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We have studied high-energy deep-inelastic electron-nucleon scattering in a neutral pseudoscalar-meson
theory by summing an infinite set of diagrams. The diagrams analyzed are straight ladder unitary diagrams,
with pions as the rungs. Explicit lower-order calculations indicate that this set of diagrams gives the leading
ln~ tf'~ contribution, where g' is the momentum transfer squared, provided that nucleon-antinucleon pair
creations and nucleon vertex corrections are ignored. The main results are: (1) The final hadrons fall natu-
rally into two jets; (2) the Bjorken scaling law breaks down; (3) the number of pions increases as ln

~

tJ' ~;
and (4) a longitudinal impact-parameter space is realized. Some possible experimental consequences are
deduced.

I. INTRODUCTION

HERE is great interest in the study of deep e p
inelastic and e e+ annihilation processes through

various models. ' 7 The parton model, originally sug-
gested by I'eynman' and later developed by Bjorken, '
gives a very appealing phy-sical picture for these
processes. It predicts many interesting features of e p
inelastic scattering. One of the important predictions of
this model is the validity of the Bjorken scaling law':
The ep inelastic form factors W~ and vl/I/~ in the limit of
large momentum transfer and energy transfer q', nsv are
functions of their ratio q'/mv only. This s'caling law is
obeyed at least approximately by experiment. '

Although the original parton model is a physical
picture of "bits" of the hadron scattering independently,
Drell, Levy, and Yan' showed that a "parton-model"
result can be derived for a large class of canonical field
theories. Their results are based on the existence of cer-
tain infinite momentum limits; these conditions are
satisfied in their model by introducing a transverse
momentum cutoff so that there exists an asymptotic
region in which q' and nzv can be made larger than the
transverse momenta of all particles involved. In par-
ticular, they studied the cutoff neutral pseudoscalar-
meson theory in detail.
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By- introducing a cutoff on the transverse momentum
of the pions, the ps meson theory becomes a super-
renormalizable theory rather than a renormalizable
theory. In this paper we shall study the form factor H/'&

in deep-inelastic ep scattering in a, neutral ps meson
theory mitholt cutoff.

The main set of diagrams we considered are shown in
Fig. 1. This is a set of ladder diagrams. The possible
nucleon-antinucleon pair creations and pion vertex
corrections (including nucleon self-energy corrections)
are ignored, i.e., we are analyzing bremsstrahlung-type
processes. It is clear that the vertex corrections at
various vertices should be included. At present we do
not know how this can be done efhciently. As we shall
see later, the largest momentum transfer takes place at
the photon vertex rather than at the individual pion
vertices. Ke therefore conjecture that the over-all
corrections to these vertices may be taken care of by
including the nucleon electromagnetic form factors
alone (Fig. I(b)7.

To each order in the pion-nucleon coupling constant g,
we keep only the leading contribution in lnq' in our
calculation of Ws(q', v). Wt, &(q', r) are, of course, the
form factors of ep inelastic scattering. In the forward,
deep-inelastic regions,

m'&( —g' t, 2' &(s,

where s is the square of the c.m. energy and m is the
nucleon mass. Here only 8'2 contributes.

In order to justify our choice of the diagrams of
Fig. 1, we have looked explicitly in lower order at other

diagrams. In particular, we found that diagrams with
crossed rungs, with pions interacting between nucleons
on different sides of the currents, or with pions joining
over two or more vertices (see discussion in Sec. III),
are at least order 1n(~ gs~/m') smaller than the leading
contribution of Fig. 1. This indicates that the straight
ladder diagrams of Fig. 1 may well be the only leading
diagrams (ignoring the nucleon pair creations and vertex
corrections). Hence, it may not be a bad approximation
to consider only the straight ladder diagrams. It is
worth mentioning here that because we are summing
and averaging over Anal and initial spins, the pseudo-
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scalar theory is effectively a scalar theory. Ke would
also like to mention the work of Adler and Tung, "who
have studied the leading logarithmic terms in the in-
frared region for all fourth-order diagrams in a related
theory. Their conclusions agree with ours for the set of
diagrams studied here.

The results of our calculation can be summarized as
follows

(a) The final pions and proton fall naturally into
two groups (jets) in which particles in a given group
move close to each other. The 6rst group contains all
pions emitted before the proton interacts with the
current (the outer "rainbow" of Fig. 1), while the
second group contains the final proton and pions emitted
after the proton interacts with the current (the inner
rainbow of Fig. 1). The longitudinal momentum of the
proton at the time of interaction, measured as a fraction
x of the total longitudinal momentum, is still governed
by the same 5(Iq'I/x —2mv) as in the parton model.
This x measures the fraction of the longitudinal
momentum left over by all the pions emitted before the
proton interacts with the currents. The same conclusion
was reached earlier by Drell, Levy, and Yan in the
cutoff pseudoscalar-meson theory.

(b) The scaling law vW2=vW2(q'/2mv) is violated in
an interesting manner. For a process with n final pions,
the Parti'a/ Wq contains a q-dependent factor
Lln(q'/m') j".Other than in 8(I g'I/x —2mv), the partial
H/'2 for n pions emitted after the current insertion con-
tains no x dependence; pions emitted before the current
insertion introduce further x dependence.

(c) The total form factor W2 is formed by summing
over all pion ladders. As mentioned above, H/2 factors
into two parts, each associated with one group of
particles:

1

lim Wa(q', v) = dx 2mA0(q', x)
q&, v ~ co

g~iv fixed

XA;(q')5 —2m ),
where

g~ ln(Iq~I/A@2)
Ap(q', x)x" 'dx=exp 1

16m' XP +1)
g'

I
v'I

A, (g') = exp — ln
327r2 m2

The explicit structure of this result is presumably quite
model dependent. However, the facts that Ao has a
simple exponential structure in the Mellin transform
space and that Ao and A; have explicit q2 dependence
may be the general properties of any renormalizable

"S. L. Adler and W. K. Tung, Phys. Rev. D 1, 2846 (1970).
"The main results of this paper have appeared as a Letter:

S, J. Chang and P. M. Fishbane, Phys. Rev. Letters 24, 847
(1970).
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FIG. 1. Set of straight ladder unitary diagrams considered:
(a) Without any vertex correction; (b) with form factor
included

field theory. In analog to the eikonal form in the impact-
parameter space, the Mellin transform space for the
longitudinal momentum has a profound physical mean-
ing of its own. It may be interpreted as a "longitudinal
impact space. "

(d) The number distribution in the pions emitted
after the current insertion is a Poisson distribution.
Because of the extra x dependence the distribution for
the pions emitted before the current insertion is not
Poisson; however, it is Poisson in the Mellin transform
space. (The experimentally observed distribution is, of
course, in the x space. ) For the pions emitted after the
current, the average number is easily calculated. For
the pions emitted before the current, the average num-
ber is not simple. In both cases, however, n depends
logarithmically on g2.

(e) The longitudinal momentum distribution of the
pions does not obey the simple dx/x rule, as suggested
by phase space alone, because the integrand picks up
extra x factors from the amplitude. Various experi-
mental moments of this distribution are easily calcu-
lated. In more complicated 6eld theories, it may be hard
to predict the x dependence of the pion momenta.

(f) The largest momentum transfer takes place at
the photon vertices rather than the individual pion
vertices. This would indicate that inclusion of pure
vertex corrections for the pions might have only small
effect, but that corrections to the photon vertex alone
may be important. In this sense it is simple to include
such corrections; they are indicated in Fig. 1(b). In-
clusion of these factors simply multiplies 8'2 given above
by squares of form factors. Physically it is clear that
the possible momentum transfer in the process must be
damped by the nucleon form factor.

(g) Inclusion of multiphoton exchange in the
production process, rather than one-photon exchange,
can be made by using the infinite-momentum technique.
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Instead of the single-photon-exchange amplitude, one
has an eikonal form whose driving term comes from
one-photon exchange. The form of 8'2 will be
unchanged.

(h) Finally, we should note that accommodation of
a factor like expL(g'/32m') ln(I g'I /m')] would not be a
severe strain on the data. For

I q'I running from 1 to 5,
this factor varies from 1 to Z.6, which is consistent
with the present data.

The model studied here can easily be used to study
the e+e annihilation process. The results of this work
will be published elsewhere.

The paper is organized as follows. In Sec. II, we
review the kinematics for the p p inelastic scattering.
In Sec. III, the contributions for various lower-order
diagrams are analyzed, and the leading terms are
identified. Only the leading diagrams (i.e., the rainbow
diagrams of Fig. 1) are studied in Sec. IV, and the
general result is obtained. In Sec. V, the physical
meaning of the longitudinal impact space is examined,
and possible experimental consequences are deduced.
Finally, Sec. VI includes further discussions on various
results. We also include two appendices, in the first of
which we discuss the superrenormalizable Xp' theory.

II. STRUCTURE FUNCTIONS AND KINEMATICS

In this section we want to define more precisely the
quantities we calculate and the framework in which we
calculate them. Although the definition of the structure
functions which describe inelastic scattering is not new,
we give a brief description of them for completeness.
We give a detailed description of the kinematics
appropriate for so-called "infinite-momentum frame"
calculations, as well as a brief review of the infinite-
momentum techniques.

As usual, the process we are interested in is
e++nucleon ve++(hadrons), in which the energy and
angle of the final electron are known, while no informa-
tion about the hadron state is available. In particular,
the process goes by one-photon exchange; we show this,
with momentum labels, in Fig. 2(a). The two quantities
upon which this effectively two-body —+ two-body
process depends are taken to be the invariant (space-
like) momentum transfer q' and the energy change of
the electron in the lab frame v.

