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Dioyhantine Quantization: Application of the Methotis of Algebraic Number
Theory to the Theory of Elementary Particles
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The Gell-Mann —Okubo broken-SU(3) meson mass formula is treated as a quadratic Diophantine equation
and solved in integers. The relative masses of vr, q, X, many known E'*, and the probable lowest I may be
predicted unambiguously. The requirement of least-integer solutions mandates a unit mass of 70 MeV
{137m,c'). Connections between rest masses and angular momenta can be made, and there is evidence of a
general linear group.

q =ah,

E=-,' (3a'+b'),

(2b)

with a and 6 integers. To limit ourselves to nontrivial
and least-integral solutions, we require, respectively,

b/u, b/3a (3)

either (u, b) =1, a+b= 0(mod—2) (4a)

or (u, b) =2, a+b= 2(mod —4) (4b)

where (a,b) is the greatest common divisor of a and b

A very simple solution of Eq. (1), with a=2, b=4,
corresponds to m=2, q=s, and X=7. If we compare
these numbers with the experimental masses' of the
basic meson octet [m(~) =135—140 MeV, m(g) =549
MeV, m(E) =494-498 MeVj, we see at once that (a)
this simple solution in integers happens to give very
closely the relative masses of the basic meson octet, and
(b) if the masses are divided by this simplest set of
integers, we get quite closely the unit mass 70 MeV
= 137m.c' originally proposed by Nambue

"'N this paper, we consider the Gell-Mann —Okubo
~ - meson mass relation'

~'+3q' =4E'

as a Diophantine equation and seek solutions in inte-
gers, similar to the sets (3,4,5), (5,12,13), etc., for the
Pythagorean equation x'+y'=s'. From standard meth-
ods of algebraic number theory' we may deduce the
result

(2a)

TABI,E I. Comparison with experiment for Emesons (I= ~, F=1).

8as1c
1ntegers
O„b

Predicted
Mass mass

number (MeV)
K 70K

Experimental
mass (Mev) JI'

m Jp

J-related.
quantum

Nos.
J1, Js

To go further, we first look at the X masses, since
experimentally there are fewer of them, and theo-
retically it is very easy to compute a complete spectrum
since Eq. (2c) is additive, there is a triple degeneracy
in a and b for the IC's, and probably most important of
all, there is little mixing. Column 2 of Table I lists all
permitted values of X through 31; the corresponding
sets of u and b are listed in column 1. Column 3 lists
70K, the predicted masses in MeV. The last columns
list the established3 experimental masses, together with
J~ assignments, and two numbers J1 and J~ which will
be discussed below. From Table I we can see that all
established E masses except 1775 can be 6tted with the
Diophantine scheme; and, in fact, If=31 can be fitted
to the bump E*(2240).

Consider further mesons with I=—,
' (and assumed

I"=1) which from recent convention' we shall call I.
mesons. If we go back to the original Okubo formula' for
mes ons)

eP =mo'+m /[I (I+1)——,
' F'j, (5)

we see that for a broken-SU(3) multiplet which includes
I=-,', we could derive three more equations like Eq. (1),
of which two more are independent. %lth the values of 8
and b in Table I, the only integral value of I under 34
satisfying all four equations in integers turns out to be
L =17 (1190 MeV) corresponding to a=3, b=1. It is
interesting that the only mesons discovered so far' with

'S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962};
M. Gell-Mann, California Institute of Technology Report Xo.
CTSI.-20, 1961 Lunpublished but reprinted (as is Okubo's paper)
in M. Gell-Mann and Y. Ne'eman, The eightfold 8"uy (Benjamin,
New York, 1964)j. The use of squared masses for mesons was
suggested by R. P. Feynman.

R. D. Carmichael, Diophantine Analysis (Wiley, New York,
1915; reprinted by Dover, New York, 1959). Equations (2) may
be derived by a slight extension of the rational-solution method
on p. 3. For a more sophisticated and rigorous treatment of the
general 6eld of algebraic number theory, see G. H. Hardy and
E. M. Wright, An Introduction to the Theory of Eusnbers, 4th ed.
(Oxford U. P., Oxford, England, 1960).

3 A. Sarbaro-Galtieri et gl. , Rev. Mod. Phys. 42, 87 (19?0).
4 Y. Nambu, Progr. Theoret. Phys. (Kyoto) 7, 595 (1952).

1, 5$
2, 4)
1, 7
3, 5
4„2
2, 8
3 7
5 1

s,

490

1330

a Bump at 2240; see text.
b 3 predicted.

