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Alternate derivation of vacuum tunneling
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A field-theoretical derivation of the vacuum-tunneling effect is presented which gives results similar to the
recent work of Callan and Coleman. An expression for the decay rate is exhibited which takes into account
the zero and negative eigenmodes of the linearized Green's function.

INTRODUCTION

The discovery of Euclidean solutions to classical
field equations'~ and their interpretation as a
tunneling process between vacuum states has led
to much speculat;ion and a number of derivations
of the corresponding decay rates. ' '4 Most recent-
ly Callan and Coleman'4 derived the expression
for the decay rate per unit volume for a scalar
meson theory,

r/V=Ae ""[1+(@)1, (1)

where both coefficients A and B were determined.
This derivation is cleverly done by classical ana-
logy. However, some difficulty is experienced in
handling the zero- and negative-frequency modes
associated with the linearized, four-dimensional
Green's function.

The purpose of this paper is twofold:
(1) to provide a field-theoretical interpretation

for the vacuum decay process,
(2) to discuss the zero- and negative-fretluency

modes mentioned above.
As a consequence of the analysis an expression

for the decay rate is derived which is closely re-
lated to the Callan and Coleman result. " It differs
only in the normalization terms which arise from
the zero-frequency modes.

ANALYSIS

It was established some time ago by several
authors" that the U matrix in the coherent-state
representation is the familiar Feynman path inte-
gral

&+(Q)letHot + tHtt tte ttlotl+-(0-)&-

tor

&q (0)lt(x)ly(0)&= q (x).

.More recently working within the framework of
the Lehmann-Symanzik-Zimmermann (LSZ) forma-
lism for cannonical, bilinear quantum field theor-
ies we established the same result. " It also fol-
lows from this work"'" that the 8 matrix in the
coherent-state representation is

tl

&i (o)Isli(o))=tim f ~~ exp if ft'iit(ii, ii) .

It is also well known by the Riemann-Lebesque
lemma that the only states that survive the infinite-
time limits are those states in the spectrum of 80.
This same result is also often obtained by analyti-
cally continuing Minkowski time to Euclidean time,
with the corresponding change of limits t -i~, t

—i~. In particular
™

&y(0)ISIS(0)&= lim ~ exp t' d'xS(jo, y),t'~ i~ 2~ t

(5)

that is, the S matrix is assumed invariant under
analytic continuation to the imaginary-time axis.
In the fo11owing analysis it will prove convenient
to take imaginary-time limits as in Etl. (5).

We adapt the concepts presented by Eels. (2)-(5)
to the case of decaying states by observing that
the probability for finding the system in the state
y(~)& t after having been initially in the state
q(0)& is

&-=IXI 'itm
I U(t, 0)I'

t

where

(2) where by Etl. (2).
i t

U(toj=
&

. iixp if ,t xi'(ji, t'I,
0

and if p(x) is a q-number configuration field opera-
and N is a normalization constant which will be
discussed later. Similarily the decay rate is giv-
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en by

(8)

(9)

&q)(0)ll:(t), H llq)(0)&='&q'(0)li(t)lq)(0)&,

&q (0) II:v, Hl Iq (0)&= &q (0) ltv lq (0)&,

the canonical equations of motion are

(Io)

(11)

I =-I&I 'lim —IU(«)l'
, „dt

=IXI ' lim U (t, o) lim —U(t, o)
d

CP

+ lim —U (t, 0) lim U(t, o)
t i~ d~

. t~i~
The final ingredient needed for the analysis is

the observation that for normal-ordered opera-
tors, "such as the Hamiltonian operator

&q (0)IH(y)lq (o)&=H(q ),

and for a canonical formalism for which

choice for g, Eq. (17), we ean identify q), (x, o)
=q)(x, o) and from Eqs. (3), (14), and (15), q), (x, ~)
= q)(x, ~)=q), so that q), represents a classical in-
terpolating fieM that connects q)(x, 0) to q),. If we
further can choose q)(x, 0) to be a second static
solution of Eq. (12), we have the interpretation
that U(~, 0) is the evolution, backwards through
time of the true vacuum state Iq),& to another vac-
uum state Iq)(0)&, which is also an extremum of
&q)(0) IHlq)(0)&. In particular if q)(x, 0) —= 0, lq)(0)&
= IQ&-, the Fock vacuum state. If both Iq),& and
lq)(0)& satisfy Eq. (13), we interpret the effect as
vacuum tunneling since the two minima of H(q))
must be separated by at least one maximum. If
only q), satisfies Eq. (13) the process is the decay
of a quasistable state.

