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Radiative corrections in photon-photon collisions induced by e+e or e+e+ processes
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In this work we present an evaluation of radiative corrections to order n pertaining to y-y collision
experiments performed with an e+e+ storage ring in which the electrons scattered are detected at small

angle. We check that the. infrared divergences originating from elastic corrections are canceled due to
opposite divergences from real-photon bremsstrahlung. Numerical results for given experimental conditions
allow one to compare the various contributions to radiative corrections in processes such as ee ~ eeX with
X =- e+e, p, +p, , m+m

I. INTRODUCTION

In this work, we present a study of radiative
corrections in photon-photon collisions via e'e
or e'e~ colliding beams. The physical interest of
the process ee-eeyy-eeX (C=+1), which will
enable us to study the C =+1 hadronic states, with-
out hadronic spectator, has been widely dealt
with' 5.

In order n4 in quantum electrodynamics, the
Feynman graph corresponding to this process is
the graph (P) (Fig. 1). y-y collision experiments
without detection of the scattered primary elec-
trons meet some difficulties owing to the back-
ground (which actually comes from the other
Feynman graphs of the same order in n). It has
been shown' '3'~ that one can practically eliminate
this background by detecting the scattered primary
electrons in the forward direction. In that case,
the virtual photons are guasireal. This is the
principle of the experiment started in 1978 at the
electron storage ring DCI (Orsay). ' Many of the
aspects of this study are relative to the conditions
of that experiment.

In order a', radiative corrections to the graph
(P) are due, on one hand, to "elastic" corrections
contained in the interference between the princi-
pal graph (P) and the graphs of Fig. 2. On the
other hand, they come from "inelastic" correc-
tions expressed by the graphs of Fig. 3. Indeed,
as for the latter ones, the tagging system of the
electrons has a finite resolution AE in energy
which allows events of the types (4) or (5) to
occur, i.e., emission of a photon k with small
energy lying between 0 and AE. However, in
order to avoid infrared divergences, we shall
assign to this photon a mass A. which will tend to
zero after eliminating the infinities, and we shall
separate the emitted photons into two classes:
"soft" photons (A, &ko ~A) and "hard" photons
(A &ko ~b.E) by means of a cutoff A.

The corrected differential cross section will be
written in a general way as follows: do =(1+5)dao

+dQ, where dao is the cross section relative to
the graph (P), and where 5 and dC are the correc-
tions coming from graphs (1) to (5): 5 =5(1) +5(2)
+5(3) +5(4+5), dC =dC(1) +dC(2) +dC(3) +dC(4+5).
In the calculations we deal with here, we neglect the
graph (3) and the interference between graphs (4)
and (5). In fact, their contributions are probably
unimportant. ' One thus gets 5 =5(1)+6(2) +5(4)
+5(5), dC = dC(1) +dC(2) +dC(4) +dC(5) .

In Sec. II, we shall review briefly the general
results on y-y collisions and the computation of
do, in the approximation of quasireal photons, and
we shall evaluate"the elastic corrections. In Sec.
III, we shall consider the inelastic corrections,
for the emission of a soft photon, in order to
elininate the infrared divergences, and for the
emission of a hard photon. The full results will
be presented in Sec. IV together with their num-
erical outcome.

%e emphasize the fact that our calculations are
based on three main types of approximations: (i)
extreme relativistic approximation, (ii) approxi-
mation of quasireal photons (or equivalent-photon
approximation), and (iii) approximation of soft
photons (for inelastic corrections). These three
categories of approximations will be defined here-
after.

II. UNCORRECTED CROSS SECTION AND ELASTIC

CROSS SECTION

In the beginning of this section, we shall be in-
terested in the calculation of the cross section of
the process represented by the graph (P). This
calculation has already been made by many au-
thors, and for all details we refer the reader to
references. ' ' ' Before giving general results,
let us define the kinematical variables correspond-
ing to the experimental situation (laboratory
frame) in Fig. 4. Four-momenta of the particles
are defined as follows (+, —,—,—metric): inci-
dent electrons P, =(E,p), P, =(E, —p); scattered
electrons p,' =(E'„p'„8,y, ), p', =(',, p,', 8„y,)
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FIG. 3. Graphs (4) and (5) occuring to order n~ in
inelastic corrections, They are characterized by the
emission of a real photon k.