The covariant decomposition of the inelastic process
is well known. " If the momentum of the Anal hadron
state In) is written as p'=g p;, with p; being the
momentum for individual hadron, then the differential
cross section in the final energy of the electron is

I e4P
—3E p ImT(„)P(v, q'), (2.l)

dE'dQ& (2')' (g')' I

"See, e.g., S. Drell and J. Walecka, Ann. Phys. (N. V.) 28,
18 (1964); see also Res. 2 and 3.

where

cV p
——4 Tr(y lypl')=I fp'+1 'lp+2V'g p

comes from the electron-photon vertex and where

The l and l' are initial and final lepton momentum, m is
the proton mass, and p is the momentum of the initial
proton. A sum over all possible internal quantum
numbers of the particles in In) is understood in (2.2).
Because of the symmetry of 3f p, only symmetric terms
contribute to ImT &, which is then real. A general
tensor structure, together with current conservation
g T &=0, gives

4 0

dA'd0v (2') ' (g') '

Xl"LWq(v, q') cos'(-', 8)+2Wq(v, g') sin'(-', 0)$, (2.4)

0 being the scattering angle. Diagrammatically, the
structure functions are therefore calculated from the
picture given as Fig. 2(b).

We shall be interested in the kinematic region
s))—q', v))ns, where —q' and mv are of the same order.
In this region we shall see that it is possible to find a
frame in which the infinite-momentum techniques" are
appropriate. Therefore we give a brief review of the
technique. Instead of denoting a 4-vector a& as
(a',a', a', a'), we denote it as (a+,a,a ), where a+ ——a'&a'

"S.Weinberg, Phys. Rev. 150, 1313 (1966); L. Susskind and
G. Frye, ibid. 165, 1535 (1968); 165, 1547 (1968); 165, 1553
(1968); K. Bardakci and M. B. Halpern, ibid. 176, 1686 (1968);
S.J. Chang and S. Ma, ibid. 180, 1506 (1969);188, 2385 (1969).

P'rJ—ImT&„)~P(vq') = —W2&"'(v, g') p~ ——q~
7n2 gf

2

P'v
g PP ~P P, (~) v~2 g P

g2 pl
2

I We shall denote all quantities without (n) as the
corresponding quantities summed over (n). However,
we sometimes leave off a subscript (e), if there is no
possibility of confusion. g T P is the well-known M'

function for forward Compton scattering. In our case,
for q2 spacelike, ImT P is the imaginary part of forward
virtual spin-independent Compton scattering.—:P W&, 2&"& are the structure functions for the inelastic
process. 8'& contributes only to the Im part of the
Compton amplitude for virtual transverse photons,
while H/'2 contributes for both transverse and longitudinal
virtual photons. In terms of these quantities, the in-
elastic cross section is
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and a= (a',a') is a 2-vector. " In terms of this decom-
position, a.b=-', (a+b +a b+) —a b, so that the mass-
shell condition for u& reads a+a —8.'=m'. Lorentz
boosts along the 3-direction take a simple form: A boost
with rapidity P leads to

up' ——e~t'ap, a'= a.
Finally, a particle of momentum p moving rapidly along
the positive 3-direction has a large p+ and a small
(of order 1/p+) p, and vice versa for a particle moving
along the negative 3-direction.

We now define the kinematics of the inelastic process
in terms of variables in the new decomposition. We
define s as usual by s= (p+l)'. Take the initial nucleon
as traveling in the positive s direction. Then, in the
center-of-mass system, up to terms of 0(m'/s),

p&= (Qs, O,m'/Qs),

while the exchanged photon has momentum

q"=- (0(1/gs), q, 2mv/gs),

where q'= —q'. We obtain q =2'/gs from

mv= p q= ~(p+q +p q+) —p 9
= —',P(v's) q +0(1/s)].

I
I
I
I
I

. I
I
I
I

I
I
I
I
I
I
I
I

n
l
I

q =(0, q, Zmv) (c)
It is easy to see that q+ is of order 0(1/gs), since the
photon must interact with the electron whose plus
component is of 0(1/Qs). Finally, we take a I orentz
transformation (boost) along the z axis to a frame such
that p+ ——1. (Equivalently, we may view this a,s a scale
transformation p+ —+p+/gs=1, p —+p Qs, p~p. )
This transformation leaves us with

pv= (1,0,m'),
q&= (0(1/s), q, 2nzv) = (O, q, 2mv) .

This is the standard frame in which we work. We wish
to remark that in the large-s limit, the large contribution
to the leptonic part M p comes from n=P = —.Hence,
the dominant contribution to the hadronic part ImT &

is n =P =+. Since Z++ ——q+ =0, we shall actually
calculate W& by means of diagrams like Fig. 2(c). We
a,dopt a frame with initial p+ ——1 rather than the lab
frame because (1) this frame is related trivially to the
c.m. frame by a simple boost and (2) the p+'s of the
intermediate particles all lie between 0 and 1 (actually,
p p+ ——1), and represent the fractions of the longi-
tudinal momenta taken by these particles in the c.m.
frame. The fraction of the longitudinal momentum and'
the transverse momentum p turn out to be the most
convenient momentum variables to describe the high-
energy scat terings.

III. LOW-ORDER CALCULATIONS

In this section we wish to illustrate some of our
methods of calculation on low-order diagrams. We shall
"The set of variables p~, p are also known as Sudakov variables.

Further kinematics and transformation properties of these
variables can be found in the articles of Chang and Ma in Ref. 13.

FIG. 2. (a) Picture of ep inelastic scattering; (b) general unitary
diagram for ImT p, (c) graphical representation for 8'2 as the
imaginary part of a forward Compton scattering.

see how the infinite-momentum techniques simplify
calculations, which types of diagrams are asymptotically
large compared to others, a,nd how the scaling law may
break down when a transverse cutoff is not imposed on
the particles produced.

As remarked in the Introduction, we consider a
neutral pseudoscalar-meson theory and ignore nucleon-
antinucleon pair production. These limitations are not
imposed by asymptotic considerations, but instead are
necessary to make the calculations tractable. Thus the
exchanged photon (actually the electromagnetic cur-
rent) hooks only to the incoming nucleon line. We are
essentially considering a bremmstrahlung model.

Ke have chosen four calculations which illustrate
the salient features of our theory. These are illustrated,
together with appropriate labelings, in Figs. 3(a)—3(d).
We shall show in particular that 3(a) is large compared
to 3(b)—3(d). The nucleons of mass m are represented
by solid lines, the incoming photons by wavy lines, the
currents by crosses, and the emitted pions of mass p
by dashed lines. We see in all four diagrams that the
lepton current carries a large minus component but a.

vanishing plus component, so that only the plus

component of the hadron part survives in the p&j„("I'"'")
coupling.

We study t/t/'& as a function of q' and v with —q,
mv))m', but with a finite ratio q'/mv. We then find that
the A-pion contributions to 8'~(q, v) go like powers of
in~ q'~. The meaning of "leading term" here deserves
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further explanation. As cV, the nu. riber of 3'Xz vertices,
increases, there is no ceiling on the maximum power
of InIq'I. However, for a 6xed Ã, i.e., a fixed power
in g', the largest power in In

I
q'I is limited to (In

I
q'I ) 'v.

It is in this sense that we call a particular term "leading
in ln

I q2I ." Mathematically, we are looking for terms
which are leading in g' ln

I
q'I as g' —+ 0. It is in general

unclear whether analysis of only the leading terms in
InI q'I leads to a meaningful answer. Nevertheless, we
keep only these leading terms (see also our discussion
at the beginning of Sec. IV).

(I~I')=l Z Z I~l'
initial final

2g»L(&2+~)r5&2y+&is~(P+~hi&iy+&27&)

X&I:(k+k)'— '+ )L(P—k)' — '+ )} ' (3.2)

The trace is simple. It is helpful to recognize that only
the minus component of y„survives when sandwiched
between two y+'s:

v+'= o= v+Vv+ v+v—v+= 4m+.
Hence,

7+P7+ 2P+ r+ '

Then we find for the trace in (3.2)

-,' Tr[ )=2(2xik2 k& —x2u')(2xiki p —p2)

8&1&2P klk2 k8 4+2+ k2 ' k8
—4xixui'p ki+xui'. (3.3)

The factorization of the numerator into two parts, one
involving only the momentum variables before the
current insertion and one involving only the momentum
variables after the current insertion, is an important
feature of our calculation. When we integrate over

A. Diagram 3(a)

Since this diagram is symmetric, 8'2 is actually ob-
tained from an "amplitude" 5K whose absolute value is
squared. and whose final-state momenta are integrated
over. The integration contains t}} functions expressing
momentum conservation and the on-mass-shell condi-
tion of the intermediate states. For inelastic scattering
from unpolarized protons, we must average the initial
spin, and, of course, we must sum the final" spin.

We label each of the final particles by k, =(x;,k, ,
I k,2+F2(m2))/x, ), where x is the fraction of the
longitudinal momentum taken by the particle in the ep
c.m. frame. The "amplitude" for the process is

DR= g2u(k2)y5(k2+A2+m)y+(p —k,ym)p, u(p)
X (L(k2+ k2) 2—n22+ is)

XL(p ki)2 iu2y jg)}—i

= —g2u(k2)y;k2y~kiy;u(p)

X (L(k 2+k 2)
2 —m2+2e)

XL(p—ki) —m +ie)} '. (3.1)
Thus

dik, if4k2if4k, , the first term in (3.3) gives the largest
contribution in ln

I
q'I. Thus we keep only this piece of

the trace. This is the general philosophy of our field-

theory calculations, i.e., we keep only the leading
logarithmic terms for any given order of .coupling
constants. We sometimes refer to these leading terms
as the "most divergent contribution" at large g2. The
last term of (3.3), which contains no momentum factors
at all, represents the "most convergent" part of the
integral. It is similar to what one would have in A&8

theory (see Appendix A). This term does not lead to
any ln

I
q'I term in the final expression. To complete the

initial study of diagram 3(a), we include the phase-space
factor (Appendix B)

F1 dx2 dx8 d'k1 d'k2 d'k8
E =8m-2

4 x 4xx 4 x (2x)2 (2 )'(2x)'

X~(x,yx, +x,—1)(2 )'~'( i+k+k —a)

Q1 +P Q2 +P k8 +62
g6 —+— +

Xl $2 g8

The factor dx/x can be interpreted as the usual phase-
space factor dk/E in the infinite-momentum frame. The
phase-space factor carries over in obvious generalization
when more pions are emitted.

