominator

D3= (W+qi)' —m'+in= W+(W +q )
—(W+qi)' m'+is —(3.27).

Af ter q integration, this q & dependence in J +~ ~ (b)+J(&:)

is washed out. Hence J&"(p, q)+ 1&'(p, q) can depend
only on the sum q&+q2 ——k, but not on the individual
q;. In other words, as one might expect, if two or more
photons from the same side (here from the right-hand
side) are inserted adjacent to each other onto an
electron line of a bubble, the resultant amplitude
depends only on the sum of their transverse momenta.
We would like to point out that this result is not new,
and has already appeared in the original ee, ep, and py
calculations. ~ We can apply this argument to the two-

p oonvh ton vertices on the left-hand side of the box diagram.
kTherefore, J(')+J') can only be a function of

(= pi+ p, = q,+ q,).We have verified this k dependence
for our box diagram explicitly by carrying out the
parametric integra, ls below.

Once we know that J(')+J(') depends only on k, we
can compute it easily by choosing p& ——q& ——k, p& ——q&

——0.

(3.30)
IVi(WP+m') +(1—Wi) (W&'+ m')

which is precisely —J' '(pi ——qi ——k, p, = qn
——0) in

(3.16). Therefore, the total hubble contribution is

J(p, q) =1'&+I&"+J&'&

~{—In(m'+R) [(A&+cL3) (ILL+ cL&) —2R]

+D/( '+R)3L(~ ~ -R)(&'& -R)

+(4 i sL 4
—R) (Xg Xi—R)

—(a, a, —R)(x, x,—R)]j
—(same expression with

p =q =k, p =q =o), (3»)

where the 6 s and R are given in (3.22). Equation
(3.31) is manifestly finite and cutoff independent.
The result obtained here is consistent with a, recent
calculation of Frolov et al."

It is now straightforward to compute the contribution
of the elastic amplitude a+c —+ a+c as in Fig. 3(a).
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EIp ooo
various pieces,

~ ++(P',v&')
4x

/+—,++ " (V(») ~V(»+))

p p

of the sim le two-photon ~I'IG. 8. Simple t-channel IteratIon o
'

p
two-photon bubble 82, 2. Ke must consider all gauge possI i i i
within this picture.

I

4~ 4m.

/dV(2»+2)+
I/+——(g(IV+2) )pc

4m

%+1 ge ze

Denote

L~+ (P"', P '» ')

dp+
+~++(P'; P2', Pr') 3

I"(q) —= Ic (P";—Cr",C")

+c (P'" v2"—vr")j

(3.32)

the momentulri of photonswhere g2, g2„+~ cno c
a ro riateattac lng o e eh t the eth bubble in the frame approp

'

2„. For theto the description of that bubble, g2„+I——g2„.
initial and final blobs, we have

L~++(P~ i 0(&)) )&I(&)~ .
I. I I')

(kj (])
/+~++(po i &&'(&)~ ~p(&)&

4x

I«) in the simple case o- tw -ptwo- hotonwhere
h the iInpact factors introduced y gb Chenexchange are e iIn

and Ku. " The contribution from vanous par s ca
summarized as follows:

(1) There are factors I& )(p) and I&')(q) rom t e
and C integrals. The impact factor is defined

as the integral of. the sum o a
dlRgl Rm S. Cn&1' Hence an over-all factor 1/2! shou e
included to correct the double counting in an

(2) There is a factor (ins)/2)r due to 1'dp+/(4)rp+ .
(3) For each exchanged photon (n (of momentum p)

between two electron lines, wwe include a factor —ie2

( '+p, '). In the cases of e e+, ey, an py sc
'

g, escattering, we

positron. Then, a factor fe'/(p'+p') is inclu e .
7

over with volume d'p/(2)r)'.
(4) There is an over-all factor -', s.

COInblnlng ( )—1, ) ) wb
'

(1)—(4) we obtain the scattering amplitude
for Fig. 3(a) as

/I"= LC (p.";q (2)«+2) r', &I (~iv~~) 2

/
(2%+2)

/+~ (P~ i I (2))&+—~)2 ~'ll(2))&+'-))

while for the eth bubble,
I

dg (2~yZ)—
I"

(V(2~)+ =
&~ &I(2~~+»&+ '1" tt 7

4x

=J(q&~ )~q(2+»)

The contribution from the p — phase-s ace integra s
'

4m
' are rather straightforward. Eac

2. (Rmll hof the integrals leads to a factor (lns )r. eca
be both ositive and negative. ) Since theg (2&)+. Can c 0 p

lntcgI'R ion vt on varlablcs Rlc oI'dclcd f2+
a factor I/X! should be included as an over-all f-all factor
glvlng

Hence,

lns
M =-s-—1

4m

d (gy I"(p)I"'(q)J(p,q)
(2m)' (2)r)'

2—M —ie 2 2

(3.33)
Py2+P2 P2 +P Ql +P q2 +P,

s lns
~(») = ——

.VI 4 4x
I"(q &»)I"(0&2~+»)

XII P(q&- ) q(~ +»)1

1+9 =a+I = .
AVC wouM lik.e to mention rie y ow

ed in the, resentthese box diagrams can be compute
d o' to thc analysis of klnenl Rtlcscontext, Accorulng to e

II the amplitude for a multiboxdevelo ed in Sec. , e ap
be factored into products ofdiagram (Fig. 8) can e a

»t+~ d'q 2~) —xe —se

(2)r) q(2» +p q&-".»