FIG. 1. Main graph (P) for the production of a sys-
tem X collisions photon-photon induced by e e scat-
tering.

we must integrate them over; then it is convenient
to set

with 8„8,-e; quasireal photons qf ((of Qf),
q2=(+2, g2}; system X produced X=q f+q2 p$ pf
+p2 —p~. m is the electron mass, and we suppose
m/E, m/E'„m/E2 «1. We shall define t, =- q;2
=-(P, -P', )'; p, —-f, /4m'(&=1, 2); W=(X')'~'.

The wholly differentiated cross section of the
process studied is written in a usual way3

327T'(~'— i"'I gx""x *
~f,„'."
]

&&5 (X- q( —q2), , dl'»,|,4) d ~f ~~2
2

where de is the phase space of the decay parti-
cles of the X system (X- r), +g, + ~ ~ ~ +r)„):

dl'»=(2») 3"..j[& dago/2qoa ~

e=i

with g =2 for a fermion and 1 for a boson; I.'"
and L,~, ' are the dynamical tensors of the left-
hand and right-hand eely vertices and X~" is the
electromagnetic current associated with the par-
tial process q, +q, -X; Z means a sum over spin
states. If we are not interested in studying indi-
vidual particle variables of the system produced,

w"""=[(2»)'/2]
~

gx""x"'I6"'(x- q, —q,)dl'„."*)"'
It has been shown3 that, in the approximation of
quasireal photons, this quantity can be written as

W"""=R"~R"'Wrr(W)

+ '(R""R~'+R—"'R'" —R~'R"') 7(W) ('2)

—q2 q)q(]/K and K=(q) q2) —q( q2 . It has been
shown also that Wrr ——W2o„„(W}/16w2a2 and err
=W'crr'(W}/16m'c. ', where o„„(W) is the photo-
production cross section and err'(cy) is the
difference between cross sections for scattering
transverse photons with the parallel and ortho-
gonal linear polarizations. The validity of this
approximation is submitted to the condition of
guasireality: t,/W', t,/W'«1.

A simple calculation shows that the v» term is
proportional to cos2y*, where y* is the re1.ative
azimuthal angle of the outgoing electrons in the
y-y center- of- mass frame. In .the approximation
of quasireal photons, it is shown'0 that y*=y,
where y is the laboratory relative azimuthal
angle. Furthermore, for small angles 8& and 8„
W is independent of cp (W =4&@,&o2). After inte-
gration over the azimuthal angles of the outgoing
electrons, one gets

p, = CE-; p I p, * CE-'-p l

FIG. 2. Graphs (1), (2)„(3)ocurring to order 0.5

Iwhen interfering with graph (P)j in elastic corrections.
The squared box is defined as the sum of vertex correc-
tion (a), vacuum polarization (b), and mass renormali-
zation (c) and (d) effects.

FIG. 4. Kinematical diagram in the lab frame for the
process ee eel eex. The central blob corresponds
to the system X produced.
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d aq/dEfdE2dcos8(dcos82 n——W E(E2E o»(W) 1 ——'( 1 — ' ')+2 '2 1 — -' 1 — ' + 'q /16m t(t, ,

where f;,,=un u2r; /EE,' (i=1, 2).
Using dEtdE', dcos&, dcos8, =d&u, d~,dt, dt, /4E'E, 'E2, we get d'oo/d~, d~, =o»(W)fi(~, )N(~, )/&u, ~~, where

N(a&;)= (~/v)[(l —~;/E ~ /2E') ln(t, /t. .,) —(1 —~,/E)(1 —f, „/f,. )] (i =1,2) .

