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We have studied high-energy deep-inelastic electron-nucleon scattering in a neutral pseudoscalar-meson
theory by summing an infinite set of diagrams. The diagrams analyzed are straight ladder unitary diagrams,
with pions as the rungs. Explicit lower-order calculations indicate that this set of diagrams gives the leading
In|¢?| contribution, where ¢? is the momentum transfer squared, provided that nucleon-antinucleon pair
creations and nucleon vertex corrections are ignored. The main results are: (1) The final hadrons fall natu-
rally into two jets; (2) the Bjorken scaling law breaks down; (3) the number of pions increases as In|¢?|;
and (4) a longitudinal impact-parameter space is realized. Some possible experimental consequences are

deduced.

I. INTRODUCTION

HERE is great interest in the study of deep e p
inelastic and e~e* annihilation processes through
various models.t™ The parton model, originally sug-
gested by Feynman! and later developed by Bjorken,?
gives a very appealing physical picture for these
processes. It predicts many interesting features of e—p
inelastic scattering. One of the important predictions of
this model is the validity of the Bjorken scaling law®:
The ep inelastic form factors W, and v, in the limit of
large momentum transfer and energy transfer ¢% mv are
functions of their ratio ¢?/mw only. This scaling law is
obeyed at least approximately by experiment.’
Although the original parton model is a physical
picture of “bits” of the hadron scattering independently,
Drell, Levy, and Yan?® showed that a “parton-model”
result can be derived for a large class of canonical field
theories. Their results are based on the existence of cer-
tain infinite momentum limits; these conditions are
satisfied in their model by introducing a transverse
momentum cutoff so that there exists an asymptotic
region in which ¢* and m» can be made larger than the
transverse momenta of all particles involved. In par-
ticular, they studied the cutoff neutral pseudoscalar-

meson theory in detail.
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By introducing a cutoff on the transverse momentum
of the pions, the ps meson theory becomes a super-
renormalizable theory rather than a renormalizable
theory. In this paper we shall study the form factor W,
in deep-inelastic ep scattering in a neutral ps meson
theory without cutoff.

The main set of diagrams we considered are shown in
Fig. 1. This is a set of ladder diagrams. The possible
nucleon-antinucleon pair creations and pion vertex
corrections (including nucleon self-energy corrections)
are ignored, i.e., we are analyzing bremsstrahlung-type
processes. It is clear that the vertex corrections at
various vertices should be included. At present we do
not know how this can be done efficiently. As we shall
see later, the largest momentum transfer takes place at
the photon vertex rather than at the individual pion
vertices. We therefore conjecture that the over-all
corrections to these vertices may be taken care of by
including the nucleon electromagnetic form factors
alone [Fig. 1(b)].

To each order in the pion-nucleon coupling constant g,
we keep only the leading contribution in Ing? in our
calculation of Wy(¢?»). Wi,(¢%») are, of course, the
form factors of ep inelastic scattering. In the forward,
deep-inelastic regions,

mL—q?, 2m<s,

where s is the square of the c.m. energy and m is the
nucleon mass. Here only W, contributes.

In order to justify our choice of the diagrams of
Tig. 1, we have looked explicitly in lower order at other
diagrams. In particular, we found that diagrams with
crossed rungs, with pions interacting between nucleons
on different sides of the currents, or with pions joining
over two or more vertices (see discussion in Sec. III),
are at least order In(|¢?|/m?) smaller than the leading
contribution of Fig. 1. This indicates that the straight
ladder diagrams of Fig. 1 may well be the only leading
diagrams (ignoring the nucleon pair creations and vertex
corrections). Hence, it may not be a bad approximation
to consider only the straight ladder diagrams. It is
worth mentioning here that because we are summing
and averaging over final and initial spins, the pseudo-
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scalar theory is effectively a scalar theory. We would
also like to mention the work of Adler and Tung,'® who
have studied the leading logarithmic terms in the in-
frared region for all fourth-order diagrams in a related
theory. Their conclusions agree with ours for the set of
diagrams studied here.

The results of our calculation can be summarized as
follows!!:

(a) The final pions and proton fall naturally into
two groups (jets) in which particles in a given group
move close to each other. The first group contains all
pions emitted before the proton interacts with the
current (the outer “rainbow” of Fig. 1), while the
second group contains the final proton and pions emitted
after the proton interacts with the current (the inner
rainbow of Fig. 1). The longitudinal momentum of the
proton at the time of interaction, measured as a fraction
x of the total longitudinal momentum, is still governed
by the same &(|¢?|/x—2mw) as in the parton model.
This « measures the fraction of the longitudinal
momentum left over by all the pions emitted before the
proton interacts with the currents. The same conclusion
was reached earlier by Drell, Levy, and Yan in the
cutoff pseudoscalar-meson theory.

(b) The scaling law »W o =vW 5(¢?/2mw) is violated in
an interesting manner. For a process with # final pions,
the partial W, contains a ¢-dependent factor
[In(g®/m?) ]~ Other than in §(|¢?|/x—2mw), the partial
W, for n pions emitted after the current insertion con-
tains no x dependence; pions emitted before the current
insertion introduce further x dependence.

(c) The total form factor W is formed by summing
over all pion ladders. As mentioned above, W, factors
into two parts, each associated with one group of
particles:

1
lim  Wa(g*v)= / dx 2mA o(q*x)
qzy/yug;(eﬁ 0
l¢?]
X A:(g?)d —2mw ),
x
where
1 2 2 2
g® In(|g*|/m?
/ Ao(qz,x)x*‘ldx=exp( W)‘L
o 1672 ANA+1)

A,.@z):exp(%: 1nlq2’>.

w  om?

The explicit structure of this result is presumably quite
model dependent. However, the facts that 4, has a
simple exponential structure in the Mellin transform
space and that 4, and 4; have explicit ¢> dependence
may be the general properties of any renormalizable

S, L. Adler and W. K. Tung, Phys. Rev. D 1, 2846 (1970).

11 The main results of this paper have appeared as a Letter:
S. J] Chang and P. M. Fishbane, Phys. Rev. Letters 24, 847
(1970).
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1. 1. Set of straight ladder unitary diagrams considered:
(a) Without any vertex correction; (b) with form factor
included.

field theory. In analog to the eikonal form in the impact-
parameter space, the Mellin transform space for the
longitudinal momentum has a profound physical mean-
ing of its own. It may be interpreted as a “longitudinal
impact space.”

(d) The number distribution in the pions emitted
after the current insertion is a Poisson distribution.
Because of the extra x dependence the distribution for
the pions emitted before the current insertion is not
Poisson; however, it is Poisson in the Mellin transform
space. (The experimentally observed distribution is, of
course, in the x space.) For the pions emitted after the
current, the average number is easily calculated. For
the pions emitted before the current, the average num-
ber is not simple. In both cases, however, % depends
logarithmically on ¢2.

(e) The longitudinal momentum distribution of the
pions does not obey the simple dx/x rule, as suggested
by phase space alone, because the integrand picks up
extra « factors from the amplitude. Various experi-
mental moments of this distribution are easily calcu-
lated. In more complicated field theories, it may be hard
to predict the x dependence of the pion momenta.

(f) The largest momentum transfer takes place at
the photon vertices rather than the individual pion
vertices. This would indicate that inclusion of pure
vertex corrections for the pions might have only small
effect, but that corrections to the photon vertex alone
may be important. In this sense it is simple to include
such corrections; they are indicated in Fig. 1(b). In-
clusion of these factors simply multiplies I, given above
by squares of form factors. Physically it is clear that
the possible momentum transfer in the process must be
damped by the nucleon form factor.

(g) Inclusion of multiphoton exchange in the
production process, rather than one-photon exchange,
can be made by using the infinite-momentum technique.
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Instead of the single-photon-exchange amplitude, one
has an eikonal form whose driving term comes from
one-photon exchange. The form of W, will be
unchanged.

(h) Finally, we should note that accommodation of
a factor like exp[ (g2/327?) In(|¢2| /m?)] would not be a
severe strain on the data. For [¢?| running from 1 to 5,
this factor varies from 1 to ~2.6, which is consistent
with the present data.

The model studied here can easily be used to study
the e*e~ annihilation process. The results of this work
will be published elsewhere.

The paper is organized as follows. In Sec. II, we
review the kinematics for the ¢~p inelastic scattering.
In Sec. III, the contributions for various lower-order
diagrams are analyzed, and the leading terms are
identified. Only the leading diagrams (i.e., the rainbow
diagrams of Fig. 1) are studied in Sec. IV, and the
general result is obtained. In Sec. V, the physical
meaning of the longitudinal impact space is examined,
and possible experimental consequences are deduced.
Finally, Sec. VI includes further discussions on various
results. We also include two appendices, in the first of
which we discuss the superrenormalizable A¢? theory.

II. STRUCTURE FUNCTIONS AND KINEMATICS

In this section we want to define more precisely the
quantities we calculate and the framework in which we
calculate them. Although the definition of the structure
functions which describe inelastic scattering is not new,
we give a brief description of them for completeness.
We give a detailed description of the kinematics
appropriate for so-called “infinite-momentum frame”
calculations, as well as a brief review of the infinite-
momentum techniques.

As usual, the process we are interested in is
e*+nucleon — e+ (hadrons), in which the energy and
angle of the final electron are known, while no informa-
tion about the hadron state is available. In particular,
the process goes by one-photon exchange; we show this,
with momentum labels, in Fig. 2(a). The two quantities
upon which this effectively two-body — two-body
process depends are taken to be the invariant (space-
like) momentum transfer ¢> and the energy change of
the electron in the lab frame ».

