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Action at a distance and relativistic wave equations for sinnless quarks
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Within a manifestly covariant formulation of classical dynamics, we characterize the relativistic two-body
/

wave equations admitting a classical analog in which the interaction is realized by means of action at a
distance. As an application (and for example) the mass spectrum of Gunion and Li can be obtained from
such a classical system, by quantization,

I. INTRODUCTION

In the most naive pictures, mesons are con-
sidered as bound states of two spinless quarks,
and described by a coupled pair of equations. Qne
is actually a wave equation in terms of the relative
operator „and involves additi. onal terms which
carry the interaction (Befs. 1-6). The other one
is usually considered as a subsidiary condition.
Qf course these two equations have to be mutually
consistent (compatibility). Although intuition is
often claimed to be present in the construction of
such models, little care, if any„ is generally de-
voted to the possible existence of a classical ana-

g
3ur purpose is to show the following:
.) The condition which permits consideration

, ' the morsel as the quantized version of a classical
' -„o-particle system interacting through action at
a distance is much more restrictive than the com-
patibility condition.

(ii) When this stronger condition is fulfilled,
the "subsidiary" equation as well as the wave
equation are both deducible from the classical
model by the quantization rules.

%e may first notice that, unlike the Bethe-Sal-
peter equation, the various two-particle equations
more recently proposed are not a priori connected
with field theory in a definite wsy. Then we recall
that action-at-a-distance theory, although perhaps
compatible with fields, does not require exp/icitly
the mediation of a field. Moreover, the version
of this theory that we have in mind, ' mathemati-
cally simpler to handle than those based on the
Fokker action principle, admits a symplectic
Hamiltonian formulation providing a classical
approach towards a relativistic potential theory.
That is why we attempt an action-at-a-distance
interpretation for the two-body wave equations.

As we shall see below, such an interpretation
implies severe restrictions on the potentials.
This could be a principle of classification, and
indicates that the models violating these restric-
tions must receive their interpretation from a

theory which. is not reducible to action at a
distance. Whether realistic and elaborate theor-
ies can actually be cast into action-at-a-distance
form is beyond the scope of this paper, which is
simply devoted to improve the comprehension
of naive models. '

Qur argument mainly rests on a typical feature
of the multi-time formalism. ' " N interacting
particles have, in the relativistic sense, not one
but N Hamiltonians, each one providing by quan-
tization the left-hand side of a wave equation.

In this formulation, the Hamiltonians Bre just
the generating functions leading to the equations
of motion. These equations admit a Poisson-
bracket form which involves N independent pa-
rameters (the proper times or a suitable general-
ization of them). This point of view may look a
little unusual; however, it is very close to the
philosophy contained in an early approach by
Dirac. "

Here we consider the case N=2. The masses
are not taken as constant a priori. , but rather con-
sidered as constants of the motion. Accordingly,
our two-particle phase space has 16 dimensions.
We consider the canonical coordinates q, p8,
q', p'~, where q and g' are points in Minkowski
space, while p and p' are four-vectors. These
canonical coordinates satisfy the standard Pois-
son-bracket relations. Beware that, owing to the
so-called 'ho-interaction theorem, '"~ the q, q'
cannot be confused with the positions ~, x' when
interaction is present. " Vfhen possible, Greek
indices running from 0 to 3 are omitted. For
instance, -P stands for P, etc. Scalar products
are written in compact form:

p'=p. p=p"p, etc.

We take c=5 =I,

, 8 „=e/ex, 8„,= 8/e~ ~'.

%'e separate external from internal variables by

ji9
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setting

p=p+p', y=-, (p —p').

Application of the projector

11",=&,"-P P,/P'

Using the obvious identities

4(HO+Ho) —P' =4y2,

Ho Ho y'P
we get

4(H+H') —P2 =4y'+8 V,

H-H'=y'P+2g .

(1 8)

(1.9)

(1.10)

to any object will be denoted by a tilde. For in-
stance,

The energy is the time component of P. But the
Hamiltonians (which generate the motion in mani-
festly covariant form} are phase-space scalar
functions H and H'.

Interacting models are obtained when the free
Hamiltonians

H =-'P' 8'='-P"0.2&0
are completed with additional terms. They are
constants of the motion and identified with & of
the squared masses. Thus, on the orbits of the
system, we have numerically

Inserting (1.9) and (1.10) into (1.6), performing
' the calculation, we can finally write the condition

{y', wj+{v, y pj+2{v, wj=o,

which is equivalent to (1.5}.
A large class of solutions can be obtained by

setting W =0. This particular situation will be re-
ferred to as the single-potential case. This case
deserves special interest because of its simplicity:
then the condition (1.11}is completely solved"
by requiring that t/' depends on 8

y
P

y. P but does not dePerid on a Pwhich is just,
in the rest frame of the system, "the relative
coordinate time, up to a factor

~ P~. Let us now

go back to the general case.
II. WAVE EQUATIONS

{H, H'j =const. (1.4)

Moreover, the physical interpretation of H and
H', as wen as, independently, the requirement
of symmetry under particle exchange, demands
that in fact

{H,lf'}=o. (1.5)

ln practice, Eq. (1.5) is a condition on V and W.

