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Semiquantum approximation for the Reggeon field theory on a lattice
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The Reggeon field theory on a lattice is studied for values of the intercept 00 near the critical point by
using a semiquantum approximation to the single site and the linear chain Hamiltonian. Results are in
quantitative agreement with those obtained by other methods and lend support to previous extrapolation
procedures.

I. INTRODUCTION

One of the most convenient ways to study the
properties of the Reggeon field theory (RFT) has
been to introduce a lattice in impact-parameter
space, in which the nonvanishing intersite spac-
ing b acts as an ultraviolet cutoff. A further ap-
proximation has been to truncate the single-site
energy spectrum keeping only the two lowest lev-
els, transforming the theory into a spin model.
This spin approximation' is justified either for
very high values of the bare Pomeron intercept
n„or for arbitrarily small triple coupling r,
and slope e,', since in these cases there is a gap
between the two lower energy levels and the higher
excitations and the matrix elements of the Pom-
eron field take a particularly simple form which
allows the study of the universal features of the
critical structure of the RFT.' Unfortunately,
for realistic values of b, r„and no the single-
site spectrum does not show a quasidegenerate
ground- state doublet. Therefore, magnitudes
which depend on the above parameters, as for
example the critical intercept e,', cannot be evalu-
ated in this way. Using the expressions for the
energy gap and matrix elements valid for n, ~ 1
the not well justified truncation approximation
has been used4 to calculate the intercept renor-
malization, even though the method cannot be ap-
plied to values of n, as large as no for realistic
values of the other parameters.

Since the phenomenological study of high-energy
hadronic cross sections suggests a bare Pomeron
intercept slightly above 1, it is indeed important
to try to find approximate solutions to the Heggeon
field theory for values of ao near the critical val-
ue. Besides, in order to justify the spin model,
it is important to be able to study the effect of
higher excitations and to include them if necessary.

A method that, in principle, would allow us to
perform both calculations is the semiquantum ap-
proximation developed by Sachrajda, Weldon,

and Blankenbecler' and BLankenbecler and Fulco. '
However, the method has been only applied to
quantum-field-theory Hamiltonians that are the
sum of single-site kinetic and potential energy and
intersite interaction terms, that is, of the Klein-
Gordon type. The Reggeon-field- theory Hamil-
tonian is cl'arly not of this form. However, by
using a nonunitary transformation' the RF'I Ham-
iltonian can be cast into the required form and
the method can be applied straightforwardly for
most values of the parameters.

Unfortunately, the transformation has the un-
desired feature of excluding the ground state (vac-
uum) from the Hilbert space at each site. There-
fore, although thy semiquantum method aLlows a
fast and fairly accurate evaLuation of the single-
site energy levels for a broad range of the e,
values, the complete field-theory Hamiltonian
can be studied in its lowest levels only by mod-
ifying the single-site potential to include the
vacuum at each site. An additional technical
difficulty is presented in the fact that the inter-
site interaction is so complicated as to preclude
its complete diagonalization, whj. ch, for some val-
ues of the parameters would have improved the
accuracy of the approximation. Even with these
limitations, the single-site energy Levels and the
intercept renormalization turn out to be in reason-
able agreement with previous treatments. 4 "

In Sec. II the semiquantum approximation wiLL

be applied to the single-site Hamiltonian which
defines what is known as Reggeon quantum me-
chanics (BQM). Section III will be devoted to the
study of the complete Hamiltonian (RFT) in D =1,
and Sec. IV will contain comments and conclu-
sions.

II. REGGEON QUANTUM MECHANICS

We begin with the RFT Hamiltonian in a trans-
verse lattice,
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H = Q &Dig)gq+i —g~(gq+ gq)gq
I

where n, =1—&o is the bare intercept, r=ro/
b~~', a'= ao/O', D is the dimensionality of the
lattice, j indicates the site, and i the nearest
neighbors. Furthermore [g„P,] = 6„.

In. the limit ao 0 and using the Schrbdinger
picture, . Eq. (1) reduces to the sum of the single-
site forms

If =6 ata+i —at(a+a )a,. 'y

where a and at are annihilation and creation oper-
ators. To apply the semiquantum method' one
must transform Eq. (2) into the sum of kinetic and

potential terms. For this purpose it is convenient
to use the Bargmann representation

(0 (e- [ri) =q„(z),

8Q=, 0
dg '

so that the eigenvalue equation becomes'

ly, we will refer to the eigenvalues of Eq. (7) as
first excited, second excited, etc. levels.