In evaluating the functional integrals of Eq. (2}
we will write

q) (x)= q), (x)+ ((x)

5H(q) ) . 5H(q) )
5m

' 5y
(12) and assume invariance of the measure of the func-

tional integration,

Thus an extremum of H(q)) is realized if the classi-
cal function y is a static solution of the equations
of motion. The extremum is surely a minimum if

(13)

so that the interpolating field remains fixed. This
requires

~(x, o)=g(x, )=o.

It is evident that the ground state, or true vacuum
state, is that solution which gives rise to the small-
est H(q). This solution we call q), . It is possible
y, —=0 is the only solution. In this case the true
vacuum state is the Pock vacuum. Otherwise the
vacuum is a condensate which has a lower energy
than the Fock vacuum state. Clearly the time-de-
pendent solutions of Eq. (12) connect all such
stable solutions, or for that matter, quasistable
solutions for which Eq. (13) is not satisfied.

The q-number interpretation follows from E q.
(3) and Eqs. (9)-(13). For example, if (t is a
Heisenberg field, then in the weak sense

In a parallel fashion we define

0(q', q)=&(q. , q.)+&'(q., q. , 5, h),

so that
I

u(tp)=exp i f, i( «p(p'p. )„
0

x — exp i 4'xg .

(19)

(20)

9 = d4xC

Since cp, satisfies the same field equations as
does cp, it is clear that q, minimizes the action

lim (t)=z ' 2(t),„g,
t ~oo

(14) pr oviding that

(15)

(15)

where z is a renormalization constant. Corre-
sponding to Eq. (3}we have

z '"&q(0)IP„„,(x)lq)(0}& =- q. (x),

and corresponding to Eq. (9}

&q (o) IH(z '"p.„,)I q (0)& =H(q, ),

82$
&0.

~V's

It will be seen later that it is advantageous if a q,
can be found which satisfies Eq. (21).

To obtain the normalization factor N, we also
need an interpolating field cp, . which carries a solu-
tion into itself, .

where we take

H(z ' '(t) )=H (17)
q' =q'p'+ ~ )

with the boundary conditions

(22)

From the form of Eqs. (15)-(17}compared to Eqs.
(9}-(13},it is seen that q), must satisfy the same
fieM equations as does y. Note that with this

q), .(x, 0)=q)(x, 0), ] (x, 0)=0

q), (x, ~ )= q) (x, 0), g'(x, ~)= 0.



l9 ALTERNATE DERIVATION OF VACUUM TUNNELING 669

With these modifications

t
N= lim exp i d'xi*(j&...ip, ')

o

The stability conditions become

6'8
6x(y)611(x)

(26)

1"-exp d4x 4 —i y, x, »p, y, x, ix,
dxp

d—i „(p, (x,ix,), (p, (x, ix,) i

0

which is the result to be expected. "

SCALAR FIELD EXAMPLE

As an illustration of the above analysis we con-
sider the scalar field Lagrangian"

& =.-'[i' -(Vq )'1- U(y). (25)

The corresponding Hamiltonian is

d x &x+Vy +Up (26)

with v = (p. This gives for Eqs. (12) and (13}

QH
=+=7Tp

5m

QH—= —ir = —V2(p + U ((p),5y

~"0(' -
/. t '

d x~ ((pe'e(pe'e ( e ~) x- ~o

(23)

and Eq. (6) becomes

P-exp[ Jl 'i d'xp)I dp exp(f J[ d'xe')

x ['de, ' exp( "''J(d"X')I,

where, except for the differential d4x, the argu-
ments -of the functional integrals are evaluated at
the Euclidean time points ix,. If it is assumed that
g is analytic in the neighborhood of x2=0, the de-

' finition of functional integration allows us to write
t

P(t)=exp d4xg(dp„(p, ) — d4xg(j&e. . (p, .)
-t

exp f d'xe (4 p. , (()., ,
DC

L -t
l

x exp — d xC cp. ..p...
v 2s'

(24)

It is now a simple exercise to show

$2H

(
}=[-V'+U"(V)]6(x-y).

To make imp, ) the true vacuum state we must re-
quire the normalizable eigenfunctions q, , which
satisfy

[-V'+U "(q,)]q, =~, ib,

to have non-negative eigenva, lues

A~ « 0, (29)

with at least one positive. eigenvalue, and

- V (p, +U ((p }=0.