K 494-498 0

Kg 1200-1350 1+(2 )

K,v 1420

KA, I l. 775

0 0

0 1
1 0
1 0

1 2
3 0
3 0
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a possible I=—,
' are bumps with masses of 1175 and 1265

MeV, respectively.
Amgllar momem/a. %C should try to associate u and b

with J and a second related quantum number. Two
likely candidates for this second number, parity and the
L 8 from quark spectroscopy, appear to be unhelpful.
However, the quantities

Ir =—x'(3a+b —10),

I.-='-. (I -1 I-2) (6b)

~erve to put the ~ mass formula (2c) in the simple form

&= 1+ (I,+2)(I,+3)+» (I +1). (?)

Values of J~ and Jg are shown in Table I. The second
quantum number J2 enters only for X=19 or for the
first set of a and b. Note also that I.=17 is assigned
Jq ——J2——0 on this basis. It is also interesting that in all
cases

J=Jr+J2 (vector addition),

which incidentally would allow a mixture of J=1 and
J=2 for %=19 and might help explain the broad
spectrum. From Eqs. (1), (2), and (5) one may obtain
the mass formula

m'=u'b'+-s '(9a' f') (a' ——b') P(I+1)—,'F'], (9)

which from (6) may be expressed in terms of I's if
desired.

Baryons. The mass equation analogous to (1) for the
basic baryon octet, ' cleared of fractions, is

2(A+ ) =3A+Z. (10)

A set of numbers consistent with (10) and with the
experimental masses is %=2?/2 (945 MeV), "=19
(1330 MeV), A. =16 (1120 MeV), 2=1/ (1190 MeV).
But the argument is much less compelling from the
standpoint of number theory, since a Diophantine
equation with m=1 has a plethora of solutions, and the
above set of numbers is by no means the simplest solu-
tion of Eq. (10)—for example, all solutions could be
diminished by the same constant. In general, it would
appear preferable to seek theoretical mandates from a
study of the mesons.

3IIesoes wAh /= 1 aid I=o. In contrast to the rather
tight predictions for the E and I.mesons, Eqs. (2a) and
(2b), for s. mesons (I=1) and g mesons (I=O), re-
spectively, predict large numbers of masses probably
not found in nature. The best available scapegoat would
appear to be mixing, which would be expected to
destroy Eq. (1) in many cases. One can hope that the
problem will be cleared up when an underlying group is
found. It is encouraging that most of the low-lying
mesons with I=1 or I=O do have masses close to
integral multiplcs of 70 MeV.

Ieptoes. One of the bases of the original hypothesis
of Nambu4 was that, on the 70-MeV scale, the muon has

a mass number very close to ~. It would be tempting to
speculate that the muon be included in any underlying
group (along with assignments 8= p =0), but this is
extremely premature. If this happened to be so, it
would be an argument against the generality of the
quark scheme, since the muon (8 =0, J'=-', ) is not con-
structible from quarks and antiquarks; in fact, GCII-
Mann's original triplets' might be more consistent with
the over-all group.

Electromagnetic effects As .pointed out by Nambu, 4

electromagnetic effects would constitute a 6ne structure.
An lntc1cst1ng hypothesis would bc that thc departures
in mass values from precise multiples of 70 MeV are due
to electromagnetic CGects; unfortunately, it appears to
be untestable by an appeal to SU(3), as it is tauto-
logically consistent with, e.g., the Coleman-Glashow
relation. 5 %bile the order of magnitude is certainly
correct, an inspection of the experimental masses ap-
pears to give no immediately obvious orderly con-
clusions, and at present such a hypothesis remains more
a Procrustean bed than a useful guide. A further point,
which is of extreme interest in view of an apparently
stronger position for mass quantization, is that, in
terms of a unit of 70 MeV, the rest mass of the electron
is precisely, not just approximately, n.

rim underlying grogp. Equations (?) and (8) (and the
simpler fact that, except for X= 19,I=I~+In arithrnet-
ically) remind one of expressions associated with the
decomposition of SO(4) or (the Lorentz group) SO(1,3)
into two rotation groups SO(3). One might strongly
suspect that there would be, for the E mass structure,
an underlying linear group which is a suKcient generali-
zation of SO(4) or (more likely, the noncompact)
SO(1,3) to take the factor of 3 in Eq. (?) into account.
Then such a group would have to be further enlarged to
allow for other values of isospin.