The potential of Eq. (7), displayed in Fig. (1),
develops a second well for -p &3.3. Its eigen-
values can be analytically calculated for

(i) p»1 giving E„=nA„n=1,2, . . . ;

(ii) p«-I withE, -0, E, andE, -~&, ~, etc.

(6)

However, for realistic values of the parameters
a,' =0.3 GeV ', r, =0.5 GeV ', 5 = 4 GeV ' (related
to a cutoff in transverse momentum -f = w/5'

=1 GeV') and n, = 1, the region of interest is
~
p ~

=0.
The semiquantum method (SQ) (Ref. 5) allows

us to calculate lower bounds to the eigenvalues of
Eq. (7) for a wide range of p. It is based on the
following Schwarz inequality for the kinetic energy
part of the Hamiltonian:

~ dp dp—+(V VV)
dx dx

1 He(gy, dy/dx)'
(

( ~,g~)

(V'~g 0) ( V )

For y„(z) to be holomorphic and normalizable for
6, &0, according to f (dzdz*/2wi)e " Icy„~' &~,
they must satisfy the following conditions:

y„(z) ~ constant, y„(z) ~ z,
0

for real wave functions p(x) and arbitrary g(x).
Considering localized states, lower bounds to E

q = (xm)' ~' exp [-,'(x'+ p)']j= EPj,

where p =260/r, one obtains the Schrhdinger-
type equation

(6)

where all y„cL,'(0, ~) and vanish at the origin.
By analytic continuation of the S matrix from

1 and 40&0 to 4, &0 it has been shown in
Ref. I that the eigenvalue problem [Eq. (I)],
with the same boundary conditions [Eq. (5)] is
valid for -~ &~, &. Of course, even for &, &0

the vacuum state is outside the Hilbert space de-.
fined by the eigenvectors in Eq. (7). Consequent-

The ground state y, (z) =1, which trivially satisfies
Eq. (4) for E,=O, is therefore excluded from the

set of eigenfunctions.
Restricting to the negative imaginary axis

z =-ix' and performing the nonunitary transforma-
tion
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FIG. 1. Potential of single-site Hamiltonian for sev-

eral values of p,
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are obtained by minimizing

I (g (~)&'F(x)=
8 (,( ))

+(V(x))

with respect to x. If the wave function were exact-
ly known the Schwarz inequality is an equality for
g(g) = p'(x)/p(g). Therefore the lower bound will
be closest to the true eigenvalue provided a rea-
sonable guess of the wave function can be made.
This has been shown to be true for several cases. '
For a wave function having m maxima M, and
n+ I zeroes N, (in our problem one is always at
x=0), one can write

g(+) gn (
2 p()

)=1

The classical expression Eg) = II'Q)/2+ (Vbc))
must be minimized in x and maximized with re-
spect to variations of the parameters M, and N, .

For most of the interesting values of p, the po-

]4
V(x )

TABLE I. One-well potential (p=5): E; are eigenval-
ues from SQ method, M; and +; the values of the maxima
and the nodes of the wave function which maximize the
lower bound for the energy.

=11 M( =0.3
yy4.

Ep
«/4

-=28 My=0. 1 M2=0.9 &)=0.4

~/4
= 50 M( = 0.05 M2 = 0.4 M3 = 1.3 &) = 0.2 &2 = 0.8

tential has a single well and it is straightforward
to guess the form of the wave functions. These
are sketched in Fig. 2. In Table I we summarize
the results for p= 5. It is seen that the ratio of
E„is quite different from the one corresponding
to p»1 and the values of E, and E, are in reason-
able agreement (within 5%) with those obtained with
a variational method4 using five eigenfunctions for
the p»1 case."

For the two-well configuration (-p very large)
guessing the form of the wave function is more
difficult. If one starts from the analysis of two
separated wells (o.,-~), and noticing that the
eigenvalues in both wells coincide, ' the suggested
form of the wave functions will be as shown in
Fig. 3(a). The use of the semiquantum method

X
2

2]
V(X')

2]K
V{X')

X
2

V{X')

X
2

]4
v{x')

(b)

X
2

X
2

FIG. 2. Form of the approximate wave functions for
the one-weD potential for (a) first excited state (p~);
(b) second excited state (y,); and (c) third excited state
(q 3)-

FM. 3. Form of the approximate wave functions for the
two-we11 potential: (a) y&, y2, and q» for a. very high
barrier; (b)' p2 for a low barrier.
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gives, apart from E„pairs of almost degenerate
levels (E„Z,), etc.