Note that Vy„properly normalized, is a member
of the set (i)/] with eigenvalue zero. The minimum
energy becomes

(30)

e. e(e.)= f d -=x[,-(pp. p+(((p, )]. (31)

One possible solution of Eq. (30) is (p, =-const
which mimimizes U((p, ), that is, U (dp, ) =0, U ((p, )
)0. Then, if a coordinate frame is chosen so that
U(y, ) =0, F.,=O. The eigenvalues of Eq. (29) for
this case woul. d be

~, = U"(~.) -p',

where P is the eigenvalue of the V operator. To
keep A~ «0, so that we have a minimum in the en-
ergy, the possible values of p are real if p ( U (dp, ).
Otherwise they are pure imaginary. It is conven-
ient to choose phases as shown in Fig. 1,

&& = e [ P —U ((p )]

1/2 eex/2] p [Uee(@ )]1/2j 1/2 (p +[U (y )]I./2j 1/2

Kith this choice of phase the contour e„also
shown in Fig. 1, is used to sum" over states of
different P for negative A~' ' eigensolutions. For
ImP &0 these states correspond to outgoing spheri-
cal waves in four-dimensional Minkowski space,
whereas for ImP &0 they are incoming spherical
waves. For p real the eigensolutions are irregu-
lar at the origin and therefore must be discarded.
The contour 6 which sums over antiparticle solu-
tions is on another sheet.

Similarily if the initial field dp(x, 0) describes a
secondary minimum, '

—V2(p(x, 0)+ U'(dp(x, 0))= 0,

[-V'+U (y(x, 0))] ,'i}=z,' ],'l, X., )0
which summarizes to the field equation

(-V2+82//Bt2)dp+ U ((p)=0. (27) Ei= d x g ]]7(I|) xq 0 + (p x~ 0 )Ep
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COMPLEX p- PLANE U(y, +«} is expanded as

U(y + «):. . U(!!t ) U (!!t )«2 U (v )«S

P(s& «8+ A(4) «4 (34)
I

31 4t

I/2
— U gc)

ih

0

-n~ -l/2
we can write

exp d'xS = exp — d' x(G '( +h.o

5~/2 ',I-vr/2

!

Bar/2, —~/2

FIG. 1. ComplexP plane showing the. branches and
choice of phases forp-lU"(p )]~ 2 andp+[U" (p, )J~
The contour C& is used to sum over the states of dif-
ferent p for negative A~&/2.

From Eqs. (18) and (19) we have

~!(+,, y.)='-[(~.)'-(vq. )']- U(y. ),
3

V., «, «)=.-[P'« -«(s'«/sf') —U (y, )«'

-2[U(V. + «) —U(q. ) —U (y, )«

—-' U "(V.) «']],

where we have used the field equations for cp, and
discarded certain total time derivatives since they
do not/contribute to the action. In the usual dis-
cussion for vacuum decay processes the method of
steepest descent is used to determine the quantum
fluctuating part of the path integral. Thus if

= Det '"(G}'+h-o.
where h.o. means higher-order terms,

G ' = —V' (s'/-sx, ')+ U "(q,(x, ix,)),

(35}

and, since y, also satisfies Eq. (27), the 'minimi-
sation condition, Eq. (21), becomes

[-V' -s'/sx, '+ U "(y,(x, ix,))]5'(x y) &—0.

If this equation is satisfied, G ' has no negative
eigenvalues. Now we see a basic difficulty. Since
y, satisfies Eq. (27), the inverse Green's function
G ' must have zero eigenvalues20 corresponding to
the eigensolutions Vq„j,. The path integral of
Eq. (35) therefore diverges. If G ' has negative
eigenvalues, that is Eq. (21) is not satisfied, the
Gaussian integrations are undamped so that Eq.
(35) becomes even more divergent. It is clear
these divergences are caused by the drastic trun-
cation of the series for the potential function, Eq.
(34), because if terms through «~ are retained and
U'4'(q&, ) &0, the path integral would surely converge
regardless of the value of the eigenvalues of G '.
Thus these terms can be ignored only for the posi-
tive eigenvalues of G '.

The path integral then becomes

r
exp d4xZ' =[Det' ' 2(G) '] exp — d4x[QG '«+(W2/3)U'"P+~U'"«'] +h.o.6 ~ (36)

where the prime on Det means ignore the zero and
negative eigenvalues, and « is assumed expandable
in terms of only those eigenmodes for which the
eigenvalues of G ' are zero or negative. Cross
terms between ( and eigenmodes corresponding to
positive eigenvalues are assumed negligable when
compared to Det ' and presumed to be included
in h. o.

