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Amplitudes for pm scattering obtained from lowest order graphs in two gauge models are unitarized in the
J = 1+, isospin-1 channel using the N/B formalism. There is no evidence for resonant behavior near the
Ai mass region.

I. INTRODUCTION

During the recent past, the status of A. , as a
resonance has become more and more open to
doubt. It was first observed as a broad enhance-
ment in the Z (I) = 1'(1) channel of the diffractive
reaction mN- 3' at a pm invariant mass about 1.1
GeV. A number of analyses of the experimental
data have been made, ' and all agree on the absence
of a resonant A, state. The A, phase variation is
quite flat, and the evidence for A, in nondiffractive
processes is slender and insufficient. ' On the
other hand, theoretically there are reasons to ex-
pect an axial-vector meson. Weinberg sum rules,
if vector and axial-vector functions are saturated
with p and A„require the mass of A, to be v 2

times the mass of p; just about the place where
the ptt mass enhancement in ttN- (3tt)N is seen.
Similarly, in the meson-mass spectrum generated
by the quark model, it is natural to expect A,

Because of its ambiguous character, theoretical
attempts have been made to understand A, in terms
of a purely kinematic enhancement. The Deck
mechanism, ' and its later refined versions' —the
so-called Reggeized Deck models —have been
particularly successful in this direction. But, if
A, is purely a kinematic enhancement, then one
has to look seriously into the implications it has
for chiral symmetry and the quark model.

It becomes of interest, therefore, to study pl'

scattering in the 1' channel and see, even if quali-
tatively, whether a resonance can be generated.
We consider the interaction of p and m as given by
a gauge model having p as a gauge vector meson.
Spontaneously broken gauge models are of special
interest be'cause they are renormalizable.

We take the lowest-order pm' scattering ampli-
tudes from a gauge model introduced briefly in
Sec. II and, using the discontinuities across the
left-hand cuts given by them, unitarize them in the
1' channel making use of the N/D formalism. This
is given in Sec. III. The same calculation has been
done in Sec. IV using a chiral-SU(2) x SU(2) gauge

H. A GAUGE MODEL FOR p AND m

Consider a group LX G where L is a local SU(2)
group and G is a global SU(2) group. The pion is
a triplet under L and p is taken to be the gauge
vector meson of L. In other words, under an in-
finitesimal transformation of L,

L(x) = 1+i8(x) ~ r,
tt- tT —2g(x) x tt,

ps- ps —2e(x) x pq+ —ss0(x) .
Under G, both p and m are invariant. We also

consider Higgs scalars Mo, N„M, N which trans-
form under L & G as follows:

(2.1)

Q =Me+ iNe+ (M+ iN)

Q- LPG
(2.2)

An invariant Lagrangian can now be written as

model due to Bardakci' in which Ay is assumed to
exist. One would like to check whether the inclu-
sion of amplitudes corresponding to the A, ex-
change in the I channel of pw scattering produces
a resonant behavior in the s channel.

The outcome, presented in Sec. V, is that in
both the calculations there is no resonant behavior
around the A, mass region. This means that'the
forces given by the gauge models do not seem to
be attractive enough in the 1'channel, if indeed
one can talk in terms of such nonrelativistic ter-
minology.

Our calculations are certainly not a conclusive
proof against A,—though they are an argument
against it. If we take this result seriously, then
it appears that for the A, enhancement, one should
either look for a kinematic explanation and try to
use a nonlinear realization of chiral symmetry,
or look for some deeper dynamical reasons to ex-
plain the poor phase-shift variation of A, in dif-
fractive processes on the one hand, and the ap-
parent absence of a 1' resonance in nondiffractive
reactions on the other. '
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.-t-d(s„p. —s,p„-'g[p„,p.])']+l t ((-s„-g['p„, ])')+l » ((e„4 —gp'„e)(s"4'+ 'ge'p"))

+ ~a' tr(p tg) —~P[tr(g~p)]'+2ytr[(g~p)'] - ~5tr(s'P P) - 4A[tr(v')]', (2.3)

where

s = % ' T, and p~ =- ptl ' T .
The local SU(2) symmetry can be broken spon-

taneously by requiring the vacuum expectation
value of P, {g)„to be nonzero:

Q)o=n

Shifting the fields P to P = Q - r/, one finds in the
usual manner that the p acquires a mass gg, the
pion a mass ~5g, and Mo=—Mo —q and M have
masses ~2a and 2~2yq, respectively. N and N,
remain massless.

