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We study in pure quantum electrodynamics the scattering amplitudes at infinite energy due to multi-
photon exchange, with interactions among the exchange photons. Such processes, elastic or inelastic, lead
to logarithmic dependence on s. The Ins dependence is found to be associated with the invariance of sub-
graphs under a boost along the direction of the high-energy collision. Theoretically, our results lead towards
amore efficient way of handling a large class of diagrams, and a better understanding of j-plane cut behavior.
We speculate that several features of our results generalize to hadron physics. Among these are features in
common with the limiting fragmentation hypothesis, and the appearance of pionization in a many-fireball
structure. Finally, in the absence of radiative corrections, we demonstrate that the ¢~, ™ elastic scattering
amplitude can be expressed as an eikonal form, with x (b) being generated by the sum of all connected pieces.

I. INTRODUCTION

ANY theories have been proposed to describe

high-energy hadron scattering at large s and
finite £. Among these are the Regge model and the
droplet model'; the droplet model is related to the
eikonal? and diffraction models. Recently, the droplet
model was generalized to qualitatively describe the
inelastic processes as well. In particular, a theory of
limiting fragmentations was proposed.? Each of these
models has some experimental support. At present, it
is not clear whether one can single out a model which
is applicable to all processes.

These models are partially built on extrapolations
from nonrelativistic potential scattering theory instead
of relativistic first principles. It is of great interest to
know if these models can be understood through relativ-
istic field-theory calculations. Some progress has
already been made along this line. For example, Regge
behavior was shown to appear in a Ap® theory when
ladder diagrams in the ¢ channel are summed.* Recently,
Cheng and Wu® showed that the forward elastic elec-
tron-electron (positron), electron-photon, and photon-
photon scattering amplitudes in quantum electro-
dynamics with two-photon exchange at large s
increase linearly like sf(¢) at fixed #. This result was
generalized to include multiphoton exchange processes.®
It was shown that the eikonal form emerges naturally
when all possible crossed ladder diagrams in the s

* Work supported in part by the National Science Foundation
under Contract No. NSF GP 19433.

1T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968);
175, 1832 (1968).

2R. J. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Britten and L. G. Dunham (Interscience, New York,
1959), Vol. 1.

3 J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev.
188, 2159 (1969).

4+B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962).

5 H. Cheng and T. W. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969); 182, 1868 (1969); 182, 1873
(1969) ; 182, 1899 (1969).

6S. J. Chang and S. Ma, Phys. Rev. Letters 22, 1334 (1969);
Phys. Rev. 188, 2385 (1969); H. Cheng and T. T. Wu, ibid. 186,
1611 (1969).

2

channel are summed.®=® We feel that it is important to
associate simple physical features with special sets of
diagrams. Thus, one may hope to construct a more
complete theory which encompasses more of the
observed features of high-energy collisions.

This paper deals with the high-energy behavior of a
large class of diagrams in quantum electrodynamics
(QED). A particular kind of diagram we study is shown
in Fig. 1(a). We are interested in the limit of large s
and finite /. The signaling feature of such diagrams is
that they do not have pure photon states in the ¢
channel. This is to be compared with pure photon-
exchange diagrams, which behave like sf(¢). We shall
see in general that at large s and finite ¢ the diagrams
we studied contribute logarithmic factors of s. The
derivation from pure sf(¢) behavior is consistent with
previous work of Gribov and Pomeranchuk,® who
showed on the general grounds of unitarity in the ¢
channel that sf(f) cannot be the true asymptotic
behavior of the elastic amplitude for positive ¢. Their
argument can be understood in the {-channel partial-
wave decomposition in which the expression sf(¢)
implies a fixed pole at j=1. This fixed pole leads to
difficulty with elastic unitarity:

(1.1)

Because the right-hand side of (1.1) has a double pole
at j=1 while the left-hand side has only a single pole,
we are led to an accumulation of poles or essential
singularity at j=1. It was suggested that t-channel
unitarity might also imply the existence of a branch
point. Then, a cut which would put the essential
singularity on an unphysical sheet would be a satisfac-
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2 SCATTERING AMPLITUDES

(b)

F1c. 1. (a) General class of diagrams considered in this paper
at large s and small ¢. The bubble in the middle represents inter-
actions of the exchanged photons. (b) Simpler multiphoton
exchange diagram, which has been previously studied.

tory solution to this problem.” Such a branch point
would modify the simple power behavior in s, character-
istic of Regge poles, to include logarithmic dependence.

The i-channel iteration of two (e.g.) multiphoton
processes, as in Fig. 1(b), leads to processes with one
(e.g.) bubble in the middle, joining to the initial and
final particles by exchange photons. From the above
arguments, one might expect that Fig. 1(a) might give
logarithmic dependence on s at large s. Indeed, it was
shown in Ref. 11 that the lowest-order bubble diagrams,
Fig. 2, of a charged scalar-meson theory lead to an
amplitude with s Ins dependence. It was mentioned in
this reference that the individual diagrams actually
behave like s? at large s. The cancellation and final
sIns dependence come about in a way that is not
obvious. A similar calculation was carried out recently
by Frolov, Gribov, and Lipatov'? in quantum electro-
dynamics, with similar s Ins dependence.

One of the purposes of this paper is to give a natural
explanation of this Ins dependence, and to extend and
refine the consequences of diagrams of the type of
Tig. 1(a). We shall discuss the general characteristics of
such diagrams, including more qualitative discussions
of their {-channel iteration and multiple exchange.

A few of the possible generalizations of our result to
hadron physics are the following. (a) For elastic
scattering, we find the presence of Ins factors in the
amplitude. Since QED is a more realistic theory than
\¢?, our results might lead to a more realistic way to
calculate the effects of cuts and the nature of the

10 See, e.g., Proceedings of the 1969 Regge Cut Conference,
edited by P. M. Fishbane and L. M. Simmons (Univ. of Wisconsin,
Madison, 1969).
U H, Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).
2 G. V. Frolov, V. N. Gribov, and L. N. Lipatov, Phys. Letters
31B, 34 (1970).
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Pomeranchon.’? (b) We may divide inelastic scattering
into two categories. In the first category, inelastic
products are formed at the external vertices. In our
model, it is natural that such diagrams factor and
become independent of s. This picture has much in
common with the hypothesis of limiting fragmentation3?
recently proposed by Benecke, Chou, Yang, and Yen.
Extra Ins factors are again introduced into the ampli-
tude by bubbles in the middle. In the second category,
the bubbles “evaporate” particles at low momentum
in the rest frame of the bubble. These are so-called
“‘pionization”* products. This picture, which is con-
sistent with, but not required by, limiting fragmenta-
tion, is a picture of a hierarchy of “fireballs,”'4 separated
energetically from one another by terms depending on
Ins. In particular, the number of such fireballs grows
like Ins, giving multiplicity of final particles which
grows naturally like Ins. Of course, an actual inelastic
process will be a combination of these categories.

Our paper is summarized as follows: In Sec. IT we
give the kinematics and general formulation of diagrams
of type of Fig. 1(a) for the elastic process in quantum
electrodynamics. In Sec. I1I we discuss the lowest-order
bubble in detail, finding a result which agrees with that
of Frolov et al? In Sec. IV we extend our results to
other types of bubbles. In Sec. V we briefly discuss
multiple exchange of bubbles, and the characteristics of
the resulting eikonalization. The general considerations
are extended in Sec. VI to include multiparticle produc-
tion processes. In Sec. VII we discuss {-channel iteration
and the possible consequences of our results for hadron
physics. In the Appendix, the general eikonalization for
s-channel iteration of a “connected piece” is derived.

II. KINETICS AND GENERAL FORMULATION

In this section we want to show how the appropriate
use of infinite-momentum techniques at high energy
can simplify a scattering problem. In particular, we
shall show that it is possible to remove over-all s

F1c. 2. Simplest two-photon — two-photon bubble, consisting
only of a fermion loop. Gauge invariance requires the considera-
tion of the three Feynman diagrams shown.

8 For an earlier attempt at this problem, see M. Gell-Mann,
M. L. Goldberger, and F. E. Low, Rev. Mod. Phys. 36, 640 (1964).

14 See M. Koshiba, in Proceedings of the Third International
Conference on High-FEnergy Collisions (Gordon and Breach, New
York, 1969). A summary of the latest progress in cosmic-ray
physics can be found in the Proceedings of the Tenth International
Confere]nce on Cosmic Rays [Can. J. Phys. 46, No. 10, Pts. 2-4
(1968) 7.
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dependence up to logarithmic terms. When a scattering
process proceeds by exchange of more or less compli-
cated units, there is a natural kind of factorization
which simplifies this problem. We shall first concentrate
on elastic scattering with exchange of the ‘“bubble”
shown in Fig. 3(a), but we shall also indicate in this
section how our formulation generalizes.

We want to consider an elastic process in QED. For
our specific example, we consider e7¢~ scattering with
two-photon exchange as in Fig. 3. The cross-hatched
blobs along the electron lines include all possible
radiative corrections, while the cross-hatched bubble
in the middle of the diagram describes photon-photon
scattering for off-mass-shell photons. Although it is not
necessary for the general features described in this
section, we would like to make here the distinction
between “primitive” and “nonprimitive’” bubbles. We
define a primitive bubble as one which cannot be
separated into two bubbles by cutting internal photon
lines only. This definition is illustrated graphically by
Fig. 3(b). The distinction is important in extracting
the particular behavior in Ins arising from the photon-
photon scattering.