The combination of (3.2), the first term of (3.3), and
(3.4) gives us W2I Fig 3( ) Before we explicitly calculate
H/2, we shall now show how a change of variables can
separate the "inner rainbow" (the pion emitted after
the first current insertion) from the "outer rainbow"
(the pion emitted before the first current insertion).
This is important because it will generalize when we
study the production of more pions. We make a change
of variables for particles in the inner rainbow, i.e., for
k2 and ki only (the new variables are temporarily
denoted by a prime):

/
X$ $$ 7

(3.5)

q —ki (il —ki)'
k; =k; '+2k, ' —+x;

1 —xi (1—xi)'

for i =2 and 3. Note that the transformation we made
is actually a Lorentz transformation. Under a Lorentz
transformation, scalar quantities such as k2, 8' and k2 k8

are invariant. This is important because it implies that
the denominators are invariant under the change of
variables. Another important fact is that this trans-
formation also leaves the numerator function invariant.
Hence, we can compute the numerator in either set of
variables, and they both lead to the same result. The
main properties of this Lorentz transformation will be
discussed in detail in Sec. IV.
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This transformation is designed so tha
~ ~ ~ ~

hat k and
decouple from the transverse-momentum fuIlCtiOIl:

b(ki+k~+k3 —q)=b(k, '+k11'). Using this 8 function,
we have for large ks"

kg ka ——1~2' k3'= $(x2+x3)'/2x2xafka".

Thus the leading part of (~5E~ ') is

2g48xix2p kik2' k3'

X{/(p 0,—)' m—'+i jDk, '+0,')' ~—'+~.j)
2 2 Q 2X$ X2 X3 1

4

(»+»)' Lk, '+(1—»)v'+»'~'j'
k3"

(3.6)
{k3"+Lx2/(xg+xa) j'm'+Lx3/(xg+x3) jp')'

Finally, the minus-component b function is

sufficient for us to calculate only, say, the k& integral.
To begin, we consider

I(q, v) =
k' 2

(2ir)' (k '+a)' 1—xi

2m2 a,nd b is the extra term aswheie 8= —xy p, x]. 5$

F . (3.7). b involves both ki2 and q ki terms.given in
To keep only the most divergent piece of (3.10,

(ki2+a)' ki2+a (ki2+a)'
(3.11)

I(q, v) =
d kj j. q

2mv+b —. (3.1 ). 2
(2n.)'ki2+a 1 —xi

The second term in this expression is more convergent
than t e rs again,h fi t ( in it is a term like one finds in X1f1'),

and can be ignored. Thus

(p p f8
8 =8i + +

' XI X2 X3

1 1 (q —ki)'
+k3 + + 2

B'av

) k ydk pcs

(2m)' ki2+a

~I ql

I(q,v) = +
0The express~on ~ . e s(3.6) tells us that the integrand damps

rx. Thusfor large ~ an2 d k 2 and also for small x x or x

function will finally simplify to g 6 ———2mII+ b 3.&3
I —Xl

To find the most divergent behavior in g'n ' we divide
I into two regions of integration, on yonl one of whichgv in 0

n call.s forgives t e mosh t divergent piece. This divisionk"a spl'
'

the integral over the nsugnitmde of ki
(3.2)

—2m' (3.8)
=I11'(q,v) +I,"(q,v), (3.14)

To calculate the leading piece of 8'2, it will be necessary
to leave this 5 function intact:

8'2f v;g. 3(,)
———([OlZ[')I'

dXylX2dX3
xix25(xi+x9+x3 j

(1—xi)'

d2k3'

(21r)' [ki2+(1—xi)p'+xi2m'j' (2ir)'

kd

{ka"+Lxa/(»+x3) gii'+ t x2/(x2+ xa) j'm') '

(3 9)

Exce t for the last 8 function, we see that t/t/2 factors
into two pieces, one dependent onon the inner rainbow
an one epd dependent on the outer rainbow.

proceed with the calculation o 2 yof H'2 bVVe can now procee
. k a,nd k.g'. It 'sa,ctually performing the integrals over k~ an

where e&(1, but qe))m, ii. In Io'(q, v), one can ignore fi

completely together with its k~ an q.
colTlparecl to g —xj'yi1 — ). It is then straightforward to
calculate

I;(qy)1= —1 ( )5(
—2m ), 13.11)

where the nz2 in the logarithm is an arbitrary mass scale,
th proton mass for convenience.

uation (3.15) is the leading part of Io'(q, v). nEquation
d to '. lt is simpleI,"(q,v), we cannot ignore b compared o q .

t this integral and to see that it gives anI" qv) which is at most of O(inc) rather than nq.Ig q~v

Thus we find Io' dominates:

q
I(1, )= —

1
—1 —2m, ).~2

er d2k3' of course gives the same result.The integra over 3 o
Note that there is no additional (inq con ri u i

e

sion on computing the leading loganth-
5-3f t (C b dmic term, see R. J. Eden et gl. , The Analytic — a rex

U. P.. London, 1966).
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(3.18)E= —4(kP —xgkg q) =4k& k2'.

from the end points'in the x integrals. '6 This can be k-independent factors. Throw the nonleading term
verified by examining the x dependence in the original x~'m' out of 1V and use 8(k~+k2 —q) to perform d'h~.

integrand. Then
We therefore have for 8'2

ln{q'/m') In(q'/m')
W,

l F;g. ,(.) ——are dx,x,—
0 16m' 32m'

q2
g8 —2nsv . 3.16

S»

Several features of this expression will generalize for
multipion rainbows. Factorization occurs between the
inner and outer rainbows, and there is diferent x
dependence for the inner and outer rainbows (we shall
delve more deeply into this point in Sec. IV), and the
"parton" 8 function b(q'/x —2mv) occurs. The particular
factors of lnq' appearing for one rainbow or the other
are characteristic of the number of pions in the rainbow.
We shall see in Sec. IV that for g pions in a given
rainbow, the factor is (Inq')~/Ilr!.

t@g
I4'2IF '. ~(b) =

32%3

dx»sx2
8(xg+xg —1)

B. Diagram 3(b)

This is, of course, not a symmetric diagram. It
represents a type of diagram which, as we shall now
show, can be ignored in comparison to the rainbow
diagrams we have just studied. We represent H/2 as

We are left with a k» integral. Examination of this
integral in the manner prescribed in Sec. III A shows
that it does not contribute in 0{lnq'). This is essentially
because of the fact that the two terms in the denomina-
tors cannot become small simultaneously.

Diagram 3(b) is the simplest example for a pion join-
ing from an inner to an outer rainbow. Its contribution
is one order oi Inly'l smaller than the corresponding
"pure" rainbow. Physically, this can be understood as
follows: Since a pion emitted from a nucleon tends to
be soft with respect to the nucleon, it can hardly be
reabsorbed by the nucleon after the electromagnetic
interaction. We have already seen in case (a) that the
dominant contribution comes from the region where the
pion has a relatively small transverse momentum with
respect to the nucleon. Since this result seems to be
physically reasonable and general, we shall ignore in
the next section all diagrams with at least one pion
connecting the inner and outer rainbows.

C. Diagram 3{c)

As a third low-order example, we consider a "crossed"
outer rainbow, as shown in Fig. 3(c). Following our
previous examples, it is not dificult to see that for the
dominant contribution the minus-component 5 function
again reduces to the "parton" 8 function 8(q'/x~ —2m').
Then

d'krd'k2 5(kg+k2 —q)

kg+ p' k2'+m'
X& — +

PT—2m@—m' — ('3 17a)D'

dx»Zsgdx3
II 2 l Pig. 8(c)

(41l ) 0 xgxgxs

d'k d'k d'k3

b(xg+x. +xs —1)

D '=
I (p kg)' m—'+i&—)$(kg+k2)' m'+is —j

= x2 '( k&'+a+—i e) (k2"+&+is), (3.17b) where

XP(k,+k,+k,—q)S(q'/x, —2m.)A/D, (3.19a)

&=lT~u+ )~V &+ )~-
X(4+m) yg(k&+ @2+m)y~j

= —4(x2ki' —xk~ k2+ xa'm'),

D-'= L(p —u, )'—m y'e]L(p —a, —a,) & —m~yg, ]~

X L(p —4) '—m'+ ie] (3.19b)

(3.17c) and

and k, '= k, —(x,/xq) k,= q —(I/x~) k~, a and b are

"The naive way of extracting the lnqm term will fail if the
remaining x integral diverges. When any term, even if it is an
order or so smaller in lnq', becomes divergent after the lnq' terms
have been taken out, we must keep this term in its original form
and perform the x integral 6rst. In general, the latter integral
converges, and there appears a natural cutoff of order lng'. The
over-all lnq' dependence can then be different from its naive
dependence. We refer to this type of additional leading lnq~
contribution as "divergent contribution from x integral. " How-
ever, this type of contribution never appears in the leading
diagrams we studied in this paper,

»= l T
l (p+ )v & v (P—& —& + )v+
X (p,+m) p+(p &i Ir2+ m) yb—k~y~]—, (3.19c)

X=-Sx3(p kg)(p kg)

+2(p —kg —k,)'(kg 0,—xp. kj —xp 1~2)

=Sxa(p kg)(p k2) —2(p —kg —k2)'kg k2. (3.20)

with the understanding that the integrals are evaluated
««& 1k~i lk~l «lql Taking only the E«di~g «r~
of the trace, we have
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FIG. 3. (a) Typical straight ladder diagram
with two rungs; (b) diagram with a pion
joining from an inner to an outer rainbow;
(c) lower-order ladder diagram with crossed
rungs; (d) diagram with pions interacting
on different sides of the current. Diagrams
(b)-(d) do not contribute to the leading
In[q'( terms.
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Using (3.20), we write the leading part of cV/D as

1 kg k2
~X3—

L(p ki ks) 81 +le) (p'ki m +se)$(p —ki —ks) —sl +se5(p ks —Pal +se)
(3.21)

We have here used the same trick as we did in Kq. (3.11)
to pick out the leading piece.