is defined by the experimental choice of the angle 8 . In order to obtain the invariant-mass dis-
tribution in W, let us set &u, =w and ~~=W2/4&v, . Thus,

dgo 2 "n~ t W' de„'=—~„„(wj ~(~)ivj ——. (2)
III iII

and co ~ are defined as follows: Let us assume that, due to experimental conditions, co, and co, both
lie between aE and bE (0&a &b &1). Using W =4+,&u, we get the integration limits (Fig. 5):

e,,=max(aE, W'/4bE) and &o =min(bE, W'/4aE) .
Now, we consider the eleastic corrections described in Fig. 2. Because of the symmetry between

graphs (1) and (2), it is sufficient to compute the contributions relative to the interference between graph
(1) and the main graph (P). Let us call E„ the electromagnetic current corresponding to the squared box
of Fig. 2. Graphs (c) and (d) which contribute to E„, can be neglected because of the mass renormaliza-
tion of the electron. Thus, we consider only graphs (a) and (b) which have been widely dealt with. '~ "
Let us give a short survey of the results.

To separate contributions from (a) and (b), let us set E =E,'"+E„'~'.. E„'" can be written in a general
way: E'"=Ly +A„(p„pI) where L is absorbed by the charge renormalization and, thus, can be neglected;
the second term is defined by

~, (P( P() =—
2 4+fn)r, +4 [r„r.]qg

p Q J
2g . 4m

1+2P&
ln +~ &(2 2+3P&'[ + ]"' ' [ +]"'

l +2p)+ f I g (4 (n, ) —4(- p, ) +—,
' [4(- 2p, ) —C (2n, )]j,

[p) (pi +1)]

I~ ——2+ fg2 lnXO ln —,J—
2

Gf dx
+1 [P1(Pi 1)] P1& p1 [Pi(Pi +1)]"'+P&, ~0 —— , @(a)= » ~1 —x~

Q( 0 x

4 is a Spence function, variations of which were
given in the nice work of Tsai. Let us remark
that I~ is a divergent term which becomes infinite
when A. goes to zero.

The general expansion of E~"' is „' EM(
I& I,„q

—q&'y„)(C+ak/v)/q, 2, where C is absorbed by
charge renormalization and, thus, can be ne-
glected. Using the Dirac equation, we can see
that the g,q, „ term vanishes; thus, E'„' is re-
duced to —aEry„/v with

K=(
&
—1/p& —(1—1/2p, )[(p, +1)/p, ]' ' lnX j/2 .

Finally

(E„).„=-(a/2v) J(1 +I,+21')~„+J[y„,y„]q",/4m).
We then write the "elastic" cross section [for

graph (1)] as

do'(1) =6 (1)doo +dC(1),

' ~+/h

aE bE

FIG. 5. Variations of v2 as a function of co~ at con-
stant W. When coq and (d2 are lying between aE and bE,
these curves allow us to determine the limits of varia-
tion of &&. .
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where

6(1)=-—(I~+I~+2K),

where

0 g7 M(d pf — 4
I ~min

16m+'

dPf' dP2
2@t 2gl

6(l) is a divergent term, and we will see below
that this divergence is cancelled by an opposite
divergence coming from the soft-photon contribu-
tion. However, we can obtain the invariant-mass
distribution (dC/dW)4 by multiplying dC(1) by 2
to take into account the contribution of graph (2),
and by integrating over phase space in the same
way as in the calculation of the uncorrected cross
section:

kind of process is described to order Ot' by the
graphs (4) and (5) of Fig. 3. To avoid infrared
divergences, we ascribe, in a first step, a mass
) to the radiated photon, where X is as small as we
like. Thus, for the convergent terms, we will
take X=O; on the other hand, we conserve X in
the divergent terms.

Because of the symmetry of the graphs (4) and
(5) and because we neglect their interference, it is
sufficient to compute do(4) given by

16a5
dv(4) = 2 "lg X""X"~II—

E2 4t 2

gpss

1 2 ) VO

(4) dpo dPf dP2x6 (X-q, —q, ) 2k 2, 2+dF»
0 1 2

where 2„" is the electromagnetic tensor des-
cribed in Fig. 6 (semivirtual Compton effect)
and expressed as R(fp) =(—g ~+k k /)f )+8 „Rffp,
with

1 1&,=M(pl) r ~. ] r„+r,~ ~
—r.

