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It is now a trivial, if somewhat tedious, exercise to compute the integrals and traces in Eqs. (A2) and (AS);
the results to order 1 are
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and
(A6)
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The sum Bl""~'+BI'"'~+BI'~"' is then identically zero to terms of order 1/q.
We will not calculate all terms of order 1/q, but simply observe that the terms in Eq. (A3) are not obviously of

the required order. For these terms, the limit as q ~~ cannot be interchanged with the 6 integral. It is straight-
forward to verify that
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(AS)

Such nonuniform limits do not contribute to the terms of order 1, and hence are not relevant to the question
of Schwinger terms. They are, however, essential in exhibiting the canonical commutators.
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We examine a model of scalar positronium for the purpose of testing Pade approximants in the Coulomb
problem and find that the (1.,1) Pade approximant for the amplitude comprised of the Born term, the box,
and the cross-box diagrams predicts an infinite number of bound states. Although the O(4) symmetry is pre-
served, the spectrum obtained is not the relativistic Balmer formula derived by the eikonal approximation or
other conventional methods. A recent method of extracting a relativistic Balmer formula (with all recoil
eAects) from the eikonal approximation is found to be equivalent to summing up definite portions of the
(crossed) ladder diagrams. The (1,1) Pade approximant deduced from the erst two terms of this approximate
series yields exactly the same result.

ECENTLY Pade approximants have been applied
to various calculations of perturbation series.

I-oeffel et a/. ' have shown that the diagonal Pade ap-

' J. J. Loeffel, A. Martin, B. Simon, and A. S. Wightman,
Princeton University report, 1969 (unpublished).

proximants formed from the asymptotically divergent
perturbation-series calculations of Bender and Wu' for
the ground-state energy of the anharmonic oscillator
converge to the correct answer. Other applications of

2 C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).
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FIG. 1. Diagrams whose con-
tribution to the scattering
amplitude is examined.

Pade approximants have been made to the partial-wave
decomposition of scattering amplitudes. ' In this paper,
we examine a model of scalar positronium for the
purpose of testing this second type of application of the
Pade approximants in an exactly solvable example.

Two scalar particles of mass M are assumed to inter-
act by means of a long-range force mediated by a scalar
photon of infinitesimal mass p. The diagrams whose
contribution to the scattering amplitude is to be ex-
amined are depicted in Fig. 1. These diagrams are
among the Feynman series of all (crossed) ladder dia-
grams approximated by the eikonal method. The fact
that this approximation method leads to the relativistic
Balmer formula4 motivates our restriction of fourth-
order diagrams. Below threshold

s = —(pi+pi)'(4M',
t= —(pi —p2)'= (4M' —s) sin'(-'0)) 0

u= —(pi —g2)'= (4M' —s) cos'(-'0)) 0

We assume that p2(&4%2 —s. Under this assumption, the
small-p, behavior of the diagrams in Fig. 1 is given by

4g' 4g sin 'I (s/4M2)'i ]
T(s, t, )u= ——+

u' t i~ ~' —(4—M's —s') "'

1 t ' g4 B(ii,e)4g'+-
@' ~=i ti' x (4M's —s')'" (3)

where B(x,y) =I'(x)I'(y)/I'(x+y) is the Euler beta
function. We have replaced I by 4M2 —s is in the
expansion as t(ti'((4M' —s. The (1,1) Pade approxi-
mant in g' is

n—i 4g2
I'(t, s) = —P — — —— . (4)

p n=l u 1 g'B(ri I)/4ir(4—M's —s')

The coefficient of t" ' has a pole for

where

~2 1/2-

s„=23f2 1+ 1—
(u)'

n= g'/4irM2, f(u) =2/B(u, e) .

This is to be compared with the relativistic Balmer
formula'

where u is the power of t/p' whose coefficient is chosen
for study. Expanding (2) in such a power series yields

sin—'L(u/4M') '~'g " dt' 1

.. . —,——.(2)
(4(v'v w')"' ), (t—" 4r 't )"f—'

O, 2 1/2-

s =2M' 1+ 1——
e

(7)

We choose to expand this amplitude about the for-
ward direction in a power series in t/u' 'Unlike the.
partial-wave decomposition, this prescription does not
single out a fixed value for the angular momentum;
rather, it limits the range of partial waves considered
from the zeroth partial wave to the eth partial wave,

' D. Bessis and M. Pusterla, Nuovo Cimento 54A, 243 (1968);
J.L. Basdevant and B.W. Lee, Xucl. Phys. 313, 182 (1969).

4 K. Brezin, C. Itzykson, and J. Zinn-Justin, Phys. Rev. D 1,
2349 (1970). Earlier related works include H. Suura and D. R.
Yennie, Phys. Rev. Letters 10, 69 (1963); M, Levy, ibid. 5, 235
(1962).

~ Because of infrared divergences in the amplitude (2), the
(1,1) Pade approximant applied to the partial-wave decomposition
of (2) leads to bound states that are not independent of p, . This
situation would also arise with the prescription presented in the
text if we did not restrict our considerations of fourth-order terms
to the box and cross-box diagrams.

The amplitude (4) does display the usual I degeneracy
imposed by the O(4) symmetry, but the spectrum
represented by (5) and (6) is quantitatively different
from (7). The former spectrum of energy levels ap-
proach threshold much faster with increasing e than the
Balmer formula (7).

One of the approximation techniques that yields the
correct result (7) is the eikonal approximation. The sum

of all Feynman graphs of the (crossed) ladder variety

'Brezin et cl. (Ref. 4). This formula is also derived from the
quasipotential approach. See C. Itzykson, V. G. Kadyshevsky,
and I. T. Todorov, Phys. Rev. D 1, 2823 (1970).The former paper
derives the result corresponding to (7) in the case of scalar posi-
tronium and vector photons. Our discussion of the eikonal treat-
ment of scalar positronium with scalar photons is drawn from this
work and from private communications of C. Itzykson.
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found by this method is proportional to'

s'i'(4M'+t —s)'i' d'b exp 4ig'

This gives
dry+(b 2p—o+2qr, p) haik

5 (g)
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wliicli coii'tallls a p to e
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s all artial waves up to e

also be deduce y ex

h 6 t tof (13).
eries. This is accomp is e

8 '~* in a power series in slnxln t e rs
0

Integration yields
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series, the 1 1) Pade approximant in s o
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Pl oportional to

i 2 b b2n+1(&gxo(pb) 1) (11) 1 z& g
e(4M's —s')'i' P db — b " e

m=0 0 (2'! 2
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Scaling the variable pb =x gives us

(12)
g
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(4M's —s')' ' Q
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al 01j we have approximated Eo(x)In the interval t 0,1j we ave
d-state poles are e erm
inte rand for sma x.slngulRrlty of the 1Ilt g

he first part of (13) givesconsiderations. Integrating t e rs

g 14
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which has poles at
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