The covariant decomposition of the inelastic process
is well known.!? If the momentum of the final hadron
state [n) is written as p'=3" p;, with p; being the
momentum for individual hadron, then the differential
cross section in the final energy of the electron is

et U
= ~M o5 ImT (ny*8(v,q%) ,
o @1 T

d?e ™ 1
(2.1)

2 See, e.g., S. Drell and J. Walecka, Ann. Phys. (N. Y.) 28,
18 (1964); see also Refs. 2 and 3.
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where
Mag=15 Tr(valysl')=lals +1a 1539 ap

comes from the electron-photon vertex and where

1 E,
~ ImZy (g =)= [ TLatp: 1520 )

m
X{n| 750)| p)(2m)*64 (X pi—p—1). (2.2)

The 7 and /" are initial and final lepton momentum,  is
the proton mass, and p is the momentum of the initial
proton. A sum over all possible internal quantum
numbers of the particles in |#) is understood in (2.2).
Because of the symmetry of M .4, only symmetric terms
contribute to Im7'%¥, which is then real. A general
tensor structure, together with current conservation
gaT*=0), gives

1 1 beq
—ImT (%) = —W2<">(v,q2)<1"’— ——‘-’“>
™ m? g2

x(iﬂ"— f;gqﬁ)-—Wl‘“(v,qz)(g“"— g—g—>- (2.3)
¢’ ¢’

[We shall denote all quantities without () as the
corresponding quantities summed over (z). However,
we sometimes leave off a subscript (z), if there is no
possibility of confusion.] 7'*f is the well-known M
function for forward Compton scattering. In our case,
for ¢* spacelike, Im7'*# is the imaginary part of forward
virtual spin-independent Compton scattering. Wy,e
=3 W1,2™ are the structure functions for the inelastic
process. Wy contributes only to the Im part of the
Compton amplitude for virtual iramsverse photons,
while I, contributes for both transverse and longitudinal
virtual photons. In terms of these quantities, the in-
elastic cross section is
o 1 e

Ay (2m)2 (g)°
XULWa(r,g?) cos2(36)-+2Wa(v,q?) sin®(20)],

6 being the scattering angle. Diagrammatically, the
structure functions are therefore calculated from the
picture given as Fig. 2(b).

We shall be interested in the kinematic region
$>>—¢?% v>m, where —g? and mw are of the same order.
In this region we shall see that it is possible to find a
frame in which the infinite-momentum techniques!® are
appropriate. Therefore we give a brief review of the
technique. Instead of denoting a 4-vector a* as
(a%a',a%a%), we denote it as (ay,a,a_), where a = a’4a?

(2.4)

8 8. Weinberg, Phys. Rev. 150, 1313 (1966); L. Susskind and
G. Frye, ibid. 165, 1535 (1968); 165, 1547 (1968); 165, 1553
(1968) ; K. Bardakci and M. B. Halpern, 4bid. 176, 1686 (1968);
S. J. Chang and S. Ma, ¢bid. 180, 1506 (1969) ; 188, 2385 (1969).
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and a=(a,e?) is a 2-vector.! In terms of this decom-
position, @¢-b=3(a;b_—~-a_b;)—a-b, so that the mass-
shell condition for e* reads a,;e_—a’?=m? Lorentz
boosts along the 3-direction take a simple form: A boost
with rapidity 8 leads to

ay/=e*fay, a'=a.

Finally, a particle of momentum p moving rapidly along
the positive 3-direction has a large p; and a small
(of order 1/p,) p—, and vice versa for a particle moving
along the negative 3-direction.

We now define the kinematics of the inelastic process
in terms of variables in the new decomposition. We
define s as usual by s= (p+1)2. Take the initial nucleon
as traveling in the positive z direction. Then, in the
center-of-mass system, up to terms of O(m?*/s),

p*=(V/s5,0,m*/\/s)
while the exchanged photon has momentum
¢*=(0(1/+/5),q,2mv//5),
where q?= —g¢% We obtain ¢_=2mw/+/s from

my=p-q=3(pyqg-+p-g)—p-q
=3[ (v/$)g-+0(1/s5)].

Tt is easy to see that ¢ is of order O(1/4/s), since the
photon must interact with the electron whose plus
component is of O(1/4/s). Finally, we take a Lorentz
transformation (boost) along the z axis to a frame such
that p,=1. (Equivalently, we may view this as a scale
transformation p.— p./v/s=1, p_—p_/s, p—Dp.)
This transformation leaves us with

pr=(1,0,m?),
g*=(0(1/s),q4,2mv) = (0,q,2m») .

This is the standard frame in which we work. We wish
to remark that in the large-s limit, the large contribution
to the leptonic part M .5 comes from a == —. Hence,
the dominant contribution to the hadronic part Im7'*#
is a=B=+4. Since g,+=¢+=0, we shall actually
calculate Wy by means of diagrams like Fig. 2(c). We
adopt a frame with initial p,=1 rather than the lab
frame because (1) this frame is related trivially to the
c.m. frame by a simple boost and (2) the p’s of the
intermediate particles all lie between 0 and 1 (actually,
> pr=1), and represent the fractions of the longi-
tudinal momenta taken by these particles in the c.m.

frame. The fraction of the longitudinal momentum and-

the transverse momentum p turn out to be the most
convenient momentum variables to describe the high-
energy scatterings.

III. LOW-ORDER CALCULATIONS

In this section we wish to illustrate some of our
methods of calculation on low-order diagrams. We shall
1 The set of variables p.,, p are also known as Sudakov variables.

Further kinematics and transformation properties of these
variables can be found in the articles of Chang and Ma in Ref. 13.
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(a)

a= (¢c)

Fic. 2. (a) Picture of ep inelastic scattering; (b) general unitary
diagram for Im7,p; (c) graphical representation for W, as the
imaginary part of a forward Compton scattering.

see how the infinite-momentum techniques simplify
calculations, which types of diagrams are asymptotically
large compared to others, and how the scaling law may
break down when a transverse cutoff is not imposed on
the particles produced.

As remarked in the Introduction, we consider a
neutral pseudoscalar-meson theory and ignore nucleon-
antinucleon pair production. These limitations are not
imposed by asymptotic considerations, but instead are
necessary to make the calculations tractable. Thus the
exchanged photon (actually the electromagnetic cur-
rent) hooks only to the incoming nucleon line. We are
essentially considering a bremmstrahlung model.

We have chosen four calculations which illustrate
the salient features of our theory. These are illustrated,
together with appropriate labelings, in Figs. 3(a)-3(d).
We shall show in particular that 3(a) is large compared
to 3(b)-3(d). The nucleons of mass m are represented
by solid lines, the incoming photons by wavy lines, the
currents by crosses, and the emitted pions of mass u
by dashed lines. We see in all four diagrams that the
lepton current carries a large minus component but a
vanishing plus component, so that only the plus
component of the hadron part survives in the #j, (lepton)
coupling.

We study W, as a function of ¢? and » with —¢?
m>>m?, but with a finite ratio ¢2/mv. We then find that
the N-pion contributions to Ws(q,r) go like powers of
In|¢?|. The meaning of “leading term” here deserves
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further explanation. As IV, the number of Nz vertices,
increases, there is no ceiling on the maximum power
of In|¢?|. However, for a fixed N, i.e., a fixed power
in g2, the largest power in In|¢?| is limited to (In]¢2|)¥.
Itisin this sense that we call a particular term “leading
in In|g¢?|.” Mathematically, we are looking for terms
which are leading in g2In|¢?| as g2— 0. It is in general
unclear whether analysis of only the leading terms in
In|g¢?| leads to a meaningful answer. Nevertheless, we
keep only these leading terms (see also our discussion
at the beginning of Sec. IV).

A. Diagram 3(a)

Since this diagram is symmetric, W, is actually ob-
tained from an “amplitude” 9T whose absolute value is
squared and whose final-state momenta are integrated
over. The integration contains § functions expressing
momentum conservation and the on-mass-shell condi-
tion of the intermediate states. For inelastic scattering
from unpolarized protons, we must average the initial
spin, and, of course, we must sum the “final” spin.

We label each of the final particles by k;=(x;k;,
[k24u2(m?)]/x;), where x is the fraction of the
longitudinal momentum taken by the particle in the ep
c.m. frame. The “amplitude” for the process is

M= g% (ks)ys(Rat kst+m)y, (p—kit-m)ysu(p)
X[ (kg ko) —m i€
XL(p—ky)2—m*+ie]}~
= — g% (ks)yskyy Ryysu(p)
XAL kot k3)2—m2+ie |

X[ (p—k)?—m+ie])='.  (3.1)
Thus
(|| =3 Zc:1 le [on |2
=38 Tr[ (ks+m)vskayi kyys(p+m)yskyy i kays]
AL (a-F ) —miie ][ (p— k) — il (3.2)

The trace is simple. It is helpful to recognize that only
the minus component of vy, survives when sandwiched
between two v, ’s:

YE=0=v vy, Hr-r+=4v4
Hence,

V+by+= 2P+
Then we find for the trace in (3.2)

;_lg TI‘[' . ']Z 2(2962]32'kg—x3u2>(2x1/€1'[)—u2)
=8361002?'}31]62']33—496‘2}12]32'/63

—4dxxsp®p kit asut.  (3.3)

The factorization of the numerator into two parts, one
involving only the momentum variables before the
current insertion and one involving only the momentum
variables after the current insertion, is an important
feature of our calculation. When we integrate over

AND P. M.
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d*eyd*sd®ks, the first term in (3.3) gives the largest
contribution in In|¢?|. Thus we keep only this piece of
the trace. This is the general philosophy of our field-
theory calculations, i.e., we keep only the leading
logarithmic terms for any given order of coupling
constants. We sometimes refer to these leading terms
as the “most divergent contribution” at large ¢% The
last term of (3.3), which contains no momentum factors
at all, represents the ‘“most convergent” part of the
integral. It is similar to what one would have in A¢?
theory (see Appendix A). This term does not lead to
any In|¢?| term in the final expression. To complete the
initial study of diagram 3(a), we include the phase-space
factor (Appendix B)

Q(le dxs dxs d*y d’hke d%ks

" dmey Ay Ay (2m)? (2m)° (21

X 8(w1tax2+a3—1)(27) 262 (k1 +ko-+ks; —q)
k12+ﬂ2 k22+,u2 k32+m2

e

X1 X2 X3

P=8

—2my —~m2> . (3.4)

The factor dx/x can be interpreted as the usual phase-
space factor dk/E in the infinite-momentum frame. The
phase-space factor carries over in obvious generalization
when more pions are emitted.

