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Scale Invariance and Current-Algebra Sigma Terms~
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It is shown that, in a scale-invariant theory in which the vacuum does not realize the symmetry, the
dominant contribution to the sigma terms arising in current-algebra. determinations of the meson-baryon
scattering lengths can be estimated.

'HE concept of scale invariance and its possible
relevance to theories describing the elementary

particles has attracted some attention in recent years. '
The papers of Kastrap, Mack, and Wilson, in particular,
consider the usefulness of scale invariance as a broken
symmetry in the hadronic world. All the authors listed
in Ref. 1 consider scale invariance as a symmetry
realized by the vacuum, in which cas- as is well
known —all the particles in any theory having this
symmetry must be massless. There is, however, the
possibility that the vacuum does not realize the scale-
invariance symmetry even though the Lagrangian has
such an invariance (with all bare-mass and dimensional
coupling constants being absent). This is, of course, the
famous Goldstone symmetry limit, and the Goldstone
theorem tells us that in this limit there must appear a
set of massless particles associated with the generators
of the symmetry group. In this paper we consider the
latter possibility where the scale-invariance limit of a
theory is realized in the Goldstone manner. Then, we
are not necessarily confined to having zero plsysieaf
masses for al/ the particles in the symmetry limit. ' In
fact, one could get instead relations between the
physical masses of the particles and the coupling of the
"Goldstone" boson to the particles. (These are entirely
analogous to the Goldberger-Treiman relations, which
are exact relations in the limit of chiral symmetry when
the pseudoscalar mesons are considered as Goldstone
bosons. ) Of course, these relations cannot be tested at
present, for even if we identify our Goldstone boson
with the 0. reported at 730 MeV, we are still very far
from determining its coupling to hadrons other than the
pion. %e shall also make an assumption about the form
of the terms which break the scale invariance, and
following Mack' relate the Z terms which arise in
current-algebra calculations to the divergence of the
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dilatation current, i.e., the current associated with the
scaling symmetry. This allows us to determine the
dominant contribution of these terms to the current-

algebra estimates of meson-baryon scattering lengths.
%e assume the existence of a fundamental Lagrangian,

I =L($8„$), which describes the strong interactions.
Here P denotes a set of fields assembled, for convenience,
into a vector. ' A scale transformation is dered by

r. p(x) -+ en'p(e'x),

with D some matrix usually called "the dimension
matrix" and v some real number.

In an infinitesimal transformation, we have

For the theory to be invariant under such transforma-

tions, we must have for the Lagrangian

eL =4L+x"B„L=8„(x~L). (3)

In the usual manner, we obtain a conserved current
associated with this symmetry,

J =~'DP+x&T;"

is the canonical energy-momentum tensor and.

=~Lt~(~.~).
%hen scale invariance is broken, we have

fiL= B,(xl'L)+6,

and the current-conservation equation is replaced by

For convenience, we will also introduce the new energy-
momentum tensor dered by Callan et a/. ,

' in terms of
which J„takes the simple form

J~(x) =x„e~"(x) .

O~„„ is symmetric and conserved and gives rise to the
same Poincare generators as T„;.The sufficient condi-
tions for (5) to be valid are given in Ref. 3, and we will

assume that they are satisfied by our theory. (In
particular, the condition is satis6ed by all renormalizable

' C. Callan, S. Coleman, and R. Jackiw, M.I.T. report (un-
published). We will follow the notation and development of Sec.
5 of this paper.
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theories. ) Thus, (4) would read

I et us now write the Lagrangian as L=I-o+el ', where

L0 is the scale-invariant part and L is the part which
breaks the scale invariance, with e a parameter charac-
terizing the "strength" of the breaking.

Assuming that L' has a unique dimension, we note
first that

(ed 4)I—
where d is the dimension of L . Now since Q"„„is sym-
metric and conserved, we may write its matrix element
between spin- —,'one-particle baryon states as

(pi~i I o"(o) I p ~ )
= (p )L.'(v,P.+-v.P,)F (k')+lP, P,F (k')

+(g„„k'—k„k„)F,(k') jm(p„o), (8)

where P„=(pi+pi)„and k„= (pi —po)» normalizing the
fermion states un=1, and

(p'. I p".&=~...,(p./M)(2-) ~(p.-p.)

Since the space integrals of Q+0 and xI'Q+„0—x"0 0

dehne the momentum and angular momentum opera-
tors, we have Fi(0) =1 and Fo(0) =0.