I
2((p)f

III. INELASTIC CROSS SECTION

Now we consider the contaminating process
ee- eeXy characterized by the emission of a
real photon with its energy lying between 0 and
~E, where AE is the finite resolution of the
tagging system of the scattered electrons. This

=~(pi) r. &. +& r, +r„&
&

r. M(pi)m 1'

„-(p.) 2( pi. pi. +r.sr. +r. r. „( )Dt ~ Y~ ' ~l
f 1 1

~~ere af =2upf —X' and D'f =up', +X'.
A rather lengthy calculation, taking into account

all the terms of B „, then leads to following for-
mula (neglecting )f, as we said, in the nondiver-
gent terms):

(f) 1 1 4(t, +2m ) 4, 1 + 1
pp, I D D ~P D 2 D t2 gp

1 f 1 1 1 1

1 1) f~D ~D'lf 2 tD,' Df & 8m2 4 4+ (ti-2m')
D -D I

-I ~~+~~ I-2m2I, =~2- !2I g.p DD k.kp D-pf. »p+D -p'f.pfp

or, taking account of momentum conservation,

+ —
D D, +2(m ti) Dp

—
D I

— D)+D —2m 2 D 2 +2m tf D 2+D ~ 2 g
(f) 8m (f) 2ti 2 1 1 ) ~D ~D' 2

D'f Df

1 1 1) 1 1 1 1

1 1 2m2 t, |
D D D DD' p ip D' D D DD I

fs p
1 1 1 1 1)

I&2m —tf 2m 1 tf —2m 2m 1, , 8m

1 f 1D &2 D (qfppf p qfppf p} D D& D 2 D (qf ppfp qfppf p) D D& qf pqip '
1 1 1 1 1 1

(6)

It becomes necessary to be very careful with notations. Ne shall continue using notations like t, and
(df, but with restricted meanings: tf ———(pf —p', ) and (df =E Ef. In fact, w-e now have pf - pf

—qf+k in-
stead of p, —p', =q, . For graph (4), (d2 and t2 are quantities characterizing the exchanged photon q2; the
same is no longer true for +, and t, with respect to qf. Yet we can still write

d kd pid p2/8kpE(E2 ——(k() -& )' dkpdcose„dq)pd(dfd(d2dtfdt2dyfd(t)2/32E,

so that, after integration over yf and the phase space of the central system,
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d e(4) =(a lkl/(2w) & t 'E4)Z'"W""~I.„'2'dkd, dkdidt, dt, dqdk, dcos8„dp„.

19

To be able to continue the calculations and eliminate divergent terms at the limit A. -O, we divide the
energy range of the radiated photon into two parts: (1) the range X ~ko ~A corresponding to soft photons
and which contains infrared divergences when A goes to zero; (2) the range A & k0 & AE corresponding to
hard photons. A is a cutoff which separates the two ranges; its value will be determined later on. To be-
gin, we consider the soft-photons case.

Assuming A to be small enough we make the following approximations. We shall first neglect k„ in the
5'4'(X- q, —q, ) distribution, which means that the tensor W""~ is identical to the one calculated for the
uncorrected cross section; the terms in k„will also be neglected in (5) which implies, accounting for
conservation of the electromagnetic current, that

gsof t( 1) ~1i i) +Eg

1 i

%e shall also replace q, ' by t, in the denominator of the propagator of the exchanged photon q, . Setting
2f

(tt, kS) =—,
'

(k02 —X') 'i ' dk, d cos8„dy„(A,8),

5(4) ~& kt, dC(4) =;2,~ » 41g»W"""I,„',"dkd, de, dt, dt2dy .2'

The calculation of 8 and 8 is very tedious and is exposed in Appendix A. It results in the following ex-
pressioIls:

I

king
——2w ln- z

—w
— if' -2 ln —lnxo+lnxo in [4(pi+1)] —lnxo lnI1-EEi 1+2pi E i(2 ~id

pi(pi+1) m E

l( x, 'I 1
&l ( (o,/E

'(1+4 J 1+Xj,& Iv, /E —2a,)

