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Certain algebraic aspects present in the dual resonance models led Susskind and Frye to the construction
of n-point pion amplitudes in the tree-graph approximation which are a sum of terms, each one coming
from a distinct permutation and satisfying the Adler's condition separately. It was also shown that this
line of reasoning picks up a definite form of chiral symmetry breaking (in SU2SU2). In this work we
show that the extension to the pseudoscalar multiplet forces one to include the whole nonet. The resulting
amplitudes coincide with those obtained from an U(3) U(3) model with the chiral symmetry broken in
a way that preserves the complete nonet degeneracy.

I. INTRODUCTION: FORMAL CONSTRUCTION
OF n-POINT FUNCTION

l ~HE dual theory of strong interactions replaces
the usual sum of Feynman tree graphs by sums

of contributloIls coI11ing from diferent permutations
of the external particles. The term corresponding to a
definite permutation depends only on the generalized
Mandelstam variables associated with that arrange-
ment of the external legs.

The hypothetical world considered by Susskind and
Frye' containing only pions is extended here to include
the pseudoscalar mesons.

As was pointed out by them, the one-loop Feynman
diagram can be put into a one-to-one correspondence
with distinct permutations. This, and the absence of
exotic resonances, strongly suggests that an internal
quark loop to which the external mesons couple will
indicate the appropriate SU(3)-invariant amplitude.

The SU(3)-invariant coupling of quarks with a
pseudoscalar octet

gp~~agpa

contributes to the amplitude corresponding to the
permutation 1, 2, . . . , e with a factor

Tr(X.P.," Z.„).
n; is the SU(3) index of the ith particle, and the X's

are the usual Gell-Mann matrices'; but this is not
invariant under anticyclic rearrangements. %e shall
consider a symmetrized version of it, namely,

r(X,X, . X„„)—=Trp, X, X „)
+Tr(X „X,),) . (2)

where s' ' "' " stands for the set of Mandelstam vari-
ables associated with the permutation 1, 2, . . .„N.

The function F has the following properties: (a) It
is invariant under cyclic and anticyclic rearrangements.
(b) It goes to zero when the four-momentum of any
one of the external particles goes to zero, the others
being on the mass shell (Adler's condition. ').

We shaH show that (3) can be enforced. in a way
consistent with factorization. Let us consider a graph
consisting of a certain number e of external lines
entering a vertex, a number m entering a second vertex
(N and m odd), and a single hne connecting both ver-
tices. The expression which gives the contribution of
such a graph to the (n+m)-point function is

8 J'-" P
r(X.,X., "X.J,)Zr(X„" X,„X,)- — . (4)

e=l $1,2,, ...,
—8$

Using the identity

P Tr(XX,) Tr(F'X, ) =2 Tr(XI') ——,
' TrX Tr 7',

where X and F are any 3&3 matrices, it is possible to
prove for the symmetrized traces (2) (see Appendix)

P PZr(l. , "l.J,)Zr(X,X„"X,.)
permaf, permp~'

L4Zr(~. , X.„l „~ ~ X,.)—gg perma~Pg'

,'Zrg. , "—~-.„)XrP.„"~, )j . (S)
$1,g, ...,

—
SPY

The whole amplitude will be given by the expression

ZrP. ,l., X.„)r.(s" ""), (3)
distinct permutations
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' I.. Susskind and G. Frye. Phys. Rev. D 1, 1682 (1:970).
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p0p 0

Zr(X, X „Xp) Zr(Xp, . Xp„,XO)— (6)
Si,g, ..., ~

—5$

4 S. L. Adler, Phys. Rev. 139, 81638 (1965).
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The first term on the right-hand side is of the desired
form, but it is clear that the second term has no place
in an (e+ns)-point function of the form (3).