In order to make the forthcoming calculations
easier we shall use the combinations 4(H+H')
—P' and H-H'. Assuming that V and 8" are
'oincard invariant, {H, P' j and {H', P'j vanish.

Thus we can replace Eq. (1.5} by the equivalent
condition

But, as phase-space functions, the Hamiltonians
can be written in a general way as

H=H0+ t/'+O', H'=H0+ V- TV.

In contrast with the nonrelativistic case, the
*'relativistic potentials" t/'+ 8', V —8' have the
dimensions of a squared mass and cannot be
chosen arbitrarily.

In order to ensure the existence of world
lines'~" it is geometrically necessary that

As in previous papers, ""we apply the most
straightforward quantization procedure. The wave
function 4 depends on the two space-time points
x x ~

The operators —i~, —i8' are substituted for
the momenta p, p'. But the multiplicative oper-
ators x.and x.' cannot represent the positions,
except in the free case, since we have the usual
correspondence

{ }-[]
while the Poisson brackets {x,pj, {x', p'j, {x', x' 'j,
{x,p'j, {x', pj, {x,x},{x',x 'j cannot have the
standard values. "

In contrast, the brackets {q,pj, {q',p'j, {q,q'},
{q,p'j, {q',pj, {q, q}, {q', q'}are standard, so the
multiplicative operators x., x.' represent the can-
onical variables g, q'. This defines the corres-
pondence rule, up to mell-known problems, such
as factor ordering and locality, which are not
seriously relevant for the kind of interactions we
are going to consider. For example, a classical
function f(P, P') wil'I become an operator accord-
ing to the scheme

f (&' P') -f(r' P')
where P=-i(8+&') and r is understood as a
multiplicative operator, which means that

r' =r'- (r P)'/P
{4(H+H'}—P', H —H'}=O. (1.6) is a nonlocal operator, due to the denominator.
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As we are going to consider eigenfunctions of P,
no trouble will arise.

From now on, we mean that y =- i&/&r; thus

g =- 0„. Each Hamiltonian becomes an operator,
and by analogy with their classical interpretation
[see Eq. (1.2) l we postulate the wave equations

II% = -m 4 H'4 = ~ni' 4 (2.2)

This principle obviously permits us to recover
two Klein-Gordon equations in the trivial case
V= W=O.

In the general case, we now have a, pair of
coupled wave equations. Thereas the classical
Hamiltonians satisfy Eq. (1.5}, the corresponding
operators fulfill its quantum-mechanical counter-
part

[H, H'] =. O (2.3)

[ „+-,'(m'+'n") --,'P'-2 V]e =O,

[y P+2R'- 2(m2 —m'2)+ =0,

(2.5)

(2.6)

which is equivalent to Eq. (2.2).
Equation (2.5) appears formally as a Klein-

Gordon equation in terms of the relative variable
By translation invariance, neither V nor W

can depend on (x+x '), but they generally depend
on P and y. Fortunately, further separation of the
center-of-ma. ss motion will permit us to replace
P by a constant timelike vector K in (2.5} and
(2.6)

Equation (2.6) plays the role of a subsidiary con-
dition fixing the dependence of the wave function
on the "relative time, " since y ~ p4 reduces to
K'&/sr ~4 in the rest frame. But we stress that,
as opposed to a widespread habit, this equation
has not been assumed for convenience, but de-
rived.

%hen we consider a single-potential mode}.,
with equal masses, this equation completely re-
moves the dependence of 4' on the relative, time.
It is very important to notice that Eq. (2.3), which
implies the integrability of (2.2}, is stronger than
the most general compatibility condition required
for such a system. Whereas Eq. (1.5). has a geo-
metrical meaning, Eq. (2.3) has an obvious physi-
cal significance.

To. be consistent with the massive interpretation
of the Hamiltonians, it is expected that the masses
are simultaneously measurable. In order to de-

or, equivalently, the operator form of Eq. (1.11)

[y, W]+[V, y Pl+2[V, ~l=0. (2.4)

In order to make comparisons with various models
found in the literature, we prefer to consider the
combinations [4(H+H') —P']4' and (H- H')C . Us-
ing the operator form of (1.V}, (1.8} yields finally

[H, H'l =aH+bH', (2.V)

with a and 6 =const (not simultaneously vanishing).
The corresponding classical Hamiltonians satis-

fy the Poisson-bracket analog of (2.V). Thus they
define an integrable differential system, but the
equations

, ', =[H, x'j=o, ,
" =(H', x)=0, (2.8)

which enable us to interpret the solutions of this
system in terms of world lines, "will not have
solutions any more, as can be proved simply. "
So one is left with solutions of the abstract form

g = g( T, 7- '), Q'' = g '( T, T '},

i =P(T, T'), P'=P'(T, T').
(2.8)

They certainly define a couple of two-surfaces in
phase space, but there is no longer any clue'9
for recovering one-dimensional world lines.
Therefore we insist that, although coupled wave
equations violating condition (2.4) are not neces-
sarily empty, the condition (2.4) is required in
order to find, as a classical analog, a system of
two particles without spin interacting through
action-at-a-distance forces.