The sum over a11 E at t=o of this result was obtalne
Ref. 12 b solving the Bethe-Salpeter equa-earlier in e . y

in our calcula-tion. The (lns) ~ factor emerges naturally in ou
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tion as the multibubble phase-space factor. We shall
discuss this point further in Sec. VI.

qn

n photons
qn-1

'~ e

q(

q =(o,q, q ),
(a)

pi=(pi, p, , o )

Pnqn-1

n-1 photons
qp p
q& p1

qj ( qi qi- ) pi (pi+ pi

p=(o, k, o)=q

(b)

'pm

m
photons

P~

P(

qn ~

' n photons

qp
q

rnn& 2
~ =(o, )

p =(p p. o)
(c)

FIG. 9. Some more general primitive bubbles, with appropriate
momentum labeling. (a) m photons attach to a bubble all from
the same side; (b) all but one of e photons attach from the same
side; (c) ~~z photons attach from one side, e from the other, with M,
n &2. When ns =m =2, we have B2,2.

IV. FURTHER GENERAL RESULTS

In this section we would like to examine some other
"primitive" diagrams of the same general type as is
discussed in Sec. III. These diagrams are shown in
Figs. 9(a)—9(c). We assume that we have accomplished
the kind of factorization we discussed in Sec. II and
that these diagrams represent "units" in some larger
diagram associated with, say, elastic scattering of
leptons. The cross-hatched blobs in these diagrams are
"primitive" blobs, i.e., they cannot be cut in two by
crossing photon lines only. As we mentioned in Sec. II,
this means that the leading lns behavior is fixed. The
simplest example of such a primitive blob would be a
simple lepton loop. Charge-conjugation invariance
(i.e. , Furry's theorem) tells us that the total number of
photon lines connecting to a blob, primitive or other-
wise, must be even. Finally, in diagrams 9(a)—9(c) we
remember a left-hand photon line connects to the
primitive blob with coupling y and a right-hand
photon line connects to the primitive blob with coupling
$+0

We shall treat diagrams 9(a)—9(c) in what follows.
Our conclusions are the following for the case where
these diagrams connect directly to external fermions.
Diagram 9(a) contributes to only 0(1) rather than
0(s ins); diagram 9(b) contributes to only 0(s) rather

than 0(s 1ns); and diagram 9(c) contributes 0(s 1ns).
In the general case when diagrams 9(a)—9(c) are
subdiagrams of a larger diagram, we find that diagrams
with 9(a) as a subdiagram do not contribute to the
leading s behavior, those with 9(b) as a subdiagram do
not contribute to the leading s(lns)~ behavior, while
those with 9(c) as a subdiagram contribute to the
leading s(lns)~ behavior, with %=number of primi-
tive bubbles. In other words, when we inspect the
leading lns behavior, we only count the primitive
diagrams of type 9(c).

A. Diagram 9(a)
If this diagram were connected directly to one of the

external lepton lines, it would look like a class of self-
energy corrections to the lepton. Thus, at least in this
case, one would feel unhappy if any s dependence at all
were introduced by this diagram. In fact, s dependence is
never introduced by this diagram. This is seen as
follows. Consider the left-hand diagram of Fig. 9(a)
for n = 4, for definiteness (the argument generalizes in an
obvious way). The diagram is then of the form

& a&~(gi, q~, V~ V4) ~ f1++++(Vi V2 V3 q4) (4 1)
where

V'= (0, il', V'-) . (4.2)

Now, the question is whether one can construct a
fourth-rank tensor with nonvanishing plus compo-
nents. The answer is no by simple inspection: This
tensor has to be constructed from q, and the numerical
tensors g„„and e„„~.. Since q; has no plus component
(actually q,+——0(1/s)) and g++ ——g+&

——0, g„„and q„will
not contribute any plus component. Similarly, one
finds that e„„)„will not contribute either because the
triple product vanishes,

&+pvkgl g2 $8 2 &+—imL(gl)+(g2)i(g3)m+ ' ' ')
(note that e++„„——0). Thus 8++++ is of 0(1/s) at least.

When this diagram is associated with the other factors
which go to make up the scattering amplitude, this 1/s
will cancel, leaving us with an amplitude of 0(1) rather
than 0(s) or 0(s 1ns). More precisely, when this diagram
is inserted anywhere in a "factorized" amplitude, it
contributes no further s dependence.