(X0(~,IE- 2~i) 2Pi+~1/Ei PPi+~i/E &
'

1+2p(ea —2w
l 2+[ (-- -l)],~21nX, ln —,

k2=m'wA —,»- ' ——»- +(&+2pi)l —.——l+lH-2 2E', 2 2E ( 1 1'I TE' E
E', m E E~

m E 2E( E( 2E+ 1-—,(1+2p,) ~in —,ln
J i ~ f Pal SZ

E' E 'I
- m2

m' E'& 2E

The comparison of the expressions of 5(l) and 5(4) shows that the infrared divergences can be
eliminated, so that we get

&(&)+5(4)=- —2+ ' lnx lln —+, e (I +m'), ——.1 +2pg A e n
w [p, (p, +1)]"' '] m 2w'
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ii p„'~& 1( P, -k

Q(~)= f [5{()+()(4)[
min

2

X (1
(d

~
1 tfmf, +{d dtf

Ej tf 2E tf

and where &min +max& timin& time have been defined
in Sec. II.

%e can also get the invariant mass distribution
coming from dC(4) and dC(5). It is easy to show
that

F&G. 6. Feynman graphs entering in the semivirtual
Compton effect.

I

)

grtjupeL (2) 2 E2 y
~

y 2min [ + 2
gttp ve + 2 E

x4» c„„(W),

which is a finite quantity independent of X.
Considering that the relation W =4(df(d2 is still

valid in the case of soft photons emitted, we
easily get [after multiplication by 2 to take into
account graph (5)] the contribution coming from
5(1) +5(2) +5(4) +5(5):

wherefrom we deduce:

where

"4

with

~min
P()=— 1 —i'" dtg2m' Z) t '

~ imin i

Finally, the contribution of elastic plus inelastic
corrections of soft photons is

(elastic+soft) =-
W o»(W) [M((d) —Q((d) +P((d)]&l

4
dc 2 a)( tW ~ d(d

(4(d j (d

I.et us compute now the contribution to radiative
corrections due to the emission of a hard photon.
We shall use the expression of do(4), where we
replace Z{f)by (6) after neglecting terms in q,„,
q, (because of current conservation). However,
in contradistinction with the case of soft photons,
here we are not allowed to neglect k„, so that

q f t f 2k 0(d f (1 —cos 8„) and W = 4(d, (d 2
—2k 0[{d1

+(d2+((d2 —{df) cos8&].
In 8"""as well, we replace q, by p, -p', —k;

our calculation thus includes more terms and
becomes more complicated; using here again the
quasireal-photon approximation, we are led to

Zpp W Lvp Ff(tfi t2) (d1 ~ (d2) q, k0, cos8v, ([ v) Wrr(W) +F2(tf) t2~ (d1, (d2, q ) k0, Cos8v, q v)err(W) )

with

Ff ——Q C41H~,
a=i

Srn' 1 1 'I Bm2 4t'=DD'' ' ' D i D" +DD''ii

v, =-,",', .2(. t)(—,', —,')-(. ..')
1 1 'f Bm2 4tf

4 Df D) D2 DD''

Di Di 2 1—2m 2 —,2 +2m I;i 2 +
1 i i

( 11) 12) [3) 14
=

pp pgppg pfppfp) pfppfp)R R Lvp

(C2f) C22) C23) C24) =(Lppyg p) pfppfp) pfppfp)R R Lvp ~g(Cff) Cf2& C13)C[4) .(f) & & tf, v ps (2)
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I»rder to compute the cross section mo re easily, we sh~ll take, both in I', and I'2 ti tf i ~2 t2 i
thus suppressing the dependence of those factors on y and y, . Defining

one thus obtains

do &5 gr 6'E +i
- (hard) = —

4 k,dk, d cos8„
~max $'(Wrr +02rrr xfmxx

~ggf
tsmxx dt2

' 2c, —ko(1+cos8„), q« t~' '