III. DISCUSSION OF VARIOUS MODELS

e have previously discussed"" the simp[. est
solution of (2.4), namely

H =0, V =br', k'=const &0. (3.1)

This potential, which does not depend on ta.e rela-
tive time, is our version of the harmonic oscil-
lator.

We have also briefly mentioned (classically)
in B,ef. 11 an alternative choice which corresponds

scribe relativistic bound states of spinless par-
ticles, many authors (Refs. 1-5) have directly
worked out equations of the form of (2.5) and
(2.6}. In other words, they assume a pair of equa-
tions which can be identified with (2.5) and (2.6),
provided that V and R' are specified in terms of
~, y", I'. Let us emphasize that, unless V and
W fulfill (2.4), the quantum-mechanical model
defined by (2.5) and (2.6) is not deducible from a
classical action-at-a-distance system by the
straightforward quantization procedure defined
a,bove.

Then the following questiori arises: %'hat if V

and 8' still permit the integrability of the system
(2.5) and (2.6}, but in a way which violates the
condition (2.4)? In this case it is still possible
to consider H and H' defined by (1.3), but they
satisfy the commutation law



ACTION AT A DISTANCE AND REI, ATIVISTIC-WAVE. . .

to the quantum-mechanical operators

V=a[r'P' —(r P)'] with a =-const &0.

(3.2)

satisf ied.
Finally, Eq. (2.5) becomes

[h~+~K' —(rn+ U)']g(r") =0, (3.8)

4' =exp iK r,X+ X'

(3 4)

where K is a constant timelike vector. U depends
only on

r-2)~ i2 (3.5)

and the subsidiary equation is

E.(8/Br)g =0. (3.6)

It is easy to check that, insofar as (3.4} is as-
sumed, one gets the same result starting from
(2.5) and (2.6) with m'=.n, W=0, and

—2V =2' U+ U2. (3.'I)

From the independence of U with respect to the
relative time, our condition (2.4) is manifestly

This case i.s anong a class of local potentials
recently suggested by Leutwyler and Stern. 4 In
contrast, the so-called "covariant harmonic os-
cillator" introduced by Feynman eI' al. ' and further
investigated by Kim and Noz' exhibits potentia, ls
depending on the relative time, and a very short
calculation shows that it does not fulfill the con-
dition (2.5); therefore, it cannot be derived from
a classical two-particle system, in the sense soe
consider here (action-at-a-distance picture).

For a similar reason, in the bag model of
Preparata and Craigie, ' we are led to rule out the
confinement in relative time; thus we take 8,
=~, which retains co'nfinement in space only.

Fortunately, an appealing model proposed by
Gunion and Li' turns out to be completely compat-
ible with action-at-a-distance theory. Actually
their picture can be incorporated into our frame-
work as follows: They start with a wave equation
of the form

[(8/sr+2-iP)'+(m+U)']4 =0,

and they assume that

where
2

(3.9)

But b~ reduces to the usual Laplacian in coordi-
nates adapted to the center of mass (K =0).

Equation (3.8) has been solved by Gunion and Li
for

(3.10)

giving rise to a Quite reasonable charmonium
spectrum. This spectrum can be considered as
obtained by quantization from the classical sys-
tem defined by (1.3} in which W=O and V is re-
lated by Eq. (3.V} to a classical phase-space
function,

The study of the classical motion can be performed
according to'the method given in Ref. 12.

It goes without saying that we have just exhibited
one example among many. In order to fit some
more recent experimental data, the Gunion-Li
model should be in fact modified or replaced in a
way which has been discussed by Crater. " But it
is clear that our method of interpretation can still
be applied in a similar way to a large class of
models, since, to speak only of the simple case
$V =0, ~ ='n', the essential thing is that the in-
teraction term in the Klein-Qordon equation must
be independent of the relative time.

Naturally, a more realistic treatment should
take spin into account. In that case, the under-
lying classical system should be, in fact, semi-
classical, i.e., must involve degrees of freedom
represented by Grassmann numbers. But, at
the price of standard and obvious modifications
(replacing Klein-Gordon operators by Dirac op-
erators, etc.) our present point of view can be
generalized.
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