On the other hand, for small height of the bar-
rier, it seems more reasonable to consider wave
functions which are straightforward modifications
of the ones for the single-well potential. Com-
paring with Fig. 3(a} it is clear that the first and
third excited states will be the same whereas the
second excited state will be as shown in Fig. 3(b}.
Therefore E, will be lower as a consequence of a
large tunnel effect. For p = -10 which is an inter-
mediate situation, the use of the semiquantum
method with the wave furictions of Fig. 3(b) gives
the results reported in Table II. Even though E,
may be underestimated, these results show that
for not extremely high n„ the energy spectrum
of RQM corresponds to two almost degenerate
levels E, and E„and higher excited levels F„
83 etc . with large separations because of tun-
neling effects.

The SQ method allows to estimate the diagonal
matrix elements of the field since it gives ap-
proximate values for the expectation values of the
square of the field (x,') corresponding to the low-
er bound in the energy of the corresponding state. '
Table III shows (n ~g ~n) for p= -10 and 5. The val-
ues of (1 ~$1) are in agreement with both the asym-
ptotic limit' and the variational technique. '

The computation of the nondiagonal matrix ele-
ments is not straightforward in the SQ approxima-
tion. One may be tempted to take the approximate
wave functions with the values of the parameters
determined by the minimization procedure and use
them to obtain the overlap by direct integration.
However, all matrix elements involving the vacu-
um require the knowledge of the derivative of
the wave functi;on at x'=0 and this cannot be real-
istically obtained in oux' approximation where the
vacuum is introduced by force in the Hamiltonian
by modifying the potential. Matrix elements such
as (0 ~g ~1)= p,'(0) may be estimated with a higher

TABLE III. Diagonal matrix elements of Pomeron.
field.

p=-10

10
7.4
6.5
6.1

0.35
0.54
0.62

III. REGGEON FIELD THEORY

We consider now the complete Hamiltonian Eq.
(1) for a linear lattice (D= 1). The use of the Barg-
mann representation for each site together with
the transformation

H=F 'HF,

E = (x,')'~' exp[-,'(x,'+ p)']

gives the result

degree of confidence because the wave function for
the first excited state could be reasonably approx-,
imated by a first degree polynomial times an ex-
ponential. The normalization condition, together
with the value of the maximum obtained from the
minimization procedure ate enough to fix the two
parameters required. Since, we are not inter-
ested in actually solving the spin model we have
not evaluated these matrix elements. Of course,
havingmn estimate of the value of (0 ~g (n) for
n ~ 2 is of interest to determine the validity of
the spin-model calculations. However, the approx-
imation for the higher-order wave functions may
not warrant a reliable estimate.

TABLE II. Two-well potential (p =-10): E; are eigenvalues from SQ method, M; and &~ the
values of the maxima and the nodes of the wave function which maximize the lower bound for
the energy.

0 Mg =10

=12 Mg = 0.4 M2 = 10.8 N( = 8.9

=24 Mg =.0.-15 M2 = 8.1 M3 = 11.3 N)=3 N2= 9.7

Ed
~4

=35 Mg = 0.1 M2= 3 M4 = 11.7 N, =0.4 N, =7.5 N, =10.3
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(12)

-
&

= P 2
)),'+)'(~.,')+ (()x)'

&
[(x.,'+a)'- a]+ 5x.,'(x„*+a)+2(x.,')*+

2
x &, , + 2c(4x ' — +(mal}cl )) 2 cl

II f' 1 d' xj'
r/4, . ( 2dx, ' 2 ' Bx,.', + —~ [(x '+ p)' —2]+ —'—,+c(1+2x '-4cx.')j

.2 . 2 2 2xj,2 xj—C j j+, +2 j,+, —CXj
j+1 j 1 j1 j 1 j+1 j+1

-';, (*;)-(*„*'',,"';.,) I),
where c=2a'/x and the commutator ix&= [x~,H/(r/4)] has been introduced. The last line of Eq. (12) is
non-Hermitian. - Its first term is a total derivative so that the expectation value in a stationary state van-
ishes. The last term would also be a total derivative if xj„™"xj,i.e. , for k ™0.Wishing to explore the
spectrum near t = 0 we shall neglect the non-Hermitian terms altogether.

