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A new theory of quantum electrodynamics is presented, which is relativistically invariant, gauge invariant,
unitary, and free of divergences. In this theory, mass renormalization, charge renormalization, and wave-
function renormalization are all hnite. Experimental consequences are discussed, and theoretical implications,
especially those related to causality, are analyzed.

I. INTRODUCTION

"N spite of the spectacular success of the renormalized
~ - theory of quantum electrodynamics, ' there remain
unsatisfactory aspects concerning the inherent mathe-
matical ambiguities in manipulating divergent expres-
sions. Even apart from questions of mathematical rigor,
there are serious difficulties when one tries to extend the
renormalization process to hadronic systems. Consider,
for example, the problem of the mass difference between
m.+ and vr'. It seems reasonable to assume that this mass
difference is due purely to the electromagnetic inter-
action. Yet, according to the usual theory, this mass
difference is calculated to be infinite; furthermore, it can
be shown that under rather general assumptions such
an infinity, being closely connected with the equal-time
commutator between the current operator and its
derivatives, cannot be removed through strong inter-
actions. ' The same divergence difIiculties exist for all
observed (therefore finite) mass differences between
different hadrons in the same isospin multiplet; all such
mass differences are found to be infinite according to
the usual theory of quantum electrodynamics. Similarly,

by making the universality assumption about the weak.

interaction, one expects that at least the ratio between
the radiative correction to the Fermi constant G~ in
a P decay and that to the p,-decay constant G„should be
finite. Again, it is inhnite in the conventional theory.

Now, the various fractional mass differences between
different hadrons in the same isospin multiplet are cer-
tainly finite, and are all of the order of the one structure
constant n. By using the Cabibbo theory, the amount
of the radiative correction to Gr/G„can be deduced
from the observed rates of P decay and ii decay; it is, of
course, finite, and also of the order of n. The fact that

*Research supported in part by the U. S. Atomic Energy
Commission.

' At present, quantum electrodynamics agrees with experiment
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all these quantities are of the right order of magnitude
strongly indicates that they are indeed due to second-
order electromagnetic processes. It appears then that
there must be fundamental changes in our basic formu-
lation of quantum field theory, so that unrenormalized
masses and unrenormalized coupling constants can
become finite.

Recently, it has been found that there exists a
general class of field theories in which the S matrix is
fully unitary, but the Lagrangian is not Hermitian.
This makes it possible to construct relativistic local
field theories which satisfy the unitarity requirement
and are free from divergences. In particular, by replac-
ing in the electromagnetic interaction the usual zero-
mass photon 6eld A„by a complex field

where 8„ is a massive boson field associated with a
negative metric, it is possible to remove all infinities
from the electromagnetic mass differences between
hadrons, as well as those associated with radiative
corrections to weak decays.

The purpose of the present paper is, on the one hand,
to supply some further details of this new form of
quantum electrodynamics, and on the other hand to
extend a similar modification also to the fermion fields,
so that the unrenormalized electric charge is also finite.
The resulting theory is then completely free from
divergent expressions.

In order to gain proper perspective, we shall first
review briefly in Sec. II some elementary properties of
quantum theories with indefinite metric, and then
proceed to analyze the relations between the usual
commutation (or, anticommutation) relations and the
metric of the system. It is shown that, under rather
general conditions, in the case of Fermi statistics the
positive definiteness, or indefiniteness, of the metric is
Nniqle/y determined by the equal-time anticommuta-
tion relations. Thus, once the Lagrangian for a fermion
system is given, the metric is completely specified (of
course, up to a canonical transformation, connected

4 T. D. Lee and G. C. Wick, Xucl. Phys. 39, 209 (1969); B10,
1 (1969).' T. D. Lee, in Quanta, edited by P. G. O. Freund, C. J. Goebel,
and Y. Xambu (Chicago U. P., Chicago, 1970), p. 260.' T. D. Lee, in Proceedings of the Topical Conference on S'eak
Interactions, CE'RN, 1969, edited by J. S. Bell (CERX, Geneva,
1969), p. 427.
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with possible changes of basis vectors). For the case of
Bose statistics, the usual commutation relations do not
uniquely determine the metric; there remains a free
choice whether the metric is positive definite, or
indefinite.

In Sec. III, we give the details for the modified photon
Geld 2„+iB„.The interaction between the negative-
metric 8„6eld and the charged lepton and hadron pair
~tates requires that the modified photon propagator
Ii ive, besides the usual photon pole at

—(four-momentum) ' = 0,

lx) =g x;li), (2 1)

where xi, x~, . . . are complex numbers. We define the
scalar product (x(y) to be the Herrnitian form

discuss the relations between the usual canonical com-
mutation (or anticommutation) rules and, the general
structure of metric that can be used in a quantum
theory,

Let us consider a complex vector space K; let (x),
ly), . . . be vectors in K, and let [1), (2), .. . be a
basis, so that

also complex poles at

—(four-momentum)'= (ma&-,'isa)', (l.3)
(xly) =Z v*;x'*y, (2 2)

where, to 0(n), the partial width (ya)i.,i» due to
charged lepton pairs can be calculated, and is given by

PB)lepton 3&ma ~ (1 4)

As will be discussed, in order to maintain unitarity, it is
necessary that the poles due to the negative-metric 8„
Geld are, indeed, og the real axis.

It is well known' that in order to regularize the usual
charge renormalization, one cannot, because of gauge
invariance, simply modify, say, the electron propagator
by introducing convergence factors. This dif6culty is
resolved in Sec. IV. We introduce two new Dirac spinor
6elds; their charges are imaginary &ie, and their masses
are complex

where m~ and y~ are both real and not zero. Both 6elds
obey Fermi statistics. As will be shown, in this theory,
the metric is uniquely determined by the canonical
anticommutation relations and is indefinite; the gauge
invariance and, therefore, current conservation are
fully satisfied by introducing the usual minimal electro-
magnetic interaction; the unitarity is maintained
because of the complex masses; and the charge re-
normalization becomes finite since, because of their &ie
charges, the loop diagram due to these new fermion
fields is of the opposite sign from the usual one.

The modi6ed Feynman rule is given in Sec. V.
Explicit evaluations of charge renormalization and
photon propagator are carried out in Sec. VI. Experi-
mental consequences of this new finite theory of quan-
tum electrodynamics are discussed in Sec. VII, and the
causality problem is analyzed in Sec. VIII.

(~IJ&= v'; (2.4)

A linear operator A,~ can be specified by the equations

(2.5)

where the A;, 's are complex numbers; the adjoilit
operator A,~ is defined by the equation

(xl~" ly&=(yl "I*&* (
for all vectors (x) and [y), where (x(A„[y& denotes the
scalar product between (x) and A,~[y&. According to
(2.2) and (2.4), we have

(x(A., (y)= P x g;;A, gyi, .
i, j,k

(2.7)

The expectation value (x ( A» ( x) of a self-adj oint
operator, dered by

A,p=A, p, (2 g)

is, therefore, real for all vectors
( x).

All these equations can, of course, be expressed in
terms of the appropriate matrix notations. For example,
Kqs. (2.2) and (2.7) can be simply written as

(2.9)

where an asterisk denotes complex conjugation, and
the matrix

'9 (9~i)' (2.3)

is assumed to be a nonsingllur IIermiHan matrix. One
calls the metric indefinite if g is not a positive definite
matrix. From (2.2), one has, of course,

II. INDEFINITE METRIC (x(A.,(y) =xAy, (2.10)

In this section we collect, for the convenience of the
reader, some well-known facts about vector spaces with
an indefinite metric and self-adjoint operators, ' and we

7 W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 {1949);see
also R. P. Feynman, Phys. Rev. 76, 749 {1949).

8 As is well known. , an indefinite metric in the space of state
vectors was erst used by P. A. M. Dirac, Proc. Roy. Soc. {London)
A180, 1 {1942).

~i ~ +j /ji)j
and A. is the square matrix

A=(A,;).

(2.11)

(2.12)

where y is a column matrix whose ith matrix element is
y;, S is a row matrix whose ith matrix element is
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Note that the matrix element A;, should not be
confused with the scalar product between the basis
vector ls& and the vector A,~l j), which is given by

(f
I
A" I i& = (nA)', (2.13)

It is worthwhile to point out that the well-known

transformation law' of the matrix q implies that q does
not represent a bona fide operator. In fact, if one chooses
new basis vectors l1'), l2'), . . . ,

(2.14)

then, in terms of the new basis, (2.1) becomes

(2.15)

Thus x;=g, T;,x,', or, symbolically,

(2.16)

where, again, x and x' are column matrices, and 1 ' is

the inverse of the matrix T= (T;,). The transformed
matrix 3' for the operator A,~, defined by

basis independent. Those of g are not. This has its good
side: One can not only transform g to a diagonal form,
but also assume that the diagonal matrix elements are
equal to &1 (zero being excluded by the assumption
that rt is nonsingular). At any rate, the eigenvalues of rt

have no invariant meaning. The only invariant property
of rt is the "signature" which (in a 6nite dimensional
space) is defined to be the number of its positive eigen-
values minus that of its negative eigenvalues.