For the first term of (3.21), a change of variable
eliminates the cross term in the denominator. Then
the k~, k2 integrals can be put into the form

1
dZydZ2— Z, k .

(Zt+Zs+ C) '

Using the method described in detail in Sec. III A, this
integral contributes to order lnq'. Similarly, the second
term of (3.21) has kt ks in the numerator, and examina-
tion shows that fdskid'ks cannot contribute terms
higher than lnq' either.

Thus diagram 3(c) contributes to O(lnqs). This is to
be compared to the O((lnq')') which the pure two-pion
outer rainbow contributes. We can therefore ignore this
"crossed" rainbow compared to the "pure" rainbow of
the same order. This example prompts us in the next
section to ignore all such diagrams.

D. Diagram 3(d)

This diagram is again symmetric. The methods of
studying this diagram are no different from those used
in Secs. III A—III C, but the expressions are far more
complicated. Because only the result is of interest, we
shall not give the details here.

We find. that this diagram cannot contribute
O((in~a'~)'), which is what ales, ding diagram of order
g' should contribute. We shall therefore ignore such
diagram~ in the future. This also tells us that a sym-

metric diagram (i.e. , a diagram which contributes an
absolute value squared of an amplitude) does not
necessarily contribute to a leading order in 1n~qs~.
However, the smallness of this diagram does suggest
that diagrams with pionic corrections for more than
two vertices at a time /Fig. 4(a)$ tend to be at least
an order of ln~ q'~ smaller. This is because of the fact
that the extra pionic corrections do not lead to extra
divergence, and hence the diagram has the same degree
of divergence as the original diagram. But the pionic
corrections do contribute to extra g' factors. Therefore,
we can no longer have a, leading diagram.

However, the argument given above does not apply
to the pionic corrections to a single vertex, nor to a
self-energy diagram LFig. 4(b)]. These diagrams have
extra vertex and self-energy divergences, and may pick
up extra ln I g'~ factors. Physically, we need the vertex
corrections to supply us the damping factor appearing
in the form factors. According to the established rule,
one should first compute the vertex functions from the
6eld theory, and then put them into each of the xXÃ
vertices. At present, however, this is too difficult. We
therefore try to bypass this point by evaluating all
amplitudes without considering any vertex (and self-

energy) corrections and later including these corrections
in the final expression (see discussion in Sec. VI).

We conclude this section by comparing our results
with the important work of Adler and Tung. ' They
have worked on a similar y;, coupling theory, but with a
massless nucleon. Instead of letting q' be large, they
studied the infrared properties of the ep inelastic form
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FIG. 4. (a) Diagrams with pionic correc-
tions for two (or more than two) vertices at
a time; (b) diagrams with self-energy and
vertex corrections.

factors as p —+0. The algebraic structure of their ex-
pressions are practically the same as the large q' struc-
ture studied here. They have studied the leading
logarithmic terms for all fourth-order diagrams, and
their conclusions agree with ours for the set of diagrams
studied earlier.

IV. GENERAL RESULT

In this section we shall calculate 8'2 for many-pion
production. The spirit of this calculation will be that
for any given order in 8'~ we tak.e only the leading piece
in ln~g'~. The calculations of Sec. III have already
given us a clue as to where to 6nd the leading piece.
Following those results, we ignore diagrams like those
of Figs. 3(b)—3(d), and compute only diagrams anal-
ogous to Fig. 3(a). We emphasize that we have actually
calculated diagrams 3(b)—3(d) only in the order shown.
We have not shown in general tha. t such diagrams are
smaller than those analogous to Fig. 3(a), although the
manner of our low-order calculations strongly suggest
that they are indeed smaller.

It is worth discussing this point in more detail. '
While the rainbow diagrams for n pions will behave like
(Inq')", the lower-order diagrams behave as (1nq')" ',
(lnq')" ', etc. For example, rainbow diagrams with one
pion pair crossed, as in Fig. 3(c), behave as (lnq')" ',
as do some other types of diagrams. Now simple
counting arguments indicate that the diagrams of
O(lng')" ' may increase as n Since n i.n turn will turn
out to increase as lnq', it is conveyable that these
diagrams may sum up to be as big as the leading
rainbow diagrams. We are assuming that this does not
happen. This assumption is equivalent to a kind of
random-phase Rpproxima, tion in the following manner:

I7 One of us (P. M. F.) is grateful to Professor S. Casiorowicz
for a helpful conversation on this point,

In Appendix 8 we point out that 8'2 is given by the
integral over phase space of an amplitude OR squared.
In our model, OR is represented by a sum of terms, each
of which represents the emission of pions in a given
order. When we take ~OR~ ', the diagonal terms in the
sum squared correspond to the rainbow diagrams. These
terms are of course positive. The off-diagonal terms,
which a,re not necessarily positive, are the lower-order
diagrams. The assumption that the oG-diagonal terms
tend to cancel one another is the random-phase approxi-
mation. Although we have not explicitly checked this
point, it is of course interesting and important to do so.

Ke have also—somewhat arbitrarily —excluded dia-
grams with nucleon-antinucleon pair creation and
annihilation. The fact tha, t we do not consider such
effects implies that pion production is a, bremsstrahlung-
like process. This is indeed what diagrams analogous
to Fig. 3(a) tell us. The nucleon receives an impulse
from the electromagnetic current, shaking pions 06 in
the process. Indeed, we shall see many bremsstrahlung
features as we develop the general result, both in this
section and in Sec. V.

A. N-Pion Emission

The general diagram we consider is shown in Fig. 5.
According to our previous analysis, this should be the
only lcRdlng dlRgI'Rnl 1f pai1 cI'cRtlons Rnd vcl tcx col1cc-
tions are ignored. Note that this is also similar to a set
of diagrams studied earlier by Drell, Levy, and Yan' in
a, related model. There are M pions in the outer rainbow
(Af pions produced before the current insertion) and
A —M pions in the inner rainbow (1V—cV pions pro-
duced after the current insertion). As for Fig. 3(a), W'~

is an integral over an amplitude OR squared. In addi-
tion, we have denoted by 6 the inverse propagator
function: If an internal line carries momentum p, the
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FIG. 5. Typical straight ladder unitary
diagram considered. This is Fig. 1(a) in

and for an internal line carrying momentum
k 6=k' —I'+s~.
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wherecorresponding 6 for that line is =P—' —m'+tc. The
labelin of the 6's is as shown in Fig. 5. ~„eca~Ve call the
contribution of W2 for Fig. 5 W2M N M. We have

dX1' ' 4XN+1
gr M, N—M 2mWg2N

4Qg] e ~ ~

d2k

X&(xi+ +xit+i —1)
(2s-)

X(2tr)'ii(ki+ +kit, i—q)

M

x=1—P x, ,

If we put a=—k,~x then this transformation on a 4-vector

P is
(4.3)

k, '+p'(m')
X8 Q

xi
where

D '= (~i~2 ~as&itr+i 4.1b

and for the numera, tor (not to be confusedd with the
index E),
iV= -' Tr[(P+m)y, (P—ki+m)yt

y, (p —ki — Atr+ m)y„—
X(4+,+ . +4,+4~,+m)y,

r t(kx+ IrN+1+ m) r 5 (AN+&+ m)

Xy:(km+ &~+i+m)yt yt(&~+i+ +kit+i+ m)v+

X(P—fri — kitf+m)y, —y, (P A. i+m—)yt5
(4.1c

As our first general result, we can show ththat the
dominant term in H/™N M factors into two parts, one

~ ~ ~ ~

involving outer rain ow
'

b w quantities and one invo ving
inner rainbow quantities. This is the generalization o
what we showed in Sec. III A. The propagator factors
in D ' break into two such pieces, 61 ~ 6 bein outer
quantities, while AM+1 ~ are inner quantities.
Furthermore, the trace in Ã is of the form Tr[(outer
quantities) Xp+ (inner quantities) Xy+5. en we
the leading piece from the trace, it consists of dot
products of outer quantities time ps dot roducts of inner

~ Th e can make a change of varia es in
the inner quantities. The new variables, denote y
primes, are given by

N+1 N+1

~(Zk, -q)-~( 2 k, ')
j'=1 j=M+1

(4.4)

this is t e ony par oh l t f this b function that survives.
tel decou le.Thus the inner and outer rainbows completely decoup e.

If we introduce an identity

dx 6(g x, —1+x)=-1,

then the decoupling takes the form

lV2M N M ——2m dx ii(q'/x —2mt )

X+M,outer4N M, i rnne(4 g)—
where the A's are related to the 8'2 of the "pure" outer
and inner rainbows through

1

2 N, outer/innervV '"'"""""=2m dx ii(q /x —2mv2

We have thus far said nothing about the x and q2
inner d A outer In order to find thisdependence o '""" an

' See e. . S. J. Chang, J. G. Kuriyan, and L. O'Raifeartaigh,
7 ~1968} S. J. Chan~ and L. O'Raifeartaigh

J. Math. Phys. 10, 21 (1969').

/

(4.2)k, =k,'+(x;/x)k,
k; =k, '+(2/x)k, ' k+(x„/x')k', t'=M+1, . . . ,1V+1,

7l XN+]

P —+ =e e
—sa E eta E

d'&N+1

E= (It.&+It X'~ —I.i) are the commuting gener-
rou "I.and

(2tr)'
ators of the infinite-momentum E(2) subgroup. an
E are, of course, the conventional rotation and boost

enerators. Thus the transformation (4.2) is a Lorentz
(4») transformation. The (invariant in

changed under this transformation. The transverse-
component 5 function is affected as follows:
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A M, outer ~~2M
F1 dXM

S(P *,—1yx)
4xX1 4mwM4xX

)

dependence, it is necessary to look at these quantities
in detail. In order. to examine one of these two functions,
it is sufficient to assume there are no pions emitted in
the other.