I et us now assume the existence of a scalar particle 0.

with the quantum numbers of the vacuum, and define
the constant f. by

(0l O„„lo.(k)) =f.(g„„k' k„k„), —

with f. 0(1), i.e., f, -I+0 as e-+0. Then

(ol 0„ l~(k)&=3f.m, '.
Now from (6) and (7), O~~i' 0(e), and since we assume
that in the symmetry limit the 0- becomes a Goldstone
particle, we have, for f, 0(1), nz, ' 0(e)

If we now take the trace in (8) and separate the o pole
term in both sides of the equation, we obtain

$3f.m.'/(m ' —k')$g ii~+0(e)
=M~Fi(k')+ ', P'F, (k')-

+(3k'f /(m ' —k') jg,~~+3k'Fo(k')

Here Fo(k') is that part of Fo not containing the o pole,
and g,~~ is the coupling of the 0- to the spin--', particle.
Thus at 42=0,

3f.g.~v M+0(e) . ——

Hence, if the scale-invariance limit is realized in the
Goldstone fashion, the masses of the particles are de-
termined to 0(e) by the strength of their coupling to the
0-. We would also have similar relations for the scalar
and pseudoscalar meson, e.g.,

3f.g. =m '+0(e),

but, of course, the corrections would usually be larger
than the square of the masses of the pseudoscalar
particles. Note that although the bare 3-boson coupling

is zero in the scale-invariant limit, there is no reason for
the physical coupling to be zero (for instance a, ir, and ir

could hook onto a nucleon loop). However, if we

postulate that chiral- and scale-invariance breaking are

due to the same source, (11') would just tell us that

g, 0 (e); i.e., it is small compared to M~g, ~~
(g.„ /M„g. ~~ m. '/M„'). One could also derive "soft"
o. theorems which are analogous to the soft-pion theo-

rems, but they do not seem to be of much use at
present.

If J ' has a unique dimension as we assumed to derive

Eq. (7) and the symmetry limit as e —& 0 is realized in

the Goldstone fashion, then we can prove that the
dimension d of L' is unity. For if we write

QH
—

QH qJ
where Q~00 is the scale-invariant part of the energy-
momentum tensor, then we have

M = (1V(p =0) I Ooo I
1V(p =0))

=W(p=o&lo I&(p=o)&
—(N(p =o) I,I.'I lv(p =o)).

Now from Eq. (8), with e set to zero,

9'(p) I
o«

I
v(p'=o))

= i7 (P,~) ( ovoPoFi(k')+ o Po'F o(k')
p'pf. —g,~~/( k')+F—, (k') jju(O, o),

where we have separated the 0- pole occurring at 42=0
since m, ' is zero in the symmetry limit.

If we now take the limit as p —& 0 in this equation and
note that

2 —
I (p2+M 2)1/2 M j2

~ 0(p')
and

02=002 —p'
p2

then we obtain

(iV(p=O)
I
oool&(p'=0)&=M f g.~~

Here 3II is the nucleon mass in the limit of scale
invariance. Now

M.=P
I o„ IIv)

= (d —4)(lv I.L,'
I ~v&,

by Eqs. (6) and (7). Hence, collecting these results, we

have
M„=M„f.g.~~ M—/ (d 4)—. —

If we now use Eq. (11) and note that M llf =0(e), —
we find that, correct to zeroth order in e, d is 1.

This proof assumes that the form factor Fi(k') is

changed only by 0(e) in going to the scale-invariant
limit. Note that we cannot prove that F,(0) = 1 in the
scale-invariant limit, e=0, just as in Eq. (8), owing to
the presence of the zero-mass pole. For if we assume that
1'd'x Ooo(x) defines the Hamiltonian in the symmetry
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limit and that its matrix elements exist, then

(N(pt) i
dzX 000(2:,0) i N(p2))

= (2~)'~(pt —p2) p20'/~

= (2~) '~(pt —p2)

XL(p20 /~)&t(0)+2p20 ~2(0) —f.g.~~7

where the last term comes from the zero-mass pole and
clearly makes the result frame dependent. Thus, the
matrix elements of J'dzx

Q~00 (a) do not exist. This would
seem to be related to the .fact that the matrix element of
the generator of scale transformations is not well
defined '

We now make three assumptions about 1.0 and I.':
(i) L0 is an SU2XSU2 singlet; (ii) there are no SU2
XSU2 singlets in L'; and (iii) L' = —u0 —cua, where the
u s form part of the basis for the (3,3)+(3,3) repre-
sentation of SU2XSU2 and c= —1.25+0(e), i.e., we
assume the Gell-Mann —Oakes —Renner (GMOR) sym-
metry-breaking form. 4 Thus, we have a model in which
both the chiral symmetry and the scale invariance are
broken by the same terms. An explicit model Lagrangian
is the SU& 0. model of Levy, ' with