The combination of (3.2), the first term of (3.3), and
(3.4) gives us Ws| rie. 3(2)- Before we explicitly calculate
W, we shall now show how a change of variables can
separate the “inner rainbow’ (the pion emitted after
the first current insertion) from the ‘“outer rainbow”
(the pion emitted before the first current insertion).
This is important because it will generalize when we
study the production of more pions. We make a change
of variables for particles in the inner rainbow, i.e., for
ke and k; only (the new variables are temporarily
denoted by a prime):

xi=x/,
X
ki=k/+ (a—ky), (3.5)
— %
q—k q—ky)?
A e
1—‘961 (1—961)2

for i=2 and 3. Note that the transformation we made
is actually a Lorentz transformation. Under a Lorentz
transformation, scalar quantities such as k3% and ko- k3
are invariant. This is important because it implies that
the denominators are invariant under the change of
variables. Another important fact is that this trans-
formation also leaves the numerator function invariant.
Hence, we can compute the numerator in either set of
variables, and they both lead to the same result. The
main properties of this Lorentz transformation will be
discussed in detail in Sec. IV.
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This transformation is designed so that k; and gq
decouple from the transverse-momentum § function:
d(ki+ko+ks—q)=6(ky+ks’). Using this é function,
we have for large k;'?

by ha= k! -k =~ [ (w-3)?/ 2ees T .
Thus the leading part of {|9|?) is
2g48x1x0p - kks' - s’
X{[L(p—lr)2—m?ie][ (k' +ks)2—
4 w1209%03 k;?
(s02423)? [Re?+ (1 —x0) pu2+x:2m% ]2
k'
% (T2 Lo/ (wa-00) J2m2 4L/ (ea-200) Ju?)

mi+ie])

(3.6)

Finally, the minus-component & function is
’1'2 2 m2 k 2
6,=6(— +—+— —mt—
X1 X2 X3 X1
(q—ky)?

1 1
+k3'2<—— + ——>+ -
Xeo X3

2

—~2mv). (3.7)

1—x1

The expression (3.6) tells us that the integrand damps
for large k2 and k3’2 and also for small x4, xs, or 3. Thus
for sufficiently large q? and », as we shall see, the 6§
function will finally simplify to

q2
5( —-2mv> .
1—-961

To calculate the leading piece of Iy, it will be necessary
to leave this § function intact:

(3.8)

m
Walpig. sy = —(|M| 2P
4

=2m

g dxrdxadacs
/ 21220 (w1 2223 —1)

1672 ) (1=
dzkl k12 /(ﬁks
(2m)? (k241 —w)p?Fa®m? ]2 ) (27)2
k,'?
X 5
{ks" >+ [os/ (wata5) Ju>+[a/ (wat-a55) JP'm?}

3.9

Except for the last & function, we see that W, factors
into two pieces, one dependent on the inner rainbow
and one dependent on the outer rainbow.

We can now proceed with the calculation of W, by
actually performing the integrals over k; and ks'. Tt is
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sufficient for us to calculate only, say, the k; integral.
To begin, we consider

O
qv
(2m)? (k2 +a)?

where a= (1—x)u>+x1>m? and b is the extra term as
given in Eq. (3.7). & involves both k;? and q-k; terms.
To keep only the most divergent piece of (3.10), write

k,? 1
(ki+a)?  Ki’ta

q2
5< —2mu+b>, (3.10)
1—x1

. 3.11
(k12+d)2 ( )

The second term in this expression is more convergent
than the first (again, it is a term like one finds in \?),
and can be ignored. Thus

()/dzk1 : (q2 2 +b> (3.12)
I(gw PRTTI Va, my . (3.

To find the most divergent behavior in q2, we divide
I(g,v) into two regions of integration, only one of which
gives the most divergent piece. This division calls for
a split in the integral over the magnitude of k; 5:

o) ( elal ® \kidkidd 1
([ [
/0 aqr/ (2m)? ki*+a

q2
xa(——— —Zmu—}—b) (3.13)

1—-x1

=ID£<(]7V) +I€°O<(I7V) ’ (314)

where X1, but g&>m,u. In I,4(¢»), one can ignore b
completely together with its k2 and q-k; dependence,
compared to q2/(1—uxy). It is then straightforward to
calculate

1 q’ q’
To(gn)~ — 1() (“# _z,m), (3.15)
47!' m 1 X1

where the m?2 in the logarithm is an arbitrary mass scale,
and is chosen as the proton mass for convenience.
Equation (3.15) is the leading part of I,¢(g»). In
1>2(q,v), we cannot ignore b compared to g% It is simple
to estimate this integral and to see that it gives an
I>(g,y) which is at most of O(lne) rather than Ing?
Thus we find 7,¢ dominates:

1 ¢/ q
I(gy)~ — ln-5< —2mu).
4 1 X1

T m?

The integral over d%;’ of course gives the same result.
Note that there is no additional (Ing?)? contributions

15 For a thorough discussion on computing the leading logarith-
mic term, see R. J. Eden et al., The Analytic S-Matriz (Cambridge
U. P.. London, 1966).
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from the end points'in the x integrals.!® This can be
verified by examining the x dependence in the original
integrand.

We therefore have for W,

In(q?/m?) In(q*/m?)

1672 3272

1
W2 rig. 3(a)=2m/ dx121
0

q2
xa( —2mv>. (3.16)
1—ux

Several features of this expression will generalize for
multipion rainbows. Factorization occurs between the
inner and outer rainbows, and there is different «
dependence for the inner and outer rainbows (we shall
delve more deeply into this point in Sec. IV), and the
“parton” & function §(q2/x—2mw) occurs. The particular
factors of Inq? appearing for one rainbow or the other
are characteristic of the number of pions in the rainbow.
We shall see in Sec. IV that for V pions in a given
rainbow, the factor is (Inq?)?¥/N 1.

B. Diagram 3 (b)

This is, of course, not a symmetric diagram. It
represents a type of diagram which, as we shall now
show, can be ignored in comparison to the rainbow
diagrams we have just studied. We represent I, as

mg® [ duaydxs
/ 5(x1+x2 il 1)

s X1X2

W Fia. 3y =

X/[l2/€1d2k2 6(k1+k2'—q)

k2 Hu?  ko?F-m? N
X(S( + —2mv—m2>—, (3.17a)

X1 X2 D

where

D1=[(p—k1)*—m>+ie][ (bt ko) —m?-ic]

= w31 (—ki2+a+ie) (k24 b+1€) , (3.17b)
N=3 Tr[(p+m)ys(p—kit+m)v,
X (ko+m)ys(ki+ Rot-m) vy ]

= —4(x2k12—x1k1-k2+x12m2) N (3176)

and ky'=k,— (x2/x1)ki=q—(1/x1)k:; ¢ and & are

16 The naive way of extracting the Ing? term will fail if the
remaining x integral diverges. When any term, even if it is an
order or so smaller in Ing?, becomes divergent affer the Ing? terms
have been taken out, we must keep this term in its original form
and perform the x integral first. In general, the latter integral
converges, and there appears a natural cutoff of order Ing?. The
over-all Ing?> dependence can then be different from its naive
dependence. We refer to this type of additional leading Ing?
contribution as “divergent contribution from x integral.” How-
ever, this type of contribution never appears in the leading
diagrams we studied in this paper.
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k-independent factors. Throw the nonleading term
x:12m? out of N and use d(ki+k.—q) to perform d%s..
Then

N= *—4(k12—9(I1k1‘q)=4k1'k2,. (318)
We are left with a k; integral. Examination of this
integral in the manner prescribed in Sec. IIT A shows
that it does not contribute in O(Ing?). This is essentially
because of the fact that the two terms in the denomina-
tors cannot become small simultaneously.

Diagram 3(b) is the simplest example for a pion join-
ing from an inner to an outer rainbow. Its contribution
is one order of In|g?| smaller than the corresponding
“pure” rainbow. Physically, this can be understood as
follows: Since a pion emitted from a nucleon tends to
be soft with respect to the nucleon, it can hardly be
reabsorbed by the nucleon after the electromagnetic
interaction. We have already seen in case (a) that the
dominant contribution comes from the region where the
pion has a relatively small transverse momentum with
respect to the nucleon. Since this result seems to be
physically reasonable and general, we shall ignore in
the next section all diagrams with at least one pion
connecting the inner and outer rainbows.

C. Diagram 3(c)

As a third low-order example, we consider a “crossed”
outer rainbow, as shown in Fig. 3(c). Following our
previous examples, itis not difficult to see that for the
dominant contribution the minus-component § function
again reduces to the “parton” & function §(q?/xs—2m»).
Then

Sm 1 dxldx2dx3
Wl pig. sy = / 8(ax1taetxs—1)
(47)6 0 X1XeX3
X/d2k1d2k2d2k3

X 8%(Iy o+ ks —q)5(q%/ s — 2my)N /D, (3.192)

where
D= [ (p—ke) —m-- i€ [ (p—Fr—ks) —miie?
X[ (p—ks)?—m+ic] (3.19b)
and
N=5 Tr[ (p+m)yskrys(p—ki—kat+m)y
X (ks+m)y.(p—ki—ko+-m)vskays ],

with the understanding that the integrals are evaluated
for 0< | k1, ke| <e|q|. Taking only the leading term
of the trace, we have

N=8x3(p-ka)(p-k2)
+2(P—k1'—k2)2(k1‘kz~'xp‘kl—‘:\?p'kz)
z8x3(pk1)(p kz) —2(p—k1—k2)2k1'k2.

(3.19¢)

(3.20)
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F1c. 3. (a) Typical straight ladder diagram g 3 g !
with two rungs; (b) diagram with a pion (a) (b)
joining from an inner to an outer rainbow;
(c) lower-order ladder diagram with crossed
rungs; (d) diagram with pions interacting
on different sides of the current. Diagrams
(b)-(d) do not contribute to the leading )
In|¢?| terms. 1 '
| '
I 1
- P SN 1 N
,/' k2,/ : \\\ \\\ //’ ! ‘\‘
/ P Ko ! N \ ’ ! \
P/ 31 \ \ / !
! i
1 1

Using (3.20), we write the leading part of N/D as
1

~

ki -k,

We have here used the same trick as we did in Eq. (3.11)
to pick out the leading piece.