We now turn to the general question of different
classes of the metric p allowed in a quantum theory.
[All tt's related by the transformation (2.20) are said to
belong to the same class. g Through the usual quantiza-
tion rules, one has, to begin. with, the appropriate
commutation, or anticornmutation, relations for a set
of operators a and their adjoints a; furthermore, one is
often only interested in the case in which the matrix
representation of the entire set of these operators a and
a is irreducible. As we shall see, in such a case, these
commutation, or anticommutation, relations then com-
pletely determine the possible classes of the metric g.

We note that in any basis, because of (2.6) and rt = rtt,

the matrix representations of a and a are related by

A" ls'& =2 A, 'li '&, (2.17) (2.21)

is given by
A'=(A;, ')=1 'AT. (2.18)

On the other hand, relative to the new basis, the metric
is obviously given by the matrix rt' =(rt,,'), where

so that
~' '=("li'&

~'= Ttnr

(2.19)

(2.20)

In view of the difference between (2.18) and (2.20) it
is worthwhile to make a clear distinction between g
and an operator. For example, algebraic equations in-

volving q are not in general independent of the choice of
basis. Bona fide operators, of course, do not have this
defect. ' Similarly, the eigenvalues of an operator are

9 For this reason, we have chosen the notation in which y is
omitted in the scalar-product symbol, given by the left-hand side
of (2.2) (being "absorbed" in the definition of (x ~). Such a nota-
tion has, of course, already been used occasionally, for example, by
%. Heisenberg )Nucl. Phys. 4, 532 (1957)$. It differs from the
more commonly used notation in the literature, for example, in
Pauli t Rev. Mod. Phys. 15, 175 (1943)g, and also in our earlier
papers on the subject (Refs. 4—6). The present notation of not
explicitly displaying q has the advantage of avoiding unnecessary
noncovariant equations.

Similarly, one notes that while the matrix representation 3 of'

the adjoint operator A,p transforms in the same way as the matrix
representation A of any operator A0„, the Hermitian conjugate
At does not. Thus, it is always of considerable convenience to use
only A and A, but not At.

In this connection, it is important to dispel the notion that
certain noncovariant relations involving g, which occur in almost
every treatment of the subject, are really indispensable. For
example, as will be shown in the following, noncovariant equations
such as pa = —ap and g = (—1)~", that are usually assumed in the
theory of a harmonic oscillator with inde6nite metric, can be
completely replaced by the more general covariant condition
(2 2&)

and therefore the over-all sign of g cannot be determined

by any set of algebraic equations between a and a. Of
course, such an over-all sign has no physical meaning,
since it merely changes the entire S matrix by a minus

sign; in any quantum theory, only the relative phase
has no physical significance. Thus, it is convenient to
take care of this trivial over-all sign choice by general-
izing the definition of the same class of q to include also

in addition to those related by (2.20); i.e.,

(2.22)

(2.20')

The mathematical details for the determination of
different classes of q are given in Appendices A and B.
Here, we shall discuss some of the main conclusions.
Consider, for example, the case of a single harmonic
oscillator obeying Fermi-Dirac statistics. We have

a'= 0 and u'= 0. (2.23)

There are two different possibilities for the anticom-
mutation relation between a and a:

(i) aa+aa= 1;

(ii) au+ ag = —1.
(2.24)

(2.25)

As will be shown in Appendix A, in case (i), by using
(2.22), the metric rt can always be set to be positive
definite; this corresponds to the usual positive-metric
case, in which

(xl x& is positive (2.26)

for all vectors
l x), and therefore one can always choose
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the basis so that
(2.26')

v=( —1) (2.27')

We note that (2.26) and (2.27) are valid for all bases,
while (2.26') and (2.27') are, of course, basis dependent.
In either case, the quantum of this oscillator is said to
be of positive or negative metric, depending on whether
case (i) or case (ii) holds.

In the case of a single harmonic oscillator obeying
Bose-Einstein statistics, the commutation relation

In case (ii), there is also only a single class for the metric
g; by using (2.22), one can always require, instead of
(2.26), that

&xj(—I)"~x) be positive (2.27)

for all vectors
~
x). The metric g is therefore indefinite.

If one wishes, one may choose a. specific basis so that

Pf =AI+iBf . (3 I)

For clarity, we consider erst a simple system consisting
of three fields: A„, 8„, and a charged lepton field gi
which can be either the usual electron field or the usual
muon field. (The inclusion of other fermion fields of an
unusual type will be discussed in Sec. IV.)

The I.agrangian density of this simple system is
given by

(3.2)
where

Z, (P) = ——'(G '+P ') —-'(mo'8 )' (3.3)

III. PHOTON FIELD

In this section we shall review briefly the basic
formalism of the modified photon field

can be reduced to
(2.28)

(2.29)

+(fA') fi7i ri = i'eo'bi +mi fbi ~ (3 4)
BXp

by interchanging the roles of a and a. As will be shown
in Appendix 8, this commutation relation'limits the
metric g to one of the following three classes.

(i) Degn9e metric case. In this case (2.26) holds and
therefore (2.26') is always a possible choice.

(ii) Indefinite me(no case (normal). In this case (2.27)
holds, and therefore (2.27') is always a possible choice.

(iii) Abnormal case. In this case the metric q is
indefinite; unlike the situation in cases (i) and (ii), the
eigenvalues of aa are not integers, and they have neither
upper nor lower bound.

In the following, we shall impose the condition that
the operator ua should be bound either from above, or
from below; this would ensure, at least for the free
oscillator, a lower bound to the energy spectrum. This
additional condition then rules out the abnormal case
(iii). Tlie class of 1netiic is then uniquely deteiiliiiied by
specifying whether p is definite or indefinite. The
quantum of this oscillator is said to be of positive or
negative metric, depending on whether y is definite or
lndeAni te.

For physical applications of a quantum theory with
inde6nite metric, we choose the Hamiltonian II to be a
self-adjoint operator. Let

~ r) denote any eigenvector of
B with a real eigenvalue. We recall the elementary, but
important, property4 that the S matrix is unitary if

&r~ r) is positive (2.30)

for all such eigenvectors ~r) with real eigenvalues. In
such a theory, each physical observable is represented
by a self-adjoint. operator A, and each physical state )
must be a linear superposition of only eigensta, tes r)
belonging to the real eigenvalues. The expectation
value of 2 is then given by the usual formula,

&A)=&IAI)/& I ) (23&)

(3.5)

(3.6)

80 ls the unleIloI'mRllzed chRI'ge, RIld w@ Rnd PbI, ale
the unrenormalized masses of the B„and Pi fields. In
the above expressions, Pi denotes the adjoint operator
of lbi, and g„ is a self-adjoint vector fieldio; i.e.,

p4= —p4.

Consequently, 3„is a self-adjoint field,

3„=+A„ for @&4 (3.7)

but 8„ is not, "
A4 ———A4, (3 g)

(3.9)

84——+84. (3.10)

Hamiltonian B R11d 1ts quantization cRIl
carried out by following the usual canonical treatment.
We may choose as generalized coordinates the lepton
field Pi, the transverse electromagnetic vector potential

M Throughout the paper, the subscripts p, and p denote the
space-time indices; p, =4 is the time component with g4 ——ij. All
boldface letters denote three-dimensional vectors."If one wishes, one may replace iB„by J3„', which is a self-
adjoint vector 6eld. Then, of course, the free Lagrangian for 9„'
appears in (3.3) with an unusual sign.
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A," (in the Coulomb gauge"), and the spatial com-
ponent 8; of the massive Boson field; their conjugate
momenta are, respectively, iP/, E,';—and

II;= iG4, . (3.11)

alld

II —Q (2Qo/s)
—1/2(a te/k ~ r+ gk te—zk ~ r) ( zoe /st)k

At equal time, one has

g /(r, t),Pi(r', t) }= 8 (zr r—'), (3.12)

L
—E"(r,t),As"(r', t)$

z(b, s 7—' —"7 '7k) li'(r r')—) (3.13)
and

[II,(r, t),Bs(r',t)]= zti—,stir(r r')—. (3.14)

It is convenient to introduce the usual Fourier com-
ponents of these fields. For example, we may write

13 —Q (2Qzos)
—1/2(ak e/k/~ r akte —/k ~ r) ek/

k, t

+g(2Qo/ ) / (ak'e'k'& —ak/e 'k'&)(rokIzjzzzn') (3.15)

That is, A„ is of positive metric and 8„ is of negative
metric.