The NeiIt, ' muss. The signi6cance of the unit mass is not
necessarily that such a particle exists, nor that physical
particles arc made out of such a building block. Tile
immediate conclusions, rather, would appear to deal
more with physical theory: (a) A scale has now been set
such that the fundamental length proposed by Heisen-
bergo can be assigned a numerical value, because the
Diophantine approach identifies a set of unambiguously
defined integers, the smaIIest whole integers satisfying a
certain equation, with a set of experimental masses.
(b) The broken-SU(3) mass formulas of Gell-Mann and
Okubo' are now asserted to be exact, rather than
perturbations on something else. Hence, such mass
formulas, and any underlying group which would yield
them, should be accepted as a starting point, and not
merely considered a result of Geld theory.

These conclusions may be a little premature, if not

'S. Coleman and S. L. Glashorv, Phys. Rev. Letters 6, 423
(1961).' W. Heisenberg, Z. Physik 32, 20 I'1938).
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simply wrong, but in any case I would suggest that both
the hypothesis of Nambu4 and the mass formulas of
Gell-Mann and Okubo' are exact in integers, that a
strong theoretical support can be given to them in

terms of algebraic number theory, and that the methods
of algebraic number theory should be used as a test of,
or even an approach to, elementary-particle mass
formulas.
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Using the methods developed in a previous paper, we generalize the calculation of the dual amplitude for a
nonplanar diagram with a single closed loop to the ease with an arbitrary number of "twisted vertices. "Just
as with the four-point function discussed in the previous paper, we And that, if we write the amplitude
3I=J'Q'II 5K(II), 5K(II) is periodic in II, the period being given by the sum of the four-momen. ta of the
"twisted vertices. "%e then show in the general case that the prescription of choosing Z to range over just one
period yields the imaginary part required by perturbative unitarity. %e verify that M so defined is dual in
three different ways. Ke show explicitly that our result is equivalent to the Kikkawa-Klein-Sakita-Virasoro
(KKSV) prescription; we also prove duality directly from the Bardakci-Ruegg-like form without reference
to the KKSV structure; and 6nally we show that duality is manifest within the operator formalism before
the trace is performed.

I. INTRODUCTION

'N a recent paper, ' hereafter referred to as I, we have
- - developed techniques for calculating the dual

amplitude corresponding to a nonplanar diagram with

one closed loop. In I, we worked out explicitly the
amplitude for the four-point diagram with one "twisted
vertex. " The result was found to be almost precisely
the form predicted by the duality arguments of
Kikkawa, Klein, Sakita, and Virasoro (KKSV).'When
we wrote the single loop amplitude as M= JUROR(II)d'lI,
we found that, for the four-point function, OR(1I) was

periodic in II with the period given by the four-

momentum of the twisted vertex, or equivalently, by
the sum of the four-momenta of the "untwisted ver-

tices." %e then found that by choosing the region of

integration, Z, to range over precisely one period we

obtain the correct result for the imaginary part.

~ Research supported by the U. S. Air Force Once of Scientihc
Research, Once of Aerospace Research, under Grant No. AF-
AFOSR-68-147 1A.

f NSP Graduate I ellow.
M. Kaku and C. 3.Thorn, Phys. Rev. D 1, 2860 (19/0).

refer to formulas from this reference by pre6xing a Roman
numeral I, e.g., (I,2.3).

2 K. Kikkawa, S.A. Klein, S.Sakita, and M. A. Virasoro, Phys.
Rev. D 1, 3258 {19'tt0); K. Kikkawa, It. Sakita, and M. A. Vira-
soro, Phys. Rev. 184, 1701 (1969); K. Kikkawa, iNd. 187', 2249
(1969),

In this paper we present the explicit calculation of
the arbitrary E-point nonplanar amplitude with m
untwisted vertices and. Ã—m twisted vertices. Again
we Gnd that, except for a factor

our result is in agreement with the KK.SV prescription
if one includes al/ lines in the dual diagram. In the
arbitrary case we find that OR(II) is periodic with period
given by the sum of the four-momenta of the untwisted
vertices.

In Sec. II we derive our result for OR(II) and write
it in Kikkawa-like form. In Sec. III we discuss the
slngularitg structure of OR(II) and show that bg choos-
ing the region Z to range over just one period, we
obtain precisely the result required by perturbative
unltarlty. In Sec. IV we discuss the duality of the 6nal
result; in particular, we discuss duality within the
framework of the operator formalism. Most of the details
of the calculations are relegated to the appendices.

II. CWLCUI.ATION OF mnaRr CI,OSZD LOOP

Writing the amplitude for Fig. 1 as iV= Jrd'IIOR(II),
with the region Z to be specified in accordance with