For the first term of (3.21), a change of variable
eliminates the cross term in the denominator. Then
the ky,k, integrals can be put into the form

1
/ dZ\dZ, , Zi~k2.
(Z1+Z.4C)?

Using the method described in detail in Sec. IIT A, this
integral contributes to order Inq?. Similarly, the second
term of (3.21) has k; -k, in the numerator, and examina-
tion shows that [d%:d%, cannot contribute terms
higher than Ing? either.

Thus diagram 3(c) contributes to O(Ing?). This is to
be compared to the O((Inq?)?) which the pure two-pion
outer rainbow contributes. We can therefore ignore this
“crossed” rainbow compared to the “pure” rainbow of
the same order. This example prompts us in the next
section to ignore all such diagrams.

D. Diagram 3(d)

This diagram is again symmetric. The methods of
studying this diagram are no different from those used
in Secs. IIT A-111 C, but the expressions are far more
complicated. Because only the result is of interest, we
shall not give the details here.

We find that this diagram cannot contribute
O((In|¢?])?), which is what a leading diagram of order
g% should contribute. We shall therefore ignore such
diagrame in the future. This also tells us that a sym-

X, —_ .
Tp—tr—kn)—mitic]?  (p-bi—mi+ie)[(p—hi— ko) —mi+ic](p- ka—mitic)

3.21)

metric diagram (i.e., a diagram which contributes an
absolute value squared of an amplitude) does not
necessarily contribute to a leading order in In|¢?|.
However, the smallness of this diagram does suggest
that diagrams with pionic corrections for more than
two vertices at a time [Fig. 4(a)] tend to be at least
an order of In|g¢?| smaller. This is because of the fact
that the extra pionic corrections do not lead to extra
divergence, and hence the diagram has the same degree
of divergence as the original diagram. But the pionic
corrections do contribute to extra g? factors. Therefore,
we can no longer have a leading diagram.

However, the argument given above does not apply
to the pionic corrections to a single vertex, nor to a
self-energy diagram [Fig. 4(b)]. These diagrams have
extra vertex and self-energy divergences, and may pick
up extra In|¢?| factors. Physically, we need the vertex
corrections to supply us the damping factor appearing
in the form factors. According to the established rule,
one should first compute the vertex functions from the
field theory, and then put them into each of the 7NNV
vertices. At present, however, this is too difficult. We
therefore try to bypass this point by evaluating all
amplitudes without considering any vertex (and self-
energy) corrections and later including these corrections
in the final expression (see discussion in Sec. VI).

We conclude this section by comparing our results
with the important work of Adler and Tung.'® They
have worked on a similar 5 coupling theory, but with a
massless nucleon. Instead of letting ¢* be large, they
studied the infrared properties of the ep inelastic form
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F1c. 4. (a) Diagrams with pionic correc-
tions for two (or more than two) vertices at
a time; (b) diagrams with self-energy and

vertex corrections.
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factors as u— 0. The algebraic structure of their ex-
pressions are practically the same as the large ¢* struc-
ture studied here. They have studied the leading
logarithmic terms for all fourth-order diagrams, and
their conclusions agree with ours for the set of diagrams
studied earlier.

IV. GENERAL RESULT

In this section we shall calculate Wy for many-pion
production. The spirit of this calculation will be that
for any given order in W, we take only the leading piece
in In|g¢?|. The calculations of Sec. IIT have already
given us a clue as to where to find the leading piece.
Following those results, we ignore diagrams like those
of Figs. 3(b)-3(d), and compute only diagrams anal-
ogous to Fig. 3(a). We emphasize that we have actually
calculated diagrams 3(b)-3(d) only in the order shown.
We have not shown in general that such diagrams are
smaller than those analogous to Fig. 3(a), although the
manner of our low-order calculations strongly suggest
that they are indeed smaller.

It is worth discussing this point in more detail.!?
While the rainbow diagrams for % pions will behave like
(Ing®)», the lower-order diagrams behave as (Ing?)™L,
(Ing®)*=2, etc. For example, rainbow diagrams with one
pion pair crossed, as in Fig. 3(c), behave as (Ing?)",
as do some other types of diagrams. Now simple
counting arguments indicate that the diagrams of
O(Ing?)* ! may increase as #. Since # in turn will turn
out to increase as Ing? it is comceivable that these
diagrams may sum up to be as big as the leading
rainbow diagrams. We are assuming that this does not
happen. This assumption is equivalent to a kind of
random-phase approximation in the following manner:

17 One of us (P. M. F.) is grateful to Professor S. Gasiorowicz
for a helpful conversation on this point.

In Appendix B we point out that W, is given by the
integral over phase space of an amplitude 9 squared.
In our model, 9T is represented by a sum of terms, each
of which represents the emission of pions in a given
order. When we take [917|2, the diagonal terms in the
sum squared correspond to the rainbow diagrams. These
terms are of course positive. The ofi-diagonal terms,
which are not necessarily positive, are the lower-order
diagrams. The assumption that the off-diagonal terms
tend to cancel one another is the random-phase approxi-
mation. Although we have not explicitly checked this
point, it is of course interesting and important to do so.

We have also—somewhat arbitrarily—excluded dia-
grams with nucleon-antinucleon pair creation and
annihilation. The fact that we do not consider such
effects implies that pion production is a bremsstrahlung-
like process. This is indeed what diagrams analogous
to Fig. 3(a) tell us. The nucleon receives an impulse
from the electromagnetic current, shaking pions off in
the process. Indeed, we shall see many bremsstrahlung
features as we develop the general result, both in this
section and in Sec. V.

A. N-Pion Emission

The general diagram we consider is shown in Fig. 5.
According to our previous analysis, this should be the
only leading diagram if pair creations and vertex correc-
tions are ignored. Note that this is also similar to a set
of diagrams studied earlier by Drell, Levy, and Yan?in
a related model. There are M pions in the outer rainbow
(M pions produced before the current insertion) and
N—M pions in the inner rainbow (N—M pions pro-
duced after the current insertion). As for Fig. 3(a), I,
is an integral over an amplitude 90 squared. In addi-
tion, we have denoted by A the inverse propagator
function: If an internal line carries momentum p, the
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corresponding A for that line is A= p2—m?+ie. The where
labeling of the A’s is as shown in Fig. 5. We call the M M
contribution of W, for Fig. 5 WyM-¥-M_ We have x=1-2 %, k=q—2 k;.
j=1 j=1

dx1~ . 'de-H
WM N=M =2y g2N / s
4:71'961' . '47l'xN+1
d2k1 d2/€N+1
X 8(w1+ +3\«N+1—1)/ ——
(21r)2 (2m)?
X<27")25(k1+' o tkyp1—q)
k24u?(m?) N
XB(Z E— —2mv—m2>——, (4.1a)
X D
where
D= (Ahs- - - AyAprgr- - -Ay)? (4.1Db)

and for the numerator (not to be confused with the
index N),

N=3 Tr(p+m)vs(p—kitm)ys -+
’)/5(17—‘k1‘- P
X (kyrp1t - - -+ ky+kypt+m)ys- - -
'Yb(kN+ kN+1+m)’)/5(kN+1+m)
Xys(ky+ Ry tm)ys: - -ys(Rarpa+ - -+ Ry t-m)yy
X(p—ki—- - —kutm)ys - -ys(p—Ekit-m)ys].
(4.1¢)

As our first general result, we can show that the
dominant term in WM ¥=¥ factors into two parts, one
involving outer rainbow quantities and one involving
inner rainbow quantities. This is the generalization of
what we showed in Sec. IIT A. The propagator factors
in D=1 break into two such pieces, A;- - - Ay being outer
quantities, while Apyi---Ay are inner quantities.
Furthermore, the trace in N is of the form Tr[ (outer
quantities) Xy, (inner quantities) Xy, ]. When we pick
the leading piece from the trace, it consists of dot
products of outer quantities times dot products of inner
quantities. Then we can make a change of variables in
the inner quantities. The new variables, denoted by
primes, are given by

—ky~+m)yy

Xi= x,;’ y
ki=k/+@x/x)k, (4.2)
]€¢*= ki_l‘*— (Z/x)k/ . k+ (xi/x2)k2, 1= M+ 1, PR ,N'I— 1 y

If we puta=k/x, then this transformation on a 4-vector
pis

P_) P/: eMia-Epeia.E,

4.3)

where E= (K+ Ly, K;—L1) are the commuting gener-
ators of the infinite-momentum £(2) subgroup.'® L and
K are, of course, the conventional rotation and boost
generators. Thus the transformation (4.2) is a Lorentz
transformation. The (invariant) N/D in W, is un-
changed under this transformation. The transverse-
component § function is affected as follows:

N+1 N1
o( Z k;—q) — §( ‘§+1 k/). (4.4)

In the minus-component 6 function, the terms involving
q? and » become q%/x—2mw. For the leading behavior,
this is the only part of this 6 function that survives.
Thus the inner and outer rainbows completely decouple.
If we introduce an identity

1 M
/ dx §(% aj—1+x)=1,
0 =1

then the decoupling takes the form

1
dx 5(q%/x—2mw)

4 M ,outer 4 N—M ,inner
>< < )

WM N=M = 2
(4.5)

where the 4’s are related to the IV, of the “pure” outer
and inner rainbows through

1
W2N,outcr/inncr — 2m / dx 6((12/96— QMV)A N ,outer/inner .
0

We have thus far said nothing about the x and ¢?
dependence of Aimrer and Aovter. In order to find this
18 See, e.g., S. J. Chang, J. G. Kuriyan, and L. O’Raifeartaigh,

Phys. Rev. 169, 1275 (1968); S. J. Chang and L. O’Raifeartaigh,
J. Math. Phys. 10, 21 (1969).
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dependence, it is necessary to look at these quantities
in detail. In order to examine one of these two functions,
it is sufficient to assume there are no pions emitted in
the other.