B. Diagram 9(b)
If this diagram were connected directly to the two

external lines in an elastic scattering process, it would
look like a single exchanged photon with a vertex
correction. Thus, at least in this case, one would feel
unhappy if an s dependence beyond that of single-
photon exchange Lwhich is 0(s)) were introduced by
this diagram. In fact, we can show that Ins terms are
never introduced by this diagram no matter where it is
inserted in a "factorized" amplitude.

For definiteness, consider the left-hand diagram of
Fig. 9(b) in the case n 1=3 (again, the argument —is
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easily generalized for m —1 any odd number )1).
The diagram is of the form

B ++—+(P ~ V~H2~93) ~

where q; is given by Eq. (4.2), and where

p= (O,k,0).

(4 3)

(4.4)

p has no plus component for the usual reason that
left-hand photons have no plus component, namely, to
conserve the total plus component across the diagram.
It also has no minus component, because it is connected
from the left-hand side of the bubble. We can now make
a tensor argument of the same type as the one we made
in Sec. IV A. All the momentum vectors upon which
this tensor could depend have zero plus component.
We could think of forming 8 +++ with vectors of the
type g„„ql),qg, or e„p~pql~qgp) etc. Even though g + and
e + p are nonzero, g++ and e++ p are zero. Thus, we
can only take care of one pair of indices (—+); the
remaining indices ++ can never be constructed.

Thus this diagram is by itself 0(1/s). Unlike diagram
9(a), however, this diagram connects on both sides to
factorized pieces. This factorization automatically
contributes 0(s) on either side, so when integrated
into a complete scattering amplitude, diagram 9(b)
gives 0(s), but not 0(s lns).

&&B „(p,+,q, ; transverse quantities)

=II dP'+' ll dv -'

&&B, (P;+',q; '; transverse quantities) (4.8)

is invariant under a "p-independent" boost.

C. Diagram 9(c)
None of the agruments of Secs. IV A and IV 8 applies

to this particular diagram to rule out logarithmic
factors. Instead, we can use the techniques of Sec. III
to study this case and to conclude that it contributes
0(s Ins) when connected directly to external lepton
lines. This diagram is of the form

8, ~ rr n
m, n( Pl ~+~ ~ ~ yPm+q o71 1 ~ ~ ~ po7n——p

transverse momenta), (4.5)

where the subscripts m, m denote that 8 has m minus
indices and e plus indices. Under a boost along the
s direction,

p+. —+ p+' ——e"p+, q ~q '=e—'q

p'=p, q'=q, (46)
we have

B „(e~p;+,e "g;; transverse quantities)
=e"~" &B „(p;+,q, ; tr—ansverse quantities). (4.7)

Equation (4.7) implies that the expression

II dP'+II dv-

I.et us boost so that any one of the p; variables has
plus component equal to 1, or any one of the qi variables
has minus component equal to 1. In general, a single
boost gives this for only a single variable. For example,
boost in the three-direction so that pr+' ——1. This boost
is parametrized by "rapidity" X,

pr+ =e pres= 1.
Then

p,,'=p„„/p,~ (x=2, 3, . . . , e),
(j=1,2, . . . , m)

/

&—=6 P~+'—

(4.9)

(4 1o)

are a new set of m+m 1v—ariables on which Eq. (4.5)
depends. The transverse quantities are of course not
affected by this boost. In this new frame, the multiple
integral of (4.8) over dp;+ and dg, becomes

)n n

II II dp +dc'
i=1 j=1

V. s-CHANNEL ITERATION

We have made careful distinction between primitive
and nonprimitive bubbles in the preceding sections.

XB,„(p;+., q, ; transverse quantities)

dpr+ m n

II II dP'+ dry
P&+

XB,„(1,p,+', g; '; tr, ansverse quantities), (4.11)

where dp;&
' in (4.8) is replaced by dp~+/p&+, and the

remaining integral is p~+ independent. For convenience,
we have left two b functions out of Eq. (4.11), one
conserving the total plus momentum for the p variables
and one conserving the total minus momentum for the

q variables. Thus, instead of depending on m+e —1
ratios (variables), B actually depends on m+e —3
variables. In the special case of vs=m=2 which was
worked out in Sec. III, the amplitude depends on
2+2—3= 1 remaining value.