First look at AM" "":

variable in k„.Therefore, the denominator function
behaves like

(Douter) —1

(1—xl)'(1 —xl —x2)' (1—xl — —x2c 1)'

X] X2 '''XM

X(kl'+at)' (4'+cklr 1'+ . +a~)', (4 g)

where

d'k d'-k E "'"
~ ~ ~

(2n) 2 (2~) 2 Deuter

kr)r+1 =q —P k&

where the a's are k independent. The maximum power
(4 «) of lnq' is obtained from a numerator function with the

behavior E k1' kM'. Keeping this in mind, it is

quite straightforward to pick out the leading term from
the trace

(Deuter) —1 —(p p . . .g )2
(4.6b)

Now we must examine the leading behavior in the k;.
For this purpose, we need the k„'behavior in 6„:

&ou"'= —,
' TrL(P+ nt) y, (P—%1+nt) yt

75(p ~1 ' ' ' 4l+nt)y+
X (km„l+nt) y+(P —kl — fr~s—y I)yt

y, (p —Pl+ nt) y:] .

The leading term from the trace is

A.= (p —&1— .—k )'—n22

= —k 2[(1—xl — —x„)/x„+1]+
= —L(1—xl — —x 1)/x.7k '+ (4.7)

Souter=(2p kl)(2kl k2) (2klr 1 k2r)2xlr2x21+lr

which is just

4xk 'k ' kM'
The + ~ in (4.7) is k,' and k,k, , 2(nj (n The.
cross terms in k„k,can be eliminated by a change of Putting Eqs. (4.8) and (4.9) into (4.6), we And

(4.9)

g2 M

A M, outer

16x2

XM—1dXM—1X18X1
~ ~ ~ XMdXM

(1 xl) (1 xl x2) (1 xl ' ' ' x)tr—1)

X8(Q x, —1+x) dkl' dk)112
1

k'k2 ~ k
(4.10)

(kl'+at)'(k2'+bkt'+a2) ' (k2r'+ck)tr, 'j +a2r)'

We denote the multiple integral over the x,'s as Flr(x);
the leading term in the multiple integral over k' s is IM.

First look at IM. We have shown in Sec. III A that
Il ln(q2/n22). We shall s—-h-ow now that Ilr=(1/M!)
XLln(q2/m2)$~. The proof is by induction. I~ is of the
form

A@2

~1~2' ' ~M
X . (4.11)

(21+al) (22+581+a2) ' ' ' (zV+c22r —1+ ' ' ')

Let Ill = clr Lln(q'/nt') $ . We have

1 1 1
CM= CM 1 CM 2+ CM—2]! 2! 3!

n=M —1. Then

1 1 1 1 1+-
(M —1)! 2! (M —2)! 3!(M —3)!

1 1
M ——M(M —1)u! 2!

1
+ —rr (rr —r ) (tr —2) —

)3!
1

A.
M!

q2r M

I2r —— ln—
~

M! ~2)
(4.12)

Note that 1—A is just the binomial expansion for
(1—1)~, which is zero. Hence A =- 1. This completes the
proof by induction:

We know cl-—-1/1!. Assume now that c„=1/n!up to We would like to remind ourselves that n22 appearing in
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le mass. This arbitrari-
ness will be signi u e

Next look at Ii ~x, . If the lntegra s in,
'n ~4.10~, then x1 goes rom

—x~ 1. chan e of variables can map
0 tO 1 X X1y ~ ~ ~

p
Rn XjrI

a e
'

to 1.. The new variables y; areall the limits from 0 to . e
defined by

xi=;=(1—xi —. —x; i)y,
=( -y)( -y)" ( -y-)y,

~ ~ ~ p
~

In terms of these varia les,

1 1

Fair(x) = yidyi yadya' ' '

&&~t:x—(1—yi)(1 —yt)" (1—y~)l
. There is,ot very enlightening. eTlllS foliil Of Fair(x) 1S 110 V . . e

(x). D ot. th M llis the Mellin transform of FJl/I x . en

transform of Flr(x) by

(4.15)
1

( ) = dx x'—'Fir(x).F~t,7-) =

e

of tile tt fuilctioil 111 {4.1 1sThe Mellin transform o e
1

1~x ~ ~~ I I ~dx x' 'lt'{x—(1—yi) (1—
ymir

y, y, (1—y)' '=Lr(r+1)l

g N, inner &~2N
dxi dxitr+1 &+1

4'rgi' ' e 4'rXN+1 j'=1

d'k1 d'kN+1
~ ~ — -(2ti '

(2tr)'(2tr)'

Th

&~(r) = II
0

outer X 2)h Mell tr*nsform of A q'This gives for t e e in

1
— in(rl'/m')

~. 16 "(.+1)
i.e. no lonsK, inner (we Set ~— i e

olook tA'nn"). Win the outer rainbow, and P~= x to oo
have

4'= kN (xx/—x~g 1)4pi.,
k —'= kii i t x~ -1/—(x~+-xzpi)](k~+k~pi),N—1 N—1 XN—1 XN

The leading term in X is

'"""=4ki„(2kik2)(2k' kt) (2kit kiii+1) .

nta the leadingIn terms of t c nc%' transverse momenta,
rm lnte

4xN+1k1 k2'2 '2 k '2

Finally, the phase-space factactor becomes

(4.20)

(2tr)'

x (2tr)' (2tr)'

Combining Eqs. {4.18)—(4.21), just as (4.10), we have

g2 N x1dx1
g N, inn. er

216tr' (x—xi

XNdXNX2dX2
~ e e

~ —x 2
(X Xl X2)' (x—xi— —xiii)

x,—x
XN+.1 dxN+1 N+1

x' j 1
(4.22)

uence of x; integrals can be doneIn this ae, h s qun o x;
of the appearance o xN+1 reasily because o e p

A'"'". The result o t e x,
'

xN+1 RS ln
(-,')~, and hen

—=hi+kg+ +kiti+l. The factorhave here put k=—41+02+ N+1.C

the factorizatlon o1/2x is associated wit the
iiilcts of 'two tl aces (1.e.) t einto the produc

a ators behave asthe +outer) The inverse propaga ors

~~=(4+ sruti+k )'—m'= (x~+1/x~)(k~"+a~,
~Ã 1

——(kiti +1k it+rk& +1)'—5$'
= L(xzr+xlti+1)/xar —1)

4.19&& (4 1"+&kx-"+tilt i),
~ ~ ~

2 m, 2~l (kl+ ' ' '+k&yl)
x—xl)/xij(kl"+ckl"+ +al),

where

8(Q k,)——, (4.1 s,)
j=l

q.
'

g N, inner ]n
Ef 32+2 m2

(4.23)

(Dinner) —1 —(tet g . . .g )2

=(k' —~ +1.) L(k —k,) —~ +i.j".
[(k~+k~+1)t irit+t'e ji,

RDQ

pi inner —(1/2x)
e e k —@i+a)7e&&TrL(P+~)v+(&+bilbo( —1

+G %+1(k +m)ye y, (1'r+m)y+ .

(4.18b)

there is no x epee endence in
of7) the final results oEquations (4.23) anand (4.1 are

Sec. IV A.

B. ummma, tion over Pions
e

t the kinematic1 inelastic expenmen in
of

In RD RctuR cD ln

regime %c%c Rlc discussing) on y c cIl
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g &V,outer
0

N

—g A/(rinner,

N

the final electron are measured. Thus the t/t"2 we want
is the sum of t/t/'2~ "~ '~ over A and M. Due to our
factorization property we can separately sum M and
E—Sf. If we denote

This rather formidable looking result does not corre-
spond to any familiar distribution in x. It does simplify
R bit 111 111111tlllg cRscs. I This CR11 bc sccI1 cltllcl by taklllg
the limit in (4.26) and doing further inverse transforms
or by taking the limits directly in (4.28).] In the limit
x —) 1 (s small),

A ()(x,q') —+ (q'/1621') (I —x) ln(q'/m') (4 29)

dx Kq'/x —2m~)Ao(x V')A*(V') (4 5') In the limit x 0 (" large),

Ke have seen that it is quite easy to sum A~ '""'":

A /)/, inner —cxp
N 32m 2 m2

(4.24)

A, (s, it 2) e
—'*Ch =exp — ——I, (4.26)

r(r+ I)
g2 q2

a= ln—.
16X2 ns'

To find A, (s,g2), write

ea/r(r+1) I —(ea/r I)(e—a/(r+1) I)
+(e "+" ~)+(e" I) . (—4 27)—

The last two terms in (4.27) have known inverse
transforms, and the first term can be perforIned as a
convolution. The result is

A (s q') = (g/2) I "LI (2g"' "') e'J-(2g—"'s"')']

Note that the arbitrariness in the scale mass m2 is now

important. A change of m2 will induce an over-all
constant in 3;. Hence, by analyzing the leading
In

I
q2

I
term, we can only determine W2 up to a constant

multiplicati ve factor.
A~'""'(x q2) is, however, dificult to sum in the x

space. We have seen that the Mellin transform
A ' (r g ) of A ' (x g ) ls qultc slIllplcl) Rlld wc
can indeed take its sum:

g2 Q2

A ()(r,q2) =exp ln——1. (4.25)
162r2r(r+1) m'

When we discuss our results further in Sec. V, Eq. (4.25)
and the significance of v- will play a central role. Without
diminishing the importance of Eq. (4.25) we would like

to point out that the inverse Mellin transform of Ao can.

actually be taken. Ke regard neither this fact nor the
actual result to be of special significance, and we urge
all but the most dedicated. reader to move on to Sec. V.