The scattering amplitude for the process shown in
Fig. 3(a) is

M= / Aas(erp) Basins (1) Con0,2)

16 1e? 1e? ie?
X . . ; :
pi2—uiie pot—pie g —u’Hie go’ —u’+ie
dtp dYyg
————, (2.1)

where p1, ps, q1, and gs are four-momenta of the exchange
photons. A4 and C,, are the partial amplitudes for the
blobs associated with the colliding particles ¢ and ¢,
while Bag,,» is the partial amplitude associated with
the photon-photon scattering bubble. u is a fictitious
photon mass.!> In the center-of-mass frame, the 1-2
plane is defined by the momentum transfer k= (&!,%%).
If P=3(psi+pes), the average momentum of particle
a, lies in the plus-z direction of magnitude P, then

P.i=P—3k,  p,s=P+ik,
pi=—P+ik, py=—P—ik.

For very large incident energy (~P) and finite 2= k|,
the conventional invariant variables are

s~ (2P)?, t=—F.

In this paper we are, in fact, only interested in the

(2.2)

(2.3)

15 This fictitious photon mass reminds us that we must still
treat renormalization properly. We treat this in the standard way.
Evaluate the answer by first introducing proper regulators and
counter terms, then letting the regulator masses M — . The
result is independent of M and is the final answer with renor-
malization taken into account.
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asymptotic behavior of the amplitude in the limit of
large s but finite ¢.

We now turn to the question of the convenient frame
for the evaluation of various pieces of the amplitude.
The general principle involved is that it is most conven-
ient to boost to a frame in which the appropriate
variables are finite as s — o, as was discussed at some
length in Ref. 16. For example, let us consider 4 os(pa,p).
The appropriate frame for studying this quantity
is a frame which moves along the three-axis with
particle @, called the “standard frame” for particle a.
This frame is characterized in the infinite-momentum
language!® by

pot' = pa '+ P = par =1,

P./=Da,
Pa—IEPa/O —Pa,3 = 6>\Pa— = pa/2+m2 )

A/
(2.4)

where boldface vectors are now always vectors in the
1-2 plane. The form for p,—" comes from the mass-shell
condition for particle @, where p,"2=m? is the electron
mass squared. By construction, the new variables p,’
remain finite as s—oo. In this frame, p transforms to

P+’ =P/ s=pi/bar
p'=p,
p-"=s)p-.

For those readers not familiar with the infinite-momen-
tum boost techniques, the transformation defined by
Eq. (2.4) [or (2.5)] may be regarded as a scale trans-
formation whose sole purpose is to make the final
integration variables p’ finite at s=co. In particular,
$+ has the simple physical meaning of the fraction of
the total longitudinal momentum p,; going into the
photons, p;/par. It is known that this is a convenient
parametrization for the description of high-energy
scattering.

Now we can express 4 qs(pq,p) in terms of p,’ and p'.
This is trivial, because 444 transforms like a tensor:

Ay i (Payp) =sA+1(pdp"),

A—fj l(?a,?) = (\/S)A—}— l(pu/:pl) )

A+—(j7a,P) =A+—(Pa/,17l) )

A= 1(pap) = /) A 1(pd,p") 5

A (pa,p) = (1/$)A——(ps",p")
Notice that 4 (p,’,p’) remains finite as s — 0, whereas
in the c.m. frame A4 (p,,p) becomes infinite. This change
of variables performs the very important service of
explicitly removing s dependence.

Similarly, we want to study C,.(g,p.) in the standard

frame of particle ¢. Since particle ¢ has a large minus
component and small plus component, take as new

(2.5)

1=1,2
(2.6)

16S. J. Chang and S. Ma, Phys. Rev. 180, 1506 (1969); 188,
2385 (1969); thereafter referred to as I and I1.
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Frc. 3. (a) Fermion-fermion scattering with two exchanged
photons interacting once, i.e., with a single bubble. The cross-
hatched blobs are primitive, by which we mean that they contain
no pure photon states in the ¢ channel. This is illustrated in (b)
for the vertex blob and the bubble in the middle. (c) shows the
left-hand vertex blob isolated in its standard frame. Note that
the exchange photon lines have no plus component.

variables
pe"=1, P/ =pe, poi/'=pi4m*  (2.7)
and
¢-"=1/Vs)g-, d'=q, ¢"'=(9)g. (2.8)
The leading part of the tensor C,, is
C_—(g,pe) =5C__(q",p."). (2.9)

C__(q",p.") remains finite as s —o.

Since A4, and C__ are larger by +/s than other
components, the only components of the bubble in the
middle we need to consider in the s—oo limit are
B__.. . (p,q). The original c.m. variables p and ¢ are
most suitable for describing B.

We have thus seen that the natural variables for
describing different pieces of the partial amplitudes are
scaled differently in the + and — components. Trans-
verse momentum variables are scaled in the same way
in all these reference frames. For instance, we have seen
that A.s is best described by the finite variables p,’
and p’ (i.e., p. and p in the standard frame of particle a),
while C,, should be described by ¢'* and p.” (i.e., ¢ and
p. in the standard frame of particle ¢). From the
analysis of lower-order calculations, one finds that the
dominant contribution to the amplitude comes from the
integration regions where all these naturally scaled
variables are finite. Thus p,” and p’ are finite in the
standard frame @, p and ¢ are finite in the c.m. frame
(this point will be discussed in detail later), and ¢”” and

QUANTUM
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p./" are finite in the standard frame ¢. However, one
knows that the variables in different regions are the
same momentum variables scaled differently. For
example, p_’ in the standard frame o is related to the
cam. variable p_ through p_=(1/4/s)p_'. Hence, a
finite p_" in the standard frame o leads to a small
p-=0(1/+/s) in the cm. frame. Conversely, a finite
P4 in the c.m. frame implies a small p,./=0(1/+/s) in
the standard frame.

As s—o0, we may ignore the O(1/4/s) terms and
replace all the small variables, p.’, p_, ¢4, and ¢_”, by
zeros. We have checked explicitly in lower-order
diagrams that the neglect of these 1/4/s terms does
not affect the leading term in the amplitudes. In
complicated diagrams in which a direct verification is
not at present possible, we justify ignoring these 1/4/s
terms by requiring that the remaining integrals be
finite and s independent. The full amplitude is finally
described by the remaining set of finite integration
variables p, q, ', p4, ¢, and ¢”" and by the finite
external variables p,” and p,”’. The remaining variables
p+y p— ¢+, and ¢” are small [O(1/+4/s)] and are
replaced by zero. In terms of the finite variables, the
volume factors in momentum space are

dip 1
Qr)t 2021/
Yo i),
amd 20mhys

The photon propagators are, in terms of the new
variables,

(dp+dp-'d’p),
(2.10)

—1 —1
pr—uttic  (prpt)/v/s—pP—uttie
1

=— —, (211)
p*t+u*+0(1/+/s)

—1 )
P—witic Qa0

We shall ignore the O(1/4/s) terms in the exchange
photon propagators. This is equivalent to ignoring
the contribution of the potential poles in our calcula-
tions. It is known from explicit lower-order calculations
(up to €%)'7 that the potential poles do not contribute if
diagrams with photons permuted in all possible ways
are included. Whether this is true to all orders in €
and in all possible bubble diagrams is not known. We
shall assume it is true in this paper; we hope to study
this point more carefully in the future.

17 The cancellation of potential poles in A¢?® theory and in QED
was shown by A. N. Chester, Phys. Rev. 140, B85 (1965);
R. Torgerson, ibid. 143, 1194 (1966).
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Putting everything together, we find that Eq. (2.1)
becomes

dp! rdpy dg-
=t [l [ B

47 4 4rw
dgy" d’p  d’q

x [etnpn
dr  (2m)? (2m)?

—e?

—ier  —ie?  —1ié?

X e e e (2,12)
poitu? poitp’® gt Fu® Q2w

where p, q are loop momenta, py=p-+3k, p2=p—3k,
and gy=q-+3k, go=q—3k. For general (M ~+N)-photon
exchange diagrams, when M, N>2 as in Fig. 4, there
are (M+N) +/s factors from each large vertex and
(M~+N —2) 1/+/s factors from the loop integrals. Thus
there is always a single s factor left over. (See also our
discussion in Sec. IV.) Similarly, when any blob or
bubble is broken up into primitive components, i.e.,
when primitive bubbles are iterated across a diagram,
there is a single s factor over-all.

The advantage of using Eq. (2.12) rather than the
original c.m. amplitude of Eq. (2.1) is that as s —o all
the pieces of (2.12) become separately finite (except
for possible logarithmic terms from the photon-photon
scattering piece). Thus one can treat one factor at a
time. This kind of factorization of the amplitudes into
s-independent partial amplitudes is a general result.
In the example we are studying, the first factor is

dp_’
/ —A, (pd,p")-
4

A4 actually depends only on the transverse and minus
components of p,” and p’. The p..’ is fixed equal to
unity and p,’ is zero. In terms of the decomposition
pu= (p4,D,p—), this first factor is represented graphically
as in Fig. 3(c). This partial amplitude can be evaluated
without knowing the B__,,, or C__ parts. A similar
conclusion applies to the B__,;, and C__ factors.
We shall refer to parts A4y, B__44, and C__ as
kinematically decoupled.
The contribution due to the bubble in the middle,

dpy dg—
/ RaRes

4r 4w
leads to extra Ins factors as s—oo. In fact, a Regge
cut, which would mean extra Ins factors, is required by

b

—=i++>

F1c. 4. Single-bubble dia-
gram with M photons attach-
ing from one side and N from
the other. M + N must be even.
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F16. 5. Multiple-bubble diagram for fermion-fermion scattering.
Note that not all the photon lines attach to every bubble, all of
which are taken to be primitive here.

the Gribov-Pomeranchuk theorem.® In particular, if all
the cross-hatched blobs of Figs. 3(a) or 4 are primitive,
a single Ins factor results, as we shall show in detail.
The existence of the Ins term in the lowest-order box
diagram of a charged scalar-meson theory was estab-
lished by Cheng and Wu'* through explicit calculation.
In this paper, we wish to present a simple physical
reason why this s Ins structure emerges naturally for
all single primitive bubble diagrams, and its coefficient
can be identified straightforwardly.