It is easy to ver'ify that the total Hamiltonian JI is
self-adjoint. The equations of motion can be derived by
using the usual Heisenberg equations, and the com-
patibility of the equal-time commutation relations
(3.12)—(3.14) with relativistic invariance can be estab-
lished following the usual arguments. For the unitarity
property, we note that for the free field (ep=0), our
basic condition (2.30) is not satisfied since there exist
negative-metric eigenstates of the free Hamiltonian
with real eigenvalues, e.g., states with X~= odd integers.
)For the free system, the condition (2.30) is, of course,
irrelevant since the 5 matrix is the unit matrix. ) In
order to satisfy our basic condition (2.30), it is necessary
to have ep/0. Consider, for example, the negative-
metric state IB) of a single free B„quantum, i.e.,
%~= 1. For m~'&2m'', such a state, in the limit Op=0,
is degenerate" with the positive-metric lepton pair
states It+i ). It can be readily verified that this degen-
eracy is removed in the presence of the interaction.
Furthermore, the resulting eigenvalues are"

k, t 5$g~ 2ZY (3.21)
+Q(2Qo/s) '/'(a 'e' '+a 'e '"')(—zz/zn'k) (3.16)

k

where es', es', and k= IkI 'k form a right-handed
orthonormal set of unit vectors,

o/s = Lkz+ (r/zz/o) z jr/z

where y~ and m~ are both real, denoting the width and
the renormalized mass of the B„quantum. The corre-
sponding eigenvectors

I
&& of these two complex eigen-

values consist of a coherent mixture of IB) and It+i );
these two eigenvectors both have zero norm,

and 0 is the volume of the system. The commutation
relation (3.14) becomes then and can be normalized so that

(3.22)

Lak"Asl= -8k, 8 /z, (3.18)
(3.23)

( I (—1)/vs
I ) to be positive

for all vectors
I ), where

B= Zakak Z'akak
k, t k

(3.19)

(3.20)

where n, P denote either t=1, 2, or /. As already dis-
cussed in the previous section, the anticommutation
relation determines the metric of it/ to be positive; the
commutation relations (3.13) and (3.14) limit the metric
of these Boson fields to two possibilities: either positive
or negative. We will now specify the metric of the
system by requiring"

The remaining eigenstates
I
r) with real eigenvalues can

then be shown to have positive norm, and therefore
(2.30) is satisfied. Further details will be given in Secs.
V and VI.

Since the propagator of the modified photon field
p„=A„+iB„canbe easily seen to be proportional to k 4

in the high-momentum limit as k ~~, one finds that,
through a straightforward power counting, except for
charge renormalization all higher-order processes of the
Lagrangian (3.2) are finite. In order to render charge
renormalization finite, additional new fermion fields
have to be introduced; these will be discussed in Sec. IV.

'2The Coulomb gauge is chosen here purely for convenience.
In the Coulomb gauge, A„ is given by A; =A,"and A4=i@, where
A; ' satisfies (BA;~'jar, ) =0 and zttz is the solution of 6@= —egypt.
Correspondingly, the electric 6eld is given by E, =E;"+E,"ng,
where E. '= —(BA. 'jest) and E " g = —(8@/Br;). In deriving the
canonical momentum of A;" as —I'z, ",we have, as usual, first set
in the Lagrangian the spatial integral J'E,"L~';""gd'r =0, and then
taken its derivative with respect to (BA;"/at).

I3 We emphasize that (3.19), as well as other equations in this
section, are all basis independent. Of course, it follows from (3.19)
that, if one wishes, one can always choose a specific basis so that
e = (—1)"B.

' If rtzB (2rtst, then, in the limit e0 ——0, this negative-metric
state is degenerate with the positive-metric three-photon state.
The introduction of e0/0 wouM also remove this degeneracy and
make it possible to satisfy (2.30)."After the completion of this paper, Norman Kroll kindly drew
our attention to the fact that in connection with his investigation
on ad hoc modifications of quantum electrodynamics I Nuovo
Cimento 45, 65 (1966)j, he has also noted the possibility of such
complex poles and some of their consequences. The so-called
"causality difficulty" mentioned in Kroll's paper, however, has
been resolved in Ref. 4. (See also Sec. VIII of the present paper. )
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IV. FERMION FIELDS

(4.1)

8 —(&QTT.v4&AA) =o,
Bsy

(4.10')

denote a new fermion field, where fi and go are both
four-component Dirac 6elds, and

which correspond to the two similar conservation laws
for the usual charged lepton 6.elds,

denotes the adjoint Geld, where the bar is used in the
sense of Eq. (2.6). The Lagrangian density for a system
consisting of 3„, 8„, the usual charged lepton 6elds

p„p„, and this new fermion field pA is given by

Z —(i&bVAVA i) =0
l=e, p gg),

8
(b4' 74 r&4' 4'O'YAr&fa)

8$)I,

(4.11)

(4.11')

l=e, p,

The total electromagnetic current density j, is given by4.2
jA= co/i T Tby4yif» ieo P—Pby4&gf'i, (4.12)

l=e, p,

where Zr„,(P) and. Z(l,g) are given, respectively, by
(3.3) and (3.4),

g(F,y)= —p,y, p—„- +eoTghi +Afro QT, (4.3)
8$g

and T„Tb are two of the usual (2&&2) Pauli matrices
which commute with all Dirac matrices y„and satisfy

and it is clearly conserved:

8/le/Bxa = 0.
Under the gauge transformation

(4.13)

(4.14)

2 7Q2

Ta Tap 7$ Tbp

(4 4.)

(4 5)

the charged lepton field g~ (l=e, Ab) has the usual
transformation

TaTb+ 757a

In (4.3), 3I&o is also a (2X2) matrix, given by

3II."=m g'+Z-,'y p'Tg,

(4.6) and therefore
p~ —b sfeOAp&,

~ g, e e'ebA. —

(4.7)
the new fermion field QA transforms according to

~ e eeebAQ—

(4.16)

(4.17)
where mg andvg are real numbers. The totalLagran-
gian density is therefore self-adjoint, because of (4.5)
and (4.6). From (4.3), one finds that the conjugate
momentum of pA is i)i T, The cano. nical quantization
rule gives then, in addition to (3.12)—(3.14),

By following the standard procedure of passing from
Lagrangian to Hamiltonian, one 6.nds the Heisenberg
equation for the new fermion 6eld,

(4 9)

which implies

Bgp
Tarb'rx lpETa r4(&oTb7xpx+JVie ) 0.

8$$

and therefore
eb T bA

By using (4.2), it can be readily verified that the theory
is gauge invariant.

Just as in (3.19), we will now specify the metric of
the system by requiring

( ~ ( 1)~o+~b~ ) to be pos—itive (4.18)

for all vectors
~ ), where lVii is given by (3.20) and EA

is given by Eq. (C16) of Appendix C. By following the
general discussions given in Sec. II, it is easy to see that
the factor (—1)~T is completely determined by the
anticornmutation relation (4.8), just as is the factor
(—1)aa in (2.27). The details are given in Appendix C.
In the same appendix, the free Hamiltonian of the
system is explicitly diagonalized. As will be shown there,
the frequency spectrum of the free pA field is given by

[QO+ (iTA O~ ii7 0) O)i/2 (4.19)
We have, therefore, two conservation laws:

l9

(/AT rb7ngkb) =0
Bing

(4.10)

We note that in the boson case, the bare mass m~' of
8„ is assumed to be real; the width y~ is acquired
through the electromagnetic interaction between 8„
and the charged lepton pairs, and therefore it. is not an
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independent parameter, as will be calculated in Sec. VI.
On the other hand, in the fermion case, because of the
conservation laws (4.10) and (4.10'), in order to ensure
unitarity we have to assume a nonzero width y&' for
the free p2 Geld.

V. FEYNMAN DIAGRAMS

FrG. |.. Tvro examples of
fourth-order e+e scattering
diagrams.

p-k

In the present theory, because of complex singularities
such as (3.21) and (4.19), the Green's function U(t, t)—
of the time-dependent Schrodinger equation in, say,
the interaction representation diverges exponentially
in the limit t —+~. On the other hand, the 5 matrix is,
of course, well defined in terms of the eigenvectors of the
total Harniltonian with real eigenvalues; its matrix
elements are given by

(5.1)

where the superscript "out" (or "in") denotes states
consisting of only plane waves and outgoing (or in-

coming) waves. Thus, one does not have the usual
relation between the S matrix and the limit U(t, /) at-
t= ~. Nevertheless, as pointed out in Ref. 4, it is
possible to separate U(t, t) into a s—um

U(t, /) = U—«(/, ,
—/)+ Ue"&(t, t), (5—.2)

where as t ~oo, U'"&(&, /) diverges —exponentially, but

J' 4

r p-k

deformed in such a way that none of the singularities
ever crosses C. It is clear that C is unambiguously
dered only if there is no pinching along the path; i.e.,
if complex singularities on different sides of the path do
not coalesce. As we shall see, such pinching occurs only
over an integration domain of "zero" measure, and
therefore does not contribute to the Feynman integral.