Instead of taking an inverse Mellin transform, it is
convenient to regard A()(r, q') as a Laplace transform
over the variable s= —inn, 0&s& ~. Then, we find

that A()(s, q2) is given by

&I=El/O+ &2=E2/P+ r=&2
and

Pl P2, »(P+/m), (5 2)

where (El E2) (KI+I I K2 I 2) ale t11c E(2) gcllcl R-

tors introduced earlier, and E3 is a boost along the
s direction. The first set of variables is a set of Lorentz
transformations. The second set of variables refers to
momenta of our problem.

The commutator relations among these variables are
well known:

LE,E.]= I E,p.]=0,
2L&2E]=E 2T&2P+]=P+ 2Ã2p]=o, (55)

LP. P]=0, 2LE',P]=~*P+, 2i=&,2, /=+, 1,2.

It is easy to see that (bl, b2, r) and (PI,P2, ln(P+/m)) form
two commuting sets. For conjugate pairs, we have

L&I,PI]= L&2 P2]= —2

The commutator between the last pair of variables is
slightly more difficult to compute. Using

giXK3~ g
—i)1%3—gX~P+ P+ ~

we have
e'lxe in(p4/m)e '"xe= 1n(e"p+/m)

= In(p+/m)+ X.

Hence, to first order in X, we have

(x q2) ~ (4~) 1/2(g/S3) I/4 ( xp(2gl/2s1/2) (4 50)

V. LONGITUDINAL IMPACT PARAMETER

We have seen that in our neutral pseudoscalar-meson
theory the structure function has a particularly striking
form in a new space. This space is the Laplace space of
the logarithm of a longitudinal momentum —or,
equivalently, the Mellin space of that momentum. In
this section we would like to examine some possible
reasons why this space might be of fundamental im-
portance. Our arguments rely heavily on analogy and
generalization, but we think that they add up to a

'rather convincing set of facts.
The analogy we shall try to develop is with the

eikonal form for the transverse part of a scattering
process. Consider the two sets of variables'

ds'
I
2'(r —2')]—»2e—e 11L2gl/2(2 —2') I/2] L&2,»(p+/m)]= —' (5 5)

'9 Ke are indebted to Professor R, Dashen for pointing out this
XJl(2g / 2"/ ). (4.2g) analogy to us.
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One can verify that all remaining commuta, tors between
these two sets of variables vanish. Equations (5.3)—(5.5)
show that the two sets of commuting variables (5.1)
and (5.2) are canonical sets. Now it is well known that
the usual impact-parameter representation comes from
a two-dimensional Fourier transform over the transverse
momenta p, and is realized in the E2 space. "We have
found, in Sec. IV that the t/t/~ function is simple when
we take a Laplace transform over the longitudinal
quantity 1n2;= ln(P+/222). The variable of this new space,
r, is therefore the parameter of a Kt space. 7ust as the
parameter of the L+'2 space is known as the "impact
parameter, " so we term our new parameter a "longi-
tudinal impact parameter. "

The impact parameter has a very simple classical
basis which we would like to supply for the longitudinal
impact parameter. It turns out that the longitudinal
impact representation indeed has a simple physical
meaning. Its existence can be established quite generally
for a large class of bremsstrahlung processes, satisfying
the following assumptions: (1) The process is invariant
under the acceleration along the longitudinal direction.
This is a kind of scale invariance for the process under
P+~e+1P+, i.e., under a translation in s= —lnP+,
s running from 0 to x&. (2) The emission of one pion is
independent of the emission of all the others. These
assumptions are reasonable if one integrates over all
transverse momenta of the emission pions, as we did
earlier in our computation. I.et FN(s) be the probability
of emission of E pions from a nucleon of initial momen-
tum p+ to a final nucleon of p+' ——e 'p+. Under this
assumption, given Fl(s), we have

F2(S) — dS1F 1(41)F1(S Sl) r

2!

j.
Ft(s) = dslrf$2Fl(22)I 1(21 &2)~'1( sl) '

3f

(5.6)

The 1/S! comes from the Ir phase-space integrals in our
model. Consider now the representation of Fl(s) in the
longitudinal impact space:

Fl(r) = ds e reF1(s) (5.7)

The transforms of Ii2, F3, etc. , are

F2(r) = (1/2')[Fl(r)]',
F2(r) = (1/3') [Fl(r)]',

~ ~ ~

F~(r) = (1/~')[Fl(r)] .
(5.8)

We see that the independence of pion emission implies
a Poisson distribution in the 7 space, in which the
amplitude for n-pion emission is expressed in terms of

' N. P. Chang, Phys. Rev. 172, 1796 (1968).

the one-pion emission amplitude. Summation over all
pions in this 7. space then gives an exponential whose
argument is the one-pion emission amplitude. This is
perfectly analogous to the standard eikonal result:
The amplitude for a complete transverse process,
summed over all elementary processes, is, in the impact-
parame!. er b space, of the form exp[2X(b)] —1; the
amplitude for the elementary transverse process in the
b space is just X(b). In order for this representation to
hold, the amplitude for an elementary transverse process
must not depend on previous occurrence of that
transverse process.

In our own particular case, we have seen that

A p= exp[a/r(r+ 1)]—1 .

The one-pion emission diagram has an amplitude in
the ~ space of

flouter , a/&(&+ 1)

Thus our result tells us how to calculate e-pion emission
in terms of single-pion emission. As we stated above,
this is the typical property of a bremsstrahlunglike
process. This single-pion emission amplitude has the
property that for large s (small r),

g l,outer~+ j&

corresponding to A' '"'"(s)=const, independent of s.
For small s (large r),

g lteoru~ , /&a2
corresponding to A' '"'"(s) s, i.e., just the phase space.

It seems to us likely that the particular form of the
longitudinal impact-parameter eikonal function
a/r(r+1) is very model dependent. However, the fact
that the amplitude becomes simple in the longitudinal
impact space is possibly a fundamental one. Study of
other models is necessary to verify this potentially
important sta, tement.

Experimental Consequences

We conclude this section by suggesting some experi-
mental tests of the idea of the longitudinal impact-
parameter space. First, let us look into the ep inelastic
scattering. According to our discussion and to the results
of Ref. 3, the hadrons should fall into two groups. The
first group consists of all pions emitted before the
nucleon interacts with the current, while the second
group consists of all pa, rticles created after the nucleon
interacts with the current. If one measures, in addition
to the energy loss v and momentum transfer q from the
final electron, the partial cross section for Ã nonresonant
pions in the first group, then one can very easily check
the validity ot the longitudinal impact space. In
particular, the partial A~ ou"'(tt2, 1r) should exponentiate
in the Mellin transform space when summed over cV.
It is important to note tha, t for a multipion final state
the pions come from nonresonant states. Thus, two
pions coming from a decaying p emitted from the
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nucleon must not be counted in the same way as the
bremsstrahlung pions, since their emission is correlated.
This is undoubtedly the most difficult experimental
problem to be faced.

Since the basic assumptions for deriving the longi-
tudinal impact-parameter representation are quite
general, one may tend to believe that the longitudinal
impact space inight also be realized in the pure hadron
processes, such as pp and 7rp scatterings. Experimen-
tally, our ideas should be easier to verify in these
processes than in ep scattering. Let us consider high-
energy pp scattering: p+p~A+8, where A and B.
are two jets of particles moving along, each containing
at least one nucleon. We now concentrate on the first
jet—say, A. We select these events in A (but include
all final states in 8) such that A contains a single
nucleon of longitudinal momentum p»'= xp», where pl/
is the incident longitudinal momentum, and E non-
resonant pions. This should give us a measure of the
probability function Fii (x). By transforming this
probability function F~(x) into Mellin transform spa, ce,
one can check whether the longitudinal impact space is
compatible with the present hadron data.

but is quite simple in the Mellin transform space:

1

A 0(r,q') = A 0(x,q') x'-'(Jx

g2 Q2
=exp —ln——1.

16m'r(r+1) m'
(6.1)

Ef we do not measure x (i.e., if we integrate over all x),
then we end up with

1 g2 q2

Ao(x, q') dx=AO(1, q') =exp In——1. (6.2)
0 32%2 m2

But this is just A, (q') —1:

A;(q') = exp ln
327r 2 m2

(6.3)

Thus, the contribution for the inner pions, in our model,
is equivalent to the x-integrated contribution for the
outer pions. Physically, this can be understood as
follows: In our theory, the contribution for the inner
pions is invariant under a boost along the s direction.
Hence, A'"""(q') is x independent. Therefore, we can
evaluate A'"""(q') in the same initial frame (p+=1) as
we compute 2'"'". The only distinction is, of course,
that in A'""' the final p+' of the nucleon is fixed by
p+'=xp+, while in A'""" there is no restriction on the
final p+' of the nucleon at all. It is now not surprising
to see that A, (q') is the x integral of Ao(x, q').

The above interpretation actually suggests that, if
the longitudinal momentum of the final proton is
measured to be p+'= yq'/2', then its probability
distribution in y is also governed by the same distribu-
tion function Ao(y, q ). That this is true can be verified
explicitly. Hence, the partial contribution to tV2 for

f +' (or X) is

VI. DISCUSSION

The purpose of this section is to review and elucidate
particular features of our model which are of interest.
We shall look at distribution properties of the emitted
pions, at scaling properties, factorization properties,
inclusion of vertex corrections, etc.

A. Distribution Proyerties

dW2(q', i,p+') = 2ns dx 6(q'/x —2mv)

XA 0(x,q') A 0(y, q') dy, (6.4)

with

p+'=xy=yq'/2nzi .

The above relation reveals that the distribution func-
tion Ao(x, q') is of fundamental importance and has a
universal meaning in our model. It simply describes the
correlation in the longitudinal momentum of the proton
between two interactions, by viewing the pion emissions
as a background. Therefore, we would like to learn more
about this distribution.

We can use the distribution properties in x to deter-
mine various moments in the longitudinal momentum x.