The extra Ins factor in our calculation is related to the
invariance property of the bubble amplitude B5__,;
under acceleration along the three-axis. This invariance
property implies that the integrated bubble amplitude
contains a longitudinal phase-space factor Ins in the K?
boost space. One can see that this technique is applic-
able to many-bubble processes as well as to the inelastic
processes. We shall discuss these points in detail in
Secs. III and IV.

The factorization of the amplitude into finite (up to
factors of Ins) kinematically decoupled parts is quite
general, To apply this to an V-bubble case, as in Fig. 5,
let us use the convention that the bubbles are drawn
from right to left according to increasing values of the
plus component of the electron loop momenta p;.
This kind of representation makes sense only at very
large s (hence very large Ins), when separation between
bubbles in Inp, space is larger than the extent of the
bubbles themselves in this space. (When bubbles are
primitive, they have only finite extension in the Inp,
space.!® Thus it is sensible at this stage to demand that
all bubbles be primitive. This fixed the logarithmic
dependence that a single bubble contributes as Ins.)

For the above graphical representation, and for terms
leading in Ins, photons attaching from the right to a
bubble have coupling v, and photons attaching from
the left to a bubble have coupling v_. Any diagrams
with a wrong plus or minus v matrix at a vertex is at
least an order of Ins smaller. This can be verified from
the Lorentz transformation laws of the bubbles. Dia-

18 This can be seen in two ways. Iirst, we find from explicit
calculation (see Sec. III) that the primitive bubble amplitude by
itself is finite and does not contain further logarithmic divergence.
Second, as was shown in Refs. 6 and 8, the only leading diagrams
for large subenergy are those which can be separated into two
parts by cutting only photon lines.



2 SCATTERING AMPLITUDES

grams belonging to the same Feynman diagram but with
different ordering in the Inp, space (see Fig. 6) must be
counted as different diagrams in our representation.
This is analogous to Weinberg’s infinite-momentum
rules,'® where different time orderings of a single Feyn-
man diagram are taken to be distinct diagrams.

Keeping the above remarks in mind, we can express
the scattering diagram of Fig. 5 for NV primitive bubbles
as

M= L /A++.‘.+(pa,{qﬂ‘})< II

2 N+1

(ig1_i

K m

)4‘"’5( ZZ; 91-")

L dqe4* dgs?
x / B__..._.++...+<1><{qu},{qm( o g ~~>
7,75 41r 41!'

X4md( Z g )Amo( Z gs)- -+

dg (2N+2>+i)

X/C— ~~~~~ ({q2N+2i},Pc)< II T

—ie?

d*

0 (o o)

(all ir)ter§ul photons) q2+,u2 (2,".)2
X(@2m)%® (L q—k), (2.13)
where all p’s are ¢’s are c.m. variables. The subscripts
2n, 2n-+1 label all photons associated with the nth
bubble, and superscript 7 (and 7) describes the ith
(and jth) photon in the above group(s) of photons.
In deriving the above result, we make use of the fact
that the leading term in B... ... By...,.." "D for
instance, is (3)2B...44...®B__....."*D_ The natural

variables for the nth bubble are, in analogy to the one-
bubble case,

¢+ = (V/sn) g O™,
q_(2n)/= (1/\/Sn) q_<2n) , q+(2n+l)/= (\/Sn)q+(2n+1) ,
qemtY’ = g@nth | g_CmH = (1/4/5,)q_Cm40) |
(2.14)
where /s, is the typical plus component of the nth
bubble measured in the c.m. frame. The dominant
contribution of the nth bubble comes from the integra-

tion region where the variables ¢?»’, ¢®*1” are finite.
The {s,} satisfy®

VST 55> - DSV mE /5. (2.15)

After ignoring terms of order O((s41)/sn) or O(1/Ins)
smaller, we have

.= [g+®"’,q®,0],
(Iu @n+1)! — [O’q(2n+1)’q(2n+1)’] .

X4m( 2 qentn-7)

q(2n)/ = q(Zn) ,

(2.16)

195, Weinberg, Phys. Rev. 150, 1313 (1966).

2 Equivalently, if we call v/s,’ the typical minus component of
the nth bubble in the c.m. system, then 4/s,’ increases as »
increases. In studying iterations of the Mandelstam cut diagram,
P. V. Landshoff and J. C. Polkinghorne [Phys. Rev. 181, 1989
(1969) ] similarly discovered the usefulness of standard frames for
studying a f-channel iterated exchange process. They also find that
use of these variables leads naturally to Ins dependence.
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IF16. 6. Two connected two-
bubble diagrams of the same order
in the coupling. In our kinematic
region the side from which a
photon attaches to a bubble is
important, so that (a) and (b)
represent not a single diagram, but
two diagrams which must be con-
sidered separately.

We now transform the bubble contributions to each of
their respective finite frames. For each of the + (or —)
tensor indices we pick up a factor v/s, (or 1/4/s,) from
this transformation. For each of the integration
variables dg_™ = (1/4/s,)dg_™"' (or dg,™), we have a
factor 1/4/s, (or /s,). Putting all these factors together,
we find that all intermediate /s, factors cancel. The
only factors remaining are one /s from bubble 4 and
one 4/s from bubble C, giving

S
M=—
2N+1

dgi-¥

A++---+(Pa/,{<]1~i}l)<n !

v m

>4ﬂ'5( ZI q1-")

. . dgay” dgs-7’
X/B ----- :++~-+(1)({112+"},{‘13—]/})<H-_ )
7

Xdro( 5 o ms( T gi)- -
i J

T 4w

d it
/-C—_m—({q<2N+2)+i};pc”)<H gt )

ij 47
—1.52 d2
0 e G o)
(all internal photons) q2+l~l2 (21‘.)2
X2m)2®(Y q—k). (2.17)

The dependence of the functions 4, B™), ..., C on the
transverse momenta has been suppressed. Note that
in Fig. 5 not all the photons emitted from A are neces-
sarily connected to B. Also note that as in Eq. (2.13), a
four-dimensional & function 4m8(3 ¢,)4w8(3_ ¢-) (27)?
X8(2- q—k) must always be included between two
bubbles. The effects of this § function were already taken
into account in writing Eq. (2.1) for a single two-
photon — two-photon bubble.

As we shall explain in Sec. V, an N-bubble diagram
will, in general, give rise to a factor (Ins)¥. This
factor is, of course, very important in analyzing and
summing repeated bubbles. Finally, the generalization
of the work of this section from elastic processes to
inelastic processes is sketched in Sec. VI.

X4r3( X geanin+”)

III. LOW-ORDER CALCULATION

In Sec. II, we mentioned that the s Ins dependence of
the amplitudes emerges naturally if one realizes that
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(, ‘l?_,qz-):qz
(0,9, )=

(a)

F16. 7. The two-photon — two-photon bubble of Fig. 2 labeled
carefully. Note that the p_ are zero as are the ¢,.

the factor Ins reflects the longitudinal phase-space
factor in the Inp, space. In the following, we shall
develop the technique in detail and work out the
lowest-order contribution explicitly.

The contribution for a general bubble of Fig. 7 is
(the integration over transverse momenta is omitted)

dpy dQ
[ iten, (3.1
4r 4w
where
pi= (Pi+:pi)0) ) Poer= —P1=py, ' (32)
q:= (quiuqi~—) y o-="Q1-=—¢—, 1= 1) 2.
Lorentz covariance implies that
B i (@peq; 9,Q) =B (P19 0:0) - (3.3)

Hence B__ ;. can only be a function of p.¢_ and (p,q),
B i (ps0-; P, =B 11 (P19—; 9,0). (34
Then,

dpy dg—
/’“:"—B~—- ++(2,9)

dpy. d(p+g-)
/ = T B(peg-; Q)
47!']5.{. 47l'

d -)
=/_—P+ / (P+q“‘B(P+Q—:P7Q)

dmpy
The second factor is independent of p,, and can be
worked out explicitly. It is a finite factor, which we
shall work out further below. The S'dpi/p; term
diverges logarithmically. However, we have to recognize
that as p,~+/s, i.e., as p;. is comparable to (pa);, there
is a natural cutoff emerging from the A part of the
amplitude. Similarly, as py~1/4/s, a cutoff is supplied
by the C__ part of the amplitude. Hence, /'dp,/p+ no
longer diverges, and yields

d Vs d
/ Pr 2/ ——?f- =2lns,
Yve D+

(3.5)

(3.6)
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where the factor 2 comes from the fact that p4 can be
both positive and negative. In analogy to the volume
factor apprearing in the usual calculation of the transi-
tion probability, the Ins factor reflects the translational
invariance of the bubble amplitude in the Inp, space.
(We discuss this point further in Sec. VI.)

To see how our argument works in practice, we
compute the s Ins term for the lowest-order box diagram
of spinor QED. The calculation of other high-order
bubbles will be briefly sketched.

For the box diagram 7(a), the amplitude is

aw
.Bpu,)\v(a) = _/
(2m)*

XSr(Wa)vuSr(W )]

TI'[SF(W1)’Y,,SF(W2)’Y.7

aw
= -—/h—); Tr[(Wit-m)y,(Wet-m)y,

2w

X (Wstm)y( Wat-m)y]

X(DD:DsDy)~t, (3.7)

where
D;=W2—m?+ie, j=1,2,3,4
Wi=WHp1, We=W, Ws=W+aq,
Wi=WHqg—po=W—qo+p1,
Pz= (Pi+:Pi;O) y §i= (aniyqi—) )
and pi+ po=g1+¢2= (0,k,0).
The leading contribution corresponds to u=py=—,
A=0=-, and gives

(3.8)

a*w

(27)*
XTr[[(Witm)y—(Wetm)y+
X(Wstm)y—_(Watm)y: J(D1D2DsDy)~.