Connecting diagram 9(c) directly to the external
lines introduces, in addition to the extra lns factor from
J'dp~+/p~+, a single power. of s. Thus the primitive
bubble of diagram 9(c) gives, for elastic scattering of
leptons, 0(s lns). In the general case of the insertion of
diagram 9(c) into a larger graph, we always find an
extra lns factor. This additional lns factor comes from
the longitudinal phase-space integral j'dpi'~/pr+. Of
course, the contribution of this bubble does not depend
on which of the particular reference momenta pi+' ——1
(or q,

'= 1) we choose.
The conclusion of this section is that for the contribu-

tion of primitive blobs to elastic scattering, only
diagram 9(c) gives as much as s lns. Since the m=m=2
minimizes the power of 0., the diagram studied in

Sec. III gives the leading behavior in lns for this
entire class of diagrams.
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This distinction is necessary in order to understand
the behavior of a particular diagram in lns as s ~~; its
formulation is necessary in order to understand the
3-channel iteration of bubbles or to the establishment of
a Bethe-Salpeter equation that sums these 3-channel
iterations.

In this section we wouM like to discuss briefly the
corresponding distinction which is necessary in order to
understand s-channel iteration. Ke must therefore
define "connected" and "disconnected" diagrams.
Suppose that we have now accomplished the factoriza-
tion of a given diagram into three parts, one depending
on each of the two external leptons, and one depending
on all possible multiphoton interactions in the middle.
Concentrate now only on this middle part. If this
middle part falls into two or more distinct pieces
(without cutting any lines), then we say it is discozz

nected. If, on the other hand, it does not do so, it is a
coemecfed diagram. Simple examples of these two
diagrams are shown in Figs 10(a.) and 10(b).

We can call a connected diagram a connected N~zit,

and imagine forming a disconnected diagram by the
exchange of two or more of these connected units. Such
a dia, gram is shown in Fig. 10(a) for the exchange of
two of the connected units studied in Sec. III. We say
we have eth-order exchange of a given unit when e
units are exchanged and we sum these diagrams with

the photon lines of each unit attached to the external
line parts in all possible ways. The s dependence of an
eth-order exchange in which m primitive bubbles appear
over-all is just s(lns) . As we shall discuss below, the
t dependences of iterations of a given unit is different
but closely related.

Let us consider the amplitude for a process containing
zz identical connected units as shown in Fig. 10(c).
Actually, we can include all kinds of radiative correc-
tions to the incident particles as long as we ignore the
contribution due to fermion pairs. " In that case, the
3 dependence of an eth-order exchange diagram is as
follows. Let exchange of a single unit have t (and s)
dependence F(s,t), and let the Fourier transform of
F(s,t) over k be given by

ix(—s b) = e'" bF(s k')d'k
(2zr)'

(5.1)

The s dependence in F(s,t) is simply a multiplicative
factor (lns)~, with X being the number of primitive
bubbles in the unit. The same lns dependence also
appears in X(s,b). Then the zzth-order exchange
diagram has t dependence with Fourier transform
(see the Appendix)

(1/zz! )L
—zx (s,b)g". (5.2)

This is the well-known eikonal property. In particular,
the sum over n of all vth-order exchanges is

expL —ix(s,b)]—1. (5.3)

Actually, when more than one connected piece are
iterated, the eikonal form persists. The over-all X is the
sum of individual X s, as demonstrated in the Appendix.
This exponentiation property has been shown explicitly
by several authors' ' when the unit is single-photon
exchange. For the unit studied in Sec. III," one has
explicitly

1ns d'p, d'g;n- '

4zr '~ (2zr)' (2zr)'

(b)

—ie'
&&J(p,q) II

i, j=l P, +p, q~ +p,

X(2~)'8(p&+p, —k)(2zr)'8(q, +q, —k), (5.4)

where J(p, q) is given in Eq. (3.31). The Fourier
transform of F(s,t) is

—ix(s, b) = 1ns n(b), (5.5)

(c)
Fzc. 10. Disconnected and connected diagrams. (a) Simple

example of a disconnected diagram; (b) simple example of a
connected diagram; (c) typical disconnected diagram which is
the exchange of two identical connected units,

"S.J. Chang, Phys. Rev. D 1, 2977 (1970); Y. P. Yao, ibid.
1, 2971 (1970).

"The possibility that the s-channel iterations of an arbitrary
connected piece should exponentiate was pointed out to one of us
(S.J.C.) some time ago by Professor S. Adler, to whom we are
indebted. See H. Cheng and T. T. YVu, Phys. Rev. 186, 1611
(1969). These authors also showed that 132,& exponentiates after
s-channel interactions.