We notice that under transformations for which

8(x) is independent of x [see (2.1)] and the parame-
ters of transformation Of the two groups J and 6
are equal, the Lagrangian so obtained is still in-
variant. This can be identified with the isospin
group.

A remark must be made concerning the gauge
conditions and the presence of massless particles
N, and ¹ We can, for example, choose the gauge
N =0. This corresponds to choosing the unitary
gauge. It stiH, leaves N, massless. We could have
avoided N0 by either choosing a smaller number of
Higgs scalars, for example, breaking the symme-
try by giving a nonzero vacuum-expectation value
to some component of just one complex doublet in-
stead of two; or, we could have retained similarity
with the Bardakci-Haipern model' and extended the
group to U(2). In the latter case, one has to intro-
duce another vector meson corresponding to the
U(l) part of U(2) = U(1) x SU(2}. Then we can choose
another gauge condition and el.iminate N, . How-
ever, in this work we do not require the extra
coupl. ings introduced in this way.

(2.4)

, ,(, ) =( )
' ",(P,) (,(P )

x [Ag„~+BP2yp~q+Cpiyp2p

+&2uP3 p + EPlllPS p] t (3.1)

III. HELICm. ' AMPLITUDES FOR px SCATTERING
AND N/D EQUATIONS

Writing the S matrix as S= I +i(2v) T, the matrix
element of T, T„"+4 '"(s, t) can be decomposed
generally as

(8.2)

In the center-of-mass system, the "parity-con-
serving" amplitudes, i.e. , amplitudes with definite
total angular momentum and parity, can be written
for the 1' channel in terms of the above invariant
amplitudes as follows:

T„=,'s(2—s) '(P/v s)
pl

x Jl de[-A(i+a')+(D- E)P'&{1-s')],

1
T,o

=
2~~ s(2x) (PII/M~s)

dpi —2)[-A + {B—C)P'(Ws/g)

~01 ~l0

+ (D —E)P'{1-x}], (3.8)

T00= 2s(2v} (PA'/M v s}

)/P i P Ws B(d +CO

~D40+EQ+P'(1 —x) i 0 +x{D—E)

i(T -T) =(2s) TT~. (3.4)

To write N/D equations, it is more convenient
to define

where P is the magnitude of the center-of-mass
momentum, 0 and ~ are the energies of the p and
x, respectively, and M is the mass of p. Also,
the amplitudes A to E are supposed to be projected.
to the states with total isospin 1. We note that we
have four amplitudes T s, a, P = 1,0, because out
of pm' helicity states one can construct two inde-
pendent positive-parity states with angular mo-
mentum 1, namely, the one corresponding to p
helicity zero, and the other corresponding to a
linear combination of helicity +1 and -1. In T~~,
a or P =1 corresponds to the helicity +1 combina-
tion. We also note that T~8 is symmetric as re-
quired by time-reversal invariance.

The amplitudes {3.3) must satisfy the unitarity
condition

where indices 1,2, 3, 4 refer to p{l)+v(2)- p(3)
+ m(4} and we have omitted the isospin indices for con-
venience of writing. We note that there are actual-
ly only four independent amplitudes because time-
reversal invariance requires that

T„=s (2m) (v s /P) T„,
,TOw(2 )v(m/P) T,o,

Too= s(2s) (m /PWs)T~,

(8.5)
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where m is the pion mass. Equaiion (3.4) now be-
comes

i(T —T ) =-TpTt,

where p is the diagonal matrix

p« =p~s(vm'),

pzz ~p/(s~s),

P10 P01

Let us write

T=ND ',

(3.6}

(3.V)

(3.8)

where N and D are 2 x 2 matrices. We assume
that D is analytic in the s plane except for the
physical cut [from (m +M}' to ~], whereas N is
analytic except for the so-called unphysical cuts-
the latter being the singularities in the s plane
arising from expressions (3.3) when we substitute
for A, S, etc. , the expressions obtained from
lowest-order diagrams of field theory. Normal-
izing D at a point s0 and taking the unitarity condi-
tion into account,

S Sp ~, p(s')N(S')
2s ~ (s'-sg(s'-s) '

„d,(s" )D(s")
u (s' —s)

(3.9)

(3.10)

D(s) =1- 0 ds" R(s, s )b,(s")D(s'),
U

where

(3.11)

The integrals in (3.9) and (3.10) go over'the
physical (&) and unphysical (U) cuts, respectively,
and g(s "}is the discontinuity in T(s") across the
unphysical cut divided by 2@i.