Bee s @(pyg)=— /

(3.9)

Since v,2=1vy_2=0, we have
+

ve(Wtm)y—=yi(— v W+m)y-

=74v-(y W+m),
Y-(WHm)y, =y (—v W+tm)v,.
Hence, the trace (the numerator N @) reduces to

N @ =8 Tr[ (m++ - W) (m—y-Ws) (m~+y-Wy)
X (m—~y-Wi)]
=32[ (W1 Wotm2) (W;-W+m?)
+ (W1 Wyt-m?) (Wo - Wi+m?)
— (Wi Wyt-m?) (W Wat-m?) ].
The trace is a function of W only, and does not depend

on W, or W_. It is in fact quite straightforward to
verify from (3.9) that B__ @ is indeed a function of

(3.10)

(3.11)
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p+ and ¢ only through the product p,q_. Note that
B@ is formally divergent after W integration. We shall
see that the sum of B@, B® and B© is well defined
and finite. For convenience, we may first introduce a
regulator of a heavy electron mass M, and make all
regularized amplitudes B®e) @59 finite, We finally
let M go to infinity after we complete our calculation.

Since B=B(p,.9—; p,q), we can evaluate B for a
fixed p,=1 (or, alternatively, ¢_=1).2! It is actually
more convenient to compute directly the coefficient
of s Ins, which is

* dg-
J@ =/ ——-B_._.,-(__;, (a)(P+ =1, - D, q)
—w 4T

dq_ AW dW_d*W
= —[ —_— 17\7(a)(D1D2D3D4)—1. (312)
47 2(2m)*

In terms of the parametrization W= (W, W,W_),
we have

Dy= (W, —D)W_—W2—m+ie,

Dy=W. W_—Wa2—m+ie,
Dy=W,(W_+q.) —W2—m>+ie,

Da= (W,—1)(W_+¢.)—W 2—m>+ie.

Hence, we can write

AW W
](a)=_/ —N (a)
2(2m)?

(3.13)

aw_ dg—
X/‘—(01D2)_1/ “;(D:;Dz;)*l. (3.14)

™

The dW_ and dq_ [actually d(¢—+W_)] integrals can
be worked out independently. Both integrals vanish
except for O<IW,.< 1. This will automatically set a
finite limit of integration on W,, and is a common
feature of infinite-momentum calculations. For 0<IW .
<1, we have

/(ZI/V_(Dll)Q)_l

2w
T W (Webm) (A= W) (Wit m?)
(3.15)
/ gAY (DD
2w

T W (Wttmd)+ (1= (Wam?)

21 The calculation given here is very similar to the Compton
scattering calculation given in the second paper of Ref. 16.
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Hence,
VAW L dPW
_](d):_—/ —V (@)
0 321!'3
1
X
W (Wit+m?)+ (1 =W ) (Wo+m?)
1
X
WA (W &-mt)+ (1= TV) (Watm)
1 W
= / dadx ——N @ (x8W 1242 W 52
0 327l'3
+yaW32+y8W 2+4m?)~2, (3.16)

where x, y (x+y=1) are Feynman parameters, and
B=WwW,. (3.17)

Note that there is a complete symmetry between
Wi2—> W3 . This implies that if we had evaluated
J @ by fixing ¢_=1, and integrating over p,, we would
have gotten the identical answer.
The remaining W integrals can be done straight-
forwardly by first making a translation
W — W/= xBWl—l—an2+yaW3+y6W4
=W-+aBprt+yadi+y8(qi—D2).

Then the denominator becomes
W2m2+ 2yK2+- oK 2+ xyafk?
K=aq:—8q2,

a=1-W,,

(3.18)

(3.19)
K'=xp;—yp.. (3.20)

The final expression for J@ is
1 1
J@(p,q) =——Kk2InM 24 —/ dxda
’ 3m? w2Jo

X{—In(m>+R)[(A1+Az) - (As+A,) —2R]

+[1/(m*+R) (A1 A:—R) (43 4,—R)

+(A;-As—R)(Asz-A3—R)
—(Ar-As—R)(Ag-A—~R)T}, (3.21)

where M2 is a cutoff mass of electron regulator [the
1/(M?*+R) term — 0 as M — oo ] and

R=xyK2+4afK"*+xyafk?,
A =W;—W'= —yK+aK'+ayk,
A, =W,—W'=—yK—pK'—1gk,
A;=W;—W'=xK—gK'4x0k,
A=W,—W'=xK+aoK’'—xak.

(3.22)

The quadratically divergent part disappeared identically
after we subtracted the regulator term. As we shall see,
the remaining logarithmic divergence is canceled by a
similar term appearing in Figs. 7(b) and 7(c). Thus the
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final result does not depend on the regulator mass and
is finite.

Let us consider the contributions from Figs. 7(b)

and 7(c). The leading term is

1
B O (pg)=— / NODDDD), (3.23)
(2m)*
with '
NO=Tr[ (Witm)y_(Wot-m)v,
X (Wyt+m)y (Wit-m)y_]
= 30W W (W W), (3.24)
Di= W 2—mi—ie, (3.25)

where ¥ is the integration variable. It is chosen to be
Wy The W's, 1=1, 2, 3, 4, are related to W through

Wi=W+pr, We=W, Wi=W-q,
Wi=W+qa+qg=W+pi+p..

The amplitude B__ , ,(“)(p,q) can be obtained through
the substitution ¢ <> ¢» (or p1<> po). In analogy to
J @ we have

* dg—
J“’)(P,Q)”—‘/ -4VB~7,++“”(17+=1,(]—;P,(1) (3.26a)
— 4T

= dp,
- / P (i =1,0,0). (3.26b)

o 4

Of course, Eqgs. (3.26a) and (3.26b) should lead to the
same result. We would like to point out that the only
(g1,92) dependence in B__,, ®.( is through the
denominator

Dy= (WHqu)—m+ie= W, (W_+q_)
— (W q)?—m2Fie.

After ¢_ integration, this q; dependence in J® 4
is washed out. Hence J (p,q)+J’(p,q) can depend
only on the sum q:+q.=k, but not on the individual
q.. In other words, as one might expect, if two or more
photons from the same side (here from the right-hand
side) are inserted adjacent to each other onto an
electron line of a bubble, the resultant amplitude
depends only on the sum of their transverse momenta.
We would like to point out that this result is not new,
and has already appeared in the original ee, ey, and vy
calculations.f We can apply this argument to the two-
photon vertices on the left-hand side of the box diagram.
Therefore, J®»4-J( can only be a function of k
(= p1+p2= q1+qs). We have verified this k dependence
for our box diagram explicitly by carrying out the
parametric integrals below.

Once we know that J(®-J© depends only on k, we
can compute it easily by choosing p1= q;=k, ps= q.=0.

(3.27)
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The result is

© dg_
J®+J (C)=/ B+ ®(pr=1,¢5p, Q)

T
FB__ . 90pr=1,95p,0)] (3.28)
AW dW_d*W N ®

B 20m)  DiDuD,

*dg-s 1 1
O T i e
© 471' D3 Dgl

where N® =N ©=32W,W_(m*+W,-W,) and

Dy'= (W —q)*—m*+ie

=W, (W_—q_)— (W—qu)?—m’+ie.
The ¢_ integral is simple, and gives —2mi/W . Again
0< W, <1. After performing the I¥_ integral we finally
have

](b)+](c)=

(=2m0)? [ AW d*W
4 / 2(2m)*
X32(W 24m2) (Wy W y+m?)
1

X

W (W24m?) + (1 =W ) (WP +m?)
1

X

W (We2+4m2)+(1 =W ) (W,24m?)

(3.30)

)

which is precisely —J@(py=q:=Fk, Ps=¢q:=0) in
(3.16). Therefore, the total bubble contribution is

J(p’q) =](a)+](b)+](c)

1 1
= — / dxda
1l'2 0

X{—In(m*+R)[(&:1+A3)- (AxtAq) —2K]
+[1/(m*+R)J[(A1- A, —R)(A;- A,—R)
+(A;-A;—R)(As- A;—R)

— (A1 A3—R)(Az A, —R)]}

— (same expression with

Pi=0i=k, p»=q=0), (3.31)
where the A’s and R are given in (3.22). Equation
(3.31) is manifestly finite and cutoff independent.
The result obtained here is consistent with a recent
calculation of Frolov ef al.2

Tt is now straightforward to compute the contribution
of the elastic amplitude a4c¢— a+c¢ as in Fig. 3(a).



2 SCATTERING AMPLITUDES IN QUANTUM ELECTRODYNAMICS: .. 1113
various pieces,
M@ s ! ay dgs-
N)— A
N+ ++(I7u q1 ) 4o
N
XII [[B——,++(”)(9<2n>',¢1<2n+1>')
n=1
By i = T + TIO + TO , , ,
o . N . dqen+’ dgentn— dqento)+
F16. 8. Simple ¢-channel iteration of the simple two-photon — — e C——(Q(2N+2)’,Pa”> —
two-photon bubble Bs,;. We must consider all gauge possibilities 4 4 4
within this picture.
N+1 1e? ie? \dQQ(n)
Denote X1I < ’
w2 \Q oy H4? Qame*Fu?/ (2m)?