2 SCATTF R I N G AM PL I TU 0 F S I N QUAN TU M E LECT ROD YNA M I CS '.1117

d'k
eik b

(2n-)'

d'p d'q —fe' —fe'
&J(p q) rr' (2~)' (2~)' p*'+~' q'+~'
&& (2~) 'b(p&+p2 —Ir) (2n) '8(qi+q2 —Ir) . (5.6)

Hence, the resultant amplitudes behave like

—',sb...8„ra—' d'b e "'{exp[—ix(~,b)j—1)

=-',sb..b„nz-' d'b~ '~'(s "'—1), (5.7)

where b„and bye imply that the helicities of the initial
and final electrons do not change. Equation (5.7) helps
exhibit the j-plane cut structure of the amplitude for
multiple exchange. We would like to point out that
Eq. (5.7) applies to the s-channel iteration of a/I
conncctcd diagrams 1nvolvlng orlly ole pr1mlt1vc
bubble, such as in Fig. 9(c).In this case the amplitude of
the connected piece, has a (lns)' dependence, F(s,t)
=ins f(t). Hence, —iX(s,b)=lnsn'(b), as in (5.5) and
(5.7). Of course, the lns dependence will be different if
the connected piece contains S primitive bubbles for
1V&1 [e.g. , in Fig. 10(c), the connected piece contains
two primitive bubbles). In the latter case, P(s, t)
= (Ins)'vf(/) and, consequently,

—f&(~,b) = (i»)"o"(b) .
Then, the s dependence in the s-channel iterated
amplitude,

s d'be "'[e '«"&—lj,

is completely different, and we encounter a j-plane
structure which is richer than that supplied by simple
s-channel iterated primitive unit exchange, given
by (5.7). At present we cannot say a,s much as we would
like to about the exact behavior of the full amplitude,
which is generated by the suIn of all possible connected
pieces. Questions about the complete j-plane structure,
the nature of the branch points, discontinuities, cancel-
lation of the Gribov-Pomeranchuk singularity, etc.,
are all left open. Further explorations along this line
are certainly desirable. What little we can say is outlined
in Sec. VII.

VI. INELASTIC PROCESSES

We shall discuss briefly the factorization properties
of an inelastic production process. For simplicity, let us
6rst analyze the production process without the

center bubble [Fig. 11(a)j. The invariant amplitude
for the process of Fig. 11(a) is

~-~- v(p. q)c'-p" (p. q)

m =-,'s A++...+(p.',q')

d ~-'
&II 4~&(Z q '+p' Zp--')&——--(p"-q")

4x
II

err 4 b(Z q„"+r.p.;."-p..")
4x

—le~

x rr — (2-) b (Zq-l), (6.2)
(all photona) q2+p2 (2ir) ~

which is similar in form to Eqs. (2.12) and (2.17).
However, note that A++...+(p,',q'), for example,
depends not only on the incident and exchange photo~
momenta in the standard frame a,

p,+' ——p,+/gs=1, p '=0, p, '=m'
! n /

pi+ =v, qi =qi gi = flnltC
(6.3)

but also on the 6nal-particle momenta in the same
stRndRI'd fI'RIIlc:

/ / /
p~q'+ =XJ p~J+/~ s ~ pgJ p~r~

p., '= (p. +m.,')/x, ,

(6.4)

where xi is the fraction of the longitudinal momentum
taken by particle a, , etc. As s —+~, the 6nal states we
are interested in are those with p„approaching a 6nite
limit. Physically, it is plausible that the 6nal-state
momenta might approach finite limits as s —+~ in
the standard frame. It follows from the fact that in the

ie' d'q;err, —,(2 )'b'(Zq;-&), (6»
p +16 (2W')

where p.={p.,p.;) stands for initial and product particle
momenta due to particle a, p, for particle c, where the
q's are the momenta of the exchanged photons, and
where k& is the total momentum transferred, all in the
c.m. frame. For simplicity, we choose the three-
momentum y, = (0,0,P) = —p„P=+s We .are in-
terested in reactions in which the momentum transfer
k& is 6nite. Unlike the elastic process, the 6nal particle
numbers and the effective mass of each of the two jets
of partides may not remain 6nite. However, we shaB
study the case of a finite number of 6nal particles with
a finite total mass. This restriction turns out to be
rather important in what follows. In particular, the
leading s behavior of the invariant amplitude can be
explicitly factored, in a manner similar to that of Sec.II.
Since the method is identical to the one used for the
elastic amplitude, we shall not repeated the reduction
here. The amplitude for large s reduces to
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Pa&
"

~an
where the phase-space factor (P.S.F.) at s —&~ is

p & F =(2 )'~'(2 p.,+2 p., p.-p.-)

p/ aZ". Pan
a

(a)
Sx'

= —~(Z x'-1)~(Z y, -1)

with

X(2 )'~(Z p. +Z p.,)

dx; d'p; dy, d'p„
&&rr — rr

4xx; (2')' 47ry, (2ir)'

Pro. 11. (al/Inelastic diagram with mnltiphoton exchange and
no bubbles in the middle. This diagram factors as does the elastic
one. (b) The left-hand blob in its standard frame. In this frame,
the q;+' are zero.

Hence,

do =
~
(1/s)OR~'(27r)'h(P x;—1)8(g y, —1)

X(2 )'&(2 p-+2 p. )

standard frame, the momenta of the incident particle a
and exchange photons all tend to a finite limit, as
$ —&~. Ke are effectively studying the scattering of
particle a by multiphotons, all with finite momenta
[see Fig. 11(b)]. Hence, the final particles produced
should have finite momenta.