The additional interchange of a singlet will provide
an extra term of the form



1082 A ~ GALL I AND E. GALLI

on both sides of (5). Such a term will exactly cancel the
undesirable term, provided that the singlet is completely
degenerate with the octet t recalling that Xo=—(+3)17.
The expression is Anally given by

p Zrp. ," x.„x,)
permas permPg e=o

)(Z1'p, hp, Xs„)
s1,2, ..., n m

p 4 rp..." ~.„~„"~,.)
permas permPp' Sy 2

—fg

F4 (s' ' ' ') = (s,2+s2, —2m') (7)

has been successfully used in Ref. 1.
Making the same assumption here, the total ex-

pression for the four-point amplitude is

II. FOUR-POINT AND SIX-POINT FUNCTIONS

In a model with only the pseudoscalar mesons present,
the four-point function has no poles. The necessity of
avoiding essential singularities at in6nity restricts
I"4(s"") to a polynomial, which on the other hand
must satisfy Adler's condition. The simplest choice

the results obtained in the previous section. Our
approach is a modified version of the one taken by
Cronin' and by Bardeen and Lee.

The part of the Lagrangian U(3)U(3) symmetric
is taken to be

go ———(1/8f') TrB„MtB„M.

f has the dimensions of mass ' and is chosen to be real.
3f is the meson coupling matrix which is a function of
the pseudoscalar meson matrix P.

8

e= —Z &;~;.
V2 '=o

(12)

Tr(B„MrB„M)+ Tr(M+Mt). (13)
8f2 8fm

We expand 3E as a power series in Q:

MtM is an U(3) Im U(3) invariant that we shall take
as 1.

We break the chiral symmetry by considering as the
whole Lagrangian

A g ~ gr (X,X,X,lj. ,) (sg2+$23 —2m')

+perm(1243)+perm(1423) . (8)
M= 2 a-(if&)".

n=o
(14)

The contribution to the six-point amplitude coming
from tree graphs with one internal line is obtained
using (6).

The part corresponding to the permutation 12345ts is

(sr@+$23 2m') ($56+$&z—2m')
&rp. "~ )—

Sy23 —PE

The coefIicients u are real because of parity invariance.
Without loss of generality, we can put ao ——1; a~ may be
absorbed into f and we choose a~=2. The condition
3f3I~=1 gives some relations between the coefficients.

Vp to sixth order, we can express a4 and ae in terms
of g3 and 85.

a4=2(a3 —1), a8 ——2a& —4(a, —1)+-,'a3$. (15)
(s23+s34 —2m') (sq6+$56 —2m')

+-
$234 —SS

Cronin showed that Adler's condition for the four-
point function is satisned only if a3 ——0. So the expression
for M is(ss4+$4$ —2m') (spy jsg2 —2m')

$345—Pl

The contact term corresponding to this permutation
is determined, imposing the validity of Adler s con-
dition. In fact, it is required to be

Using (16), we can rewrite the Lagrangian (13) up
to sixth order in the fields:

(9)
M=1+2 f4-2(f4)'-2(f4)'+ (f4)'

(2"+4)(f~)'+—" . («)

1(Xaz ' Xaz) ($12+$23+$34+$46

+ss6+sgg —6m') . (10)

This procedure can be indefinitely extended, pro-
viding the amplitude corresponding to an arbitrary
even. number of external legs.

III. U(3) g U(3) LAGRANGIAN MODEL

We are going to show now the existence of a La-
grangian in nonlinear U(3) U(3) which agrees with

,'f')Tr(B qPB g')+—m-' Tr(y')7

f Lkas Tr (B~4'BI4 )+Tr (BA' By4 )
+-,'m' Tr (qP) 7. (17)

In order to illustrate how this Lagrangian is able to
reproduce the amplitudes given in Sec. II, we shall

explicitly work out some steps in the four-point case.

5 J. A. Cronin, Phys. Rev. 169, 1483 (1967).' W. A. Bardeen and B.W. Lee, Phys. Rev. 177, 2389 (1969).
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Using (12), we can write

Z&'i = ——;f(P Try. ,~,X,~„]{[y,(a„y,)y, (a„y„)

bridge University report (unpublished)], where some
of the results obtained by us are discussed, though
with a somewhat different spirit.