First look at A2 outer;

v dxy- - ~dxnm M
AM,outer=7rg2M __5(2 x],__]_{_x)
4—1!'9(11' . ~41er41rx j=1

é?kl d‘lkM ]\,Touter
X / e , (4.6a)
(271')2 (2,".) 2 Douter
where
M
kyp1=q—3 k;
j=1
and (4.6b)

(Douter)—l= (AIAZ’ . .AM)2.

Now we must examine the leading behavior in the k.
For this purpose, we need the k,? behavior in A,:
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variable in k,. Therefore, the denominator function
behaves like
(_Douter)—l

~ (1—20)2(1—a1— )2 - - (L =1 — - - - —ar_1)?

x12200% ¢ - X2

X (k2 4a1)?- - - (Kp ka2 - - 4au)?,

where the a’s are k independent. The maximum power
of Inq? is obtained from a numerator function with the
behavior N~k;?- - -ky? Keeping this in mind, it is
quite straightforward to pick out the leading term from
the trace

Noer= § T (B mpy(p— ok m
vs(p—ki—- - —Rutm)yy

X (Rarprtm)y (p—ki—- - - —kar+m)ys- -
vo(p—kit-m)vs].

(4.8)

The leading term from the trace is

Ap= (P—kl— e —k")z—mz [Vouter ~ (21)]61)(2]31]32) s (2kM_1~kM)2xM2xM+1,
= k(I —w1— - - — ) fant- 1]+ - o
= (1= —stp1) [ JRn2 -+ (47) which is just
. . 4xk12k22- . 'kM2. (49)
The +--- in (4.7) is ~k;? and kik;, i<n,j<n. The
cross terms in k,-k; can be eliminated by a change of Putting Eqs. (4.8) and (4.9) into (4.6), we find
2 M xl(iOC]_ x2dx2 xM_ldxM_l
AM,ou(;er=< > / cee dexM
1672 (I—x)2 (1—w1—29)2 (I—x1—- - —xpy—1)*
k12k22, . 'kM2
(4.10)

M
Xo(2 xj—l—l—x)/dkl?- - dka?
=1

J=

We denote the multiple integral over the x;’s as Fy(x);
the leading term in the multiple integral over k¥sis 7.

First look at 7. We have shown in Sec. IIT A that
I=In(q?/m?). We shall show now that Iy=(1/M1)
X [In(q?/m?) M. The proof is by induction. 7y is of the
form

€q? €q?
IM=/ -.-/ dzl...dZM
0 0

2129 * "M

X . (4.11)
(z1+a1) (2o +bz1tas)? - - (zatczmrt+ -+ )?

Let Iy=cu[In(q2/m?) J”. We have
1 1 1

Cu= —Cy-1— —Cy—2F —Car—2— """

1! 2! - 3!

We know ¢;=1/1!. Assume now that ¢,=1/z! up to

(ki -a0)* (o> bl +a2)? -« (ot ela - - an)?

n=M —1. Then
1 1 1 1 1
cu= - — + —
(M- 21(M=2)! 3! (M-=3)!

—_—e

! M 1MM 1
“E( BT 1
—|——3—!M(M—1)(M—2)—--->

1
=—A.
M

Note that 1—4 is just the binomial expansion for
(1—1)¥_ which is zero. Hence 4 = 1. This completes the
proof by induction:

1 Q@ \M
= -_(m—) :
M\ m?

We would like to remind ourselves that m? appearing in

(4.12)



2 HIGH-ENERGY DEEP-INELASTIC ELECTRON-NUCLEON- ..

the logarithm is an arbitrary scale mass. This arbitrari-
ness will be significant after we sum up the series.

Next look at Fy(x). If the integrals in x; are done in
the order shown in (4.10), then x; goes from 0 to 1—ux,
%2 goes from 0 to 1—x—xy,..., and xy goes from O to
1—x—x1—---—xu—1. A change of variables can map
all the limits from 0 to 1. The new variables y; are
defined by

wj= =21~ - —x;1)y;
=1—y)(1—=y2)- - - (1=y5-1)5,
j=12,..., M. (4.13)
In terms of these variables,
1 1 1
Fa(x)= / y1dy1 / yadys: - / yudyn
0 0 [}
Xo[x—(1=y)(1—=y2)---(1=yu)]. (4.14)

This form of Fy(x) is not very enlightening. There is,
however, a form in which F becomes simple. This form
is the Mellin transform of Fur(x). Denote the Mellin
transform of Fy(x) by

FM(T)=/ dx x™ (). (4.15)

The Mellin transform of the § function in (4.1) is

/ dx x5 —1—v1) - - (1—yn))

= (=gt (L=ya) ™,
Then

Fu) =11 [ dysyit—y)—1=Cr(r+ DT, (4.16)

=1 /o

This gives for the Mellin transform of 4°uer(x,g%)

i 1 In(a/m?) ¢
M,outer,r 2) = —] N 17
T ower(r,g) [IWT(TH)] (8.17)

M!

Next we look at 4Ninner (we set M =0, i.e., no pions

in the outer rainbow, and p, = to look at Ainrer), We
have

N+1

dxl- . 'de+1
e )

A N,inner — ,n.g2N
4y .- 41!'.’)CN+1 =1

d*ky  d*hyi
X / (27)?
@2m)?>  (2)?
N+1 ]vinner
Xo(T k)——, (418)
=1 Dmner

(Dinner)=1=(A;Ay- - -An)?
= (k2 —m?ie) [ (k—Fk1)2—m>+ie]- - -

[(ky+kyyr)2—m>+ie]?, (4.18b)

and
Ninner= (1/29(3)
X Tr[ (p+m)ys (k+m)ys(R—kit-m)ys: -

vs(Ryprtm)ys: - -ys(k+m)yy]. (4.18¢)
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We have here put k=ki+ko+ - - +Ekyya. The factor
1/2x is associated with the factorization of the trace
into the products of two traces (i.e., the Nimrer and
the NVeuter). The inverse propagators behave as

A= (kvtkyi1)?—m?= (wx11/ox) (ky'*+aw)
Ay_1= (ky_1+ky+kyy1)?—m?
=[(en+any1)/2n-1]
X (ky—1"24bky'?+-an-1),

A= (ki - - Flyp1)2—m?
=[(x—xy) /w1 (k2 cks'*+ - - - +ar),

(4.19)

where

ky'=ky— (xN/ xN—}—l)kN-l-l )
kvt =ky_1—[axn—1/ (vt axi) J(on+Eni1) ,

The leading term in NV is
inner =4k1+(2k1 . k2) (2k2 . kg) s (ZkN . kN+l) .

In terms of the new transverse momenta, the leading
term in Nimrer reduces to

4y ke %K% - ka2,
Finally, the phase-space factor becomes
d*ky A%y
(ot (m?

(4.20)

(2m)*5 (2 k)

LN+1 2 dzkl' d2kN'
(Y R
x 2m)?2  (2m)?

Combining Eqs. (4.18)-(4.21), just as (4.10), we have
x1dxr

2 N
A N ,inner — ( g ) /
167['2 (x—xl)z

XadXs andxy
(x=w1—x2)?  (x—21—+ - —2an)?
wnpldang N1
i 53 w—a)ly. (4.22)
x? =1

In this case, the sequence of x; integrals can be done
easily because of the appearance of xy;1? rather than
®n41 as in Aovter, The result of the «; integrals is just
($)¥, and hence

1 g2 q2 N
AN, inner — _( 11’1—> .
NI\327x? m?

(4.23)

Contrary to A°vter, there is #o « dependence in A ™ner,
Equations (4.23) and (4.17) are the final results of
Sec. TV A.

B. Summation over Pions

In an actual inelastic experiment in the kinematic
regime we are discussing, only the energy and angle of
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the final electron are measured. Thus the W, we want
is the sum of WM. N—M oyer N and M. Due to our
factorization property we can separately sum M and
N—M. If we denote

.
A():Z AN,outer’ A2=Z Az\,mnor’
N N

then .
W2=2m/ dx 6(q%/x—2mv)Ao(x,g)Ai(¢?). (4.5)
0

We have seen that it is quite easy to sum A% inver:
2 2
A= AV "“ner=exp<———— ln~—>. (4.24)
N 3272 m?
Note that the arbitrariness in the scale mass m? is now
important. A change of m? will induce an over-all
constant in A4, Hence, by analyzing the leading
In|¢?| term, we can only determine W, up to a constant
multiplicative factor.

ANouter(y 02) is however, difficult to sum in the x
space. We have seen that the Mellin transform
AN outer(z 02) of ANouter(y %) js quite simple, and we
can indeed take its sum:

2 2
u lnq—>—-1. (4.25)
16m2r(r+1) m?

When we discuss our results further in Sec. V, Eq. (4.25)
and the significance of 7 will play a central role. Without
diminishing the importance of Eq. (4.25) we would like
to point out that the inverse Mellin transform of Ay can
actually be taken. We regard neither this fact nor the
actual result to be of special significance, and we urge
all but the most dedicated reader to move on to Sec. V.

Instead of taking an inverse Mellin transform, it is
convenient to regard 4o(r,g?) as a Laplace transform
over the variable z= —Inx, 0<z< . Then, we find

that 4o(z,¢?) is given by

Zo(r,q2>=exp(

o0 a
Ao(z,gz)e“”dz=exp( —-)-—1, (4.26)
/0 m(r+1)
g ¢
4= ——In—.
167  m?

To find 4(z,¢%), write
ealT(rth) — 1= (ev/7— 1) (ee/tD —1)

-+ (e—a/ (r+1) 1)_|_ (eal‘r_ 1) .