Le= —
V(

—2V ~-—g0((V'2)~0+(V'2)2~0V2+~ &

+220 ' 3l'yej) /+2 (c)~cree) IT0+c)~treCl tre+t)~IT' t) IT

+c)~22 ' t) 20) A0 (IT0 +2r0 +IT ' IT+ 22 ' 22)

eL =QIT0+pIT8

where q is the quark field, 0, (with (o;)40) and tre are
unitary singlet scalar and pseudoscalar fields, and e, ~
are octet scalar and pseudoscalar fields, belonging to a
(3,3)+(3,3) representation of SU2XSU2. In this model
we have

t) 2 2= —(Q 22)r22re pd22 2r-, k/—8

3(~~0+P~z)—

Using assumptions (i)—(iii), we can now calculate the
Z terms correct to 0(e). The full Lagrangian is L=L0

e(u0 jCuz)
&

SO 'tlla't

(flap. (0) I')
= '(flL() (0),~'~, '(0)ll &

=e(t:sIi It+(v'2)«2 p7(f 1
uo 12&+C(v'2)I1 pr

+cdzp. d. r+zfIp06, j(four ~i)). (12)

The coupling of the "almost-Goldstone" boson 0. gives a
contribution of 0(e ') to the matrix element (f ~

u0
~
i), so

that the first term dominates over the rest. We do not
expect the fr to have an octet part which becomes a
Goldstone boson, since we would like to retain the
algebraic structure of SU(3). That is, we would like

4 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'75,
2195 {1969).' M. Levy, Nuovo Cimento 52A, 23 (1967).

(N(p) l~ -(p) lN(p))=l=:S- +(V'l)cd. - jr+0(),
where

u=M„/(4 —d)+0(c) .

Using our previous result that d=1+0(c), we find
In=310 MeV +0(e), where we have used the observed
nucleon mass. If we assume that d is exactly 1, then we
can calculate the first correction to p, by using experi-
mental baryon mass splittings. In this case ec(1V

~
ua~ N&

= —200 MeV, which gives @=510MeV.
An evaluation of p has been made by von Hippel and

Rim' by using the experimental values for the EE and
KE scattering lengths and extrapolating to threshold by
means of a dispersion-relation method. They find

p 215 MeV, with large systematic errors. If this result
is maintained when better data become available, then
the assumption that L' does not have an SU (3) XSU(3)
singlet would be in doubt.

After completing this work, we learned from Pro-
fessor M. Gell-Mann that he and co-workers have
independently arrived at similar results.

Note added i22 proof It has bee.n shown by Gell-Mann
and Brown~ that when one assumes that the scale
breaking term has a unique dimension and has eo chiral
(SU2XSU2) scalars, then the dimension d of L' is 2.
The argument they give depends on looking at the shift
in the energy of a pseudoscalar-meson state (due to
chiral symmetry breaking) in a frame in which the
3-momentum is tending to inanity. We can put this
argument in a manifestly covariant form if we use a
result of Brown. ' He shows by doing erst-order pertur-
bation theory around a symmetry limit that the shift in
the squared mass due to the perturbation is given by the
one-particle matrix elements of the symmetry-breaking
perturbation. Thus, assuming that the procedure of
doing perturbation theory around a Goldstone-type
symilietry is valid and noting that in the chiral-
symmetry limit the pseudoscalar mesons have zero
mass, we have'

.(2
~

u
~
2)+=0(.'), (14)

6 F. von Hippel and J. K. Kim, Phys. Rev. Letters 22, 740
(1969); Phys. Rev. D 1, 151 (1970).

7 M. Gell-Mann, Hawaii Summer School Lectures, 1969, Cal-
tech Report No. CALT-68-244 (unpublished). See also P. Car-
ruthers, Caltech Report Nos. CALT-68-265 and CALT-68-266
(unpublished}.

