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It is now a trivial, if somewhat tedious, exercise to compute the integrals and traces in Egs. (A2) and (AS);
the results to order 1 are
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The sum B#*o- Bwvor4 Brdra g then identically zero to terms of order 1/g.
We will not calculate all terms of order 1/g, but simply observe that the terms in Eq. (A3) are not obviously of
the required order. FFor these terms, the limit as ¢ — o cannot be interchanged with the § integral. It is straight-
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Such nonuniform limits do not contribute to the terms of order 1, and hence are not relevant to the question
of Schwinger terms. They are, however, essential in exhibiting the canonical commutators.
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We examine a model of scalar positronium for the purpose of testing Padé approximants in the Coulomb
problem and find that the (1,1) Padé approximant for the amplitude comprised of the Born term, the box,
and the cross-box diagrams predicts an infinite number of bound states. Although the O(4) symmetry is pre-
served, the spectrum obtained is not the relativistic Balmer formula derived by the eikonal approximation or
other conventional methods. A recent method of extracting a relativistic Balmer formula (with all recoil
effects) from the eikonal approximation is found to be equivalent to summing up definite portions of the
(crossed) ladder diagrams. The (1,1) Padé approximant deduced from the first two terms of this approximate

series yields exactly the same result.

ECENTLY Padé approximants have been applied proximants formed from the asymptotically divergent
to various calculations of perturbation series. perturbation-series calculations of Bender and Wu? for

Loeffel e/ al.! have shown that the diagonal Padé ap- the ground-state energy of the anharmonic oscillator
converge to the correct answer. Other applications of

1J. J. Loeffel, A. Martin, B. Simon, and A. S. Wightman,
2 C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).

Princeton University report, 1969 (unpublished).



2 REMARKS ON A TEST OF THE PADE-APPROXIMANT. ..

I'1. 1. Diagrams whose con-
tribution to the scattering
amplitude is examined.
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Padé approximants have been made to the partial-wave
decomposition of scattering amplitudes.® In this paper,
we examine a model of scalar positronium for the
purpose of testing this second type of application of the
Padé approximants in an exactly solvable example.

Two scalar particles of mass M are assumed to inter-
act by means of a long-range force mediated by a scalar
photon of infinitesimal mass u. The diagrams whose
contribution to the scattering amplitude is to be ex-
amined are depicted in Fig. 1. These diagrams are
among the Feynman series of all (crossed) ladder dia-
grams approximated by the eikonal method. The fact
that this approximation method leads to the relativistic
Balmer formula* motivates our restriction of fourth-
order diagrams. Below threshold

s=—(p1tq)?<4M?,
t=—(p1—p2)?= (AM2—s) sin2(36)>0,
u=—(p1—¢2)*= (4M*—s) cos*(36)>0.

We assume that pu?&4M?—s. Under this assumption, the
small-u behavior of the diagrams in Fig. 1 is given by
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We choose to expand this amplitude about the for-
ward direction in a power series in #/u%5 Unlike the
partial-wave decomposition, this prescription does not
single out a fixed value for the angular momentum;
rather, it limits the range of partial waves considered
from the zeroth partial wave to the nth partial wave,

8 D. Bessis and M. Pusterla, Nuovo Cimento 54A, 243 (1968);
J. L. Basdevant and B. W. Lee, Nucl. Phys. B13, 182 (1969).

¢ E. Brezin, C. Itzykson, and J. Zinn-Justin, Phys. Rev. D 1,
2349 (1970). Earlier related works include H. Suura and D. R.
E('em%i)e, Phys. Rev. Letters 10, 69 (1963); M. Lévy, ibid. 5, 235

1962).

6 Because of infrared divergences in the amplitude (2), the
(1,1) Padé approximant applied to the partial-wave decomposition
of (2) leads to bound states that are not independent of u. This
situation would also arise with the prescription presented in the
text if we did not restrict our considerations of fourth-order terms
to the box and cross-box diagrams.
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where % is the power of #/u? whose coefficient is chosen
for study. Expanding (2) in such a power series yields

1 o 71\ gt Bnm)
2 (5) et e
p? a1 \p2 T (AM2s—s2)1/2

where B(x,y)=I(x)I'(y)/T(x+y) is the Euler beta
function. We have replaced # by 4M?—s is in the
expansion as {<u><4M?*—s. The (1,1) Padé approxi-
mant in g% is

1 » {\71 4g2
Plis)=— 3 () L@
wuin=1\u?/ 1—g?B(n,n)/4r(4M?s—s?)!/?