The last two terms in (4.27) have known inverse
transforms, and the first term can be performed as a
convolution. The result is

Ao(z,92) = (a/2) [ 11(2a11%1/2) — e~ T 1(2a1/%11%) ]

“.27)

—a/ d7' [ (z—2) ] % 11 20" *(z—5") V%]
0

XJ1(2a12/102) . (4.28)
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This rather formidable looking result does not corre-
spond to any familiar distribution in x. It does simplify
a bit in limiting cases. [ This can be seen either by taking
the limit in (4.26) and doing further inverse transforms
or by taking the limits directly in (4.28).] In the limit
x—1 (z small),

Ao(x,g%) — (¢?/167*)(1—x) In(q*/m?) . (4.29)
In the limit x— 0 (z large),
Ao(x,g%) — (4m)V2(a/z%) 114 exp(2at/2211?) . (4.30)

V. LONGITUDINAL IMPACT PARAMETER

We have seen that in our neutral pseudoscalar-meson
theory the structure function has a particularly striking
form in a new space. This space is the Laplace space of
the logarithm of a longitudinal momentum—or,
equivalently, the Mellin space of that momentum. In
this section we would like to examine some possible
reasons why this space might be of fundamental im-
portance. Our arguments rely heavily on analogy and
generalization, but we think that they add up to a

‘rather convincing set of facts.

The analogy we shall try to develop is with the
eikonal form for the transverse part of a scattering
process. Consider the two sets of variables!?

bv=FEi/py, ba=Es/py, 7=K; ($.1)

p1, P2, In(py/m), (5.2)

where (#1,F,) =(K1+L1,K;—Ls) are the E(2) genera-
tors introduced earlier, and K3 is a boost along the
z direction. The first set of variables is a set of Lorentz
transformations. The second set of variables refers to
momenta of our problem.

The commutator relations among these variables are

well known:

and

EEl,E?j = I:E7P+] =0,
iEK%E]:E; i[K3y?+:|:f7+, i[K37p]=07 (53)
[Pﬂapl’:lzoa i[Ei?Pf]:6i1P+5 /‘:+11:2'

It is easy to see that (b1,be,7) and (p1,ps,In(p/m)) form
two commuting sets. For conjugate pairs, we have

[b1,p1]=[bs,pa]= —1.

The commutator between the last pair of variables is
slightly more difficult to compute. Using

,j=12,

(5.4)

ei)\K3P+e—i)\I(3_—_ 6)\[7-*_ ,

we have
eMs In(py /m)e~™Ms=1n(erp,/m)

=In(p,/m)+X.
Hence, to first order in A\, we have

[Ks,In(py/m)]= —i. (5.5)

19 We are indebted to Professor R. Dashen for pointing out this
analogy to us.
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One can verify that all remaining commutators between
these two sets of variables vanish. Equations (5.3)-(5.5)
show that the two sets of commuting variables (5.1)
and (5.2) are canonical sets. Now it is well known that
the usual impact-parameter representation comes from
a two-dimensional Fourier transform over the transverse
momenta p, and is realized in the E, space.?’ We have
found in Sec. IV that the I, function is simple when
we take a Laplace transform over the longitudinal
quantity Inx= In(p,/m). The variable of this new space,
7, is therefore the parameter of a K3 space. Just as the
parameter of the Z, space is known as the “impact
parameter,” so we term our new parameter a ‘‘longi-
tudinal impact parameter.”

The impact parameter has a very simple classical
basis which we would like to supply for the longitudinal
impact parameter. Tt turns out that the longitudinal
impact representation indeed has a simple physical
meaning. Its existence can be established quite generally
for a large class of bremsstrahlung processes, satisfying
the following assumptions: (1) The process is invariant
under the acceleration along the longitudinal direction.
This is a kind of scale invariance for the process under
pr—eFpy, ie., under a translation in z= —Inp,,
z running from 0 to . (2) The emission of one pion is
independent of the emission of all the others. These
assumptions are reasonable if one integrates over all
transverse momenta of the emission pions, as we did
earlier in our computation. Let Fy(z) be the probability
of emission of N pions from a nucleon of initial momen-
tum p, to a final nucleon of p,'=e¢#p,. Under this
assumption, given Fi(z), we have

1 z
F2(Z) = ; / (ZZlFl(Zl)Fl(Z——Zl) ,
*Jo

(5.6)
1 2
Fi(z)= 3—' / dz1dz9F 1(22) F1(z1—322) F1(z—31) .
«JO
The 1/N ! comes from the k phase-space integrals in our

model. Consider now the representation of Fi(z) in the
longitudinal impact space:

Fl(v-)=/‘°c dz e F1(2). 5.7)
The transforms of Fs, Fs, etc., are
Fo(r)=(1/20[F: (),
Fy(r)=(1/30)[F:(n) 7,
. (5.8)

Pule)= (/MO FA() T

We see that the independence of pion emission implies
a Poisson distribution in the 7 space, in which the
amplitude for #-pion emission is expressed in terms of

2 N. P. Chang, Phys. Rev. 172, 1796 (1968).
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the one-pion emission amplitude. Summation over all
pions in this 7 space then gives an exponential whose
argument is the one-pion emission amplitude. This is
perfectly analogous to the standard eikonal result:
The amplitude for a complete transverse process,
summed over all elementary processes, is, in the impact-
parameter b space, of the form exp[iX(b)]—1; the
amplitude for the elementary transverse process in the
b space is just X(b). In order for this representation to
hold, the amplitude for an elementary transverse process
must not depend on previous occurrence of that
transverse process.
In our own particular case, we have seen that

Ao=expla/r(r+1)]—1.

The one-pion emission diagram has an amplitude in
the 7 space of
Arovter=g/r(741).

Thus our result tells us how to calculate #-pion emission
in terms of single-pion emission. As we stated above,
this is the typical property of a bremsstrahlunglike
process. This single-pion emission amplitude has the
property that for large z (small 7),

gl,outer,\, a/r ,

corresponding to Alouter(z)=const, independent of z.
For small z (large 7),

gl,outer,\, a/T?. R

corresponding to A1outer(z)~z, i.e., just the phase space.

It seems to us likely that the particular form of the
longitudinal ~ impact-parameter  eikonal function
a/7(r+1) is very model dependent. However, the fact
that the amplitude becomes simple in the longitudinal
impact space is possibly a fundamental one. Study of
other models is necessary to verify this potentially
important statement.

Experimental Consequences

We conclude this section by suggesting some experi-
mental tests of the idea of the longitudinal impact-
parameter space. First, let us look into the ep inelastic
scattering. According to our discussion and to the results
of Ref. 3, the hadrons should fall into two groups. The
first group consists of all pions emitted before the
nucleon interacts with the current, while the second
group consists of all particles created after the nucleon
interacts with the current. If one measures, in addition
to the energy loss » and momentum transfer q from the
final electron, the partial cross section for NV nonresonant
pions in the first group, then one can very easily check
the wvalidity of the longitudinal impact space. In
particular, the partial 4¥.outer(g2 ) should exponentiate
in the Mellin transform space when summed over V.
It is important to note that for a multipion final state
the pions come from nonresonant states. Thus, two
pions coming from a decaying p emitted from the
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nucleon must not be counted in the same way as the
bremsstrahlung pions, since their emission is correlated.
This is undoubtedly the most difficult experimental
problem to be faced.

Since the basic assumptions for deriving the longi-
tudinal impact-parameter representation are quite
general, one may tend to believe that the longitudinal
impact space might also be realized in the pure hadron
processes, such as pp and wp scatterings. Experimen-
tally, our ideas should be easier to verify in these
processes than in ep scattering. Let us consider high-
energy pp scattering: p+p-— A+ B, where A and B.
are two jets of particles moving along, each containing
at least one nucleon. We now concentrate on the first
jet—say, A. We select these events in 4 (but include
all final states in B) such that A contains a single
nucleon of longitudinal momentum p,,"= xpi;, where py,
is the incident longitudinal momentum, and N non-
resonant pions. This should give us a measure of the
probability function Fy(x). By transforming this
probability function Fy(x) into Mellin transform space,
one can check whether the longitudinal impact space is
compatible with the present hadron data.

VI. DISCUSSION

The purpose of this section is to review and elucidate
particular features of our model which are of interest.
We shall look at distribution properties of the emitted
pions, at scaling properties, factorization properties,
inclusion of vertex corrections, etc.

A. Distribution Properties

A most striking feature of our model is, in common
with superrenormalizable theories, that the pions
produced in the inelastic process group into two “‘jets,”
one associated with pions emitted before the current
insertion—the outer rainbow pions—and the other asso-
ciated with pions emitted after the current insertion—
the inner rainbow pions. The properties of these two jets,
as expressed by 4o(x,¢%) and 4:(¢?), are different. The
full amplitude has a structure function W, which is the
product of these quantities times a & function of argu-
ment q%/x—2my. By measuring q2? and 2mw, we there-
fore measure x. The x referred to here is the fraction of
the original nucleon p, that the nucleon has just after
the current insertion.

With this much clear, we can now distinguish two
general types of distribution associated with W,. The
first type is the distribution in x, as expressed by
Ao(x,q?) =2 ar AMovter( %), The second type is the
distribution in the number of outer pions, expressed by
the M dependence of A¥-vter(x,¢?); and of inner pions,
expressed by the N dependence of AN inner(g2) 21

We shall first examine the distribution in . We have
seen that 4°%er(x,¢?) is not very simple in the x space,

21 We can, of course, consider simultaneous distributions in M
and x, but this does not seem very interesting to us.
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but is quite simple in the Mellin transform space:

1
/TU(T;(IQ)z/ Ao(x,q?)x™dx
6

g q°
=exp<———~ _ 1n~)—1. 6.1)
16m%7(r+1) m?

If we do not measure x (i.e., if we integrate over all x),
then we end up with

2 2

lnq—2)—1. (6.2)

T m

1
N q
/ Ao(x,9%) dx=Ao(1,qz)=eXp(
0 32

But this is just 4,(¢*)—1:

g2 2
Ai(g?) =ex ( ln—>. 6.3)
1 P 32w m? (

Thus, the contribution for the inner pions, in our model,
is equivalent to the wx-integrated contribution for the
outer pions. Physically, this can be understood as
follows: In our theory, the contribution for the inner
pions is invariant under a boost along the z direction.
Hence, Airer(¢?) is « independent. Therefore, we can
evaluate Aimer(g?) in the same initial frame (p.=1) as
we compute Ae°uter, The only distinction is, of course,
that in A°uter the final p,’ of the nucleon is fixed by
p/=xp,, while in Airrer there is no restriction on the
final p,’ of the nucleon at all. It is now not surprising
to see that 4,(¢?) is the x integral of 4(x,q?).