A most striking feature of our model is, in common
with superrenormalizable theories, that the pions
produced in the inelastic process group into two "jets,"
one associated with pions emitted before the current
insertion —the outer rainbow pions —and the other asso-
ciated with pions emitted after the current insertion-
the inner rainbow pions. The properties of these two jets,
as expressed by Ao(x, q') and A, (q'), are different. The
full amplitude has a structure function 8'~ which is the
product of these quantities times a 8 function of argu-
ment tl'/x —2mi. By measuring q' and 2mi, we there-
fore measure x. The x referred to here is the fraction of
the original nucleon p+ that the nucleon has just after
the current insertion.

With this much clear, we can now distinguish two
general types of distribution associated with t/I/'2. The
first type is the distribution in x, as expressed by
A o(x q') =PM A '""'(x q'). The second type is the
distribution in the number of outer pions, expressed by
the M dependence of AM '"'"(x,q'), and of inner pions,
expressed by the X dependence of A~ '"""(q')."

We shall first examine the distribution in x. We have
seen that A'"'"(x,q') is not very simple in the x space,

"We can, of course, consider simultaneous distributions in M
and x, but this does not seem very interesting to us.
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(x) = xAp(x, q2) dx Ao(X, q2) dX

Thus the average value of x in our process is This is, of course, a well-known result for Poisson
distributions. Naturally, Eq. (6.9) gives for the average
number of inner pions

(N);„„.,= 0.6 1n(q2/2)22)

Similarly,

=A o(2, )72)/A o(1,)72)

=exp — ln— (6.5)

and Eqs. (6.9) and (6.10) give the same result for the
spread (X2)—(1V)'.

For t,he outer rainbow pions we shall only give the
result in certain limiting cases. In the limit 7- small,
which corresponds to x small,

(x') =A o(3,)72)/A o(1,q2)

g2 q2
= exp —— ln— (6.6)

g2 g2 M

A M, outer(& if 2) —ln—
3II.'16m'v m'

We find for the inverse Mellin transform

(6.11)

It is quite clear that one could in this way calculate any
moment of x. Numerically (6.5) implies for the average x

(x) = (q2/2222)
—",

and for the spread in x,

g2 q2 M

AM '"""(x,if2) = — in-
tr!()r—1)l 16 ' ie')

M—1.

g ln— . 6.12

(x') —(x)'= (q'/222') ".
We see that both (x) and (x')—(x)' decrease moderately
with increasing q2 in our model.

We now address ourselves to the problem of number
distribution of pions. We have seen that for the outer
rainbow pions,

g2 q2 M

AM o«er(r )72) = — ln— (6 7)
M! 162r2r(v+1) 2)22

and for the inner rainbow pions,

Then, with a= (g'/16tr') ln(q'/2)t'),

M—1-

(M)=Q — aM ln—
cV!(M—1)! x

1 M—1-
aM In-

%!(cV—1)! x

g2 q2 1 1/2

ln—ln- (6 13)

g2 q2 N

AX, inner(~2)— ln—
A! 32x2 m'

(6 8) For large r, corresponding to x=1, we have

g2 q2 M

AM, outer(& F2) ln— T 2M
Both (6.7) and (6.8) are Poisson distributions in the
number of pions. It is important. to recognize, however,
that (6.7) for AM '""' is a Poisson distribution only in
the Mellin transform space. It is emphatically not
Poisson in the x space, which is the physically measured
distribution. This can be seen in the discussion centering
around Eq. (4.28), where we looked at the sum over M

f AM, outer(x ~2)

Because the distribution of inner rainbow pions is
Poisson, we can immediately see that

which gives

g2 q2 M

A M, outer(X i72)— ln—
M!(2n' —1)! 16 ' ei')

2M—1

ln— . 6.14

p)). p i))TA iivenrn(~2)/ p A)tiincur(
2')

g2 q2
ln-

32x2 m2
(6.9)

Pt), 2 P i$ 2AiV, inner(~2)gg A))i, inner(tf2)

g2 q2, g2 («2

ln—1+— ln-
327r2 m2 32m 2 m2

(6.10)

The average M is very small ( 1—x) at x=1, i.e., we
only see the inner rainbow here.

There are two more distribution properties which are
of interest. One is the transverse momentum distribu-
tion of the emitted pions, and the other is the average
charge properties of the inelastic final states.

In the previously studied field-theory model of in-
elastic scattering, ' the transverse momentum of the
emitted pions has a cutoff externally imposed. While
this cutoff was necessary to ensure the scaling law, it
does make the question of the transverse pion momen-
tum a trivial one. In our model the transverse momen-
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turn of pions is not imposed by outside and its distribu-
tion is of interest. In order to study this, we must
return to the original amplitude which determines
3'"""or 3'"'" In particular, the difference between the
inner and outer pions lies in the longitudinal properties,
and we expect the transverse properties of the two jets
to be similar. The transverse momenta, by understand-
ing, are dehned relative to the longitudinal directions
of their respective jets. To calculate these properties,
we return to the original expression (4.1) for W2. We
found in Sec. IV that the q' dependence comes from
integration over transverse momenta of the emitted
pions. The factor which gives this is given by (4.11)
a,nd (3.13):

dg lds2 ' kg

X ——
(el+Ill) (21+22+112) ' ' ' (Sg+et I+ ' '+O)V)—

1)V—1
~q 2

Ilut we already know that [see (4.12)]

(6.16)

In— (6.17)

so that Eq. (6.16) becomes

(k2) q'/ln(q'/m') . (6.18)

Thus the average transverse momentum grows with q',
but not as fast as q; the momentum transfer at each
pion vertex is damped at least by a factor ln(q'/m')
compared to the momentum transfer at the photon
vertex.

Finally, the average charge of the produced particles
has been of interest in the original parton model of
Sjorken. We shall calculate this quantity in our model
at the end of Sec. VI C.

B. Scaling

The original suggestion of Bjorken" was that vPV~

would depend only on the ratio co=2m)/q2 The only.

X—
(SI+III)(22+sl+t12) ' ' ' (&I)t+&))t—1+ ' '++')

(6.15)

with s;~k for the 2th pion. The limit of integration
comes from the minus-component 8 function [see
Eq. (3.12) et seq.); it provides a cutoif on the e, integrals
at eq2. The integrand of Eq. (6.15) may be regarded as
a distribution function for the transverse momenta.
Thus we have for the average transverse momentum
squared of an emitted pion,

(II «')

appearance of the fractional longitudinal momentum
lef t to the nucleon af ter the collision is through
8(q2/x —2m)). This so-called scaling law, which is at
least approximately obeyed by the data, is a funda-
mental property of the original parton model. It is also
a property of a superrenormalizable held theory, as
in Ap' and the cuto8 neutral pseudoscalar theory of
Drell, Levy, and Yan. In our model, this scaling law is
violated. The partial 8'2 for E pions, both for the outer
and inner rainbow, has q' dependence through (lnq2)'v.
Of course, the full 8'2 has q' dependence; it has a
simple (q2)o""" behavior for pr'2'»" and a rather com-
phcated q' dependence [see Eq. (4.28)j for W2'""'. As
we have stated previously, the q' dependence for H/~'"'"
has simple power behavior in the longitudinal impact-
parameter space. Although we shall discuss below why
the particular q' dependence of our model should not
perhaps be taken too seriously, the data at this moment
certainly do not forbid some q' dependence for 8"2, and
thereby a breakdown of the scaling law.

C. Form Factors

F«m Eq. (2.4) it is clear that in our model, in which
kV~ grows as a power of q', the cross section also shows
an increase with q . Physically, this too rapid growth
of 8'2 must be damped by form factors at the various
vertices. There are two general types of corrections one
might want to consider: those coming from electro-
magnetic corrections and those coming from strong-
IIltelactloll corrections. Wc llavc sccll [scc Eq. (6.18)
et seq.j that the momentum transfer at the photon
vertex is larger than the momentum transfer at the pion
vertices by at least an order of ln(q'/m'). Therefore,
we only consider corrections to the photon vertex,
ignoring the off-mass-shell effect of the nucleon.

One can then calculate pure electromagnetic photon-
vertex corrections by replacing y„atthe vertex by

y„FI(q2)+ (Io.„„g"/2m)F2(q2) .

Note that this substitution is not strictly correct
because the proton is not on the mass shell. However,
this should be a good approximation if the off-shell-mass
e8ect is small compared with q'. In our case, y+ in the
matrix elements SK which are squared would be replaced
by y+FI+ (io+,g"/2m) F2. The trace which appears
in (5R)' is then

20+vq"
T (outer) otto, + ti,)——

2m

20+ q'"
X(inner) y+FI+ ——F,

25$

20'+.

gpss

=Tr (outer) p+FI —— F,
2m

20+yg'L)t(..o,)(,.F,—-=..
2m
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Ke have here explicitly taken o.+„q".There are two
direct terms and a cross term to consider in (6.19).
The (y+Fq)' term is just our old result multiplying
FP(q'). The cross term is of the form (o+i iy+——y, )

(i/2—m)qgF F2
XTr{ (o««) yy[(inn«h+vi+ v.(inn«)7+3) .

Since both the inner and outer factors have an even
number of y matrices to leading order, this term con-

tains an odd number of y matrices and is zero. Finally,
using yIp+y~= 2y+, it is easy to see that the I'~' term is

(1/2m) 'g'F22(q') X (old answer) .