Comparing the Hamiltonian (12) with the original. one (1), the problem is that through the transformation
Eq. (2) one loses the vacuum state for every site. Therefore the solutions of Eq. (12) will correspond to
states where all the sites are at least in the first excited level.

We mill see first that these states give rise to an energy gap even though the single-site energy E, may
be close to zero Ac.lassical solution of the Hermitian part of Eq. (12) is x~' = constant =x„' correspond-
ing to the minimum of the potential. Expanding around this minimum xj'=x~'+ &xj' 'and keeping only the
quadratic terms, one gets,

+ +j+j 14c -2x 1'+ 2
—8c +%rj%rj Sc',

cl
(13)

The quadratic part of Eq. (13) may be diagonalized
in terms of eigenmodes obtaining

V(x„')+ Q —II„'+ ,'D„(5r„)—'
1

(14)

whose solution for the ground-state energy is ob-
tained' with the replacement II„'=1/4(A"„)', which
gives through minimization

-
~4

~ Q V(x„')+ ~ Q D„'~' (15)

For the values of the parameters already quoted
c=0.1. For p=0 where V(x~')=-0.13, a four-
site chain with periodic boundary conditions gives
D, =7.63, D, =8.06, D, =8.16, D, =9.03, and a val-
ue of the energy E/(r/4) = 5.24. Since all D„are
larger than the corresponding one-site frequencies
and since for c g0 one would add a positive contri-
bution to the energy, it is clear than an N-site
chain will have E,„„,&ME, . This may be seen
analytically when terms O(c2) are neglected, since
the c-dependent terms are exactly the same as
those analyzed in Ref. 6 [case (b)] giving therefore
positive corrections to all the eigenvalues obtained
for c=0. This feature persists for larger c and
-p so that a nonzero gap always appears.

The more interesting states in which some sites
are in the vacuum+ level can be simulated by repla-
cing the one-site potential V by V'= V(x) 8(x —&),
—k8(5-x}. 5 must be taken sinall enough to en-

. sure that the wave function for the first few ex-
cited levels are not appreciably changed and h

must be such that the first level in the narrow
well is exactly at E = 0 and corresponds to a wave
function concentrated near the origin. In this way
it is clear that (0 ~g ~n) =(p„'(0) which is the correct
behavior.

In the folloming we shall analyze the case p=0
for a two-site cell, a four-site cell, and a linear
chain with periodic boundary conditions comparing
the results with the spin approximation mith real-
istic parameters. ' We stress that the comparison
must be done extrapolating the results of Ref. 4
to p= 0, since this region is in principle not attain-
able in that approach.

The two-site cell Hamiltonian is

A

,'4 = gii, + V,'+ 2II, + V,'+ c(1+2x,' —4cx,')r/4

+ c(1 + 2x,' —4cx,')
2

'
2 4 4

—c2x x + ——+ ——c —+ —. (16)2 X1 2 1 2
1 2 2 X2 X2 X2 2

2 ' 1 2 1

For the ground state both particles must be in the
narrow well so that —2'II,.'+ V', =0.. Since the details
of this well cannot be important we take x, =x,
= 5 «1 to give E,/(r/4) = c, so that"the position of
the vacuum is almost unchanged.

For the first excited state our SQ approximation
requires us to put one of the particles in the nar-
row well and the other in the broad one. Using
for the particle in the broad well the form of II2
which corresponds to the first excited single-
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site level we obtain

E,(x 2) 1 x2 +M
r/4 S~, x,2-M2 2 + V2+2C

+2c(x, —2cx, ) —ci —,-'cg Q2 . Q2

(17)

There are two conditions that limit the choice of
First, it should be small enough as to ensure