For clarity, let us consider some specific diagrams for,
say, the elastic scattering of e+e given in Fig. 1.The
dashed line refers to the propagator of

$„=A„+iB„,
which, as will be explicitly calculated in Sec. VI, con-
tains complex poles at

lim U «(t, /) =5. —
)-woo

(5 3)
—(four-momentum)'=31~' and (M&*)' {5.4)

where
(5.5)

From (5.1) and (5.3), one obtains a set of modiGed

Feynman rules which will be briefly reviewed in this
section.

In general, in a quantum fmld theory with an in-

d.elnite metric, any S-matrix element can always be
given by a sum over an appropriate set of Feynman
graphs, just as in the usual theory with a definite
metric. Each graph still stands for a multidimensional

integral, integrated over a domain of some virtual
four-momenta, which will be labeled collectively as

k„; the integration over the space component k remains,
as usual, over the entire real region, but that over the
time component ko is now along a complex path. We
note that, unlike the case in the usual theory, the
integrand now has complex singularities. To obtain the
correct integration path in the complex ko plane, it is
convenient to 6rst regar'd all imaginary parts p; of these
complex singularities as independent parameters. For
p;= 0, we have the usual Feynman rule: At Axed k, the
integration over ko is along the real axis, and. the posi-
tions of the singularities of the integrand are determined

by the usual ie rule. Alternatively, one may regard
(still for y, =0) all singularities to be on the real axis,
but the Feynman path C is slightly detoured so as to
go either above or below the appropriate singularities.
Now as y; increases from zero to its final value, these
singularities will move continuously. We shall require
the integration path C for dko to be continuously

Thus, the integrand for either diagram in Fig. 1 has
complex poles at, among others,

ko ——(k2+M2/2) "' (5.6)

Ikl = lp —kl (5.9)

Po=-,'Re(ko+M2/2) 1/2, (5.10)

since po denotes the total energy of e+ and e, which

must be real.
In k space, the points that satisfy these two conditions

lie on a circle whose center is at 2lpl. For all other

points, there is no pinching and the Feynman integral
over ko is well defined, ; the result of this ko integration is

foo = po —[(p—k) 2+ (M/2*) 2]'/2, (5 7)

where p„denotes the total momentum of e+ and e .
According to the above modified" Feynrnan rule, the
pole (5.6) should be below the integration path C and
the pole (5.7) should be above C. This is always possible
except when these two poles coalesce, which occurs when

p
—(k2+~ 2) 1/2+ [(p k) 2+ (~ 4) 2)1/2 (5 g)

Except for the special center-of-mass reference frame,
in any reference frame the total momentum p is not
zero, and therefore Eq. (5.8) represents two independent
conditions in order to satisfy both its imaginary and
real parts:
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po=~s+~q +vp k qp——(5.12)

where p and ps denote the total momentum and energy
of the system. Equation (5.12) implies two separate
conditions,

a function of k which is singular at the above-mentioned
circle, but with singularities no worse than

(pq —(&'+~n')'" —L(p —&)'+(~n*)'3'") ' (511)

The subsequent integration over k is therefore abso-
lutely convergent and well defined i the ambiguity of
the integrand over such a set of points of zero measure
(a circle) in k space does not lead to any ambiguity in
the final result. Therefore, in any system (except the
center-of-mass system), the Feynman integral can be
obtained by continuous deformation from the usual
Feynman path. For the particular center-of-mass frame
p=0, we require the corresponding Feynman integral
to be obtained as the limit p —& 0.

The actual Feynman integration for the above dia-
grams can be carried out in exactly the same way as
done in Sec. 5 of Ref. 5. The result is that; apart from
the usual cut corresponding to the normal two —zero-
mass —photon exchange, there is no additional imaginary
part in the scattering amplitude due to the virtual two
complex-mass heavy boson states. Consequently,
unitarity holds. The usual condition of analyticity is, of
course, violated.

The above discussions can be readily carried out for
more complicated diagrams involving multipho ton
exchanges. If the intermediate state consists of three or
more particles, the equation for pinching always gives
two independent conditions in any reference frame,
including the center-of-mass frame. Take, for example,
the case of three particles of energies, say,

—($2+~ 2)1/2 & s —[qs+(~ 8)2]1/2

and vp s q= ~p
—k —q~. Just as in Eq. (5.8), the con-

dition for pinching occurs when

above case of two-photon exchange, the points that
satisfy these two conditions (5.13) and (5.14) give zero
contribution to the Feynman integral ~

In these Feynman integrals, since the domain of all
three-momenta is kept real, but that of the fourth
components is complex, the question of relativistic
invariance naturally arises, especially for more compli-
cated diagrams involving several complex masses. In
this connection, there exists an alternative, but mani-
festly covariant, prescription givers by Cutkosky,
Landshoff, Olive, and Polkinghorne'~; in their prescrip-
tion, whenever there are a pair of regularized photon
lines, one always first sets the complex masses in one
line to be 3f~ and 3I~*, and in the other line M~' and
3II&'*. The physical case 3II&=M&' is obtained as the
limit 3E~ —& M~. Relativistic invariance then becomes
obvious; for example, in the two-photon-exchange
diagrams discussed, for arbitrary AE&@Sf&', the Feyn-
man integral is well defined in any system p&0 or p= 0.
For simple diagrams, these two prescriptions give
identical results. For more complicated diagrams there
may be some differences, " in which case one should
adopt the prescription of Cutkosky ef a/. with (whenever
necessary) some further specifications as to the correct
order of limits. For example, Cutkosky et al. found that,
for the so-called double ice cream cone diagram (which
corresponds to a diagram of order at least ets), depend-
ing on the order of limits, their prescrrption leads to two
different expressions for the S matrix, each being fully
relativistic and unitary. The mathematical complexities
involved in these diagrams of rather high order have
prevented us from appreciating fully their arguments.
Nevertheless, it seems reasonable to expect that such
an ambiguity can be resolved by noting the Bose
statistics nature of photons. All limits must be taken
symmetrically with respect to different internal photon
lines. This would then lead to a unique answer for the
double ice cream cone diagram.

VI. PHOTON PROPAGATOR

s(pp —v„s «) =Recos,

(5.13)

(5.14)

As an explicit example, we shall evaluate the prop-
agator D of the modified photon field

independently of whether p=0 or not. Just as in the
(p„=A„+iB„. (6 1)

"To show this, it is only necessary to study the k integration
near the singularities of (5.11). Let us use the cylindrical co-
ordinates k = (p cosp, p sing, z), where the s axis is parallel to p.
The singularities of (5.11) lie on the circle s=-,

~ p~ and p= pp,
where po is its radius, determined by (5.10), i.e., po

———, Re&so and
ohio=(pq'+& ~pcs+Ms')'/s. In the neighborhood of this circle, it is
convenient to write p pq+r cosa and=s=Pp~+r sinS. The region
r e«1 denotes, then, a doughnut which contains all singularities
of (5.11); its cross section is a small circle of radius e. Neglecting
0(&'), one finds, inside this doughnut region, (5.11)=fr(acosg
+ib sine)g ', where a and b are two real constants, different from
zero, and given explicitly by a= —pofcop +(orp*) ) and b=ig
X'coo '—(&os*) 'j ~p . Since d'k=rpadrd&d@, the k integration of
(5.11) over this doughnut region is simply

2vrepo J'~ de(a cose+ib sing) '

which goes to zero as e -+ 0.

It is convenient to represent all propagators between
the two fields A p and Bp by a (2&&2) matrix

(6.2)

where the
initial and
propagator
given by

two subscripts denote, respectively, the
final states to be either A„or 8„. The
for the coherent mixture A„+iB„ is then

D= (S(, (6.3)
"R.E. Cutkosky, P. V. Landsho8, D. Olive, and J.C. Polking-

horne, Nucl. Phys. B12, 281 (1969). We wish to thank Dr.
Cutkosky for a discussion on the double ice cream cone diagram.
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where

k=(' (6 4)

and $ is the transpose. For the free fields, we have

k 'f)„„+( k„k„)
«0 fI fee

'l

~ ~ ~

0

0

fk'+fm ')'j 'fk„.+fe ') 'k„k.]) (6.5)

and therefore (6.3) becomes

i —(fffffP)'
Df...= —— i)„„+( k„k„), (6.6)

k' k'+(fff ')'

where ( k„k„) denotes gauge-dependent terms, which
are always proportional to k„k„.