Thus, the inclusion of these form factors has the

property of replacing 8'~ by

[F~'(q') —(1/2m)'q'F2'(q') 3W-(old)

6 ' — G ' 1——QJI/2 old,II

4m' 4m'

where Gg and G~ are charge and magnetic form

factors. "of course, this has the effect of damping the

q' dependence. In the case of Gs ——G~/p„=universal
form factor F(q'), we have for large q',

1

W, (q', v) = A 2mAO(x, q')&, (q') [F(q')j'
y 5(g'/x —2mp), (6.20)

where the above equation is valid up to a constant

factor. Note that all our discussions on the longitudinal

and transverse momentum distribution, number distri-

bution, longitudinal impact representation, and on the

scaling law are not affected by this modification. The

only effect is the over-all q' dependence of the cross

section.
We wish to point out that our result on inelastic ep

scattering can be generalized to deep-inelastic electron-

neutron scattering. All the features discussed in this

paper persist, and the inelastic form factor W2(e) for

the en scattering is related simply to the W2(p) for the

ep scattering through

W, (I) F,&.&(q')' —(q'/4m')F2&. &(q')'

W, (p) F.~,&(q')'-(q'/4 ')F ~. (q')'

(q'/4m')y ' —pn
'

1 (q'/4m') y~' y~—

where ~„and~„arethe anomalous magnetic moments

of the neutron and proton, respectively. The last ex-

pression depends also on the experimental fact that the

nucleon form factors are governed by a universal form

"D.R, Yennie, M. M. Levy, and D. G. Ravenhall, Rev. Mod.
Phys. 29, 144 (1957). For recent experimental results, see L. H.
Cb@n g] pt. , Phys. Rev. 141, 1298 (1966).
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/

FIG. 6. Set of vertex correction diagrams considered in Ref. 23.

&4')=~ p(
— — -ln

m'2
(6.21)

in the region where q' is positive. Since we retain only
the leading terms in our calculation it is natural for us
to use Eq. (6.21). Contrnued to our region of q2

result is ]ust such as to cancel the q' dependence o
~*(q'). The q' dependence in Ao(q', x), however cannot
be completely canceled, owing to the z dep~~d~~ce
the Ao ~ In other words, the scaling law is partially
recovered, if one takes the form factors into account.
This cancellation will be exact in processes such as
e
—+e+ —+ hadrons in which no momenta of final hadrons

are detected. "
If this form factor is included in our expression, we

have

W, (q', v) = dx 2m' O(x, q')

g2 Q2 g2
X«p — 1n—g ——2mp

»T. Appelquist and J. R. Primack, Phys. Rev, D 1, 1144
(19/0).

'4 one of the authors {S.-J. C.) wishes to thank Professor
M. Gell-Mann for a stimulating conversation on.this point,

factor. Hence, for large q', v, we predict that the deep-
inelastic el and ep scatterings have comparable cross
section as well as similar final hadron distribution. An
experimental test on this conclusion is certainly
desirable. The reader should note that the above
calculation is not self-consistent, in the sense that the
neutron form factor is due to charged pions. We have
not, however, considered the inclusion of charged. pions
in our calculation. A correct treatment would include
both neutron and proton as well as the triplet of pions,
and. hence a much larger class of graphs must, be con-
sidered. At present we are unable to carry out the
complete calculation, but we believe that the above
tentative conclusion may still be relevant.

After completing this work, we came across an inter-
esting report of Appelquist and Primack on the electro-
magnetic farm-factor calculation. ' Among many other
diagrams, they considered diagrams such as those in
Fig. 6 in a neutral pseudoscalar-meson theory. This
calculation is clearly in the same spirit as ours if one
keeps only the leading terms in 1 n(~ q~ /m). To this
order, they find a form factor at the photon vertex of
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Therefore, we have

g2 q2
w, (q'p) =xA, (x,q') e p(

— 1—
32ir' in'

and, for the average charge for the hadrons,

g2 Q2

(()')= dx )p(g'p)=e p(
— )n— 0
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model. This last fact makes the description in terms of
two structure functions possible. After proper renor-
malization, the resultant E-photon amplitude is
identical, to within a simple kinematical factor, to the
corresponding renormalized one-photon amplitude. "

*=&~2™The summing of X-photon processes with photon
vertices permuted in all possible ways is now' well
known, ~p and leads precisely to the eikonal form E.'(k)
1Tlcntloncd Rbovc.

slowly as g'~~ .
This is understandable. Since there is only one charged
particle in our model, and the number of pions increase
linearly as In(l' increases, the average Q' necessarily
goes to zero as q' —+~.

Another distribution of vW2 which is of practical
interest is

g2 q2
—ptF2(q', v)dx= Ao(x, q)' exp — ln—dx
g 327r2 m2

=constant of O(1) independent of (1'.

The experimental distributions for Q' and fx I)p

XW2(q', x)dx at present (l', I values are' 0.17&0.01 and
&0.72&0.01, respectively.

B. Multiphoton Exchange

The inclusion of multiphoton exchange in (;p inelastic
process is, strictly speaking, of only academic interest.
However, multiparticle exchange processes are im-
portant if one tries to generalize the result of this
calculation to the realm of strong interactions.

It turg. s opt that the inclusion of multiphoton ex-
change does not RGcct the hadronic part of the ampli-
tude at all. The only change in the ep scattering is to
replace the one-photon propagator e'i/rl' by the eikonal
5ol'IQ

E'(g) = d'b e-'~'&(s '«" -1),

whose driving term is the one-photon-exchange
amphtudc

de eiq b

x(b) = —e'
(2pr)' (1'

The form of 8'2 will be unchanged.
There are two crucial points in reaching the above

conclusion. First, there is only one charged particle in
the scattering process. Second, at very high energy
photons tend to be exchanged as a single unit (i.e., as a
bundle" ) and interact simultaneously, as in the parton

2~ S. J. Chang„Phys. Rev. D 1, 29'l7 (1970); H. Cheng and
T. T. 'Mf'u, ibid. 1, 1069 (1970); 1, 1083 (1970) ) V. P. Yao, ibid.
I, 2971 (19?0),
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sions. One of us (S.-J. C.) wishes to express his apprecia-
tion to Professor S. Adler for explaining the details of
his work. P. M. F. would like to thank. Professor S.
GRslol owlcz foI' dlscuss1ons.

APPENDIX A

In this appendix we would like to give a brief outline
of how a calculation of the type given for neutral
pseudoscalar-meson theory —a renormalizable theory-
can be given for Xp'. Aqb' is a superrenormalizable theory,
and in that sense it is similar to the cutoA meson theory.
In particular, the scaling law holds, a result which we
speculate would be true for any superrenormalizable
theory.

When we refer to diagrams in this appendix, we mean
the diagram referred to with y5 of the meson-nucleon.
propagator replaced by 1 and with a "nucleon" spig.
of 0 rather than -,'.

In Ap' theory we cannot say that rainbow diagrams
of the Fig. 5 type (for an appropriate power of 1()
dominate ovel diagrams such Rs Fig. 3(c); tlIRt Is, pllle
rainbow diagrams do not dominate over crossed rain-
bows, In this sense, Xp' differs in a very important way
from our pseudoscalar-meson model. However, dia-
g1ams vFlth plons cl ossing fr'om the outcr to the
inner region, such as Fig. 3(b), are small.

These facts indicate that a complete analysis of l((f)' is
rather complicated. We do not attempt this here. It ia
stiH possible, however, to learn the most relevant
features of this theory. With F a phase-order factor
and OR an appropriate amplitude, Wm= fF ~K j'. The
phase-space factor F is still given by Eq. (B4). The
amplitude BTi', is given by, for diagrams of the class of
Figs. 5 and 3(c) (inclusion of other diagrams with no
crossing from inner to outer regions causes no difFiculty),

X—(Emit, . . .I)~
+ (terms involving other "outer" 6's) 1
&&E~~+I~~+2 . ~))
+(terms involving other "inner" III's)jj—'. (A1)

2' The program of renormalization is described briefIY in
Chang's article in Ref. 25.

27 For an elementary treatment of multiphoton processes, see
S. J. Chang and S. Ma, Phys. Rev. Letters 22, 1334 (1969);
Phys. Rev. &88, 2SSS (1969).
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A~ are as in the text, and depend only on outer
quantities, while A~+&. 6& depend only on inner
quantities. Since all the 6; are I orentz invariants, the
Lorentz transformation (4.2) on the inner rainbow
variables accomplishes the factorization of 8'2 into two
pieces. Thus it is again quite natural that this model
produces two jets. The decoupling will again take the
form of Eq. (4.5).

In our renormalizable theory, the numerator function
Ã provides an extra k~'k2' k~' factor. This makes
the theory logarithmically divergent, with the minus-
component 8 function providing a q' cutoff on the
transverse integrals. In the superrenormalizable case,
the transverse integrals converge without cutoff. Thus
there is no q' dependence at all introduced by the
transverse integral. The transverse k, 's can be ignored
in the minus-component b function, leaving us with the
parton 6 function. Since there is no extra q' dependence,
the Bjorken scaling law holds. Because of the way q'
dependence enters in the renormalizable theory, we
would speculate that any superrenormalizable theory
gives the scaling law.

APPENDIX 8
The phase-space factor (P.S.F.) for an n-particle

final state is

n d4Pi
P.S.F.=(2 )'~'(2 p, -&) II ~(p"-~''), (»)

(2~)'

where I'„is the total energy-momentum 4-vector. In
terms of x= p+, p= (p', p'), we have

dpi' dÃ~ dp3
~(p,'-~,')

(2~) ' 4m.x; (2~) '

(2~)9'(P p, —P) =8~'S(P x,—P,) (2~)'P(P p, —P)

(B2)

Note that the 8'& can be expressed simply as a product
of the hadron P.S.F. and the square of an amplitude
~OR~

' through

w =(m/4 ) iota'x(p. s.F.)
where ~OR~' is the imaginary part of the invariant
amplitude of the forward plus component of the
Compton .scattering. This relation is represented
graphically as in Fig. 2(c).

It is important to note that the choice of the variables
p', p', and p+ ——p'+p' for phase space Lsee Eq. (82)j
introduces only the very simple p+ into the denominator.
The conventional choice of p', p', and p' introduces a
p' into the denominator, with the attendant square-root
difficulties. It is this fact which allows us to perform
the Jd'k integrals in the text with no approximations
on transverse quantities in denominators.

p' +m.
X~ — —& . B3

gi

Hence, the P.S.F. can be rewritten as

p, +m, .

8 '&(Z~, —& )(2 )'-&'(Ep' —P)& Z-
x,

dt's d pg
XII . (ll4)

' 4m' (2m)'