that the energy and wave functions of the excited
states are not changed. Second, it should be large
enough so that the semiquantum approximation for
the first excited state is valid. It can be seen from
the numerical calculation, that the maximization
of Eq. (17) with respect to M gives increasing
values of M for decreasing . Even though V,'
compensates the negative contribution coming from
the interaction term, for I much larger than the
value which maximized the one'-site energy, the
approximation of II, in Eq. (17) is no longer val-
id. This phenomenon has been considered in Ref.
6. For a Hamiltonian with intersite interactions,
the approximation of replacing each site kinetic
term II,2 by a function of the site coordinate x,
is accurate only when the intersite term is small.
When the latter is large one should diagonalize
the intersite term and express the kinetic terms
as a sum over the normal modes n replacing each
II„' by a function of the n'ormal coordinate n. Since
in our case we have not attempted to diagonalize
the intersite term we are obliged to take &2 large
enough to avoid that the optimum value of M be
displaced to a point where the semiquantum os-
cillations would no longer correspond to the first,
excited state but'to a more excited one. In that
case the approximation for II2' for the one-site
first excited state would be no longer appropriate
and the collective coordinate descrjption would be
in order. Therefore we take ~'=0.05 which en-
sures that the displacement of M ig this and in the
subsequent steps is not larger than 0.1. Then E,/
(f/4) =2.09 for M=1.1 while the single-site result
is E,/(t/4)=2. 35 for M=1.05.

The second excited level requires that both par-
ticles be in the broad well. Here we replace both

II, and II, by the form corresponding to the first-
excited single-site state. In this way E/(r/4)
=5.4 which is slightly larger than twice E, for one-
site.

The four-site cell is calculated in a similar way.
The ground state has again Ep =c and the first ex-
cited level must be averaged according to which
particle is in the broad well, giving E,/(r/4)
=1.75.

Finally, a linear chain with periodic boundary
conditions gives for the first excited state a re-

suit which does not depend on which particle is
placed m the broad well. This value is E,/(r/4)
=1.30 for four sites, while for larger number of
sites there is no variation-provided & «1. The
vacuum state is again at Ep c.

In Table IV we compare the one-site, two-site,
four-site, and linear chain first-excited levels
with the corresponding block-spin calculation for
D=2 extrapolated to ap =1. The results show a
similar trend. Here the SQ approximation, de-
spite giving lower bounds, shows results corre-
sponding to, energies higher than the ones obtained
in the Mock-spin method. This is due to the fact
that the latter results are for D=2 where the inter-
site terms, which give negative contributions to
the energy are effectively multiplied by a factor of
v 2.' We are interested here in showing only the
qualitative features of both approximations. It is
therefore reasonable that the intercept renormal-
ization in the block-spin case (&.05) is smaller
than in the SQ approximation (-0.08).

TABLE IV. Comparison between the energy of the first
excited state from the SQ method and the block-spin ap-
proximation (0=1): E& single-site, E& two-site, E&
four-site, Ef f, fixed-point value. SQ is calculated for
D =1 and block-spin for D =2 (extrapolated from +0= 0.9).

E( Ell
1 Ef tmal

SQ approx.
Block-spin apyrox.

0.15 0.13 O.ll 0.08
0.15 0.12 0.10 0.05

IV. CONCLUSIONS

We have applied the semiquantum approximation
to study the Reggeon field theory on a transverse
lattice obtaining reliable results for realistic va-
values of the bare parameters including values
of the bare intercept near the critical point.

In the case of ap'=0 the approximation repro-
duces quantitatively results obtained by othe~
methods most of which involved extrapolations
from values of ep»1. The main advantage here
resides on the fact that all calculations where per-
formed with a nonprogrammable pocket calculator
in contrast with the sophisticated computer tech-
niques of the'variational methods.

For o,p' g0 we have modified the single-site Po-
tential in order to be able to include the vacuum
into the energy levels of the Hamiltonian. We
have tested this approximation by comparing our
results for the two-site problem with previous
calculations. We have then computed the values,
of the energy for higher excited states corrobor-
aring previous estimates and therefore giving
support to the spin model for values of ap above
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the critical values. In principle, the semiquantum
ap'proximation allows us to keep more. than two
levels per site, however, since the method invol-
ves only classical quantities one loses all those.
states obtained by symmetrizing or antisymmetri-
zing the wave functions. Moreover, the complica-
ted structure of the intersite interactions prevents
its diagonalization and therefore reduces the valid-
ity of approximations that include higher excita-
tions. Nevertheless, the simple many-site cal--
culation shows remarkable agreement with pre-
vious results obtained by using the spin-block
formalism. This enhances our confidence in the
method and justifies further studies to include
kink states, detailed features of the phase trans-
ition, and critical exponents.

As a further remark we note that the original
Hamiltonian of the RFT is not of the Klein-Gordon
form but involves pseudoparticle fields resembling
fermion fields. The existence of a transformation
that allows the application of the semiquantum
method in this case may indicate the possibility
of using this method for true fermionic systems.
Further work on this subject is in progress.
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