Similarly, we find that C ... (p,",g") depends on
the final quantities p,", p„", and g", which are finite
in standard frame c. Hence, in analogy to the elastic
scattering, the amplitude factors into two parts as s ~~.
These parts are separately finite and may have limiting
distributions. The significance of this result and its
relation to the theory of limiting fragmentation' are
discussed in Sec. VII.

The differential cross section for the production
process Fig. 11(a) is

dg = ~~
~

2 (p S F.)
i
e.—e, i

2E. 2E,

=
i
m

i

'—(P.S.F.),
2$

dx. d'p d p

The differential cross section indeed approaches a
finite limit as $ ~~.

Now, we consider a general scattering amplitude,
Fig. 12, in which the middle bubbles emit some external
particles. At present we assume that the number and
the total mass of the emitted particles are finite. '4

Under these assumptions, we find that the factorization
of the amplitude, in analogy to the derivation given in
Sec. II, can be carried through. Hence, the final ampli-
tude can be written as $ multiplied by factors which are
separately finite as s~co. [For X bubbles without;
photon emission, we still have the (lns)~ dependence
in the amplitude as for the elastic case. When photons
are emitted from the bubbles, ln$ terms do not arise
until we integrate over the final-particle phase space,
i.e., in the cross section. j

Each of the factors correspond to a particular bubble
(or target) with all particles emitted. These bubbles are
link. ed together by internal photon lines. The contribu-
tion of any bubble is still translationally invariant in
the 1np+ space (or, equivalently, it is invariant under a
boost along the s direction) if we translate the bubble
with all particles it emits $imultameolsly. This invariance
property implies that the contribution to the diGeren-

Fxo. 12. Inelastic diagram with bubbles. The bubbles can
contribute to the inelasticity by "evaporating" particles in the
bubble's rest frame.

'4 Actually, these two assumptions are related. A 6nite "total
mass" of the emission particles certainly implies a finite number of
emitted particles. Conversely, some lower-order calculations
suggest that the inverse is also true, i.e., for a 6xed number of
emitted particles, the contribution due to a large total mass is
damped in the amplitude. See also the remarks following Eq. (6.1).
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tial cross section due to this group of emitted particles
is invariant under a boost along the s direction. Hence,
we find that the group of particles which are emitted
from a given bubble are kinematically related and have
finite momenta (as s~~) in the rest frame of the
bubbles. Two groups of particles that belong to two
diferent bubbles are decoupled due to the factorization
property. (This is certainly true for the longitudinal
momentum distribution. For the transverse momentum,
however, one has to conserve the over-all momentum
carried by all these individual groups. Consequently,
certain correlations are introduced. )

We therefore see that each group of particles behaves
like a "fireball. " We have to point out that this kind
of fireball does not have a spherical distribution in its
own c.m. frame in general. The hreball "remembers"
the longitudinal direction of the collision in which it is
produced. It has only a finite extension in the y and
lnp~ space, and therefore may have an average distribu-
tion like a spheroid in the above momentum space.
The consequences and possible relevance to strong
interactions of this picture will be discussed in the
next section.

where ~= g& &

(al

R
B22 = ~R

=Z
n

n ferrnion loops

etc
(c)

FIG. 13. t-channel iteration of the simple two-photon —+ two-
photon bubble. (a) Double bubble; (b) 82,P is the sum of all
t-channel iterations of 82,2., (c) more general connected diagrams
formed from 82,g~.

VII. DISCUSSION

Ke have seen in Sec. II that the properly renormal-
ized gauge-invariant, two-photon bubbles (called B2,s
here) give ~s ins f(t) when exchanged at high energies,
as shown in Fig. 8. Furthermore, this is the leading
connected primitive diagram as s ~~ and for small
coupling n. As we have discussed in Sec. V, the fact
that this is a connected diagram is significant for
understanding the behavior in t. In this section we want
to concentrate on behavior in s. As we have stated in
Sec. II, it is the primitiveness or nonprimitiveness which
helps to determine the behavior in lns.

In particular, consider the nonprimitive iteration of
B2,2, shown in Fig. 13(a) in second order. All possible
permutations of photon lines are understood, in that
figure, for gauge invariance. We have seen how invar-
iance of this unit under three-direction boosts leads
naturally to an s behavior

sf2(t) (1ns)'.

f2(t) here depends, in particular, on the coupling. We
can now treat the problem as a recursion problem by
writing an eth-order iteration of 82, 2 as 82,2 times an
(I—1)th-order iteration. Either this approach or
direct study of the mth-order iteration by invanance
under boosts shows that this nonprimitive diagram
behaves like sf (t) (lns) . One might hope that summa-
tion over all iterations of 82 ~ would lead to a simple
behavior in s and 1ns. (The assumption here is as usual
that summing the leading behavior gives the leading
behavior of the sum. ) This problem is a very well-
known one, and a great deal of experience has been

accumulated in the last several years, ' especially on
studies of Xp' theory. Studies of asymptotic behavior
by means of the study of j-plane singularities has been
of particular interest. '