Iv

&C ~'8"
d W, 4(2v) 3E~

+ 1

d cos6I,

(t( „—tg g )(f2 —t2 g ) P)o'x„dcd)

t, „t., [2co, —k, (1+cos8,)][t, „+2k,cd, (l —cos8„)][t, +2kocd, (1 —cos8„)] '
mia

(
dC =same with F,o»-F,a»,

where the limits of integration over co& are now

W'+2bEk, (1 +cos8„) . W'+2aEk, (1+cos8„)

IV. NUMERICAL RESULTS AND CONCLUSIONS

In order to separate soft from hard photons, we took the cutoff A equal to the electron mass. This
choice is convenient since, for A &nz the radiative corrections keep the same value. In addition, it has
the advantage that the term proportional to In(A/m) vanishes in (dC/dW)„.

%'e evaluated the radiative corrections for various possible values of S; chosen according to the con-
ditions of the experiment at DCI (Orsay): a=0.2, b=0.5, E=0.8 GeV, rxE=14 MeV, 8 =10 mrad, for
the processes ee- eee'e, eeoc'p, eel'v . The corresponding elementary cross sections o„„(W) and

v»(W) for these processes are given in Appendix B. Tables I-III show the numerical results obtained,
and Fig. 7(a) and 7(b) the curves computed for do, /dW and (dv/dW).

We notice that, in all cases, (dC/dW), and (cfC/dW)z«are negligible with respect to (dC/dW)«. The
latter quantity thus represents the whole of elastic corrections plus corrections due to soft photons. With
the cutoff chosen, one has practically

min 4' ~ E tf, 2E —I~- ~ d(0 .
1mia 2m t

As for the inelastic corrections due to hard photon emission, we notice they are generally much smaller
than those computed above. On the other hand, they str'ongly depend on the process considered, i.e., on

TABLE I. Nurnerieal values of dao/'d ~'„Cdc/d&PI, (dc/d ~-„, (dc/d +&», 8'C/4+&v,
(dC/d W}v, {dcT/d W}„cc aad /0c100 [( /do& d, „V}, —cdco/cc tcV j/. ccca0/d'tVc as fuao'ti'ons of I'4' for ee

eee e .

0
0 440
0.536
0.632
0x 728

3.95 x10
6x31 X10
3.34 x10'
0.95 x10'
0.20 x10

-0.37
-1.03
-0.86
-0.32
-0.09

-392.07
-650.50

- -341.81
-96.60
-20.25

3.42
4.95
2.67
0.78
0.17

55.81
105.08
67.67
23.15
5.55

-0.33 x 10
—0.48 x 10

0.22xl0 4

-0.05 x10
-0.01 x10

3.62 x10
5.76 x10
3.07 x1
0.88 x10
0.18x10

-8.43
-8.59
-8.15
-7.68
-7.46
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TABLE II. Numerical values cf doo/dW, (dC/dW)r, (dC/dW)«, (dC/dW)rr, (dC/dW), ,
(dC/dW)v, {d&/dW)«» and %=100[{d&/dW)„»-do'0/dW)/(doo/dW)as functions cf W for ee
~gyp, p,

(Gev)

d&o

dW

lo

0.344
P 440
0.536
0.632
0.728

p.56 x10
1.11x 10
0.66 x].0
0.20 x 103

0.04 x10

-0.05
-0.18
-0.17
-0.07
-0.02

-55.38
-114.19
-67.55
-20.70
-4.61

0.48
0.87
0.53
0.17
0.04

7.88
18.45
13.37
4.96
1.26

-1.68
-2.44
-1.13

0 24
-0.04

0.51 x10
1.01 xlp
0.61 x103
0„19x103
0.04 x103

-8.73
-8.81
-8.32
-7.79
-7.55

the system X produced. That fact is due to the differences between the expressions of o~»(W) obtained
for various types of particle pairs: electrons, muons, or (pointlike) pions. In the case of lepton pair
product' is justified, as is shown by the numerical results of Tables I and II, in neglecting
(dC/dW)v with respect to (dC/dW)zv. On the contrary, for pion pair production (see, Table III), one has
to consider both contributions (dC/dW)zv and (dC/dW)v.
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APPENMX A

dQr
DP2

1

DP

D 2 DP2)

In order to calculate 8 and , one must evaluate the integrals

I ——' dk(} k(} —X ~ ~ ~r, I( ——y dk0 k(} —A.