In Fig. 2, we introduce

i(k'f)„,—k„k,)P (6.7)

to represent the sum of all irreducible self-energy graphs
in the propagator D~~, because of the coherent mixture
(6.1) that appears in all electromagnetic interactions,
identical sets of irreducible self-energy graphs also
appear in the other propagators D~~, D~~, and D~~.
Let II be a (2X2) matrix, defined by

rr=- ~ji(kPS„„-k„k,)P.
One, then, has

(6.8)

In Fig. 2, the dashed line represents D itself. It is easy
to see that the sum of the first four lowest-order graphs
is finite, although each of them diverges logarithmically.
With respect to the other graphs of higher order in o,,
since D is proportional to k 4 as k —+~, they are all

finite, as may be shown by means of the "power count-

ing theorem. ""In this respect, the gauge invariance of
our prescription is crucial, since it leads to the cancella-
tion of terms that would otherwise lead to divergences. "

+free+ +freeii+free+ +freeli+freeli+free+ ' ' '
k (6 9)

which leads to

i(fffff P) '0„„—
D= — — +( ~ "k,k,). (6.10)

k'[k'+ (ffff)P) '(1—2')]

To calculate this sum, we shall follow the fffodhfien',

Feynmun mme glen ~'n Sec. V. The result is

I'(z) = —(n/fr)[-,'ln(Mf Mf;*/fff, fff„)+f(z,off,)
+f(z, fN„) f(z,M—f:)—f(z,Mf;*)g+O(ff'), (6.11)

where a=(137) ', Mv ——me+ zkiyz,

ref 0 ) (6.12)

f(z,X) =(3z) '(4X'+2z)[1+(-'z —X')J(z,X)j, (6.13)

dS 2 Ii —z
J(z,X) = — =—ln-

p X'—x(1—x)z F F+z
(6 14)

F= (z' —4X'z) "'. (6 15)

Imf(z, ffff)=&fr, (6.16)
3s s

where the + or —sign depends on s being slightly above
or below the cut. For X=Mf;, or Mv*, f(z,X') is analytic
everywhere except at the branch point s=4M~', or
4(Mk*)'. Furthermore, it follows from (6.14) that

We note that in (6.14) the integration path for x is
along the real axis from 0 to 1; this follows from the
modified Feynman rule, after some transformations
and calculations. In (6.11), we have omitted the super-
script 0 in all masses, since to 0(n) it is immaterial
whether one uses the bare masses or the observed
masses.

For X=ffff (I= e or fk), J(z,mf) has a branch point at
s= 4m&', and we may choose the cut to be along the real
axis from s= 4m'' to ~. Outside the cut, the integral
representation (6.14) is valid everywhere. The imagi-
nary part of f(z,ffff) along the cut is given by

"For a proof of this theorem, without postulating the validity
of contour rotations in the energy variables, see W. Zimmermann,
Commun. Math. Phys. 11, 1 (1968).

' We note that each of the first four graphs in Fig. 2 becomes
logarithmically divergent (and therefore the sum becomes finite)
only if the integration is performed after the gauge-invariant term
(k'6„„—k„k„) is factored out. Quite often, it is much more con-
venient to do the integration before any factoring. In such a case,
in order to avoid any mathematical ambiguity, one may define
II(77z,',w„',3/g'pIp. *'} to be the formal sum of all irreducible self-

energy graphs, as before, but replace (6.8) by

z(( (k'B~ —k„k,)P = lim )II (nz, ',77z„',j/J p'+II *')

t ( k Spv — k„kv ) P

f(z, li)'= f(z*,lk*) (6.17)

+ ~ 0 ~

—II(A.'+m, 2 A.'+7'„' 4'+M ~~ A'+%1*2}J
By taking the limit A. —+ ~ after the integration, one can then
unambiguously arrive at (6.11).

Fio. 2. Sum of irreducible photon self-energy graphs. The
charges carried by the four fermion lines, which are labeled by
their masses 7n„&7z„, M'~, and Nl*, are, respectively, eo, e0, ieo,
and —zeo.
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and therefore f(s,3Er)+f(s,iVi*) is real along the
entire real axis, ln accordance with the unltarlty con-
dition. ayusing (6.10), (6.11),and (6.16), one ends that
besides the usual photon pole &2=0, D has poles at

{6.18)

where to O(n) and neglecting (mi/ms)' as compared
to Unltyq

pg = 30,'52@ (6.19)

ms = (ms') $1—-' ReP(ms') j (6 20)

The ratio of the renormalized charge e and. the
unrenormalized charge eo is, by definition, given by the
behavior of D as s -+ 0, i.e.,

D-+ ( i/ —k)(% )0' as k'-+ 0. (6.21)

Since f(s,X') ~ 9 as s -+ 0, one finds for charge
renorma1ization,

eo ' o ~s-M~* '
=1+—ln — —+O(a'), (6.22)

e 3% tsg8$p,

which, of course, is finite. As s —+~ and slightly above
th.c I'CR1 axlsp onc Ands

ReP -+ (2a/~s) (3fp'+35 p*' m. ' m„'), — —
ImP ~—~~0, .

Therefore one finds Lafter neglecting higher-order terms
in both O(n/k') and O(n') 1 that in the timelike region,
Rs —k2 ~~+le, whcI'c @=0+,

D-+—i(ms')'k —'I k'+(ms')'+-, 'in(ms')'j ', (6.23)

whllc ln the spacehkc region) Rs k

D~ i(m ')'k 'Lk'—+(ms')'j ' (6.24)

Except for the constant ima, ginary parts in (6.23), both
limiting expressions are exactly the same as Dg„,.

The following remarks concern some experimental
consequences of the theory.

(1) The modification of the photon propagator from
the usual ik ' to D(k—), given by (6.10), in the present
theory can be observed through any electromagnetic
processes sensitive to the high k2 behavior of the photon
propagator, such as s+p and p+p scatterings for space-
1ikc k2, or pair productions of e+e and p+p, from any
high-energy collision processes involving leptons and/or
hadrons for timelike k2. In the timelike region, for —k'
near m~, the transition probabi1ity, being proportional
to j D(k)

~

', would exhibit a k' dependence identical to
the standard Breit-signer resonance formula; on the
other hand, the transition amplitude should have a
phase that is of an opposite sign (—90' instead of
+90'). At —k' away from ms', one may use the zeroth-

order expression for D(k):

—am''
D(k) = — — 8—„„+( k„k„).

k'(k'+ms')

Consider, e.g., the differential cross section of

(7 2)

in the present theory; it divers from that in the usual
quantum electrodynamics by a simple multiplicative
fRCtOr

Lms'/(k'+ ms') j'. {7.3)
'

It is of interest to note that this factor can be rather
sUbstantlR1 cvcn lf —k ls Quite fRr from thc lcsonRncc
region. For example, for m~ 20 GcV the width y~ is
only 200 MeV; yet, at, say, (—k')'"-10 GeV, the
Rbovc fRctoI' ls ~1.8.

(2) There should be a dev1atlon iil the gyioinagiietic
ratio g of the muon from the usual expression due to
such R modl6catlon ln thc photon plopRgRtoI':

bg= —(3s.) 'n(m /m )' {7.4)

From the present experimental result, 2O one concludes
that

nsg&5 GCV. {7.5)

3Q5$p 5$sr BSQ 8$~
Am. = 2 ln2+-', (1+V)—ln—+O-

Smns, fgp Sip
2 2

5$p
2

m82 m2—5 1+0.003(1+8') ln +O MeV, (7.7)
5$p Sip a

where the 6rst term was erst derived by Das et d,l.,22 6 is
the anomalous gyromagnetic ratio of the 3~ meson, and

20 J. Bailey et aE., Phys. Letters 283, 287 t'j.968); see also E.
Picasso, in I'roceed&sgs of the Third International Conference on
High-Energy I'hysics cfnd E'Nclear Structure I'Plenum, New York,
1970), p. 615.

21 J. Christenson, G. Hicks, P. Limon, L. M. Lederman, B.Pope,
and E. Zavattini, Phys. Rev. Letters I'to be published)."T.Das, G. S. Guralnik, V. S. Mathur, I. E. Low, and J. E.
Young, Phys. Rev. Letters 18, 759 I', $967).

This limit is also consistent with the present high-
energy experimental results" on

p+uranlum ~p+p++p + {76)

(3) In pi'iilciple, ms cail also be determined from the
6nite value of mass differences between hadrons in the
same lsospln 1Tlultlplct Mid fI'olTl radlatlvc corrections to
weak decays. In practice this is diS.cult, since a11 these
terms depend on no~ only logarithmicaHy, and none of
these terms can be calculated accurately. For example,
the mass difference Am„between m+ and x' in the usual
chiral 5U2&SU2 phenomenological I.agrangian method
is infinite, while in the present theory, it is of course
6nite. By using the same approxima, tion for the strong-
intcx'action vcI'tcx onc 6nds
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0(m '/m, ') denotes terms proportional to (m '/m, ')
but remaining Gnite even in the limit m~ —+~. The
entire expression (7.7) is, of course, identical to those
obtained by Gerstein et al. ,"except for replacing their
ad hoc cutoff parameter A. by m~. It is clear that once
4m is made Gnite, it becomes rather insensitive to the
precise value of m~.