8 L. S. Brown, Phys. Rev. 18'7, 2260 (1969).
0 We normalize the states covariantly: (p'

~ p) =
2p0 (22-)'S2 (p —p).

to have the SU3 generators annihilating the vacuum in
the SU2-symmetry limit. Also, from Eqs. (6) and (7)
and our assumptions (i)—(iii), we have (f ~

O„I'
~
i)

=(4—d)e(f~ (uo+&us) ~i). Choosing ~i) and
~ f) to be

one-nucleon states at the same momentum, we have,
using Eq. (8),

(4—d)e(1VlueliV)=M +0(e) (13)

p(N~u0~1V) being 0(e ') because of the o. pole term7.
Thus, we have from (12) and (13)
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where eu is the chiral-symmetry-breaking term and i
denotes some pseudoscalar meson. Recapitulating the
rest of the argument, one has

2m,'= (i
~

8„&
~
i)= (d—4) (i

~

el.'
~
i), (15)

where we have used Eqs. (6) and (7) of the text. Now
of course if I = —I, i.e., if it has no chiral SU3&&SUB
scalars, then comparison of (14) and (15) gives d=2.
However, if we recollect that by taking matrix elements

between nucleons we can show d=1+O(e) (without
mak. ing any assumptions about the SU3&&SU3 proper-
ties of I'), we are forced to the conclusion that 1.'W —u.
That is, I.' must contain an SU3&SU3 scalar if the
chiral-breaking part has a unique dimension. It is
interesting that this is the conclusion one would come
to if one accepted the scattering-length analyses of Kim
and von Hippel. ' Of course, if the chiral-breaking part
of I' does not have a unique dimension, then nothing
can be said about the existence of a chiral scalar in 1.'.
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We investigate some restrictions imposed on scattering amplitudes of hadrons by Lorentz covariance
and the requirement that external as well as virtual particles lie on Regge trajectories (fully Reggeized
scattering amplitudes). A generalized Fourier-Mellin integral representation is proposed which expresses
these requirements and plays the role of a generalized partial-wave expansion. In the pole approximation,
the proposed representation automatically contains local duality and for spinless external particles it reduces
to the Veneziano formula,

I. INTRODUCTION

~HE object of this paper is to study some restric-
tions imposed on scattering amplitudes of had-

ronic processes by Lorentz covariance and by the
compositeness of hadrons. The meaning of Lorentz
covariance has been widely discussed in the literature,
and by now its meaning is clear. For our purposes
"compositeness" of hadrons means that all hadrons lie
on Regge (or rather Lorentz) trajectories. Therefore,
any scattering amplitude involving hadrons shouM be
an analytic function with "sufFiciently good" analyticity
properties in the "internal" as well as "external"
Lorentz angular momenta. Lacking any reasonably
consistent theory, we do not know which analyticity
properties in the Lorentz angular momenta are suK-
ciently good, but one's physical instinct suggests that-
for exarnpl- — a "good" scattering amplitude should
not contain 8 functions or 8 functions in the external
"spin" variables. It turns out that even such very
modest requirements lead to some nontrivial results.
In order to get a feeling about how such results can
emerge, the reader may recall that any partial-wave
expansion of the "usual" type Lwhether it is according
to representations of the groups SU(2), SU(1,1), or
Sl (2,C) does not matter very muchj involves at some
point the coupling of the "spins" of external particles
in a scattering amplitude to each other and possibly
to spins of internal particles. The usual types of

~Research supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(30-1)-4076.

couplings always involve the reduction of Kronecker
products which have very diferent properties depending
on whether the representations of the groups involved
are finite- or infinite-dimensional; correspondingly, the
coupling coefficients (Wigner coefficients) contain very
unpleasant singularities. Therefore, such coupling
schemes practically preclude the possibility of a smooth
continuation of scattering amplitudes in the spins of
external particles away from the physical points.
Fortunately, for the Lorentz group there exists another
coupling scheme (or rather a class of coupling schemes)
which does not inoolve the redncti on of Eronecker products
and can be continued smoothly in any of the Lorentz
angular momenta involved. ' %e thus propose that a
scattering amplitude describing a reaction involving
composite hadrons in the external as well as in the
virtual states (a "fully Reggeized" scattering ampli-
tude) should be constructed in terms of these "analytical
invariants. "

The material is arranged as follows. After describing

briefly the mathematical apparatus necessary for our
investigations (Sec. II), we proceed to construct an
ansatz for the scattering amplitude, which at least has
a chance of possessing the right properties (Sec. III).
In Sec. IV some more-detailed investigations follow,
this time on the four-point function, although we indi-
cate how the results can be generalized for an arbitrary
number of external particles. As a result of these in-

'M. A. Naimark, Am. Math. Soc. Transl. , Ser. 2, 36, 100
(1954); W. Ruhl, Nuovo Cimento 44, 659 (1966).