By substituting the second of these equations in
the first we get the following integral equation for
D'

el discussed in Sec. II are shown in Fig. 1. They
give rise to left-hand or unphysical cuts shown in
Fig. 2. The discontinuities of TN6 across these
cuts are given below.

p exchange in the f channel [Fig. 1(a)]:

af, (s) =-,'g'[(s -u')(1+yp')/p'+4yp(1-yp') j
1.

L~,(s) = ~ (mQ/M&s) [(s —I')/p'
—4&@/Q —4y ](1-y~ )

+01(S)
(3.14)

6[0(s) =-,'g'y~(m'Q'/M's)

s —u' I'p' ~ 2(dx —,
~

—,-yz +~y, +- —+1 (1-yz),
L

M
PP= 1+2 (3.15)

and

u'=2M'+2m'-s. +2p'(1 -y ) .P

v exchange in the I channel [Fig. 1(b)]:

(3.16)

2M'+2m' -s
~= 1+ 2p' (3.18)

Eye(s) = -g ye(1 —yg )

1
d, '„(s)= ~ g'(mQ/M~s)(1 —y,'}(y,+&/Q)

(3.17)
+01(

b,,o(s) =g '(m'Q'/M's) yg y, + &o/Q)',

'

with

p(s')Rs s — ds, , „,. 312

Equation (3.11) can be inverted to solve for D on
the unphysical cut if we use for 6, the discontinui-
ties of T as obtained from the gauge model. These
values can then be used to obtain N on the physical
cut by (3.10). This, in turn, determines D on the
physical cut as

ReD(s) 1 — ' P ds'
2v J, (s' -s,)(s' -s) '

Mo

Cc)

(b)

lmD(s) = -~p(s)N(s) .
The lowest-order pw diagrams in the gauge mod-

FIG. 1. Lowest-order diagrams giving left-hand dis-
continuities in the 1' channel.
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Scalar exchange in the t channel [Fig. 1(c)]:
&"(s) = k g'(n'&/p')(1 +y&')

hf (s) = ~ g'(r) {)/p')(mQ/M~s)(1 —y„')
(3.19)

S~=&+ a ~2
(3.20)

where p. is the mass of the scalar particle M
It must be noted that, because of the light mass

of the:pion, a part of the unphysical cut for the
diagram in Fig. 1(b) lies entirely within the physi-
cal cut. This happens because pw-3m is kinema-
tically possible, so that s- and I-channel regions
over'lap. Such a situation can occur if we have'un-

= a()i(s)

Les (s) = --,' g'(q'()/p') (m'0'/M's) (p'/0' —y„)y„,
with

stable particles and needs special attention in a
purely dispersion-theoretic approach. In our case
we shaB unitarize the amplitude on the physical
cut, and it is this total unitarized amplitude which
matters. Therefore, the cut due to pion exchange
lying within the unitarity cut will not be included
in the left-hand discontinuity.

For the calculation of discontinuities we take the
following values forg, g, and 5:

g'/4s = 0.4,
g=330 Me&,

5 =0.18,
which are fitted with the p and m' masses and the
p- 2w width of about &00 MeV. '

IV. INCLUSION OF A g EXCHANGE IN u CHANNEL

In the gauge model of Sec Ir we had only p and
x apart from Higgs scalars. A more interesting
situation occurs in the Bardakci model where the
symmetry group is the broken chiral SU(2) &&SU(2).

A, itself is one of the gauge vector mesons, and in
our N/D calculation we can include the discontinu-
ities due to the diagram shown in Fig. 3(a). The

(a)

+ (M lm-m)
2

'
2

2M+nP

(a)

(b)

a+ a

FIG. 2. Left-hand cuts for diagrams of Fig. 1. (a) For
1(a), pa=cos ~[(m~+M~/2)/(M~ —m )J; (b) For l(b); (c)
for l{c),s~= p/2 —Mt —m~+ [{p/2 —M -m )- (M -m )2) ~ p is the mass of Mo and assumed tobe
~ 2M. The + and —signs mean the following: T on the+
side of the cut minus, 'F on the —side of the cut is equal

to 2mB.