For the radiative correction to weak decays, the
dependence on m~ is again only logarithmical. The
result is similar to those calculated'4 by using the
charged intermediate vector boson H/+, except for
replacing m~ by m~. If such calculations involving
strong-interactio;i vertices could be made accurate, then
it would be possible to determine m~ from the observed
value of the Cabibbo angle 0. This is, of course, far from
the actual case. Assuming that 0=0.22, the best esti-
mate" for m~ in the intermediate boson theory is
ln(ms /m~) =2.8&0.8 if quark algebra is applicable and
1n(ms /mir) =3.5&1.0 if field algebra is applicable. This
leaves a large admissible range for rlii (assuming
mii ms) from about 7 to 90 GeV.

Thus, the best way to determine m& is through the
direct observation of possible deviations from the con-
ventional quantum electrodynamics predictions at high
energy.

(4) By using (6.10) and (6.11), one sees that both
m~ and y~, and therefore also the finite value of charge
renormalization (eo/e) ', can be determined by accurately

measuring the photon propagator D(k) at high k'.
However, these measurements are more difficult since
it is then necessary to measure D(k) at least to an
accuracy comparable to, or better than, O(n).

(5) We remark that an attractive, but highly specula-
tive, idea is to regard B„as the neutral component of
the hypothetical charged intermediate boson Geld S'„+
for the weak interaction, in which case one would
expect m~ m~. The further speculation that the semi-
weak interaction couphng constant g'/4 iisr, in fact, the

same as the fine structure constant u leads to

mii mar~ (4iro./Gr) '" 100 GeV. (7.8)

VIII. CAUSALITY

The presence of complex singularities near the
physical region, but on the physical sheet, has an
unusual effect on the propagation of wave packets in a
collision process. As has been discussed in Ref. 4,

"I.S. Gerstein, B. W. Lee, H. T. Nieh, and H. J. Schnitzer,
Phys. Rev. Letters 19, 1064 (1967);20, 825 (1968).

~ For a more recent discussion, see A. Sirlin, in Proceedings of
the Folrteenth International Conference on High-Energy Physics,
Uienna, 1966', edited by J. C. Prentki and J. Steinberger (CERN,
Geneva, 1968).The fact that, in the intermediate boson theory of
the weak interaction, the O(a) radiative correction to the ratio
(Gy/Q„) is 6nite in the conventional form of quantum electro-
dynamics has, of course, been known for quite some time

I T. D.
Lee, Phys. Rev. 128, 899 (1962)J.

'~ The values quoted are based on the recent calculations by
A. Sirlin (private communication). We thank Dr. Sirlin for making
these values available to us.

because of the uncertainty principle, such unusual
effects disappear if one studies only the average position
of the wave packet; this then automatically removes all
of the so-called "causality diKculties" or, more pre-
cisely, those difficulties that could be directly related to
a classical description. In quantum physics, as we shall
see, in the first place, there is no general agreement as
to the precise meaning of causality. While in the present
theory, unusual effects do occur if one analyzes the shape
of the wave packet, such effects, though unusual, are
not in contradiction with anything known at present
about the physical world. Furthermore, it should be
clear that such effects cannot ever lead to logical difIi-
culties (i.e., self-contradictory predictions), since they
are the mathematical consequences of a set of well-
defined self-consistent equations. In the following, we
shall briefly review these unusual effects and their
connection with the causality question.

In most papers on causality, attempts have been
made to transform the somewhat ill-defined problem of
causality to that of relativistic invariance, which can be
stated with precision. In the classical derivation of the
dispersion formula for light waves, " one begins by
assuming a sharp wave front for a physical signal in the
theory; e.g. , the signal is zero for the space-time region
speciGed by, say, t(0and x(0.The subsequent require-
ment that this wave front should not travel faster than
the velocity of light leads to the well known classical
dispersion formula which in fact rules out complex
singularities such as those that appear in the present
theory. Ke recall that in quantum field theory, it is not
possible to construct such a sharp wave front for the
incoming wave for all t(0, since that would require the
superposition of plane waves of all frequencies v, nega-
tive as well as positive. Even for the zero-mass photon
field, a coherent mixture of many photon states neces-
sarily covers only the positive energy range, and there-
fore v~&0, by using the time-dependent Schrodinger
equation; for a massive field, the range of physically
allowable frequencies is even smaller, since v~&h '
)&(mass)) 0. The impossibility of constructing a, wave
packet with a sharply defined front makes it impossible
to apply such a classical argument. '~

Another approach is to use local Geld theory. One
requires the commutators between any two field oper-
ators at points separated by a spacelike distance to be
zero. This requirement is satisfied in the present theory.
The derivation" of the usual analyticity condition is
not applicable to our theory because it assumes the
energy spectrum to be real (or, the underlying Lagran-
gian to be Hermitian), which is obviously not true in

"R.Kronig, J. Opt. Soc. Am. 12, 547 (1926); H. A. Kramers,
Atti. Congr. Intern. Fis. Corno 2, 545 (1927);See also A. Sommer-
feld, Ann. Phys. (Paris) 44, 177 (1914); L. Brillouin, ibid. 44,
203 (1914).

~' N. G. Van Kampen, Phys. Rev. 89, 1072 (1953); 91, 1267
(1953).' M. Gell-Mann, M. L. Goldberger, and W. Thirring, Phys.
Rev. 95, 1612 (1954).
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the present theory. The violation of the usual analy-
ticity condition is, however, totally consistent with the
requirement of relativistic invariance.

Still another description of causality that has been
used in the literature'" is one deriving from the study of
the average motion of a wave packet. For example, in
the case of a simple 5-wave elastic scattering, if the
incoming wave packet has an average relative position
(r;„)= vt fo—r time t«0, then the outgoing wave
packet, for t))0, has an average relative position

(8.1)
where

(8 2)

8 denotes the phase shift, and k is the relative momen-
tum. A —90' resonance, such as the one required by the
8„ field in our theory, would contribute a positive
value for l, and therefore give rise to an advancement
of the outgoing wave packet. However, it can be
shown, ' under very general conditions, that one has
the inequality l(l, =O(d, '), (8.3)

where 6 denotes the momentum width of the incoming
wave packet. Therefore, it is not possible to draw any
strong conclusion concerning causality by studying the
average position of a wave packet.

Rather unusual behavior of wave packets can,
nevertheless, be demonstrated to exist in the present
theory. In general, these unusual properties concern the
detailed shape of the wave packet. Consider, for
example, the elastic collision of e+ and e in the center-
of-mass system at the resonance energy m&. For clarity,
let us assume the radial dependence of the incoming
wave to be given by

pin(r () o: r—ie—~l r+il (8 4)

at large relative distances r. As shown in Ref. 4, the
presence of a complex pole, such as (ms+2iyii) in the
photon propagator, implies that the outgoing wave has
a radial dependence given by

but
P'"'(r, t) ~r 'e ~&' "& for f)r, (8 3)

for t&r, (8.6)

"E.P. Wigner, Phys. Rev. 98, 145 (1955). Professor Wigner
has kindly pointed out to us a different formulation of causality
in his paper in International School of Physics "Enrico Fermi, "
Course Z9 (Academic, New York, 1964), p. 40. This formulation
is not based on wave packets and is, therefore, not directly related
to the point being made here. See also M. Froissart, M. L. Gold-
berger, and K. M. Watson, Phys. Rev. 131,2820 (1963);cf., how-
ever, H. M. Nussenzveig, Nuovo Cimento 20, 694 (1961).

» See Ref. 4. The arguments used in Ref. 4 can be extended to
the nonresonance region as well. The inequality (8.3) holds,
provided the integral J'(dB/dk)dk, integrated over the entire
momentum width of the incoming wave, is&+.

where y=y~~, the first term e "(' "' merely reproduces
the shape of the initial wave, but the second term
e ''&('—') is quite unusual. Nevertheless, the presence of
such a term is, of course, perfectly compatible with the
requirement of relativistic invariance as well as with all
existing experiments.

We note that at present in any high-energy experi-
ment almost nothing is known concerning the shape of
wave packets. Without some detailed knowledge of the
shape of wave packets, one can study only the average
positions (r), which, as mentioned above, are insensitive
to the complex singularities. In order to see the unusual
tail e '&(' "), we may consider a measurement which can
differentiate the time-advanced region, say (t —r)) r,
from the time-retarded region (t r) &r, w—here r repre-
sents the experimental space-time resolution. At pres-
ent, the best value of the time resolution in any
high-energy experiment is 7. 10 ' sec. Assuming, for
example, m~ 20 GeV and theref ore y~ 200 MeV, the
full intensity of the unusual tail, integrated over
the entire time-advanced region from (t r) = r to-
(t —r) = ~, comes out to be

exp( yiir) —expIi 3X10—ji.3(8.7)

The smallness of this probability" makes it unlikely
that we can realistically detect such an unusual effect
in any near future (assuming that we can reach a
center-of-mass energy the resonance energy mii). Of
course, in principle, this effect should be measurable.