A du

D D'
I4 =21 k0dk0 ~i+~ dnr, I5---21 k0dk0

I3, I4, I5 are nondivergent integrals at the limit X-0. They can be calculated without any difficulty by
taking p, (resp. p', ) as the polar axis. They lead to following expression of (B:

$=2m I3 —I4 —m I5 .2 2

Choosing p, (p', ) as the polar axis in the calculation of Ir (I'r), one gets

Ir '7rK„(E, (pr(, I)——, — fr 'rrK~(Er, ]pr ~,
———I—),

TABLE III. Numerical values cf doo/dW, (dC/dW)r, (dC/dW)rr' (dC/dWrrrr ~ (dC/dW)r»
(dC/d W), (do'/d W)„» and /g =100[(do/d W)c.» - doo/d Wj/(do 0/d W)as functions cf W for ee

0.344
0.440
0.536
0.632
0.728

d00
dS'

6.21 x 102

10.64 x 10
6.32 x10
2.00 x10
0.45 x10

-0.05
-0.17
-0.16
-0.07
-0.02

0.53
0.84
0.51
0.16
0.04

-61.55
-109.79
-64.69
-20.34
-4.63

12.54 5.81 x10
2]..15 9.94 x].0
10.10 5.91 x10
2.20 1.87 x10
0.37 0.42 x 10

(-:—:),(::)„(::)„,(::)„(-.), (::-)..„
8.76

17.74
12.81
4.87
1.27

-6.4].
-6.60
-6.56
-6.56
-6.64
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FIG. 7. Variations of do 2/dW (solid curve) and (do/dW) ~ (dashed curve) as functions of the invariant mass W, ex-
pressed in 10 22 cm2/GeV for e'e production and in 10 2 cm2/GeV for )4n)4 production (a) and in 10 24 cm2/GeV for

production (b) .

where

&i(n P y)=

Using the identity

0'2 ' —)[.2) [~2'
($ n —)[2y)2 p2(p 2 )[2)

1

[Ax+B(l — x)] 2 dx,
0

and defining p„=xp', +(1—x)p„ I2 can be expressed in a similar form:

I2=-'s &„(E„,~p~, —2x+1)«

The calculation of E„(n,P, y), although lengthy and tedious, does not involve any major difficulty and
leads, at the limit A, -O, to

K(n, p, y) =lim&I[(n, p, y) =,
&2

ln2
&

—
2

ln, , —=E(n, p, 0) .1 A n (n+P)2

Using the extreme-relativistic approximation, one gets
'm' g g ' dx 1

I( I' 2, ln~, EE, , I2 —
2

1
~

—
2

—2, ln ", dg
1 0 Pg 0 x x

One can show that

dx
p

2 22~2[ ( 1)]1/2 n On

f &
a» &* «=I, &„,I, I[2»—n» I& —~& i — ' " —&n[4(n, +t[]'1*)&nx,

,/E ~,/E ( X, ,/E
v, /E —2n, I,X,(e,/E —2n, ) E&d,/E+2p,

++2 ) j+g ]++)
One then gets 8 in the form 8=- 4222'(I, +I,') +Sm (1+2p,)I2.
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APPENDIX 8

The. elementary cross sections for various photon-photon collision processes are as follows.
(n) rr-~'~ or u'V:

e„(W)=" 1+4 --' — I, 1—+4
)

'2 2 4 2)
W' W' W' W't W'

g'rr(W) = —
W~

— —(bt+2m(& I) .16wa2mo
2

(b) yy-g"g (Born terms, pointlike pions):
PSI

2gn' ~t )& 4m~ 2m, ' 4m,""'W'=
W W i" W

W' ' W'i~~

8mn2m '
(r'rr(W) =

W6
0 (Ot+2m02I),

where mo is the mass of the particles produced, and

at =W
~
1 — ~0, I,=2 in —

(
1+ ~2mo
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