FIG. 3. (a) Diagram for the A& exchange in the I chan-

nel; (b) left-hand discontinuities caused by it, where

b ) = 2M + 2m -m~, bt ~ (M -m. ) /mx .2 2 2 22 2
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there is not the slightest hint of a resonance.
In the following me make some remarks con-

cerning the calculation and results:

(i}i,ooking at the expressions (3.14), (3.17), (3.19),
and (4.3) for discontinuities 6, we observe that

.4~ has a double pole and Spy has a single pole at
s =0. This is of a purely kinematic origin, and

depends on the particular choice (3.7} for the ma-

trix p. In defining T we could have multiplied

TM, T,„and T», respectively, bys~s/p, s/p,
and v s/P, which is as good a choice for removing

the kinematical singularities due to Ws factors.
In that case me mould get

p00=P/s~s7I' q p~~ =P/~sv ) p~o=po~ = 0

This choice avoids I/s' in T„Bat the cost of

making its asymptotic behavior morse —the ex-
pression (3.10) for Ã becomes badly behaved for
s - . We are then at liberty to choose from the

following two alternatives: "subtract" N at an

arbitrary point with undetermined residue, or cut

off the integral in (3.10) and treat the cutoff point

as a parameter. We resort to neither of these,
and, instead, shift the pole at s =0 by multiplying

TM by [s/(s —a)]' and T,D by s/(s —a). According-

ly, p00 changes to p«[(s —a)/s]'. This does not

change the asymptotic behavior of p ~. The re-
sults given are-for a=1, in pion-mass units. Al-

so, we have chosen s„,the normalization point

[see Eq. (3.9)], to be equal to 1.
(ii) The mass p of the scalar Mo has almost no

influence on the amplitude. - For this reason me

have omitted the contribution of scalars in calcu-
lating with the, Bardakci model.

(iii) We have checked that in our numerical cal-
culation the matrices D and N are conjugate-sym-
metric. In particular, D is real on the negative

real. axis and takes. complex-conjugate values on

conjugate points. Similarly, N is real on the

physical cut.
(iv) T „&(s}is symmetric to a great extent. In

the calculation with the model of Sec. II, the maxi-

mum value of [T„—T» )/ )T,0+To, [ is less than

0.05 for s ranging from the pm threshold to s =80
in pion-mass units. Symmetry of the amplitude

obtained from N/D equations when symmetric
left-hand cut discc~ntinuities are given as input is
an analytic property. We consider it as a good

feature of our calculation to be able to obtain this
symmetry in a numerical calculation. We can im-

prove it by choosing the pole at a, mentioned in

(i), properly. However, for calculation with the
Bardakci model, the symmetry is not so good, the
asymmetry ratio being 0.15. This is due to the
fact that with the introduction of the unphysical
cut due to A, exchange (Fig. 3), the effect of the
pole at a = 1 is felt on discontinuities due to the
A, exchange as well, the point b, in Fig. 3(b) being
at about s =2. In this case we are unable to im-
prove the symmetry of the amplitudes, and the
results given in Fig. 5 are the best ones obtained.

(v) The unitarity condition for the amplitudes is
very well satisfied. We have calculated the tmo

eigenvalues x, and x, of the S matrix S 8= 5 8

+ i(2v) T z as a function of s, and found that their
modut. us is very near 1 over the whole range. For
example, for amplitudes shown in Fig. 4, the max-

'

imum difference of (x, ( or (x, ( from 1 is less than

0.06. For amplitudes in Fig. 5 it is less than 0.02.
In conclusion we would like to emphasize that

our aim in the above calculation has been to see
whether the lowest-order pm amplitudes in gauge
theories, when unltarized by the N/D method,
produce a resonant behavior for A,. We find that
they do not. The parameters at our disposal g,

s p a, etc. , show very little influenc e over the
typical amplitudes shown in Figs. 4 and 5. It is
possible to do this calculation at a much more
sophisticated level, for example, by (a) continuing
in the mass variable of p to take into account the
fact that p is unstable and (b) by including more
channels. In this connection it may be observed
that the inclusion of other channels, for example
the K E channel, whose importance has been em-
phasized by the cal.culation of Longacre and Aaron
recently, ' cannot be incorporated in our approach
without extending the model itself to include E
mesons. In our approach we have tried to see
what implications gauge-field-theoretic couplings
have for A, . We are not trying to fit the A., pa-
rameters as done in a phenomenological approach.
For this reason we are also unable to utilize the-
experimental informationo on phase variation, be-
cause for us the phase variation (contained in the
amplitudes TN8) is entirely fixed by the left-hand
discontinuities obtained from the model.
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