In any quantum theory, what one really studies are
only correlations between various events occurring at
diferent space-time regions. The impossibility of con-
structing during t(0 a sharp wave front for the in-
coming wave makes it also not possible to give a strict
causal interpretation to such correlations. Thus, there
does not exist a sharply defined causality principle. (We
regard requirements such as the usual zero commutator
of two local field operators separated by a spacelike
distance as simply an expression of relativistic in-
variance and local canonical quantum field theory, but
not of causality. ") The attribution as to which effect
should be regarded as "noncausal, " therefore, has a
certain degree of arbitrariness, except in the classical
limit. " It seems nevertheless appropriate to call the
above described unusual tail e '&" "' in the outgoing
wave packet "noncausal, "although one must emphasize
that there is no logical difficulty in having this particular

"The two-photon exchange processes can lead to a larger value,
though still much too small to be detected at present. See T. D.
Lee (Ref. 5) and Cutkosky et al. (Ref. 17).

"A similar opinion is also expressed by G. Wanders I Nuovo
Cimento 14, 168 (1959)j, whose conclusions on causality seem to
agree with ours also in other respects. General questions of
causality have also been discussed by B.Ferretti, Nuovo Cimento
43, 506 (1966);43, 516 (1966).

"Since a macroscopic body does not necessarily imply the
validity of a classical limit (e.g., the superfluidity phenomenon),
there also does not exist in quantum physics any general macro-
causality principle that can be sharply defined without further
qualifications.
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kind of "noncausal" eRect; the question of whether it
indeed exists in nature can only be resolved by future
experimentation.

canonical form

(A4)
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APPENDIX A

sV'= E. (A2)

As is well known, fit satisfying (A2) can always be
diagonalized. In fact, any vector f can always be
decomposed into a sum of two vectors (one of which

may be zero) EP and (1—E)P which are eigenvectors
of Ã, corresponding to the eigenvalues 1 and 0, re-
spectively. Both eigenvalues certainly exist; for if we
assume a vector f with the eigenvalue 0, ATig=o, then
from aalu =& (P Xf) =&P—we see that g =aP/0, since

aQ=&f; furthermore, Ãp=%aaaf=aP=Q, and there-
fore @ belongs to the eigenvalue 1. Conversely, if p is an
eigenvector belonging to the eigenvalue 1, Ep=p, then

aP belongs to the eigenvalue 0, for E~=+aa'@=0;
notice again that ap cannot be zero, since EP=&aag
=&NO. These calculations are well known from the
ordinary case, where a=at and the + sign holds in

Eq. (A1). We have repeated them here, merely to
remind the reader of the fact that the analysis makes no
use whatsoever of the metric; it is based entirely on the
algebraic structure of (A1). Pursuing the analysis
further, one sees that the whole vector space X is the
direct sum of two subspaces K=KpO+3'. y in one of
which the operator X=O, while in the other it acts as
the identity Ar= 1. We have seen that if P belongs to
the first subspace BCO, then d =aP belongs to 3.', , and we

have the relations

of=@,
a/=0, ~=0. (A3)

The same relations are obtained if we start from any
vector p of 3'.i, and define lt =Map. From this we see
that, a maps K~ into 0, and Xp into BC~. Regarded as a
mapping of SCp into BC~, a has &a as a left inverse.
Likewise a maps 3Cp into 0, and. K~ into 3Cp, regarded as
a mapping of BC~ into 3Cp, a has &a as a left inverse. It
follows that 3'.p and 3'.& have the same dimensionality.
Choosing bases Pi, . . . , f„ in BCo and Qi, . . . , Q„ in Ki
such that lt ~ and gi, are related to each other in the same

way as P and g in (A3), a and a are reduced to the

Let us study anticommutation relations for one
oscillator, assuming

a = a =0) aa+aa=&1. (A1)

The case with the + sign is, of course, well known, but
we can study the two cases simultaneously if we de6ne
X=&aa; then ulo&=I1&, oil&=—~lo&,

ulo&=o, o!1&=o.

Thus, one finds

(AS)

and
&1I1)=&oladlo)=a&olo).

(A6)

By using transformation (2.22), we can always choose
(0 I 0) to be + 1, and therefore there are only two classes
specified by (2.26) and (2.27).

The preceding result can be applied immediately to
the case of v "oscillators" with anticommuting variables
a~, a2, . . ., a„. We assume

while
{a„tt,) = {a„tt,) = 0,

{u„tt.) = e„b„(e,= &1) .

(A7)

(A8)

Then the above analysis can be applied immediately,
say to the first pair of operators, a& and aj. We may in
fact cut short all remaining calculations„ if we notice
that if we set a„+=~„a„,the above equations have the
usual form. The notation does not require'„that a„+ be
Hermitian conjugate to a„;it is simply another operator.
The result is the customary one; if the set of matrices is
assumed irreducible, the span has 2" dimensions. A basis
may be chosen, in which the basis vectors are

where each n~=0 or 1. These vectors satisfy

ak
I 0,0, . . . ,0& = 0, (A9)

e~a~ai,
I
rti, ni, . . . ,n„)=ni,

I ni, ni, . . . ,n„), (A10)

I
ni, ni, . . . ,n„& = (~i)"'(A)"' (a.)",0,0, . . . ,0) . (A11)

We note in passing, that in a somewhat more general
formulation (Ag) could be replaced by

{tt„a,)=E„„ (A12)

where I, of course, is the n-dimensional unit matrix.
This may be obtained from the usual case, if in (A1)
one identihes a, with &a . Notice again, however, that
no use has been made of Hermiticity.

In order to determine uniquely the metric q, we shall
impose the condition that the set of matrices tt and a
shoutd be irreducible. It follows, then, from (A4) that
both tt and a, are (2X2) matrices, i.e., there is only one

P and. one P. To conform to the notations used in Sec. II,
we shall denote lt and p by !0) and !1),respectively.
Equation (A3) becomes
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where the matrix IC= (K„) is a nonsingulgr Herm@ign
matrix. This greater generality is only fictitious; a linear
transformation b, =P, T,„g„b„=g,T,„*g,=g,—T„tg,
will change the matrix E to T~ET. As is well known,
one can always choose T so that (A12) reduces to (AS),
with e„=&1. Although trivial, this generalization is
nevertheless useful in practice, as we shall see in
Appendix C.

Just as in the case of a single oscillator, the metric g
is completely determined, up to a real proportionality
constant. By using (A9)—(A11), one easily sees that

( 1 Inl n2 ~ nv Inr&nor ' ' )nv& =Ji cr bn„'n„

X &0,0, . . . ,0 l
0,0, . . . ,0). (A13)

APPENDIX 3

& l4»=0 (83)
for all vectors

l ).
The argument that follows is fairly trivial, as it relies

on the customary construction of a string of eigenvectors
of ccq

, gV, 4, 4, gA gV, , (84)

corresponding to the eigenvalues

. . . , X—2, X—1, X, X+1, X+2, . . . . (85)
The eigenvalue equations

We examine here the consequences of the commuta-
tion relation

QC —GQ = —1 )

which, by interchanging the roles of a and a, is of
course completely equivalent to the alternative form

GG —QQ=+ 1.
Just as in the case for the anticommutation relation, we
need the following assumption: (i) The algebra of
matrices generated by a, a is irreducible, i.e., there is no
invariant subspace. In addition, we assume (ii) there is
at least one eigenvector lg& of the operator gg:

(82)

(For brevity, in this section, a vector is denoted by the
symbols lf& or f as seems most convenient. )

The metric g, which is to be determined, is, as always,
assumed to be Hermitian and nonsingular; therefore,
there is no vector g/0 such that

being all different. In addition one easily sees that

&.=4.+r, &.=g&. r=-(l+P 1)—4.
(87)

gXy =X~+y ) gX~ =ggX~r = (X—P)X~

All these equations hold for p=1, 2, . . . provided one
defines Ijtlp=Xp =lb. Thus the string of vectors (84) spans
our invariant subspace, which according to our assump-
tion (i) must be the whole space. Clearly the string may
not stop on both sides, since (81) cannot hold in a
finite dimensional space (by the usual trace argument).
We now have three possibilities.

(1) The string stops at the left: X~+r
——0 but X„WO.

0= gX„+,——- P,—P —1)X~;hence 7 =P+1.
(2) The string stops at the right: &~+~=0 but &~NO

(where P may also be =0). But then from (87),
O=gg~+r= (X+p)P„; hence X= —p.

(3) The string extends to infinity in both directions:
In this case, as we shall see, X is an arbitrary real number
but not an integer.

It is now easy to see that in all three cases the metric
of the space is completely determined, apart from a real
proportionality consta, nt. Two distinct vectors in (84)
are mutually orthogonal, since they belong to different
eigenvalues of a self-adjoint operator. None of them can
have zero norm, or we would have degeneracy, Eq.
(83). From (86) and (87) we have finally

«.+rl~.+r&=&~. l
ggl~.&=(l+P)Q. I~.&

and

(x,+, lx„+,) =&x, lgglx, &=(X—P —1)(x,lx,).
These equations determine the norm of all vectors up
to a common proportionality constant. They show that
X must be real. Furthermore, if a vector in the string
(84) has a negative eigenvalue, then the vector to the
right of it (if it exists) has a square norm of the opposite
sign. This never occurs in case (1), which is therefore
recognized as the ordinary oscillator with positive-
definite metric by setting g=b and g=bt. Case (2) is
likewise recognized as Dirac's or Pauli's oscillator with
indefinite metric. Choosing suitable normalization
factors, one can reduce Eqs. (87) to one of the standard
forms commonly employed.