For the purpose of simpli, city and. for compari-
son to other work' we assume in the following
analysis that G ' has no negative eigenvalues, that
is, Eq. (21) is satisfied perhaps in a manner sim-
ilar to that above for the case of y, = const. %ith
these- further assumptions,

~ exp dc'' = —', 'Det '/'(G) ',

where
/

A~ = d~C;dCoexp — d~x 1 3t U'3'$0

with

+0/4!)!/"!.*II (SV)

S

«, = gc,.(sy, /ex, )+c,(sy, /sx, ), (38)

and where B„.is a factor which arises from the
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(39)

Correspondingly we mould have

luau =Det ' '[G((((), )] 'exp d'xg(((~. .. 9), ),
I

where G '(y, .) is G ' with y, replaced by q. .. If
is taken to be p(0) —= 9),=const, the secondary

minimum assumed by Callan and Coleman, ' Eq.
(89) is in agreement with their result. " However,
in general y, e const so G(y, )

' may also have
zero eigenvalues. These zero modes must also

'

be removed. To allow for this generalization we
continue the integration indicated in Eq. (37) for
the coefficient A~,.

In the calculation of the decay rate, using Eq.
(8), it is convenient to, reexpress Eq. (37) as

exp( dx fd x(l)'
B 'A (t)

exp —~ l dx, d'xln(G) ' +0(t '),
4% g g

where
t

A„(t)=
~

d'C;dC, exp —
J dx, Sx[(1/3!)U(s) (os

normalization of the eigensolutions ~„q,. Note that
if the exponent is considered negligible, A.~ is the
four-dimensional volume VT and we obtain

(a/V r) = (I"/-V)

B ']xi'
Det' 'I'(G) ' exp d'xZ ((p„(t),) .

B& 4 d X ~Vs ~+i + ~&Ps ~+0

as is customary. ' Our boundary condition

i(((),(x, -i~)= lim (d(t), /dp)(x, /p)=0
0

then implies

lim (dy, /dp)=0
i~pl- ™ (42)

xexp ~

d4x g „y, -g j...y, .

x(2 Im(2(0, q, )+ lnDet'/'[- v'+ U "((p,)]}}. (44)

In general we expect g(0, y, ) to be real so this
term will not contribute. The logrithmic term will
vanish except for "continuum" eigenvalues such as
those of Eq. (32) for p imaginary. We take the y,
= const example as a guide and assume the princi-
pal contribution to the sum over all eigenvalues,
p, arises only from large P. For the phases chos-
en in Fig. 1,

2 Im lnDet' '[- &'+ U (y )]

for all x. This assumption j.s sufficient to show"
OO 1

A (™)=I6 p'dpU'"(V )(de' /dp)' (43}
0-

and lim! „,! „A~ (x,) -0 so that it does not contribute
to I". It is now a simple matter to show

Bz'A& ()Det x/3[ .Va (ea/atm}+ U (@,)]
B, ,'A„, Det'"[- N -(sm/st'}+ U (9,)]

(40)

(41)

with

To evaluate A„(t) we restrict y, and y, to be iso-
S

tropic in x and t. For example, .
'

q, (x, it)=q), (p), p= (x +t')' '

=2Im 1n -U y ' +g, w

= V(2w)-'(2w)= V(2~)~,

where V is the three-dimensional space volume.
Assuming this is typical of the large-p behavior
for the more general case U (y, )x const, we ob-
tain finally

Of course this equation will not be valid if G ' has
negative eigenvalues. In that event, although more
algebraically complicated, the same method as
used to extract the zero eigenmodes can also be
~sed to extract the negative eigenmodes.

CONCLUSION

%e have given a field-theoretical interpretation
for the vacuum-tunneling process which is con-

I

sistent with the previous cia.ssical treatment. '4 In
fact our Eq. (45), as shown by the steps leading to
E q. (89), reduces to the result of Callan and Cole-
man" [Eq. (89}] if we assume, as they do, that

(I) the interpolating solution y, [Eq. (22)] is a
constant so that G '(q, ) has no nontrivial zero
eigenmode solutions, and

(2) the quantum fluctuations may be taken to low-
est order thereby effectively setting the exponent
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of Eq. (37) equal to zero.
Thus if a secondary constant interpolating solu-

tion exists the difference between our result and
that of Callan and Coleman'~ depends only upon
'higher-order quantum fluctuations and may there-
fore be negligible.

While we used the formahsm to describe the
vacuum-tunneling process, it could equally well be
used to describe the decay. of quasistable vacuum
state as described just prior to Eq. (18) or the de-
cay of excitations of the vacuum state ~p,). In this
h.tter case we need only to describe the initial con-
dition y(x, 0) as

y(x, 0)= QC, q, (46)

where the eigenfunctions i); are given by Eq. (29).
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