Iwwpﬁz/tA++@;;p;¢4>
dpy’
+A++(Pa’; 172’7P1,>]“i ’
4ar
(3.32)

I“KQFE/tC¥-@/QqWﬂ¥5
(l 17

+C~-—(Pc”; q2,/791”)]i— )

4

where 7@, J( in the simple case of two-photon
exchange are the impact factors introduced by Cheng
and Wu.? The contribution from various parts can be
summarized as follows:

(1) There are factors 7@ (p) and 7((q) from the
A4, and C__ integrals. The impact factor is defined
as the integral of the sum of a diagram and its crossed
diagrams. Hence, an over-all factor 1/2! should be
included to correct the double counting in 7@ and 7.

(2) There is a factor (Ins)/27 due to Sdp,/(4mpy).

(3) For each exchanged photon (of momentum p)
between two electron lines, we include a factor —ie?/
(p*+u?). In the cases of e7et, ey, and vy scattering, we
encounter the exchange of photons between electron and
positron. Then, a factor ie?/(p*+u?) is included. Of
course, the transverse momentum should be integrated
over with volume d?p/ (2m)2.

(4) There is an over-all factor %s.

Combining (1)-(4), we obtain the scattering amplitude
for Fig. 3(a) as

Ins d*pr d*qa
u=t= [ [S2 L romrowsee
4 (2m)? (2m)?

—1e?  —ier —ie?  —ie?

X
P12 u? poitu? Qi u? Qo+’

where p1+ P2= q1+ qe= k.

We would like to mention briefly how repetition of
these box diagrams can be computed in the present
context. According to the analysis of kinematics
developed in Sec. 1I, the amplitude for a multibox
diagram (Fig. 8) can be factored into products of

. (3.33)

where ¢2n, ¢2ny1 denote the momentum of photons
attaching to the nth bubble in the frame appropriate
to the description of that bubble, qsn1= q2n. For the
initial and final blobs, we have

1@ =/[A++(P,/; qw1,g@e’)

’ ’ ’ dq(l),
+A44 (b 5002 g 1) ] )
47
1@ =/[C——(i)c"; qonsnt g enin?)
dq N’

+C__(p."; qeni2ye g enn1) ] . ’
vy
while for the nth bubble,

dqenyn-

/BM_"F i (n)(([(2n)+/ = 1) (](2n+l)’)

v

=J(q@n),q ) -

The contribution from the phase-space integrals
1S dq@nyy/Amqenys” are rather straightforward. Each
of the integrals leads to a factor (Ins)/2w. (Recall that
genyy can be both positive and negative.) Since the
integration variables are ordered ¢ > gar> -+ > Qony,
a factor 1/N! should be included as an over-all factor,

giving
1 <lns>N
N\2r/
Hence,

1 s/lns\¥
M= ;7—' ;}(;‘*) / o /I(E)(Q(D)I(C)(QQ-’VH))
N ™

N
X I}l [V (de@n,e@nrn)]

N41/d%q o) —ie? —ie?
xn( ).
=1\ (2m)% Qw1 +u? Qewn’+u?

The sum over all N at /=0 of this result was obtained
earlier in Ref. 12 by solving the Bethe-Salpeter equa-
tion. The (Ins)¥ factor emerges naturally in our calcula-
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tion as the multibubble phase—space’factor. We shall
discuss this point further in Sec. VI.

IV. FURTHER GENERAL RESULTS

In this section we would like to examine some other
“primitive” diagrams of the same general type as is
discussed in Sec. ITI. These diagrams are shown in
Figs. 9(a)-9(c). We assume that we have accomplished
the kind of factorization we discussed in Sec. IT and
that these diagrams represent ‘“units” in some larger
diagram associated with, say, elastic scattering of
leptons. The cross-hatched blobs in these diagrams are
“primitive” blobs, i.e., they cannot be cut in two by
crossing photon lines only. As we mentioned in Sec. 1T,
this means that the leading Ins behavior is fixed. The
simplest example of such a primitive blob would be a
simple lepton loop. Charge-conjugation invariance
(i.e., Furry’s theorem) tells us that the total number of
photon lines connecting to a blob, primitive or other-
wise, must be even. Finally, in diagrams 9(a)-9(c) we
remember a left-hand photon line connects to the
primitive blob with coupling y_ and a right-hand
photon line connects to the primitive blob with coupling
Y+

We shall treat diagrams 9(a)-9(c) in what follows.
Our conclusions are the following for the case where
these diagrams connect directly to external fermions.
Diagram 9(a) contributes to only O(1) rather than
O(s Ins) ; diagram 9(b) contributes to only O(s) rather

o
~ " I photons
q| :(01(1] 7q|_ ) 3
(a)
A A Paa~ 22
(7)) s
(55 - n-1 photons DR
1
gi :(o’(li 2 di- ), Pi = (pis ,Ri»0 )
p=(o0,k,0)=q
(b)
" hotons
photons np

F16. 9. Some more general primitive bubbles, with appropriate
momentum labeling. (a) # photons attach to a bubble all from
the same side; (b) all but one of # photons attach from the same
side; (c) m photons attach from one side, % from the other, with ,
n>2. When m=n=2, we have B,,,.
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than O(s Ins); and diagram 9(c) contributes O(s Ins).
In the general case when diagrams 9(a)-9(c) are
subdiagrams of a larger diagram, we find that diagrams
with 9(a) as a subdiagram do not contribute to the
leading s behavior, those with 9(b) as a subdiagram do
not contribute to the leading s(Ins)¥ behavior, while
those with 9(c) as a subdiagram contribute to the
leading s(Ins)¥ behavior, with N=number of primi-
tive bubbles. In other words, when we inspect the
leading Ins behavior, we only count the primitive
diagrams of type 9(c).

A. Diagram 9(a)

If this diagram were connected directly to one of the
external lepton lines, it would look like a class of self-
energy corrections to the lepton. Thus, at least in this
case, one would feel unhappy if any s dependence at all
were introduced by this diagram. In fact, s dependence is
never introduced by this diagram. This is seen as
follows. Consider the left-hand diagram of Fig. 9(a)
for n=4, for definiteness (the argument generalizes in an
obvious way). The diagram is then of the form

Ba1375<q1)q?:q31q4> = B++++(C]1,(]2,¢]3,94) ) (41)

where

g:=(0,q:,9:-) - (4.2)

Now, the question is whether one can construct a
fourth-rank tensor with nonvanishing plus compo-
nents. The answer is no by simple inspection: This
tensor has to be constructed from ¢; and the numerical
tensors g, and eun,. Since ¢; has no plus component
[actually ¢y =0(1/s)] and gy=g4.=0, g, and ¢, will
not contribute any plus component. Similarly, one
finds that ey, will not contribute either because the
triple product vanishes,

€ung1°02’ g = 3 €4 _1m[ (¢1)1(¢2)1(g8)m+- - - ]=0

(note that e; 4,,=0). Thus By, is of O(1/s) at least.

When this diagram is associated with the other factors
which go to make up the scattering amplitude, this 1/s
will cancel, leaving us with an amplitude of O(1) rather
than O(s) or O(s Ins). More precisely, when this diagram
is inserted anywhere in a “factorized” amplitude, it
contributes no further s dependence.

B. Diagram 9(b)

If this diagram were connected directly to the two
external lines in an elastic scattering process, it would
look like a single exchanged photon with a vertex
correction. Thus, at least in this case, one would feel
unhappy if an s dependence beyond that of single-
photon exchange [which is O(s)] were introduced by
this diagram. In fact, we can show that Ins terms are
never introduced by this diagram no matter where it is
inserted in a “factorized” amplitude.

For definiteness, consider the left-hand diagram of
Fig. 9(b) in the case n—1=3 (again, the argument is
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easily generalized for »—1 any odd number >1).
The diagram is of the form

B—+++(P; Q1,92,93) ) (43)

where ¢; is given by Eq. (4.2), and where
p=(0,k,0). (4.4)

p has no plus component for the usual reason that
left-hand photons have no plus component, namely, to
conserve the total plus component across the diagram.
It also has no minus component, because it is connected
from the left-hand side of the bubble. We can now make
a tensor argument of the same type as the one we made
in Sec. IV A. All the momentum vectors upon which
this tensor could depend have zero plus component.
We could think of forming B_ .+ with vectors of the
type guwqirngzs OT €uapfiages, €tc. Even though g and
€_4qp are nonzero, g4 and ey qp are zero. Thus, we
can only take care of one pair of indices (—-); the
remaining indices +- can never be constructed.

Thus this diagram is by itself O(1/s). Unlike diagram
9(a), however, this diagram connects on bofk sides to
factorized pieces. This factorization automatically
contributes O(s) on either side, so when integrated
into a complete scattering amplitude, diagram 9(b)
gives O(s), but not O(s Ins).

C. Diagram 9(c)

None of the agruments of Secs. IV A and IV B applies
to this particular diagram to rule out logarithmic
factors. Instead, we can use the techniques of Sec. III
to study this case and to conclude that it contributes
O(s Ins) when connected directly to external lepton
lines. This diagram is of the form

Bm,n(?l—h- coDmt; Qimye o o yGn—;
transverse momenta),

(4.5)

where the subscripts m, # denote that B has m minus
indices and # plus indices. Under a boost along the

2 direction,
pro =P, g =g,

p/:p: q,‘_“q’ (46)

we have

B, n(€Mpiy,e g ; transverse quantities)

4.7)

=ermB,, . (pir,qi—; transverse quantities).

Equation (4.7) implies that the expression
IT dpii 11 dgs-
=1 j=1
X Bon, n(Pir,q;—; transverse quantities)
=I1I dpiy' I1 dg;-'
i=1 =1

X B o(pir’,q;-; transverse quantities) (4.8)

is invariant under a ‘“p-independent’ boost.