We shall not mention case (1) any further. In case ('2)

or (3) we may (by a suitable selection of the vector
called f in the string) assume that

0& &&1.

ggp =(X+p)p, p =g"p

ggx, = (X—P)X„, X,=g&iP
(86)

Case (2) corresponds to X=O, in this case the vectors
Pq, P2, . . . do not exist, and the eigenvalues are. . . , —2,—1, 0. From (BS), and by choosing

follow, of course, from (81) by recursion, with the
qualification that the string may stop on the right at p„,
if gP~= 0 (or on the left at X~, if gX~= 0). In any event,
by a well-known argument, the eigenvectors in (84)
form an independent system, their eigenvalues in (85)

(Xp l Xp) positive,

one finds (2.27), i.e.,

( l(—1)"l ) positive

for all vectors
l ).
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u+t(p, s)v (—y, s') =w+t( —p, s)u (p,s') =0. (C8)
l X)=II,

ll+P&=l I(&+I) ~ ~ (x+P—I)]-'I' lI)

and

By a suitable choice of the normalization factors, one
can set

In case (3),0& X& 1, we may define new basis vectors, relations hold:
setting

flu&=u'"lan+ I&

~l~&= (u —1)'"l~—1)
(BM)

Notice again that, when u&0, p'~'=+ilail'~' by
dehnition. Thus, one 6nds

l~ —p&=i 'l.(1—~)(2 —~) ' (p —~)3 '12o"ll &.

Then we get, denoting by lu& one of the new basis
vectors (y, = X or X+p),

Q Lu+(p, s)u (y,s)+a+(—y, s)n t(—y, s)j=I, (C9)

where I ls the (4)(4) unit matrix.
A't any given time

(iPiy

can be expanded in terms of these spinors

A =K(») "'I:o+(y,s)u+(y, s)+~-(y, s)u-(y, s)

&u+1lu+ 1&= (u/lul) &flu&, (B11)

i.e., all &pl p& have the same sign for p&0, but alternate

signs fol p, & 0.

+5-(—p, s)~+(—p, s)+5+(—p, s)~-(—p, s)3s"'

APPENDIX C

In this appendix, we discuss the explicit diagonal
form of the free Hamiltonian for the P~ 6eld discussed

in Sec. IV. According to (4.3), the free Lagrangian
density is

8
&r-.= —0 .v v — +~ ')0

8$g

f2=+(2Q) "'Lu+(y, s)u+(y, s) —u (p,s)u (y,s)
P, S

+5-(—y s)~+(—p, s) —5+(—p, s)s-(—p, s)js"',
(C11)

where 0 is the volume of the system. Correspondingly,
the adjoint operators are given by

where
Ms'= m p'+-', its'r. ,

and for convenience, w'e have set

f'g= Tg and T'y= T'~ ~

The free Hamiltonian is then given by

(C3)

+I-(—p, s)~+'( —p, s)+I+(—p, s)~-'( —p s)Js "'
(C12)

A =K(2II) "'t:S+(y,s)u+'(y, s) —~:(y,s)u-'(y s)

(C2)
0~=Z(») "'l:S+(P,s)u+'(P, s)+~:(P,s)u-'(P, s)

p, s

+free= d r pTs $+'+ ~p pq (C4)

lI1 winch, as usual, 74= P and 'rg= —zPQp fol J= 1, 2, 3.
It is useful to introduce the c number 4-component

spinor functions u+(p, s) and w~(p, s), defined by

+f-(—p, s)~+'( —p, s) —I+(—p, s)~-'(—p s)Js "'
(C13)

By using (C9) and the quantiza. tion rule (4.8) (setting

r.=r,), one finds

(n p+PÃ)u+(p, s) =Z, u(+sy),

(a p+PM*)u (p,s)=E,*u (p,s),

( uy+P~)~+( ps—) , =~"—( +ps—)

(o+(p s) o:(p' s')) = {b+(p s),5-(p', ")&
= {~-(ps) &+(y' s') }= (I-(p s)»+(p' s') }
= 8„happ (C14)

where

(~ y+&~*)~-(—p s) = —&~'~-(—p, s),

E —(P2+~2)1/2

M =ns~o+xiv go,

(C6)

and all other eqlal-Hme alHcommutators are sero. These
anticommutators arc seen to correspond to the morc

general type of Eq. (A12), rather than the "diagonal"
case of Eqs. (A7) and. (A8) of Appendix A. The relations

may be diagonalized by introducing new operators

and s=&1 denotes the usual helicity. From (C5), it
can be readily verihed that the following orthogonality

o~(y;) =L~+(y,s)+o (y;)j/~~, -
om(y, s) = l:o+(y,s) —o-(y, s)j/~2,

(C»)
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and similar. expressions for the b operators. Then

{a„(P,s),a.(P',s')}= {b,(p,s),b.(P', s'))
= e,b, , byy b„., (C14')

where p, 0-= 1 or 2, and ei =- I, e~= —1. All other equal-
time anticommutators are zero. It then follows from
the a,rguments given in Appendix A that the metric q is
uniquely determined, up to the transformations (2.20')
and (2.22). We find, for a, system consisting only of the
fermion field Py,

( ~ (—1)~&
~ ) to be positive

for all vectors
~ ), where

»'~= —2 La.(p,s)ay(p, s)+5 (p, s)b (p,s)1 (C16)
P, S

In terms of the Fourier components a~ and b~, the
free Hamiltonian becomes

«-.=Z {&.(a-(p, s)a+(P, s) —b+(P, s)5-(P») 3
P, S

Now, technically we are still in the basis in which
+pep= 6p+p +p and bpbp= epbp~bp are diagonal, and there-
fore H~„, is not yet diagonal. IIowever, through a
familiar unitary transformation, one can easily trans-
form the basis vectors into the eigenvectors of a+ a+,
a ~a, b+tb+, and b tb . Because this is a unitary
transformation, the transformation law (2.20) governing
the metric is the same as that for a bona fide operator.
Therefore, in this new basis, Eqs. (C18)—(C21) remain
valid and the free Hamiltonian (C21) is diagona. l,
though the matrix g is no longer diagonal.

It is useful, especially in the presence of interactions,
to define

4+= 2 ""Qi~tt y)

The free Harniltonian (C4) then becomes

(C22)

becomes

~~i-.=2 {EyLa+-(p,s)a+(p, s) —b+(p, s)4'(p, s)3
P, S

+Ly*t a (P,s)a (P,s) —b (P,s)b (P,s)j) . (C21)

+&y*l a+(P,s)a-(P, s) —b-(p, s)5+(P s)3) (C17) '" = I-&-( ' +&' )&+

%e remark that, if we follow the prescriptions of
Appendix A, we will naturally arrive at a basis in which
the operators 8'pQp bpbp are diagonal; in this basis a a+,
etc. , are not diagonal. We notice, however, tha, t the
metric is positive definite with respect to the degrees of
freedom with p=1 and indefinite for p=2 Lsee Eq.
(C14')7. Furthermore, in the basis we have described,
because of (A13), the matrix representation it of the
metric, defined by (2.3) and. (2.4), is diagonal, and the
matrices representing ai, ai, bi, bi (we omit the indices
p, s for simplicity) obey the rule

+g+(—in %+PM*)f jd'r (C23).

& .t = «(4' 747A'+ 0'+7474-' )4' der — (C24)—

Furthermore, according to (4.8),

{P,(r,f),P (r', t)) = {P (r,t),P, (r', t)}
= b'(r r')— (C25)

By using (4.3), one finds that the electroma, gnetic
interaction is given by

Qp 6pQ'p ~ 6p = Epbp

In this basis, therefore,

and
(C18) 44(r ~),tb+(r ~) ) = {tt-(r,~) tt-(r ~) )

=0. (C26)

b =b+t,
(C19)

where A. =+ or —and all other equal-time anticom-
mutators remain zero. Similarly, the free Hamiltonian

and Eqs. (C14) take the standard form for fermion
operators,

{ai(P,s),ai (P',s')) = {bi,(p,s),bi, "(P',s') }=
byy b.. . (C20)

From these relations and Eqs. (C10)—(C13), it is easy
to see that P+ annihilates "particles" of mass M and
charge ieo, and creates "antipa, rticles" of mass 3f and
charge iey, while f—creates "particles" of mass M'

and charge iey, etc. By using (C8) and (C9), one can
then proceed to derive the appropriate propagators and
vertex functions for these fermion fields. The resulting
expressions are just like the usual ones, except that the
masses M and kI* are complex and the charges ieo and—ieo are imaginary.