+4,(~A;)(~A 4)4.+(~A')4A i(~A-)

+(~A')e, (~.@i)@.]+[~'@'@Aie-]}3 (»)

Let us consider the matrix elements of the 6rst term
in (18), taking all four particles as incoming. The total
factor multiplying Tr(li, X 2X 5X 4) (recalling the cyclic
invariance property of the regular traces) is

Tr (X,)~,X,)~,) (2pip6+2p2p4) .
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APPENDIX

We know that the identity

g Tr(Xli, ) Tr(I'X,) =2 Tr(XF) ——,'TrX TrF (Ai)

is valid in general for X and I' arbitrary matrices
(3X3).We define

Zr (X)—=Tr (X+X'),
where

Zr(x 4l~N2), ,x 4)(2pip, +2p2p4). (19)
X'=X „.X,X, if X=X,X, ~ ) „.

A similar work provides the total expression for this
permutation, namely, We are interested in

P Zr(XX,) Zr(I'~, ),' f"Zr p—~—,x~2k„x~4) [2pip6+ 2p2p4+ p2p2+ p6p4

+p4pi+ pip 2+ 2n22] = 4f' gr (X,li 2X 6X 4)

X (Si2+$23 2n2'), (20) =P {[Tr(XX,)+Tr(X,X')][Tr(F'X,)+Tr(X,F')]}

In fact, the same factor appears multiplied by
Tr(li 4)i,X 2X,).

So, using definition (2), we can write the whole
contribution coming from the first term in (18) to the
permutation (1234):

which is precisely the amplitude proposed in Sec. II.
The six-point case can be worked out in a similar

way. The contact term in this case has the expression

'f' &r P —&,)[(P1P2+P2P6+P6P4+P4P5

+p,p,+p,p,) (a5+2)+ (p,p,+p2p4+ p6p5+ p4p6

+P5P1+P6P2) (a5+4) + (P1P6+P2P5+P4P6)
X (a,y4) y-; (2a5+ 4)n6'],

which contains the arbitrary parameter a5. Putting it
equal to 0, we get the expression desired:

-,'f4 Zr(X.,X.,X.,X.,X.,X.,)
X ($12+$26+$64+$45+$56+$61 6n2 ) ~

IV. CONCLUSIONS

It was the purpose of this work to continue investi-

gating the apparent connection between dual theory
and chiral symmetry, and the use of dual theory in

choosing the way in which chiral symmetry is broken.
The natural extension from the pion isomultiplet and

an SU(2) SU(2) algebra to higher symmetries led us

to include the whole pseudoscalar nonet as a nonlinear

realization of the group U(3)g U(3).
This Lagrangian model is semirealistic in the sense

that it includes the g' with the same mass as the octet
(this is far from true in nature), but at the same time

it deals with only physical particles.
Pote added in proof. After completion of this work,

we received a paper by J. Ellis and ll. Renner [Carn-

=P {Tr[(X+X')X,]Tr[(F'+ I")X,]}

8=4 Q Q &r(XP)FIFr. '

perm X perm Y
(A5)

Finally, we have for the g's the relation

p Zr(X~, ) Zr(I'~. )F~F,
perm X perm Y

[4Zr(X I') —-,'Zr(X) Zr(I')]
perm X perm Y

XFIFr. (A6)

=2 Tr[(X+X')(I'+I")]
—

6 Tr(X+X') Tr(I'+I"). (A2)

Let us consider the first term in (A2), and

R—= Q Q 2 Tr[(X+X')(I'+F')]F~Fr, (A3)
perm X perm Y

where the Il's are such that Px ——Px..

8=2 g P {[Tr(XY')+Tr(I"X')]
perm X perm Y

+[Tr(XI")+Tr(X'Y)]}F$Fr. (A4)

It is trivial that the second term in (A4) will give the
same contribution as the first one after summing over
permutations. Then