Frolov et a/. " in a recent Letter have accomplished
this summation by using 82,2 as the kernel in a Bethe-
Salpeter equation. They solved the Bethe-Salpeter
equation in the special case that the electron mass is
zero and t=0. In this case they were able to find the
leading j-plane singularities analytically. Their result
has a branch point at j=1+(11/32)urn'. This behavior
violates the Froissart bound, which states that the
total cross section must not grow as fast as s(lns)'. If
we denote the sum of eth-order iterations of 82,2 by
B2,P, as in Fig. 13(b), we can therefore conclude that
the description of elastic scattering processes with
82,2 alone is not satisfactory. Since iteration of 82,2

generates the leading (lns)~ amplitude for any fixed
power in n (here o.'~), we must therefore include more
complicated nonprimitive diagrams. Once we found a
complete solution for B2,P (i.e., a solution for all
momentum transfers), we could form more complicated
nonprimitive diagrams using 82,~~ as a building block.
Examples of such diagrams are shown in Fig. 13(c).
We hope to study these problems more closely in the
future. In Ref. 12, it was also suggested that the break-
down of the Froissart bound is due to the fact that the
s-channel unitarity was not taken into account. How
a satisfactory amplitude can be constructed is still
an open question.

"See R. J. Eden et al. , The Analytic 5-Matrix (Cambridge
U. P., London, 1966).
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It is worth noting here that in formulating s-channel

elastic unitarity for the e-e scattering process, 8&,&

represents the contribution of multiperipheral-type

processes to the intermediate states. This can be easily

seen by cutting, for example, Fig. 2 horizontally. Thus
the multiperipheral diagrams contribute the leading

j-plane singularity at t =0 At l.east in QED we conclude

that multiperipheral diagrams alone are inadequate for

the saturation of elastic unitarity.
Among other general features of our calculations

which may be relevant and applicable to hadron physics,
we would like to mention again the factorization of the
scattering amplitude into s-independent partial ampli-

tudes. This factorization property generalizes to in-

elastic scattering as well. As shown in Sec. VI, the
amplitudes of Fig. 11(a) in the limit of large s and

finite t approach

M=-,'s A+...+(p ',g')

XC ". (P.",q")

—fe dg
X II — (2~)'~"'(Z q —&) (6 2)

(all protons) q +p (2z)

for fixed number of particles in the final states. As
s~~, both factors A and C approach a finite limit
and become kinematically decoupled if the momenta of
two groups of final particles are measured in their
respective standard frames. This property is closely
related to the idea of limiting fragmentation. ' The
standard frames for particles a and c are just the lab
and projectile systems used by these authors.

The analogy between this calculation and Chou-
Vang droplet-model-type result' does not end here.
As Chang and Vao22 have shown earlier, the contribu-
tion to the amplitude of the elastic blobs in Fig. 1(b)
are proportional to the electromagnetic form factor
squared if one suppresses the production of Fermion
pairs in the vertex correction. This is also the lowest-
order prediction of the droplet model. Recently, Lee26

demonstrated that an operator droplet model can
reproduce the field-theoretic results of Cheng and Wu'
as to impact factors. The validity of this operator
droplet model is based on the existence of certain

26 B. Lee, Phys. Rev. D 1, 2361 (1970).

limiting expressions. We conjecture that these restric-

tions are the same ones that ensure the validity of the

factorization of the amplitude in Fig. 1(b).
The inclusion of bubbles in the middle together with

the evaporation of photons and electron-positron pairs

from the bubble (or pions and nucleon pairs in hadron

physics) would represent a difference between our

results and the presently formulated operator droplet

model. These evaporation photons (or pions) may

describe the pionization effect observed in cosmic-ray

and high-energy data. ' The detailed spectra and

differential cross sections for these evaporation photons

(or pions) are very model dependent, and probably do

not have significant extrapolation to hadron physics.

However, the following features seem to be quite

general, and should be applicable to high-energy

hadron scattering. '7 "
(1) The bubble in the middle is invariant under

translation in the lnp+ space. (Diagrammatically

speaking, the plus component increases from right to
left. This invariance is expressed by the freedom to
"slide" the bubble horizontally. ) Hence, the "pions"

evaporated with low momentum relative to the bubble
should have the analogous dp+/p+ distribution. In
other words, these "pionization" products should have
a flat distribution in a lnp+ plot (or, equivalently, in a

lnp plot). The same kind of distribution was predicted

by Feynman, "using some general physical arguments.