The above interpretation actually suggests that, if
the longitudinal momentum of the final proton is
measured to be p./=vq%/2mv, then its probability
distribution in ¥y is also governed by the same distribu-
tion function A4(y,¢%). That this is true can be verified
explicitly. Hence, the partial contribution to W, for

Py (or y) is
1

AW (g, pa") =2m / 0 5(q%/x—2m»)
0

X Ao(x,g%)A0(y,90)dy, (6.4)

with
P =xy=yq*/2my.

The above relation reveals that the distribution func-
tion Ao(x,q?) is of fundamental importance and has a
universal meaning in our model. It simply describes the
correlation in the longitudinal momentum of the proton
between two interactions, by viewing the pion emissions
as a background. Therefore, we would like to learn more
about this distribution.

We can use the distribution properties in x to deter-
mine various moments in the longitudinal momentum x.
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Thus the average value of x in our process is

()= /0 o) d / /0 ' Ao(ng?) di

=40(2,¢%)/40(1,4%)
&

= exp( - ln———) .
48w m?

(x2> =/IO(3,92)/1‘IO(1192)

S g ¢
= exp( - — ln——) .
12 1672 m?

It is quite clear that one could in this way calculate any
moment of x. Numerically (6.5) implies for the average x

(@)= (q*/m*) "4,
and for the spread in ,
(@) —(@)? = (q*/m?) 5.
We see that both (x) and (x*)—(x)? decrease moderately
with increasing ¢? in our model.
We now address ourselves to the problem of number

distribution of pions. We have seen that for the outer
rainbow pions,

B 1 gz q2 M
AM’,outcr(T’QZ) = __~( ln-——) N (67)
MN\167%7(r+1) m?

6.5)

Similarly,

(6.6)

and for the inner rainbow pions,

1 2 q2 N
AN,inner(q2> = ___< £ ln_> .
NI\327x2  m?

(6.8)

Both (6.7) and (6.8) are Poisson distributions in the
number of pions. It is important to recognize, however,
that (6.7) for A¥.euter s a Poisson distribution only in
the Mellin transform space. It is emphatically not
Poisson in the x space, which is the physically measured
distribution. This can be seen in the discussion centering
around Eq. (4.28), where we looked at the sum over M
Of AM,outer(x,q2).

Because the distribution of inner rainbow pions is
Poisson, we can immediately see that

(N)ignae= 3y, NANmmer(g2)/ 5" AN inner(,2)
N=0 N=0

2 2

(6.9)

4 q
= In—
2wt m?
and

<1\7>ixlncr2 =Z A 21,1N,inner(q2)/z A N,inner(q2)

2 q 2@
= 1n—<1+ — ln—~>‘ (6.10)
327 m? 327w m?
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This is, of course, a well-known result for Poisson
distributions. Naturally, Eq. (6.9) gives for the average
number of inner pions
{V)inner=0.6 In(q%/m?)
and Egs. (6.9) and (6.10) give the same result for the
spread (N2)—(IV)2.
For the outer rainbow pions we shall only give the

result in certain limiting cases. In the limit 7 small,
which corresponds to x small,

_ 1 g? 2\ M
AM,outer(T’g2) ~ __<.._— 1n—> . (611)
MN\167%*r m?

We find for the inverse Mellin transform

1 gZ q2 M
AM,outer(x,q2)z —_ ( ln_>
MM —1)\1672 m?

X(lnE)M-l. (6.12)

X

Then, with a= (g2/1672) In(q2/m?),

M 1 M—1
5> [— aM(ln~) ] /
M\(M—1)! x
1 1\ ¥-1
= ()]
M\(M—-1)! x
g2 q2 1 1/2
z( In— ln—) .
162 m? «
For large 7, corresponding to x=1, we have

1 g2 q2 M
ﬂM,outer(T’QZ) ~ _< hl_ﬁ) T~2M ,
MN\1672  m?

(6.13)

which gives
1 g2 q2 M
A M,outer(x’QQ) —_ / ln_>
MM —1)\16x2 m?

1 2M—1
X(ln—) . (6.14)

X

The average M is very small (~1—x) at x=1, i.e., we
only see the inner rainbow here.

There are two more distribution properties which are
of interest. One is the transverse momentum distribu-
tion of the emitted pions, and the other is the average
charge properties of the inelastic final states.

In the previously studied field-theory model of in-
elastic scattering,® the transverse momentum of the
emitted pions has a cutoff externally imposed. While
this cutoff was necessary to ensure the scaling law, it
does make the question of the transverse pion momen-
tum a trivial one. In our model the transverse momen-
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tum of pions is not imposed by outside and its distribu-
tion is of interest. In order to study this, we must
return to the original amplitude which determines
Ainver or Jouter Tn particular, the difference between the
inner and outer pions lies in the longitudinal properties,
and we expect the transverse properties of the two jets
to be similar. The transverse momenta, by understand-
ing, are defined relative to the longitudinal directions
of their respective jets. To calculate these properties,
we return to the original expression (4.1) for W, We
found in Sec. IV that the g* dependence comes from
integration over transverse momenta of the emitted
pions. The factor which gives this is given by (4.11)
and (3.13):

€q2 eq?
IN=/ / dZ][lZz"'dZN
0 0 1

X ,
(z1F01) (zatz1Fa2) - - - (avtay-1t- - - +aw)
(6.15)

with z;ck? for the ith pion. The limit of integration
comes from the minus-component § function [see
Eq. (3.12) el seq.]; it provides a cutoff on the z; integrals
at eq? The integrand of Eq. (6.15) may be regarded as
a distribution function for the transverse momenta.
Thus we have for the average transverse momentum
squared of an emitted pion,

1
&)~ ——% [ (Ldz)

N ]N N i
N1 Zz 2
X
(z1t+a1) (z1t22taz) - - - (ayt2zv—1t- - - +aw)
ZN Ny
~g T T (6.16)
vy
But we already know that [see (4.12)]
1 qZ N
Iv=—(1n—) (6.17)
NIN m?
so that Eq. (6.16) becomes
(&*)~q*/In(q*/m?). (6.18)

Thus the average transverse momentum grows with g2,
but not as fast as @?; the momentum transfer at each
pion vertex is damped at least by a factor In(q?/m?)
compared to the momentum transfer at the photon
vertex.

Finally, the average charge of the produced particles
has been of interest in the original parton model of
Bjorken.2 We shall calculate this quantity in our model
at the end of Sec. VI C.

B. Scaling

The original suggestion of Bjorken'® was that »IV,
would depend only on the ratio w=2m»/q% The only
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appearance of the fractional longitudinal momentum
left to the nucleon after the collision is through
6(q%/x—2mw). This so-called scaling law, which is at
least approximately obeyed by the data, is a funda-
mental property of the original parton model. It is also
a property of a superrenormalizable field theory, as
in A@® and the cutoff neutral pseudoscalar theory of
Drell, Levy, and Yan. In our model, this scaling law is
violated. The partial W, for N pions, both for the outer
and inner rainbow, has q? dependence through (Inq?)".
Of course, the full W, has q? dependence; it has a
simple (g?)Pover behavior for Wyimer gnd a rather com-
plicated q* dependence [see Eq. (4.28)7] for Weuter, Ag
we have stated previously, the g2 dependence for W youter
has simple power behavior in the longitudinal impact-
parameter space. Although we shall discuss below why
the particular g2 dependence of our model should not
perhaps be taken too seriously, the data at this moment
certainly do not forbid some g2 dependence for W, and
thereby a breakdown of the scaling law.

C. Form Factors

From Eq. (2.4) it is clear that in our model, in which
W, grows as a power of g2, the cross section also shows
an increase with g2 Physically, this too rapid growth
of W, must be damped by form factors at the various
vertices. There are two general types of corrections one
might want to consider: those coming from electro-
magnetic corrections and those coming from strong-
interaction corrections. We have seen [see Eq. (6.18)
el seq.] that the momentum transfer at the photon
vertex is larger than the momentum transfer at the pion
vertices by at least an order of In(q%/m?). Therefore,
we only consider corrections to the photon vertex,
ignoring the off-mass-shell effect of the nucleon.

One can then calculate pure electromagnetic photon-
vertex corrections by replacing v, at the vertex by

Q/MFI(QZ)-{—(io'u,,g”/Zm)F2(q2) .

Note that this substitution is not strictly correct
because the proton is not on the mass shell. However,
this should be a good approximation if the off-shell-mass
effect is small compared with ¢% In our case, v, in the
matrix elements 91 which are squared would be replaced
by viFi1+(ioy,q"/2m)F,. The trace which appears
in [977]2is then

104,9"
Tr[(outer) (’Y+F1+ ——Z*MF‘2>

m
. 104 ug*
X (inner) <7+F 1+ — 2)]
2m
io.
=Tr[(outer)(7+F 1— = H(ILFQ)
2m
: io4.g
X(mner)<'y+lf‘1— —il—iF2>] (6.19)
2m
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We have here explicitly taken oy,q. There are two
direct terms and a cross term to consider in (6.19).
The (y,.F1)? term is just our old result multiplying
F1%(¢?). The cross term is of the form (o= dy4v1)

—(i/2m)q.F1F
X Tr{(outer)y,[(inner)y,yitvy.(inner)y., I} .

Since both the inner and outer factors have an even
number of v matrices to leading order, this term con-
tains an odd number of v matrices and is zero. Finally,
using yiy4v1= 274, it is easy to see that the Fy* term is

(1/2m)2q2F,2(¢%) X (old answer).

Thus, the inclusion of these form factors has the
property of replacing W, by

[F12(g%) — (1/2m)**F*(¢*) JW»(old)

¢ q?
=(GE2_ &GM2> / <1—— —-—)XWg(old),
49m? 4m?

where Gg and Gy are charge and magnetic form
factors.?2 Of course, this has the effect of damping the
¢* dependence. In the case of Gr=Gu/u,=universal
form factor F(g?), we have for large ¢?,

Walgty) = / di 2mAo(g?) A (GO TF @) T

X 8(q%/x—2mv), (6.20)

where the above equation is valid up to a constant
factor. Note that all our discussions on the longitudinal
and transverse momentum distribution, number distri-
bution, longitudinal impact representation, and on the
scaling law are not affected by this modification. The
only effect is the over-all ¢*> dependence of the cross
section.