The coefficient of ##~* has a pole for

sn=2M2I:1+<1— f:;)2>”2:|,

a=g/4nd?, fn)=2/Blnn).
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where

(6)

This is to be compared with the relativistic Balmer

formula®
a2\ 12
sn=2M2|:1+<1— ~~> ]
TLZ

The amplitude (4) does display the usual / degeneracy
imposed by the O(4) symmetry, but the spectrum
represented by (5) and (6) is quantitatively different
from (7). The former spectrum of energy levels ap-
proach threshold much faster with increasing # than the
Balmer formula (7).

One of the approximation techniques that yields the
correct result (7) is the eikonal approximation. The sum
of all Feynman graphs of the (crossed) ladder variety

(7

6 Brezin et al. (Ref. 4). This formula is also derived from the
quasipotential approach. See C. Itzykson, V. G. Kadyshevsky,
and I. T. Todorov, Phys. Rev. D 1, 2823 (1970). The former paper
derives the result corresponding to (7) in the case of scalar posi-
tronium and vector photons. Our discussion of the eikonal treat-
ment of scalar positronium with scalar photons is drawn from this
work and from private communications of C. Itzykson.



1062

found by this method is proportional to”
+00
s1/2(4M2—|—t—s)”2/d26 {expl:4ig2/ do
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where

B=—t, p=3(prtp), ¢=%at+g). (O

Integration yields
SU(AM 21 —s5) V2
g Ko(ub)
X / &b e"""’[exp(— —~——9————)-—1}, (10)
r (4M2s—si—s?)1/2

and near the forward direction for < u2<4M?—s this is
proportional to

© 0 __l n
(AM2s—s2)1iz 3 dbS ) p2ntl(e=Kowd) —1) = (11)
n=0 /o (21’5!)2
where
z=g%/m(4M2s —s2)12, (12)
Scaling the variable ub=x gives us
© 1 —A" x2n—1
(AM25—s2)12 Y dx (__) _ (e-21n—1)
n=0 Jg /,1,2 y2(2n1)2
© 0 — A" x2n+1
+(4M2s—s2)l2 3 dx <—~—) —
n=0J4 ut/ ui(2nl)?
X(eKo=—1), (13)

In the interval [0,1] we have approximated Ko(x)
~ —Inx. The bound-state poles are determined from the
singularity of the integrand for small x. Therefore we
shall neglect the rest of the amplitude in the following
considerations. Integrating the first part of (13) gives

(4M 25 —s2) 112 i (:f)"_l_— 1

n=0 \p?/ u? (2nl)?

1
2n+2—z 2n42

which has poles at

g 1

=—— =242, (15)
w (M2 —s2)1/2
aZ 1/2
Sn+1=2M2l:1+<1"“ ——> :',n=0, 1,2,.... (16)
(n+1)?

7M. Lévy and J. Sucher, Phys. Rev. 186, 1656 (1969); H. D. 1.
Abarbanel and C. Itzykson, Phys. Rev. Letters 23, 53 (1969).
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The correct degeneracy is exhibited by the factor ”
which contains all partial waves up to the nth.

This result can also be deduced by expanding (11) in
a perturbation series. This is accomplished by expanding
¢—21nz ip a power series in z Inx in the first part of (13).
This gives
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The sum in 7 reproduces (14). Because it is a geometric
series, the (1,1) Padé approximant in z obtained from
the first two terms,

=(4M3s—s?)H?

1 i —n" 1 1
2 n=0 (p2> 2n')? (2n+42)?

g2 gt 1 1
X<~— +— ), (18)
T 2w (AM2%s—s)2 p41

gives the same result as the summation of the whole
series.?

Although this latter result is of some interest, we must
emphasize the failure of the (1,1) Padé approximant to
give a correct quantitative account of the positronium
spectrum when applied to the full amplitude considered.
Apparently this failure of the (1,1) Padé approximant is
not restricted to the Coulomb problem. The first s-wave
bound state of the exponential potential is reproduced
poorly by the (1,1) Padé approximant.® In that ex-
ample, the higher-order Padé approximants give better
results for the first s-wave bound state. It could be that
higher-order Padé approximants inferred from the
sixth-order (crossed) ladder diagrams would shift the
predicted positronium spectrum in the right direction.
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8 Tt should be emphasized that Eq. (18) represents only a part
of the perturbation expansion of the eikonal equation (10). Thus,
for example, the contributions in g2 deduced from (10) differ by
crucial numerical factors from those given in the expansion (18).

9 J. L. Basdevant and B. W. Lee (Ref. 3).