(2) The number of "pions" in a pionization process
increases linearly with lns. This is essentially a pure
volume e6'ect in lnp+ space. More precisely, the average
number of bubbles existing should be proportional to
the available longitudinal phase space lns, as should

the total number of pions they evaporate. The above
result is probably independent of the detailed structure
of the bubbles and the fireballs they emitted, and
depends only on the eGect that the individual bubble
and the particles it emitted are translationally invariant
in the lnp+ space. The vectorial property of the ex-

changed photons plays a crucial role in the factorization
property of the amplitude as well as in the translational
invariance of the bubbles. Hence, one may expect the
above conclusion not to be affected if one replaces the
exchange (massive) photon in our model by any vector
meson (e.g. , co meson), or by a flat Pomeranchon.

As a remark addressed to experimentalists, we would
like to point out that the fireballs in our model may
overlap because of independent translational freedom
in the lnp+ space.

'7These features are partially the result of the special limit
s —+ ~, t small. Our previous experience (see Ref. 28} in the limit
s~ ~, I, —+ ~, s/t —+ ~ indicates that the results described in
this paper may not hold in this limit.

» $. J. Chang and P. M. Fishbane, Phys. Rev. Letters 24,
847 (1970};preceding paper, Phys. Rev. D 2, 1084 (1970).

'9 R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).
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{3) In analogy to the process of limiting fragmenta-
tion, it is conceivable from our model calculation that in
the c.rn. frame of any particular fireball, the distribu-
tion of e Anal particles in a fireball approaches a hmit
as s ~~.

(4) It is known that the average multiplicity in the
high-energy collision a+c-+ {anything) increases at
least as fast as lns as s —+~. One or more of the follow-

ing mechanisms may be responsible for this increase:
(a) The total mass and the total number of the 6nal
particles in the target fragments may increase slowly as
s —+~. This possibility is suggested by Yang, '0 and is
conjectured by him as the dominant contribution to the
increase of multiplicity. (b) According to our model,
the multiplicity of fireballs increases as fast as lns.
Then, the number of particles in the pionization will

be proportional to lns, even though the average number
of partides in a fireball is constant. As we mentioned
earlier, this is a phase-space volume factor. There are
several cosmic-ray experiments which support the
existence and the rate of increase of the 6reballs. "
(c) In analogy to (a), the average multiplicity and the
mass of the 6reball may also increase slowly as s —+~.
The total increase of multiplicity is determined by the
combined eA'ect of (a)-(c).

At present it is not clear which of these mechanisms
is the dominant one. Future experiments and a more
thorough model calculation may help us to distinguish
various possibilities.

Pote added iu manuscript. During the typing of this

paper there appeared in Phys. Rev. Letters 24, 759
(1970), an interesting article by H. Cheng and T. T.
Wu. These authors showed that the Axed branch point
at J= 1 for t&0 that is given by pure multiphoton
exchange is modihed when t is positive. In particular,
for t at the elastic threshold, the amplitude behaves
like s't'. They suggest that this is due to a moving pole
emerging from the second sheet, and is another possible
explanation for resolving Gribov's paradox.
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APPENDIX

In this appendix, we wish to establish the general

eikonalization for s-channel iteration of a connected

piece. For definiteness, we consider the connected

unit given in Fig. 14(a). As discussed in Sec. II, we

only need to consider the diagram with plus components

on particle a and minus components on particle c. The
dominant amplitude at large s and fixed t, according to

Fxo. 14. s-channel iteration of a typical connected piece.
(a) Bubble with four photons attaching from the left and two
photons attaching from the right; (b) second-order iteration of
dIagram (a).

Eq. (2.17), is

cVu)=-'s A4(P 'P ') II—4sb(Q P ')
4m.

dpi+ dgj-
x&,.(p;,~;) II 4 ~(Z p'.)4 ~(Z ~;-)

4x 4x

Il

xc,(q,",p.")II — 4~~(Z q;+")
4'

—f82 d2p —$8~ d2q~

xII
v''+r'(2 )' a'+g'(2 )')

x(2 )'~(Q p,—&)(2 )'~(Z tl,—k), (A1)

where the subscripts of A, 8, and C are numbers of
plus or minus indices. We must also sum over all

possible photon permutations for the two groups of
exchange photons. As mentioned in. Sec. II, factors A,
8, and C are finite and kinematically decoupled. We
can evaluate each of the factors separately.

The first factor,

" (.. N. Yang, in Proceedings of the Northwestern Symposium,
1970 (unpublished).

(8,11 photon perm. )

dp
/

~ (p.',p') II 4 ~(Z p;-'),
4m
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Note that we have in-respectively. o calld 2F(s,k, . o e

bubbles (1) and (2 are i
P P P g

off . orrrection factor . r

-(4) o h, hE . (2.17). Putting (1)— og

k &"+k &'& —k)
2

(2~ 'S
(2 )'

XF(s k&»)F(s,k&»)
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