We wish to point out that our result on inelastic ep
scattering can be generalized to deep-inelastic electron-
neutron scattering. All the features discussed in this
paper persist, and the inelastic form factor Wa(n) for
the en scattering is related simply to the Wa(p) for the
ep scattering through

Wy(n) B F1m(g®)?—(g¥/4m*) F2(u)(¢%)*
Walp)  Fion(g)—(@/4m) P (g
3 —(g%/4m*pa®  fpa 2
1= (gAY, < ) ’

where p, and u, are the anomalous magnetic moments
of the neutron and proton, respectively. The last ex-
pression depends also on the experimental fact that the
nucleon form factors are governed by a universal form

Mp

2], R. Yennie, M. M. Lévy, and D. G. Ravenhall, Rev. Mod.
Phys. 29, 144 (1957). For recent experimental results, see L. H.
Chan ¢f al., Phys. Rev. 141, 1298 (1966).

1101

s - SN
7’ 4 ~ N
4 4 N N\
s I NN
Yaw: LT R NN
’ - AN RN
S eee X N

F16. 6. Set of vertex correction diagrams considered in Ref. 23.

factor. Hence, for large ¢%», we predict that the deep-
inelastic en and ep scatterings have comparable cross
section as well as similar final hadron distribution. An
experimental test on this conclusion is certainly
desirable. The reader should note that the above
calculation is not self-consistent, in the sense that the
neutron form factor is due to charged pions. We have
not, however, considered the inclusion of charged pions
in our calculation. A correct treatment would include
both neutron and proton as well as the triplet of pions,
and hence a much larger class of graphs must be con-
sidered. At present we are unable to carry out the
complete calculation, but we believe that the above
tentative conclusion may still be relevant.

After completing this work, we came across an inter-
esting report of Appelquist and Primack on the electro-
magnetic form-factor calculation.?® Among many other
diagrams, they considered diagrams such as those in
Fig. 6 in a neutral pseudoscalar-meson theory. This
calculation is clearly in the same spirit as ours if one
keeps only the leading terms in In(|q?|/m?). To this
order, they find a form factor at the photon vertex of

F(g? =eXp(— ;—2— lnl—ﬂ)

PP (6.21)
in the region where ¢? is positive. Since we retain only
the leading terms in our calculation, it is natural for us
to use Eq. (6.21). Continued to our region of ¢2, this
result is just such as to cancel the ¢* dependence of
A,(¢g?). The ¢? dependence in 4¢(¢%x), however, cannot
be completely canceled, owing to the x dependence of
the Ao. In other words, the scaling law is partially
recovered, if one takes the form factors into account.
This cancellation will be exact in processes such as
¢ +e*— hadrons in which no momenta of final hadrons
are detected.?

If this form factor is included in our expression, we
have

1
Wg(q2,V)=/ da 2mA o(x,q%)
0

g q*\ /g’
Xexp( _— ln—)5<—~—2mv) .
327 m* \z
#T. Appelquist and J. R. Primack, Phys. Rev. D 1, 11
(19705, ] ys. Rev , 1144

24 One of the authqrs (S5.-J. C.) wishes to thank Professor
M. Gell-Mann for a stimulating conversation on this point,



1102 S.-J.

Therefore, we have

g
vWa(g%v) =xdo(,0°) eXp(_ 32r2 ln;n—z) o

x=q%/ 2my

and, for the average charge for the hadrons,

g q
N= | dx vWy(q?v) =ex (— ln—~>—>0
(@2 / WWalg P\ "

slowly as g2—o .

This is understandable. Since there is only one charged
particle in our model, and the number of pions increase
linearly as Inq? increases, the average (0? necessarily

goes to zero as g2—x.
Another distribution of »W, which is of practical

interest is

1 1 g2 q2
/ ~vWo(q?y)dx= / Ao(x,9)? exp( — In——)dx
x 0 327 m?

=constant of O(1) independent of g2

The experimental distributions for Q? and fa%
XW(g*x)dx at present ¢ v values are® 0.1740.01 and

>0.724-0.01, respectively.

D. Multiphoton Exchange

The inclusion of multiphoton exchange in ep inelastic
process is, strictly speaking, of only academic interest.
However, multiparticle exchange processes are im-
portant if one tries to generalize the result of this
calculation to the realm of strong interactions.

It turns out that the inclusion of multiphoton ex-
change does not affect the hadronic part of the ampli-
tude at all. The only change in the ep scattering is to
replace the one-photon propagator e%/q? by the eikonal
form

E(g)= / &% e a(ex D 1),

whose driving term is the one-photon-exchange

amplitude
d2q eiq«b

X(b)=—62/ 2 @ .

The form of W, will be unchanged.

There are two crucial points in reaching the above
conclusion. First, there is only one charged particle in
the scattering process. Second, at very high energy
photons tend to be exchanged as a single unit (i.e., as a
bundle?®) and interact simultaneously, as in the parton

2% S, J. Chang, Phys. Rev. D 1, 2977 (1970); H. Cheng and
T. T. Wu, ibid. 1, 1069 (1970); 1,'1083 (1970); Y. P. Yao, ibid.
1, 2971 (1970), -
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model. This last fact makes the description in terms of
two structure functions possible. After proper renor-
malization, the resultant N-photon amplitude is
identical, to within a simple kinematical factor, to the
corresponding renormalized one-photon amplitude.?
The summing of N-photon processes with photon
vertices permuted in all possible ways is now well
known,?” and leads precisely to the eikonal form E’(k)

mentioned above.
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APPENDIX A

In this appendix we would like to give a brief outline
of how a calculation of the type given for neutral
pseudoscalar-meson theory—a renormalizable theory—
can be given for A\@®. A\@? is a superrenormalizable theory,
and in that sense it is similar to the cutoff meson theory.
In particular, the scaling law holds, a result which we
speculate would be true for any superrenormalizable
theory.

When we refer to diagrams in this appendix, we mean
the diagram referred to with 5 of the meson-nucleon
propagator replaced by 1 and with a “nucleon” spin
of 0 rather than 1.

In Ap3 theory we cannot say that rainbow diagrams
of the Fig. 5 type (for an appropriate power of \)
dominate over diagrams such as Fig. 3(c); that is, pure
rainbow diagrams do #of dominate over crossed rain-
bows. In this sense, A¢? differs in a very important way
from our pseudoscalar-meson model. However, dia-
grams with “pions” crossing from the outer to the
inner region, such as Fig. 3(b), are small.

These facts indicate that a complete analysis of A¢® is
rather complicated. We do not attempt this here. It is
still possible, however, to learn the most relevant
features of this theory. With F a phase-order factor
and 91 an appropriate amplitude, Wy= [F|91|2 The
phase-space factor F is still given by Eq. (B4). The
amplitude 9 is given by, for diagrams of the class of
Figs. 5 and 3(c) (inclusion of other diagrams with no
crossing from inner to outer regions causes no difficulty),

M= {[A1ds- - - Ay
4 (terms involving other “outer” A’s)]

X[Amy1harye: - - Ax
+-(terms involving other “inner” A’s)]3~1. (A1)

% The program of renormalization is described briefly in

Chang’s article in Ref. 25.
% For an elementary treatment of multiphoton processes, see
S. J. Chang and S. Ma, Phys. Rev. Letters 22, 1334 (1969);

Phys. Rev. 188, 2385 (1969).
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A;-- <Ay are as in the text, and depend only on outer
quantities, while Apzyi---Ay depend only on inner
quantities. Since all the A; are Lorentz invariants, the
Lorentz transformation (4.2) on the inner rainbow
variables accomplishes the factorization of W into two
pieces. Thus it is again quite natural that this model
produces two jets. The decoupling will again take the
form of Eq. (4.5).

In our renormalizable theory, the numerator function
N provides an extra ki?-k,?- - -k factor. This makes
the theory logarithmically divergent, with the minus-
component § function providing a q* cutoff on the
transverse integrals. In the superrenormalizable case,
the transverse integrals converge without cutoff. Thus
there is no q* dependence at all introduced by the
transverse integral. The transverse k;’s can be ignored
in the minus-component § function, leaving us with the
parton § function. Since there is no extra ¢? dependence,
the Bjorken scaling law holds. Because of the way ¢?
dependence enters in the renormalizable theory, we
would speculate that any superrenormalizable theory
gives the scaling law.

APPENDIX B

The phase-space factor (P.S.F.) for an n-particle
final state is

(Z4Pi
, (B1)
(2m)?

PSE.=Cr)s(E py=P) I o(pi—ms)

where P, is the total energy-momentum 4-vector. In
terms of x=p,, p=(p',p?), we have

1103
d4 i dx,- dz i
S(pi—miys = L P ®2)
2m)?  4dwx; 2m)?
(2m)*64 (2 ps—P) =8m2(2 wi—P4)(2m)*8* (X pi—P)
p2+ms?
X&(Z - —P_) . (B3)
X
Hence, the P.S.F. can be rewritten as
P +m
Sa0( = P) 2 oS pe— P 5T P )
i X5
dx; d%p;
XII (B4)

i A (2m)

Note that the W, can be expressed simply as a product
of the hadron P.S.F. and the square of an amplitude
[977] 2 through

W o= (m/4x) || 2X (P.S.F.)

where |917|? is the imaginary part of the invariant
amplitude of the forward plus component of the
Compton scattering. This relation is represented
graphically as in Fig. 2(c).

Itisimportant to note that the choice of the variables
P, p?, and p.= p°4p? for phase space [see Eq. (B2)]
introduces only the very simple p, into the denominator.
The conventional choice of p!, p?, and p® introduces a
$%into the denominator, with the attendant square-root
difficulties. It is this fact which allows us to perform
the [d% integrals in the text with no approximations
on transverse quantities in denominators.