1115

Let us boost so that any one of the p; variables has
plus component equal to 1, or any one of the ¢; variables
has minus component equal to 1. In general, a single
boost gives this for only a single variable. For example,
boost in the three-direction so that p1,"=1. This boost
is parametrized by “rapidity” A,

pr=epr=1. (4.9)

Then
Pi+/=17i+/171+ (122, 3. m) ’
gj_,ij'_p1+ (]2 1, 2, ,%)
are a new set of m-+#n—1 variables on which Eq. (4.5)
depends. The transverse quantities are of course not

affected by this boost. In this new frame, the multiple
integral of (4.8) over dp;; and dg;— becomes

(4.10)

II I1 dpirdy;-

i=1 j=1

X B, n(pir; gi—; transverse quantities)
/ dp1y
P+

X B, n(1,pi1; g;'; transverse quantities),

IT II dpsy'dg;

1=2 j=1

(4.11)

where dp;,' in (4.8) is replaced by dpii/p1+, and the
remaining integral is p14 independent. For convenience,
we have left two & functions out of Eq. (4.11), one
conserving the total plus momentum for the p variables
and one conserving the total minus momentum for the
g variables. Thus, instead of depending on m-4n—1
ratios (variables), B actually depends on m-n—3
variables. In the special case of m=n=2 which was
worked out in Sec. III, the amplitude depends on
2+42—3=1 remaining value.

Connecting diagram 9(c) directly to the external
lines introduces, in addition to the extra Ins factor from
Sdpiy/p1s, a single power of s. Thus the primitive
bubble of diagram 9(c) gives, for elastic scattering of
leptons, O(s Ins). In the general case of the insertion of
diagram 9(c) into a larger graph, we always find an
extra Ins factor. This additional Ins factor comes from
the longitudinal phase-space integral fdpii/piy. Of
course, the contribution of this bubble does not depend
on which of the particular reference momenta p,'=1
(or g;-'=1) we choose.

The conclusion of this section is that for the contribu-
tion of primitive blobs to elastic scattering, only
diagram 9(c) gives as much as s Ins. Since the m=n=2
minimizes the power of «, the diagram studied in
Sec. III gives the leading behavior in Ins for this
entire class of diagrams.

V. s-CHANNEL ITERATION

We have made careful distinction between primitive
and nonprimitive bubbles in the preceding sections.
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This distinction is necessary in order to understand
the behavior of a particular diagram in Ins as s — o0 ; its
formulation is necessary in order to understand the
¢-channel iteration of bubbles or to the establishment of
a Bethe-Salpeter equation that sums these f{-channel
iterations.

In this section we would like to discuss briefly the
corresponding distinction which is necessary in order to
understand s-channel iteration. We must therefore
define “‘connected” and ‘“‘disconnected” diagrams.

Suppose that we have now accomplished the factoriza- -

tion of a given diagram into three parts, one depending
on each of the two external leptons, and one depending
on all possible multiphoton interactions in the middle.
Concentrate now only on this middle part. If this
middle part falls into two or more distinct pieces
(without cutting any lines), then we say it is discon-
nected. If, on the other hand, it does not do so, it is a
connected diagram. Simple examples of these two
diagrams are shown in Figs. 10(a) and 10(b).

We can call a connected diagram a connected unit,
and imagine forming a disconnected diagram by the
exchange of two or more of these connected units. Such
a diagram is shown in Fig. 10(a) for the exchange of
two of the connected units studied in Sec. ITI. We say
we have nth-order exchange of a given unit when »
units are exchanged and we sum these diagrams with

(c)

F16. 10. Disconnected and connected diagrams. (a) Simple
example of a disconnected diagram; (b) simple example of a
connected diagram; (c) typical disconnected diagram which is
the exchange of two identical connected units,
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the photon lines of each unit attached to the external
line parts in all possible ways. The s dependence of an
nth-order exchange in which m primitive bubbles appear
over-all is just s(Ins)™. As we shall discuss below, the
¢t dependences of iterations of a given unit is different
but closely related. ’

Let us consider the amplitude for a process containing
n identical connected units as shown in Fig. 10(c).
Actually, we can include all kinds of radiative correc-
tions to the incident particles as long as we ignore the
contribution due to fermion pairs.?? In that case, the
¢ dependence of an nth-order exchange diagram is as
follows. Let exchange of a single unit have ¢ (and s)
dependence F(s,f), and let the Fourier transform of
F(s,t) over k be given by

(5.1)

—iX(s,b) =/e“"bF(s,k2)d2/e
(2m)?

The s dependence in F(s,) is simply a multiplicative
factor (Ins)¥, with N being the number of primitive
bubbles in the unit. The same Ins dependence also
appears in X(s,b). Then the nth-order exchange
diagram has ¢ dependence with Fourier transform
(see the Appendix)

(1/n))[—iX(s,b)]". (5.2)

This is the well-known eikonal property. In particular,
the sum over 7 of all nth-order exchanges is

exp[—iX(s,b)]—1.

Actually, when more than one connected piece are
iterated, the eikonal form persists. The over-all X is the
sum of individual X’s, as demonstrated in the Appendix.
This exponentiation property has been shown explicitly
by several authors®’ when the unit is single-photon
exchange. For the unit studied in Sec. II1,% one has
explicitly

F(s) e / II
4 s’t = —
4 ii (2m)? (2)?

(5.3)

a*ps d*q;

—1e?  —qe?

XJ(p,0) II -
L=1 P 4p? Q2 u’

X (2m)25(p1+p2—k)(2m)?6(q1+q2—k),

where J(p,q) is given in Eq. (3.31). The Fourier
transform of F(s,t) is

—iX(s,b)=1Ins a(b), (5.5)

2§, J. Chang, Phys. Rev. D 1, 2977 (1970); Y. P. Yao, Zbid.
1, 2971 (1970).

28 The possibility that the s-channel iterations of an arbitrary
connected piece should exponentiate was pointed out to one of us
(S.J.C.) some time ago by Professor S. Adler, to whom we are
indebted. See H. Cheng and T. T. Wu, Phys. Rev. 186, 1611
(1969). These authors also showed that B, , exponentiates after
s-channel interactions.

(5.4)
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where
1 d?k
ab)=— | ——¢ikb
4w J (2m)?
d?p; d¥q; —ie?  —ie?
XJ(p,q) IT

i (2m)* (2m)° p+u’ Q7 +u’
X (2m)*5(p1+p2—k) (2m)%5(qa+qa—k).

Hence, the resultant amplitudes behave like

(5.6)

%bé'éaa'acc"’n_2 [d2b e_ik‘b{exp[—iX(S,b)]-— 1}

=-§—s§aar6w'm”2/d2b e Eb(sa®—1)  (5.7)

where 640 and 835 imply that the helicities of the initial
and final electrons do not change. Equation (5.7) helps
exhibit the j-plane cut structure of the amplitude for
multiple exchange. We would like to point out that
Eq. (5.7) applies to the s-channel iteration of all
connected diagrams involving only one primitive
bubble, such as in Fig. 9(c). In this case the amplitude of
the connected piece has a (Ins)! dependence, F(s,t)
=Ins f(#). Hence, —iX(s,b)=1Ins o’ (b), as in (5.5) and
(5.7). Of course, the Ins dependence will be different if
the connected piece contains N primitive bubbles for
N>1 [e.g., in Fig. 10(c), the connected piece contains
two primitive bubbles]. In the latter case, F(s,t)
= (Ins)¥ f(¢) and, consequently,

—iX(s,6)= (Ins)¥a/’(b).

Then, the s dependence in the s-channel iterated
amplitude,

S/dzb e—ik~b[e-—ix(s,b)_.1:|’

is completely different, and we encounter a j-plane
structure which is richer than that supplied by simple
s-channel iterated primitive unit exchange, given
by (5.7). At present we cannot say as much as we would
like to about the exact behavior of the full amplitude,
which is generated by the sum of all possible connected
pieces. Questions about the complete j-plane structure,
the nature of the branch points, discontinuities, cancel-
lation of the Gribov-Pomeranchuk singularity, etc.,
are all left open. Further explorations along this line
are certainly desirable. What little we can say is outlined
in Sec. VII.

VI. INELASTIC PROCESSES

We shall discuss briefly the factorization properties
of an inelastic production process. For simplicity, let us
first analyze the production process without the

IN QUANTUM
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center bubble [Fig. 11(a)]. The invariant amplitude
for the process of Fig. 11(a) is

m=/Aaﬁ'-"Y(Paaq)cllﬂ""Y(PC;q)
ie? diq;

XI1— e

i gf—utie (2m)*

where p, ={pq,pq;} stands for initial and product particle
momenta due to particle a, p, for particle ¢, where the
¢’s are the momenta of the exchanged photons, and
where &* is the total momentum transferred, all in the
cm. frame. For simplicity, we choose the three-
momentum p,= (0,0,P)=—p,, P=+/s. We are in-
terested in reactions in which the momentum transfer
k# is finite. Unlike the elastic process, the final particle
numbers and the effective mass of each of the two jets
of particles may not remain finite. However, we shall
study the case of a finite number of final particles with
a finite total mass. This restriction turns out to be
rather important in what follows. In particular, the
leading s behavior of the invariant amplitude can be
explicitly factored, in a manner similar to that of Sec. I1.
Since the method is identical to the one used for the
elastic amplitude, we shall not repeated the reduction
here. The amplitude for large s reduces to

(2m)4s*( 2 ¢i—k), (6.1)

M=1s | Ay poi(pd )

dg;!
XII T41r5( > i+ =2 pai)Camen(p5”,9")
J T

dqj+,l 4 n” 17
2 Ar( 2 g +2 poir” —per’’)
79

XIT

—ie? d¥yg

X

@2m)® (L q—k), (6.2)

II
(all photons) 2~pu? (27)2
which is similar in form to Egs. (2.12) and (2.17).
However, note that A.,....(p.,¢), for example,

depends not only on the incident and exchange photon
momenta in the standard frame a,

Pa+,=Pa+/\/5= 1 ) pa’=0, pd—,=m2

gi+'=0, q/=4qi,

but also on the final-particle momenta in the same
standard frame:

Pait’ =%= Pajs/N/S;  Pai' = Pais

Pai-' = (Pai®+may?) /%5,

where «; is the fraction of the longitudinal momentum

taken by particle a;, etc. As s —oo, the final states we

are interested in are those with p,;” approaching a finite

limit. Physically, it is plausible that the final-state

momenta might approach finite limits as s— in
the standard frame. It follows from the fact that in the

6.3
¢:'=finite (6.3)

(6.4)
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: } g;=(0,9;,q;.)

(b)

© Frc. 11. (a)fInelastic diagram with multiphoton exchange and
no bubbles in the middle. This diagram factors as does the elastic
one. (b) The left-hand blob in its standard frame. In this frame,
the ¢;,/ are zero.

standard frame, the momenta of the incident particle a
and exchange photons all tend to a finite limit, as
s—ow. We are effectively studying the scattering of
particle ¢ by multiphotons, all with finite momenta
[see Fig. 11(b)]. Hence, the final particles produced
should have finite momenta.

Similarly, we find that C__..._(p.”,¢"") depends on
the final quantities p,”, p.;//, and ¢”/, which are finite
in standard frame ¢. Hence, in analogy to the elastic
scattering, the amplitude factors into two parts as s — 0.
These parts are separately finite and may have limiting
distributions. The significance of this result and its
relation to the theory of limiting fragmentation® are
discussed in Sec. VII.

The differential cross section for the production
process Fig. 11(a) is

1 1
do=|9M|*——— — ——(P.S.F.)
lva—v,| 2E, 2E,

1
= || >—(P.S.F.), (6.5)
2s

Frec. 12. Inelastic diagram with bubbles. The bubbles can
contribute to the inelasticity by “evaporating” particles in the
bubble’s rest frame.
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where the phase-space factor (P.S.F.) at s = is
P.S.F.=(2m)'6* (X puit2 pos—pa—pe)

d*pai

(2m)?

d*pei

(2m)?

XH B(P(w'? _maiQ)

XH 5(?0]‘2 —mc]'2)
J

8x?
= 75( 2 xi—1)6(> y—1)

X (2m)25( 2 Pait2 Des)

dx; dzpai) < ay; dZ?ci)
X I ’ (66>
IiI <41rx1~ (2m)? I;I dmy; (2m)?

with
yi=pes-".
Hence,

do= (1/s)91] *(2m)26( = 2= 1)3(  y;—1)
X (2m)%(Z puit S o)

dx; A% dy; d%p.;
X (- el (== =) )
i \dwa; (2m)%/ i \dwy; (2m)?

The differential cross section indeed approaches a
finite limit as s —o0.

Now, we consider a general scattering amplitude,
Fig. 12, in which the middle bubbles emit some external
particles. At present we assume that the number and
the total mass of the emitted particles are finite.?t
Under these assumptions, we find that the factorization
of the amplitude, in analogy to the derivation given in
Sec. I1, can be carried through. Hence, the final ampli-
tude can be written as s multiplied by factors which are
separately finite as s—ce. [For N bubbles without
photon emission, we still have the (Ins)¥ dependence
in the amplitude as for the elastic case. When photons
are emitted from the bubbles, Ins terms do not arise
until we integrate over the final-particle phase space,
i.e., in the cross section.]

Each of the factors correspond to a particular bubble
(or target) with all particles emitted. These bubbles are
linked together by internal photon lines. The contribu-
tion of any bubble is still translationally invariant in
the Inp, space (or, equivalently, it is invariant under a
boost along the z direction) if we translate the bubble
with all particles it emits simultancously. This invariance
property implies that the contribution to the differen-

% Actually, these two assumptions are related. A finite “total
mass” of the emission particles certainly implies a finite number of
emitted particles. Conversely, some lower-order calculations
suggest that the inverse is also true, i.e., for a fixed number of
emitted particles, the contribution due to a large total mass is
damped in the amplitude. See also the remarks following Eq. (6.1).
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tial cross section due to this group of emitted particles
is invariant under a boost along the z direction. Hence,
we find that the group of particles which are emitted
from a given bubble are kinematically related and have
finite momenta (as s—) in the rest frame of the
bubbles. Two groups of particles that belong to two
different bubbles are decoupled due to the factorization
property. (This is certainly true for the longitudinal
momentum distribution. For the transverse momentum,
however, one has to conserve the over-all momentum
carried by all these individual groups. Consequently,
certain correlations are introduced.)

We therefore see that each group of particles behaves
like a “fireball.” We have to point out that this kind
of fireball does not have a spherical distribution in its
own c.m. frame in general. The fireball “remembers”
the longitudinal direction of the collision in which it is
produced. It has only a finite extension in the p and
Inp, space, and therefore may have an average distribu-
tion like a spheroid in the above momentum space.
The consequences and possible relevance to strong
interactions of this picture will be discussed in the
next section.

VII. DISCUSSION

We have seen in Sec. II that the properly renormal-
ized gauge-invariant, two-photon bubbles (called Bs,s
here) give ~s Ins f(f) when exchanged at high energies,
as shown in Fig. 8. Furthermore, this is the leading
connected primitive diagram as s—o and for small
coupling a. As we have discussed in Sec. V, the fact
that this is a connected diagram is significant for
understanding the behavior in ¢. In this section we want
to concentrate on behavior in s. As we have stated in
Sec. I, it is the primitiveness or nonprimitiveness which
helps to determine the behavior in Ins.

In particular, consider the nonprimitive iteration of
Bs,5, shown in Fig. 13(a) in second order. All possible
permutations of photon lines are understood, in that
figure, for gauge invariance. We have seen how invar-
iance of this unit under three-direction boosts leads
naturally to an s behavior

sfa(?) (Ins)2.

f2(t) here depends, in particular, on the coupling. We
can now treat the problem as a recursion problem by
writing an nth-order iteration of Bs,s as B, times an
(n—1)th-order iteration. Either this approach or
direct study of the mth-order iteration by invariance
under boosts shows that this nonprimitive diagram
behaves like sf,(f) (Ins)™. One might hope that summa-
tion over all iterations of Bs,» would lead to a simple
behavior in s and Ins. (The assumption here is as usual
that summing the leading behavior gives the leading
behavior of the sum.) This problem is a very well-
known one, and a great deal of experience has been

1119
X e
SSs
where ::%::: Bz,2

n fermion loops

(b)

)rr]
o

1

efc

(c)

F1c. 13. t-channel iteration of the simple two-photon — two-
photon bubble. (a) Double bubble; (b) Bs,® is the sum of all
t-channel iterations of Bs,s; (c) more general connected diagrams
formed from Bs,~.

accumulated in the last several years,” especially on
studies of Ap? theory. Studies of asymptotic behavior
by means of the study of j-plane singularities has been
of particular interest.!

Frolov et al.”? in a recent Letter have accomplished
this summation by using Bs,» as the kernel in a Bethe-
Salpeter equation. They solved the Bethe-Salpeter
equation in the special case that the electron mass is
zero and {=0. In this case they were able to find the
leading j-plane singularities analytically. Their result
has a branch point at §=14(11/32)me2. This behavior
violates the Froissart bound, which states that the
total cross section must not grow as fast as s(lns)? If
we denote the sum of nth-order iterations of Bjs by
BssE, as in Fig. 13(b), we can therefore conclude that
the description of elastic scattering processes with
Bs,o® alone is not satisfactory. Since iteration of Bg,
generates the leading (Ins)¥ amplitude for any fixed
power in a (here o?¥), we must therefore include more
complicated nonprimitive diagrams. Once we found a
complete solution for BsoF (i.e., a solution for all
momentum transfers), we could form more complicated
nonprimitive diagrams using B o® as a building block.
Examples of such diagrams are shown in Fig. 13(c).
We hope to study these problems more closely in the
future. In Ref. 12, it was also suggested that the break-
down of the Froissart bound is due to the fact that the
s-channel unitarity was not taken into account. How
a satisfactory amplitude can be constructed is still
an open question.

% See R. J. Eden et al., The Analytic S-Matrix (Cambridge
U. P., London, 1966).
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It is worth noting here that in formulating s-channel
elastic unitarity for the e-e scattering process, Bs "
represents the contribution of multiperipheral-type
processes to the intermediate states. This can be easily
seen by cutting, for example, Fig. 2 horizontally. Thus
the multiperipheral diagrams contribute the leading
7-plane singularity at £=0. At least in QED we conclude
that multiperipheral diagrams alone are inadequate for
the saturation of elastic unitarity.

Among other general features of our calculations
which may be relevant and applicable to hadron physics,
we would like to mention again the factorization of the
scattering amplitude into s-independent partial ampli-
tudes. This factorization property generalizes to in-
elastic scattering as well. As shown in Sec. VI, the
amplitudes of Fig. 11(a) in the limit of large s and
finite ¢ approach

M=3s [ Ayt (pa)

dg;-’
4

4rs( Y qil+pat =2 pait)

T
7
XC oo ("¢
dqj+// 17 17 17
XII ”‘4—*471'5(2 gir" 22 poir —pet’’)
J T

d%q
——(2m)% (X q—k) (6.2
(all I)I}I)tons) q2+[£2 (27l')2( ) (Z q ) ( )

—ie?

for fixed number of particles in the final states. As
s —, both factors 4 and C approach a finite limit
and become kinematically decoupled if the momenta of
two groups of final particles are measured in their
respective standard frames. This property is closely
related to the idea of limiting fragmentation.? The
standard frames for particles @ and ¢ are just the lab
and projectile systems used by these authors.

The analogy between this calculation and Chou-
Yang droplet-model-type result! does not end here.
As Chang and Yao® have shown earlier, the contribu-
tion to the amplitude of the elastic blobs in Fig. 1(b)
are proportional to the electromagnetic form factor
squared if one suppresses the production of Fermion
pairs in the vertex correction. This is also the lowest-
order prediction of the droplet model. Recently, Lee®
demonstrated that an operator droplet model can
reproduce the field-theoretic results of Cheng and Wu®
as to impact factors. The validity of this operator
droplet model is based on the existence of certain

% B. Lee, Phys. Rev. D 1, 2361 (1970).
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limiting expressions. We conjecture that these restric-
tions are the same ones that ensure the validity of the
factorization of the amplitude in Fig. 1(b).

The inclusion of bubbles in the middle together with
the evaporation of photons and electron-positron pairs
from the bubble (or pions and nucleon pairs in hadron
physics) would represent a difference between our
results and the presently formulated operator droplet
model. These evaporation photons (or pions) may
describe the pionization effect observed in cosmic-ray
and high-energy data.!* The detailed spectra and
differential cross sections for these evaporation photons
(or pions) are very model dependent, and probably do
not have significant extrapolation to hadron physics.
However, the following features seem to be quite
general, and should be applicable to high-energy
hadron scattering.?”%8

(1) The bubble in the middle is invariant under
translation in the Inp, space. (Diagrammatically
speaking, the plus component increases from right to
left. This invariance is expressed by the freedom to
“slide” the bubble horizontally.) Hence, the ‘“pions”
evaporated with low momentum relative to the bubble
should have the analogous dp,/p; distribution. In
other words, these ‘‘pionization” products should have
a flat distribution in a Inp, plot (or, equivalently, in a
Inp_ plot). The same kind of distribution was predicted
by Feynman,?® using some general physical arguments.

(2) The number of “pions” in a pionization process
increases linearly with Ins. This is essentially a pure
volume effect in Inp, space. More precisely, the average
number of bubbles existing should be proportional to
the available longitudinal phase space ~Ins, as should
the total number of pions they evaporate. The above
result is probably independent of the detailed structure
of the bubbles and the fireballs they emitted, and
depends only on the effect that the individual bubble
and the particles it emitted are translationally invariant
in the Inp, space. The vectorial property of the ex-
changed photons plays a crucial role in the factorization
property of the amplitude as well as in the translational
invariance of the bubbles. Hence, one may expect the
above conclusion not to be affected if one replaces the
exchange (massive) photon in our model by any vector
meson (e.g., w meson), or by a flat Pomeranchon.

As a remark addressed to experimentalists, we would
like to point out that the fireballs in our model may
overlap because of independent translational freedom
in the Inp, space.

27 These features are partially the result of the special limit
s— ¢ small. Our previous experience (see Ref. 28) in the limit
s— o, t— o s/t— o« indicates that the results described in
this paper may not hold in this limit.

28 S, J. Chang and P. M. Fishbane, Phys. Rev. Letters 24,
847 (1970) ; preceding paper, Phys. Rev. D 2, 1084 (1970).

2 R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).



2 SCATTERING AMPLITUDES IN QUANTUM ELECTRODYNAMICS. ..

(3) In analogy to the process of limiting fragmenta-
tion, it is conceivable from our model calculation that in
the c.m. frame of any particular fireball, the distribu-
tion of # final particles in a fireball approaches a limit
as s —o.

(4) It is known that the average multiplicity in the
high-energy collision @-c¢— (anything) increases at
least as fast as Ins as s — 0. One or more of the follow-
ing mechanisms may be responsible for this increase:
(a) The total mass and the total number of the final
particles in the target fragments may increase slowly as
s— . This possibility is suggested by Yang,® and is
conjectured by him as the dominant contribution to the
increase of multiplicity. (b) According to our model,
the multiplicity of fireballs increases as fast as Ins.
Then, the number of particles in the pionization will
be proportional to Ins, even though the average number
of particles in a fireball is constant. As we mentioned
earlier, this is a phase-space volume factor. There are
several cosmic-ray experiments which support the
existence and the rate of increase of the fireballs.™
(c) In analogy to (a), the average multiplicity and the
mass of the fireball may also increase slowly as s —oo.
The total increase of multiplicity is determined by the
combined effect of (a)-(c).

At present it is not clear which of these mechanisms
is the dominant one. Future experiments and a more
thorough model calculation may help us to distinguish
various possibilities.

Note added in manuscript. During the typing of this
paper there appeared in Phys. Rev. Letters 24, 759
(1970), an interesting article by H. Cheng and T. T.
Wu. These authors showed that the fixed branch point
at J=1 for #<0 that is given by pure multiphoton
exchange is modified when ¢ is positive. In particular,
for ¢ at the elastic threshold, the amplitude behaves
like s%2, They suggest that this is due to a moving pole
emerging from the second sheet, and is another possible
explanation for resolving Gribov’s paradox.
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APPENDIX

In this appendix, we wish to establish the general
eikonalization for s-channel iteration of a connected
piece. For definiteness, we consider the connected
unit given in Fig. 14(a). As discussed in Sec. II, we
only need to consider the diagram with plus components
on particle ¢ and minus components on particle ¢. The
dominant amplitude at large s and fixed ¢, according to

% C. N. Yang, in Proceedings of the Northwestern Symposium,
1970 (unpublished).
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F16. 14. s-channel iteration of a typical connected piece.
(a) Bubble with four photons attaching from the left and two
photons attaching from the right; (b) second-order iteration of
diagram (a).

Eq. (2.17), is

dj)i_,
w015 [ 4 p) TT = —4ro(Z )
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—1e? d2p1, —1e? dij
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X (2m)*5( 2 pi—k)(2m)*6( 2 4;—k),

where the subscripts of 4, B, and C are numbers of
plus or minus indices. We must also sum over all
possible photon permutations for the two groups of
exchange photons. As mentioned in Sec. II, factors 4,
B, and C are finite and kinematically decoupled. We
can evaluate each of the factors separately.

The first factor,

(A1)

Y dpi—l ’
(all pho%n perm.) fA4(Pn ’P ) IzI ?4‘".6( Z P:’— ) )
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can be valuated straightforwardly. Actually, this has
been done in the paper of Chang and Ma'® using a
slightly different notation. Interested readers are invited
to refer to Sec. V of that paper for details. The result
is very simple and independent of the number of
photon indices:

2 / A,(pdsp)
(all perm. for n photons)

n dp.i_l 5,“,'
XIT ——A4xs( X pi')=-—,

i=1 4qr m

where ¢ and @’ are initial and final helicities of the
electron. Similarly, the integral over Cs(¢”,p.”) gives

oot/ M. (A3)
Then, the one-bubble amplitude can be written as
MDD =1584q8m™2F (s,k), (A4)
with
1
F(s,k)= 5/34,2(15,9)
dpi+ dq j—
X1 < : >4w5( > per)dro( L gi)
i \ 4 4w
—ie?  d*p; —ie? d%q;
U o) G )
S \put 2m)Y 5 \a (22
X (2m)*5( 2 pi—k)(2m)*6( 2 ¢,—k). (A3)

Now, let us evaluate the second-order iteration of
the bubble, as shown in Fig. 14(b). According to Eq.
(2.17), the amplitude of Fig. 14(b), with photons
permuted in all possible ways, consists of the following
contributions:

(1) A factor 8,u/m from particle a, and a factor
8cer/m from particle c.

(2) By the use of

8 4
2 pi=2 ¢;=k®,

=5 7=3

4 2
S pi=Y 4=k,
=1 j=1
8
(20 (X pi—k)
=1

PR PR 4
= (2m)%9( 3 pi—k)
/ @r)* (2m)? =

X (2m)%5( Zj: pi—k®)(2m)2%(kV+k®—k), (A6)
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the contributions from bubble (1) and bubble (2) are

/34,2@1,. . P43 q1,92)

4 2 dpiy dgj-
XII IT — —
i=1

=1 47 47

4ro( 2 pir)dmo( 2 i)

I 2 a5 pi—ic)
Sipa ey

2 —ie? d%;

X

(2m)*( 2 ¢;—k®)

=2F(s,k®) (A7)

and 2F(s,k®), respectively. (Note that we have in-
cluded the photon propagators here.)

(3) Since bubbles (1) and (2) are identical, there is a
correction factor of 1/2! for overcounting.

(4) There is an over-all factor s/2V1=%s, N=2, in
Eq. (2.17). Putting (1)-(4) together, we have

d*k

(2m)

1
L / (2m)% (kO +k® — k)
2!
XE(sK)F (k™)
1
= b / P ew [ —iX(sh),  (AS)
where )

(A9)

d*k
—'D((s,b)=/(2 )2eik“’}"(s,k).
T

The above result generalizes in an obvious way to
N-bubble s-channel iteration, giving

1
1W(A7>(s,k)=%s6aafﬁbb/m‘2; /d2b
NI

Xe ®P[—iX(s,b)]¥. (A10)
Therefore, the summation over all bubbles leads to the

eikonal form

M (5,K) = L5800 6002 / d?be et 17, (A11)

This is exactly Eq. (5.3) or (5.7).

When more than one kind of connected piece is
iterated, the amplitude for N bubbles of one kind,
N3 bubbles of a second kind, etc., is

1
— 1%
[\71!./\‘f2!' o ./(

Xem® B[ —iX W (5,b) 1 —iX D (5,0) V2 -+ (A12)

where X® is the eikonal for the ith kind of bubble.
Summation over {/V} gives once again Eq. (A11) with

X(s)p) =5 Xi(s,b).

M NLNz 0 (5 k) =1500a Oppm2



